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A General Theory of Concave
Regularization for High-Dimensional
Sparse Estimation Problems

Cun-Hui Zhang and Tong Zhang

Abstract. Concave regularization methods provide natural procedures
for sparse recovery. However, they are difficult to analyze in the high-
dimensional setting. Only recently a few sparse recovery results have been
established for some specific local solutions obtained via specialized numer-
ical procedures. Still, the fundamental relationship between these solutions
such as whether they are identical or their relationship to the global minimizer
of the underlying nonconvex formulation is unknown. The current paper fills
this conceptual gap by presenting a general theoretical framework showing
that, under appropriate conditions, the global solution of nonconvex regu-
larization leads to desirable recovery performance; moreover, under suitable
conditions, the global solution corresponds to the unique sparse local solu-
tion, which can be obtained via different numerical procedures. Under this
unified framework, we present an overview of existing results and discuss
their connections. The unified view of this work leads to a more satisfac-
tory treatment of concave high-dimensional sparse estimation procedures,
and serves as a guideline for developing further numerical procedures for
concave regularization.

Key words and phrases: ~Concave regularization, sparse recovery, global so-
Iution, local solution, approximate solution, oracle inequality, variable selec-

tion.

1. INTRODUCTION

Let X be an n x p design matrix and y € R" a re-
sponse vector satisfying

(1) y=XB +e,

where f € R” is a target vector of regression coeffi-
cients and € € R" is a noise vector. This paper concerns
the estimation of the value of X, that of § or its sup-
port set supp(f), where supp(b) := {j :b; # 0} for any
vector b= (by,...,b,) " €RP.

We are interested in the high-dimensional case
where n and p are both allowed to diverge, includ-
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ing the case of p > n. We assume that the tar-
get vector B is sparse in some sense, such as the
Lo sparsity |supp(B)| < s or the capped-£; sparsity
ijl min(l, |8;[/A) < s for some positive number
s > 0. Usually, in the context of high-dimensional spar-
sity analysis, we can allow s as large as con/In p for a
fixed small constant cg, and A = o4/21In p/n, where o
is a certain noise level. While we are mainly interested
in the Gaussian noise € ~ N (0, 021,x,) or zero-mean
sub-Gaussian noise, the specific noise properties re-
quired in our analysis will be provided later.

We consider the following class of penalized least
squares estimators:

ﬁ :=argmin L (b),
beR?

2)

1 p
Ly () = ——|ly —Xb[3+ Y pbj; »),
j=1
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TABLE 1
Examples of concave penalties of form p(t; X) = )Lz,o(t/)»)

Penalty o) sgn(t)(d/dt)p(t) r*
N (1/2)1{]7] > 0} 12
Bridge (0 <a < 1) Calt® aColt]?~! 00
¢ 1| 1 00
Capped-£ min(y /2, [¢]) I(t| <y/2) v/2
MCP S = x/y) 4 dx (I —ltl/7)+ v/2
SCAD fg"m(l—;—j)erx 1A(1—‘;'%1‘) (y+1))2

Note: . = )* in all examples, Co = {2(1 — a)}l_“/(Z — a)z_“, y > 1. Threshold level of the penalty A* :=inf,-o{t/2 + p(t; A)/t}. Scaled

maximum penalty y* := max, p(¢; 1)/A2.

where b = (by, ...
ularization function with a certain regularization pa-

,bp)T and p(¢; A) is a scalar reg-

rameter A > 0. As an example, we may let p(t; A) =
(A2 /2)1(t # 0), which corresponds to the £¢ regular-
ization problem. Here I (-) denotes a {0, 1} valued indi-
cator function. Since I (¢ #~ 0) is a discontinuous func-
tion at ¢t = 0, the corresponding £o optimization prob-
lem may be difficult to solve. In practice, one also looks
at continuous regularizers that approximate £ regular-
ization, such as those described in Table 1 and plotted
in Figure 1. The quantities A* and y* in Table 1 will be
introduced later in our analysis. As we will show in the
paper, sparse local solutions of such regularizers can
be obtained using standard numerical procedures (such
as gradient descent), and they are closely related to the

2. SURVEY OF EXISTING CONCAVE
REGULARIZATION RESULTS

While this survey is not intended to be comprehen-
sive, it presents a high-level view of some important
contributions to the area of concave regularization. We
will discuss both methodological and analytical contri-
butions.

2.1 Terminologies

The following notation is used throughout the pa-
per. For any dimension d, bold face letters denote
vectors and normal face their elements, for exam-
ple, v=(vi,...,vg) ", with supp(v) being its support
{j:v; #0}N{0,...,d}. Capital bold face letters de-
note matrices, for example, X and X. The ¢, “norm”
of vis [Vl := (X9, [v;19)/7 for 0 < g < oo, with

global solution of (2). the usual extension ||v]g := |supp(v)| and ||V]c :=
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FI1G. 1.  Examples of concave penalty functions (left) and their derivatives (right).
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max <4 |v;j|. Design vectors, or columns of X, are de-
noted by x;. For simplicity, we assume throughout the
paper that the columns X are normalized to

IX;ll2 = v/n.

This condition is not essential but it simplifies some no-
tation. For variable sets A C {1, ..., p}, Xy = (x;, j €
A) denotes the restriction of columns of X to A, and
by =(bj,je€ A)T the restriction of vector b € R? to
A. The maximum and minimum eigenvalues of matrix
Y are denoted by Apax (X) and Ayin(%).

DEFINITION 1. The following terminologies will
be used to simplify discussion:

(a) The £p sparsity of B means the £p norm of
is small: B is s* £o-sparse if ||B]lo < s*. To allow B
with many more components near zero, a weaker no-
tion of capped-£ sparsity is defined as f is s* capped-
£1-sparse if Z_/ min(1, [B;]/Auniv) < s*, where Auniy =
0+/(2/n)In p is the universal threshold level for a cer-
tain noise level o.

(b) A regularity condition on X is a class 2 of
(column-normalized) matrices that match a sparsity
condition on B to guarantee a desired result. Such a
regularity condition can be stated as X € 22", with
matrix classes %ZXP C R"*? indexed by (n, p, s™),
where s* is the sparsity level of the matching regular-
ity condition on B. Such a condition on X is called an
£> regularity condition (or simply ¢» regular) if the ma-
trix classes % P are sufficiently large to satisfy the
following condltlon

— Given any ug > 1, there exists a constant cg > 0 such
that forall0 <6 <1/e

inf {,u(Q_] (2577)) e P,
Hon,p,s*
s* p . N
zln<g> <o, min(n, p, s*) > 1}
> 1-— 85

where ///,Z)Xp is the set of probability measures
in R"*? under which the rows of R"*” are i.i.d.
N, X) for some X with Apax(X)/Amin(X) <
uop and identical diagonal elements, and Q is the
column normalization mapping given by Q(X) =
x;jn'2/1%jll2. j < p).

(c) An estimator ﬂ is selection consistent if
supp(ﬂ) supp(fB), and sign-consistent if sgn(ﬂ)
sgn(B), with the convention sgn(0) = 0 for the sign
function.

(d) An estimator has the oracle property if
B=PB". B’s=(X;Xs) 'Xjy.

supp(8°) C S,

where S = supp(f). The estimator EO is called the or-
acle LSE.

3)

For 0 < r <1, the capped-£; sparsity condition
holds for all vectors with ||B], < R as long as
(R/Auniv)" < s*.

The standard regularity condition for the classical
low-dimensional statistical scenario of p < n is that
the rank of X is p. The purpose of Definition 1(b) is
to generalize this classical regularity condition to allow
p > n. For example, inf| 4| <3¢+ {rank(X,)/|Al} =1 is
£> regular. The £> notion allows an assessment of the
strength of assumptions on X by the random matrix
theory without repeating technical statements of more
specialized conditions. Although the definition of £;
regularity is abstract, the underlying intuition is that
columns of X should not be highly correlated and for
Gaussian random matrices the condition should be sat-
isfied with large probability when n is larger than the
order s*In p with s* being the sparsity of . We may
explicitly include the classical situation into the defi-
nition of ¢, regularity (i.e., require %";kap to contain
all column-normalized n x p matrices of rank p) if we
confine our discussion to fixed sample conditions. See
Remark 2 and the last paragraph of this subsection for
more discussion. In this regard, the definition of the £,
regularity condition excludes some of the conditions
used in high-dimensional sparsity analysis (such as the
irrepresentable condition which we will discuss later)
because they do not generalize the classical rank-based
regularity condition.

Throughout the paper, X and § in (1) are treated as
deterministic. Since the ¢, criterion is about the size
of EKSZXP , it does not imply randomness of X. In fact,
since the £, criterion is required to hold simultaneously
for all u € Ay, " with the same 2. " in R"™”, an
{» regularity condition is weaker than the condition of
a random X with distribution w(Q~'(-)) for a fixed
ne ///,ff and typically requires a more explicit spec-
ification of the matrix class % *PWe call the crite-
rion ¢, since it depends only on the range of the spec-
trum (the smallest and largest eigenvalues) of X.

If we consider a sequence of models in (1) with
n — 0o, then asymptotically an estimator has the ora-
cle property (allowing statistical inference for all linear
functionals of B) if

sup P{|21T(;§—Z-l\")|2 > e Var(a’ %)} =o(1) Ve >0,
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and this is a weaker requirement than (3) because it al-
lows ﬂ to converge only asymptotically to ﬂ" While
this work focuses on the stronger requirement (3) that
is easier to interpret in the finite sample situation,
the weaker definition has been used in some previous
asymptotic analysis.

The rest of the subsection discusses different forms
of £, conditions. Since the meaning of sparsity level
is always clear in its proper context, for simplicity we
may discuss design matrix conditions without explic-
itly referring to their sparsity levels.

In what follows, we will briefly explain some ¢,
regularity conditions appearing in the literature. Re-
lated conditions have been introduced first in the com-
pressive sensing literature to analyze £1-regularized re-
covery of a sparse 8 from its random projection Xf3
with i.i.d. N(0, 1) entries in X. The most well-known
of such conditions is the restricted isometry condition
(RIP) introduced in [11]. In order to explain RIP, we
first define the lower and upper sparse eigenvalues as

Kk_(m) = min IXull3/n,
lallo<m;lulla=1
4) )
k+(m) = max IXu||5/n.

llullo<m, |lu]2=1

RIP requires & + Sox + 83 < 1 with &k = ||B|lo and
dm = max{xy(m) — 1,1 — k_(m)}. A related condi-
tion is the uniform uncertainty principle (UUP) 84 +
02k .k < 11n [9], where

Oke = max max (XAVA)T
ANB=2,|A|=k,|B|=C [ul2=[v]2=1
)

- (Xpup)/n.

For {;-regularized estimators, bounds of the optimal
order for the £;-norm estimation error || ,8 Bll2 can
be obtained under RIP, UUP, as well as their improve-
ment 8125k + 61.25¢.k < 1 in [8]. While the conditions
for RIP and UUP are specialized to hold for random
designs with covariance matrix X = I, p, related con-
ditions using sparse eigenvalues can be defined to ful-
fill the £, criterion in Definition 1(b); for example, the
sparse Riesz condition (SRC) ||B]lo < max,, 2m /{1 +
k4 (m)/k—(m)} in [42, 43], and some other extensions
in [41, 45]. These more general conditions are £, reg-
ularity conditions by our definition, and they lead to
{>-norm estimation error bounds of the optimal order
for ¢-regularized estimators.

While a suitable lower bound for a lower sparse
eigenvalue is required for the identification of sparse 8
(even for p < n), it is not completely clear that an up-
per bound for an upper sparse eigenvalue or the cross-
product in (5) is required for prediction and estimation

error bounds of optimal order for a computationally
manageable estimator. Refinements of RIP/UUP and
SRC were introduced in the literature, such as the re-
stricted eigenvalue of [4, 22],

RE; = REx(, §)
= inf{[|Xull2/(lull2n'/?): usell <& lusli},

where S = supp(#), and the compatibility factor of
[37, 39],

RE; = RE;(, S)
= inf{|S|"/?|Xull2/(llusllin'/?):

uselli < &lluglli}

These quantities are directly connected to the Lasso
and Dantzig selector since their estimation error ﬂ B
lives in the cone {u:|ugc||; < &|lug|l1} under mild
conditions on the noise. Thus, without requiring an
additional condition on the upper sparse eigenvalue,
RE; > 0 provides £;-norm estimation and ¢;-norm
prediction error bounds of optimal order for these es-
timators, and RE, > 0 provides ¢>-norm estimation
bounds of optimal order. It can be shown that RE; >
RE, and appropriate sparse eigenvalues imply RE; >
0. Therefore, both RE; > 0 and RE; > 0 are ¢, regu-
larity conditions.

This paper employs an even weaker condition in-
volving a restricted invertibility factor RIF; in (15)
which is related to the cone invertibility factor CIF,
(g = 1) defined below:

CIF, = CIF, (£, S)
(6)

{ 15114 )1X T Xul|o

nlully
The quantity CIF, and its sign-restricted version have
appeared in [41], where invertibility factor-based ¢, er-
ror bounds of the form (20) below have been proven to
sharpen earlier results for the Lasso and Dantzig se-
lector [4, 9, 39, 43, 45] when g € [1,2]. Such error
bounds are of optimal order [30, 41]. Compared with
RE,, CIF,; weakens the lower bound condition with the
stronger £+, norm in the numerator of its definition. Of
special interests are g € [1, 2] for which

RE? (¢, S)
CIF; (¢, S) > RETER

RE; (£, S)REx (£, S)
(1+8)

_ REZ(E, S)

(148

usel <5||us||1}.

(N CIF>(§,S) =
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Thus, CIF; > 0 is an ¢; regularity condition for g €
[1,2].

A main advantage of using the invertibility factor is
that for g > 2, invertibility factors still yield £, error
bounds of optimal order which match results in [41,
45]. However, the sparse and restricted eigenvalues do
not yield error bounds of optimal order for g > 2 due to
the unboundedness of maxy|,=1 ||us||q||u5||1/|S|1/q
in |S].

We shall point out that different £, regularity condi-
tions are typically not equivalent since different norms
are involved in the definitions of different quantities.
For instance, in a specific example given in [4, 39], RE;
and CIF;, uniformly bounded from away from zero,
respectively, yield £; and ¢, error bounds of optimal
order, but RE, does not.

In the above discussion, we focus on fixed sample
conditions like RE, > 0 and CIF, > 0, which hold
when rank(X) = p. These conditions can be directly
seen as £ regular from their existing lower bounds for
p > n such as those in [4, 41]. The optimality of the
order of the error bounds based on such quantities can
be also stated as ¢, regularity conditions by comparing
them with sparse eigenvalues. See Remark 2 for more
discussion.

2.2 Previous Results

The Lasso (£ regularization) is a special case of (2)
with p(t; A) = Alt] [12, 35]:

® B = argmin] - 1Xb — I3 + 4[] |
berr L2n
As a function of A, the Lasso path B = /ﬂ\(zl)()\.)
matches that of ¢ constrained quadratic programming.
One may use the homotopy/Lars algorithm to com-
pute the complete Lasso path for A € [0, co) [13, 28,
29] or simply use a standard convex optimization al-
gorithm to compute the Lasso solution for a finite
set of A. The Dantzig selector, proposed in [9], is an
¢1-minimization method related to the Lasso, which
solves

B =argmin|b||; subjectto |X"(Xb—y)/n| . <.
beR?P

It has analytical properties similar to that of the Lasso,
but can be computed by linear programming rather
than quadratic programming as in the Lasso case. An-
alytic properties of the Lasso or Dantzig selector have
been studied in [4, 7-9, 17, 21, 22, 26, 27, 36, 38—41,
43, 45, 49]. A basic story is described in the following
three paragraphs.

Under various £, regularity conditions on X and the
£y sparsity condition on B, the Lasso and Dantzig se-
lector control the estimation errors and the dimension
of the selected model in the sense

IXB — XB13 1B — Bl
©) A]Mpredo'2 Inp Mest{(az/n) lnp}‘1/2
1Bl _ oy 2 g <n,

dim

with large probability [4, 6, 9, 22, 38, 41, 43, 45].
More precisely, for i.i.d. N(0,o?) errors and A =
A (2/n)Inp, A > 1 for the the Lasso and A =
1 for the Dantzig selector, (9) holds with Mpreq =
Mo/ F2, Mest = Mo/ Fy, and Mgim = Mdim(m) =1 +
{kx(m)/k_(m) — 1}/(2 — 2a¢) for the Lasso when
k <m/Mgim(m), where Mo denotes a numerical con-
stant, kK = ||Bllo, ao € (0, 1), and F; are allowed to
be F» = k_(1.25k) — 01 251k for the Dantzig selector
and g =2, F; =RE, for g € {1, 2}, or F;, = CIF, for
q €[1, o] R

Compared with the oracle 8¢ in (3), the estimation
loss of E is inflated by a factor of no greater order
than /In p, and the size of the selected model is of
the same order as the true one. This inflation factor can
be viewed as the cost of not knowing supp(8). When
In(p/n) < In p, it has been proved in [30, 41] that (9)
matches the order of the risk of a Bayes estimator for
a class of (weak) signals close to zero, so that the or-
der of this loss inflation factor /In p is the smallest
possible without further assumption on the strength of
the signal B. When B is strong (in the sense that its
minimum nonzero coefficient is not close to zero), it is
possible to achieve the oracle property, which removes
the inflation factor. However, even in such cases, the
logarithmic inflation is still present for the Lasso solu-
tion, and it is generally referred to as the Lasso bias;
it means that the Lasso does not have the oracle prop-
erty even when the signal is strong [14, 15]. Nonconvex
penalty can be used to remedy this issue. For the Lasso
and Dantzig selector, extensions of (9) have been es-
tablished for capped-£; sparse # and for 2 < g < oo
[41, 43, 45], under certain £, regularity conditions on
X [41, 45]. Error bounds of type (9) have been used in
the analysis of the joint estimation of the noise level
o* := |le|la/+/n and B [2, 32-34]. For example, the
scaled Lasso

(B3}
=ar{%m}in{uy—an2/<2na)+2 (In p)/n|bll}
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provides |6 /o* — 1| = Op(|S|(In p)/n) along with (9)
under ¢; regularity conditions [34]. If the penalty level
is set at A = 624/(In p)/n, the Lasso estimator be-
comes the square-root Lasso [3].

For variable selection, the Lasso is sign consistent in
the event

sgn(B%) =sgn(B). min |BY| = 64,
jeSs

(10)
\ = o/ (2/n)In(p — |S|)’
B (1-60)+
where 0 = [(X§Xs/n) 'sgn(Bs)lloos 05 =

IX 3 X5 (X{X5) ! sgn(Bg)lloc, S = supp(B), and B°
isAthe oracle estimator in (3) [26, 36, 40, 49]. Since
1B° — Blloo = Op(1)/(In[|Bllo)/n = op(2) under
mild conditions, 6 and 6] are key quantities in (10).
For fixed ko < 1, 65 < ko is called the neighborhood
stability/strong irrepresentable condition [26, 49]. For
X with ii.d. N(0, X) rows and given S, 6; and 65
are within a small fraction of their population ver-
sions with X in place of X' X/n [40]. For random B
with ||Bllo < n/{||XXT/p||21np} and uniformly dis-
tributed sgn(B) given ||Bllo, 0F <2and 63 <1—1/4/2
with large probability under the incoherence condi-
tion max j 4 |x;.rxk/n| < 1/(In p) [10]. It is worth men-
tioning that neither the incoherence condition nor the
strong irrepresentable condition is £, regular: in fact,
they may both fail with 65 < |S|'/2 and minjeg |,§?| >
07 A even in the classical low-dimensional setting of X
being rank p. Since 65 < 1 is necessary for the selec-
tion consistency of the Lasso under the first two con-
ditions of (10) [36, 40], this means that Lasso is not
model selection consistent under ¢, regularity condi-
tions. In order to achieve model selection consistency
under ¢, regularity, we have to employ a nonconvex
penalty in (2).

For sparse estimation, £ penalized LSE corresponds
to the choice of p(f; A) = A2/2I(t # 0) in (2), and
it was introduced in the literature [1, 24, 31] before
Lasso. Formally,

2
(1) B = argmin[inXb —yl3 + A—||lb||o].
berr L2n 2
This method is important for sparse recovery because
with the Gaussian noise model & ~ N(0, 0'2I), uni-
form distribution on support set, and appropriate flat
distribution of B within support, it may be considered
as a Bayesian procedure for support set recovery. How-
ever, this penalty is not easy to work with numerically
because it is discontinuous at zero. The Lasso can be

viewed as a convex surrogate of (11), but it does not
achieve model selection consistency under ¢, regular-
ity, nor does it have the oracle property when the signal
is uniformly strong.

Continuous concave penalties other than Lasso have
been introduced to remedy these problems. These con-
cave functions approximate the £ penalty better than
the Lasso, and thus can remove the Lasso bias prob-
lem. Most concave penalties are interpolations between
the Lasso and the £g penalty. The earliest example
in the literature is the ¢, (bridge) penalty [16] with
0 < o < 1. While the bridge penalty is continuous, its
derivative is oo at t = 0, which may still cause numeri-
cal problems. In fact, the co derivative value means that
B = 0 is always a local solution of (2) for the bridge
penalty, which prevents any possibility for the unique-
ness of a reasonable local solution among sparse local
solutions—a topic which we will investigate in this pa-
per. In order to address this issue, additional penalty
functions p(t; A) with finite derivatives at + = O have
been suggested in the literature, such as the SCAD
penalty [14] and the MCP [42]. These penalties can be
written in a more general form as p(r; 1) = A2p(t/A)
with p(0) =0and 1 — ¢ < (d/dt)p(¢t) <1 for ¢t > 0.
It can be verified that the £, penalty for 0 <« <1, the
SCAD and the MCP are all concave in [0, c0). Another
simple concave penalty is the capped-£; penalty intro-
duced in [46]. The penalties discussed in this paragraph
are all described in Table 1 and plotted in Figure 1.

The above mentioned nonconvex interpolations of
the £¢ and £ penalties typically gain smoothness over
the £o penalty and thus allow more computational op-
tions. Meanwhile, they may improve variable selection
accuracy and gain oracle properties by reducing the
bias of the Lasso. A more direct way to reduce the bias
of the Lasso is via the adaptive Lasso procedure [50],
which solves the following weighted £ regularization
problem for some « € (0, 1):

1 NN
[mnin [Elly — Xb|[3 +/\j§ |, | “ijI},
where w is an estimator of 8 (e.g., the solution of the
standard unweighted Lasso with regularization param-
eter A). A low-dimensional analysis in [50] showed
that the adaptive Lasso solution can achieve the ora-
cle property asymptotically. A high-dimensional anal-
ysis of this procedure was given in [18]. For vari-
able selection consistency and oracle properties to
hold, the adaptive Lasso requires stronger conditions in
terms of the minimum signal strength min jesupp(g) | 851
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than what is optimal. Specifically, the optimal re-
quirement is minjcsupp(g) |8 = ¥ Auniv With Aypiy =
o+/(2/n)1In p for some constant y that may depend on
an ¢, regularity condition [also see equation (12) be-
low], which can be achieved by other procedures [42,
48]; however, the adaptive Lasso requires
min jesupp(g) |81 to be significantly larger than the op-
timal order of Ayniy. This means the adaptive Lasso
is suboptimal for sparse estimation problems. We also
observe that the adaptive Lasso does not directly min-
imize a concave loss function and, hence, it is not
an instance of (2). It was later noted that this pro-
cedure is only one iteration of using the so-called
MM (majorization—minimization) principle to solve
(2) with the bridge penalty [51]. The corresponding
MM procedure is referred to as a multi-stage con-
vex relaxation in [46, 48]. For sparse estimation prob-
lem (2) with a penalty p(¢; A) that is concave in ||,
this method iteratively invokes the solution of the fol-
lowing reweighted £, regularization problem for stage
£=1,2,..., starting with the initial value of ﬂ(o) =0:

_ [ 3
BO = argm1n|:—||Xb —yl5+ > )*j(e)|bj|:|’
berr | 21 =1

where 1;( = (3/31)p(t; )L)Itzlggz—l)l (G=1....,p).
J

This procedure may be regarded as a multi-stage
extension of the adaptive Lasso, which corresponds
to the stage-2 solution E(Z) with the bridge penalty.
Unlike results for the adaptive Lasso, the results in
[46, 48] for the multistage relaxation method allow
min jesupp(g) |81 to achieve the optimal order of Aupiv,
which match those of [42] and improve upon [18].
Moreover, only £ = O(In(]|B]l0)) stages are necessary
in order to achieve model selection consistency and or-
acle properties. It is worth pointing out that the multi-
stage procedure can also be adapted to work with the
Dantzig selector formulation [23].

For large p, the global solution of a nonconvex reg-
ularization method is hard to compute, so that local
solutions are often used instead. Therefore, theoreti-
cal analysis of nonconvex regularization has so far fo-
cused on specific numerical procedures that can find
local solutions. For the £( penalty, the penalized loss in
(2) is typically evaluated for a subset of the 27 possi-
ble models supp(b) such as those generated in stepwise
regression. For smooth concave penalties, iterative al-
gorithms can be used to find local minima of the pe-
nalized loss in (2) for a set of penalty levels [5, 14, 19,
25, 46, 48, 51]. For the MCP and other quadratic spline
concave penalties, a path following the algorithm can

be used to find local minima for an interval of penalty
levels [42].

Advances have been carried out in the analysis of
nonconvex regularization methods in multiple fronts
[6, 14, 15, 18, 42, 46, 47, 50]. For concave penalized
loss in (2), local minimizers exist with the oracle prop-
erty (3) under mild conditions [14, 15]. However, it
remains unclear whether there exist computationally
efficient procedures that can find local minimizers in-
vestigated in [14, 15]. For the MCP, the local minima
generated by the path following the algorithm controls
the estimation error and model size in the sense of (9)
under an ¢, regularity condition on X [42]. Under an
additional uniform signal strength condition

(12) gl;é%|3‘j’| > ¥ Auniv > sup{z: (3/01)p(t; A) # 0}

with Ayniv = 04/(2/n) In p and a certain constant y >
1, the same path following solution has the oracle prop-
erty (3) and thus the sign-consistency property [42].
Similar results hold for the SCAD and certain other
quadratic spline penalties [42]. Under (12) and ¢, reg-
ularity conditions on X, the oracle property (3) and
model selection consistency have also been established
for a specific forward/backward stepwise regression
scheme [47] that can be regarded as an approximate
£ penalty minimization algorithm. As we have men-
tioned earlier, the multi-stage relaxation scheme for
minimizing (2) also leads to oracle inequality and
model selection consistency under (12) and ¢, regu-
larity conditions on X [46, 48].

While a number of specialized results were ob-
tained for specialized numerical procedures under ap-
propriate conditions, it is not clear what the relation-
ships are among these solutions. For example, it is not
clear whether the global solution of (2) is unique and
whether it corresponds to solutions of various numeri-
cal procedures studied in the literature. This leads to a
conceptual gap in the sense that it is not clear whether
we should study specific local solutions as in the above
mentioned previous work or we should try to solve (2)
as accurately as possible (with the hope of finding the
global solution). It is worth mentioning that related to
this question, oracle inequalities involving global solu-
tions with nonconvex penalties have been studied in the
literature (e.g., see related sections in [6]). However,
such oracle inequalities do not lead to results compa-
rable to those of [42, 46, 48]. Another relevant study
is [20], which showed that in the lower-dimensional
scenario with p < n, the global solution of (2) agrees
with the oracle estimator E" for the SCAD penalty
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when ming,; - | 3 ?| is sufficiently large, and some other
appropriate assumptions hold. However, their analysis
does not directly generalize to the more complex high-
dimensional setting.

The purpose of the remainder of this paper is to
present some general results showing that under appro-
priate ¢» regularity conditions, the global solution of an
appropriate nonconvex regularization method leads to
desirable recovery performance; moreover, under suit-
able conditions, the global solution corresponds to the
unique sparse local solution, which can be obtained via
different numerical procedures. This leads to a unified
view of concave high-dimensional sparse estimation
methods that can serve as a guideline for developing
additional numerical algorithms.

3. A GENERAL THEORY

As we have discussed in our brief survey, concave
regularized methods have been proven to control the
estimation error and the dimension of the selected
model (9) under ¢, regularity conditions and possess
the oracle property (3) or the sign-consistency property
under the additional assumption (12). However, these
results are established for specific local solutions of (2)
with specific penalties. For p > n it is still unclear if
the global minimizer in (2) is identical to these local
solutions or controls estimation and selection errors in
a similar way.

In this paper we unify the aforementioned results
with the global solution of (2). We are mainly inter-
ested in two situations: o regularization where p(t; A)
is discontinuous at t = 0, and smooth regularization
which is continuous for all ¢ > 0 and piecewise differ-
entiable. However, our basic results require only sub-
additivity and monotonicity of p(¢; A) in ¢ in [0, 00).
While the theorems are very technical, we present the
general aims and a summary of main results at the be-
ginning of each subsection. Before going into the main
results, we will give some assumptions and definitions
that are needed in the analysis.

3.1 General Assumptions and Definitions

In this subsection we describe and discuss general
conditions imposed in the rest of the paper. As we
have pointed out, the key regularity conditions re-
quired in our analysis are expressed in terms of the
sparse eigenvalues in (4) or invertibility factors RIF
and CIF defined in (15) and (6). For the sake of clar-
ity, we assume that these quantities are all constants,

and this requirement is an £; regularity condition. An-
other condition required by our analysis is called null-
consistency (NC), which requires that if B = 0, then
the global minimizer of (2) is achievable at 8 = 0 (the
actual condition, given in Assumption 2, is slightly
stronger). Clearly this condition depends both on the
matrix X and on the noise vector &. It is shown that un-
der the standard sub-Gaussian noise assumption (see
Assumption 1), the null-consistency condition is £»
regular. In summary, all assumptions on X needed in
our analysis are ¢ regular; with this in mind, we may
examine the technical details of the definitions and as-
sumptions.

We first consider conditions on the regularizer p(¢;
A). We assume throughout the sequel the following
conditions on the penalty function:

i) p0; 1) =0;
(i) p(—=t; 1) =p(t; 1);
(iii) p(z; A) is nondecreasing in ¢ in [0, 00);
(iv) p(t; 1) is subadditive with respect to ¢, p(x +
ViA) <p(x;A)+p(y;A) forall x,y > 0.

This family of penalties is closed under the summation
and maximization operations and includes all functions
increasing and concave in |¢|. Although we are mainly
interested in the case where p(¢; A) is concave in |¢|,
all of our results hold under the above specified weaker
conditions, sometimes with side conditions such as the
monotonicity of p(¢; 1)/t for ¢t > 0 and the continuity
of p(t; 1) at t = 0. Therefore, we will mention explic-
itly when such side conditions are needed.

We are particularly interested in the ¢y regulariza-
tion p(t; 1) = (A2/2)I(t # 0) which is discontinuous
at + = 0. In addition, we are interested in regularizer
p(t; A) that is continuous in ¢ > 0 and piecewise differ-
entiable. With such regularizers, local solutions of (2)
can be defined as solutions with gradient zero. A lo-
cal solution can be obtained using standard numerical
procedures such as gradient descent.

Given a regularizer p(¢; A) and any fixed A > 0, we
define the threshold level of the penalty as

(13) A* :=tin£{t/2+/0(t;)»)/t}.

The quantity A* is a function of A that provides a nat-
ural normalization of A. We call A* the threshold level
since argmin, {(z — 1)2/2 + p(t; 1)} = 0 iff |z] < A*.
This can be easily seen from (z — t)2/2 + p(t; A) —
22/2 =1t{t)2 + p(t; 1)/t — z}. If p(t; 1) is continu-
ous at + = 0 and concave in ¢ € (0, 00), then A* <
lim;_, 04 (3/0t)p(¢; A). For simplicity, we may also re-
quire that p(z; A) be chosen such that A* = A, which
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holds for the £¢, bridge, SCAD, MCP and capped-{
penalties. See Table 1 and Figure 1.
In the following, we will use the shorthand notation

P
loM: M) =Y pbji 1) Vo=(bi,....bp)" .
j=1
DEFINITION 2. The following quantity bounds a
general penalty via £ penalty for sparse vectors:

Aa, k; )
(14)
= sup{|p(b; M), : IIbll1 < ak, [bllo =k}.

PROPOSITION 1. Let p*(t;¢) = ¢t + (¢ — |t|/
2)2 /2. Let 1* be as in (13). Then,

min{A*|¢]/2, (A)2/2) < p(1: 1) < p*(1: 1*).
Moreover, with y* := max; p(t; 1)/ (A*)2,
A(a, k; ) < kmin{p*(a; 1), y*(k*)z}
< kA* min{max(a, 21%), y*1*}.

It follows from Proposition 1 that given a threshold
level A*, all penalty functions satisfying general condi-
tions (i)—(iv) are bounded by a capped-£ penalty from
below and the maximum of the £¢ and ¢; penalties
from above, up to a factor of 2. The function p*(¢; ¢)
is a convex quadratic spline fit of max(¢2/2, ¢|t|), the
maximum of the £g and ¢; penalties with threshold
level ¢.

The trivial upper bound A(a,k; A) < ky*(0A%)?2 is
useful only for bounded penalties. For the £¢, capped-
21, SCAD penalties and the MCP, the value of y* is
given in Table 1. If p(#; A) is concave in ¢ € [0, 00),
then A(a,k; L) < kp(a; L) by the Jensen inequality.
For a > 2)*, A(a, k; A) < al*k matches the trivial
bound for the £1 penalty, for which A = A*.

Next, we consider conditions on the design matrix X.
Recall that X is column normalized to [|x; ||% =n for
simplicity. Our analysis also depends on the sparse
eigenvalues defined in (4) and the restricted invertibil-
ity factor defined as follows.

DEFINITION 3. Forg>1,§€>0and SC{1,...,
p}, we define the restricted invertibility factor as

RIF, (&, S)

» f{ 1SV X T Xu o
nlully

(15)

los:: ol <€lpwsi |

The restricted invertibility factor is the quantity
needed to separate conditions on X and € in our anal-
ysis. For 1 < g <2, sparse eigenvalues can be used to
find lower bounds of RIF, (¢, S).

PROPOSITION 2. Let CIF,; be asin (6). Ift/ p(t; 1)
is increasing in t € (0, 00), then
(16) RIF, (&, S) > |Ai‘nf‘s| CIF, (&, A).

For the ¢, penalty, RIF, = CIF,. If p(¢; 1) is con-
cave in ¢t € [0, 00), then #/p(¢; A) is increasing in ¢.
Thus, Proposition 2 is applicable to all penalty func-
tions discussed in Section 2.2, including the £, bridge,
SCAD, MCP and capped-£¢; penalties.

REMARK 1. The CIF can be uniformly bounded
from below in terms of sparse eigenvalues:

CIF, (€, S)
> (I{1<q <2}
(17) Ak (k+0) — €/ (KO0 40,4¢))
S +&)Y97 (1 + 6%,/ 40) '~
S(142/k)'/?)

with 6k ¢ < ky(k + €), for all 1 <€ < (p —|S])/5
by Proposition 5 and (21) in [41], where k = |S|,
Ok.¢ 1s as in (5), and k_(m) and k4 (m) are as in (4).
For (&,¢,9) = (1,k/4,2), CIF,(&, S) > {«k_(1.25k) —
01,251(,;(}/\/3 bounds the UUP condition. For
(6,4,9)=(2,2k,2),

CIF; (&, S) = {k_(3k) — O3 8¢/ V/2} /V/45.

REMARK 2. It follows from Proposition 2 and
Remark 1 that conditions RIF,(§,S) > 0 and 1/
RIF, (&, S) = O(1) are both ¢; regularity conditions
on X for 1 < g < 2. Moreover, rank(X) = p implies
RIF(, S) > 0. To check the ¢; regularity of these con-
ditions, we suppose that the rows of X are i.i.d. from
N (0, X) with all eigenvalues of X in [c1, c2] C (0, 00).
Then, c;/2 < k_(m) and x(m) < 2c, with at least
probability 1 — § € [0, 1) for m < c3n/In(p/§) for a
certain ¢3 > 0. Let ¢4 = {c1 /(& ¢2)}2. In this event, set-
ting k =s* and £ = (m — s*)/5 in (17) yields
min RIF;(&, §) > min CIF;(¢, S)

s* |S|<s*

IS]=

> (c1/4)/\ (1 +82c4/4) (1 + 1/ca)

when 55*/(m — s*) < ¢4 for some m < c3n/In(p/$),
which holds when (s*/n)In(p/8) <c3/(1 +5/c4).
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Finally, we consider conditions on the error vector.

ASSUMPTION 1. An error vector & is sub-Gaussian
with noise level ¢ if for all ¢ > 0,

P(u'e| > &1) < exp(—%/2)

for all vector u with |u|, = 1.

The above sub-Gaussian assumption implies that
there exists a universal constant c¢g > 1 such that for
o = copo we have

P(IPaell2/IAI'? > o (1 +1)) <exp(—|Al?/2)

for all subsets A C {1, ..., p}, where P4 is the orthog-
onal projection to the range of X4 (i.e., P4 = XAXZ,
where Xz is the Moore—Penrose generalized inverse
of X4).

The above sub-Gaussian condition holds with & ~
N(0,5%1,x,) and 0 = &. Although the second part of
the assumption follows from the first part, we list it in
the assumption for convenience. Moreover, we will ig-
nore the constant cg in the subsequent discussion and
simply replace the noise level 6 by o in the follow-
ing. As we have mentioned in Section 3, what we really
need is a null-consistency condition, which we give be-
low. The sub-Gaussian condition will be used to verify
the NC condition.

ASSUMPTION 2. Let n € (0,1]. We say that the
regularization method (2) satisfies the n null-
consistency condition (1-NC) if the following equal-
ity holds:

min (lle/n = Xbll3/2n) + [ (b V)
(18) ,
= lle/nli3/@n).

Given n = 1, the NC condition means that if 8 =0,
then the global minimizer of (2) is achievable at B =0.
This requirement is clearly necessary for the global
minimizer of (2) to satisfy the error bound (20) in The-
orem 1 below for |S| = 0. Here, we also allow a slightly

stronger condition with n < 1, which requires f =0
for B = 0 when the noise & is proportionally inflated

by 1/7.

PROPOSITION 3. Suppose that € is sub-Gaussian
with noise level o, 0 < § <1 and ¢ > 0. Sup-
pose p(t; ) = (W)?/2) A (WF[t]) with A* > (1 +
20)(o/mn~ V21 + V2In@2p/8)). Then, (2) satisfies
the n-NC condition with at least probability 2 — e%/% —

exp(—n(1 — 1/+/2)?), provided that

max{krlrl/fx(XgPAXB/n) ;
(19)

BNA=g,|A| =rank(P4) =|B| =k,

k(1 +20)*(1 + v2In(2p/8))” < 2n

Moreover, (19) holds with no smaller probability than
1 — 8%/(16p?) if the rows of X are i.i.d. from N (0, X)
and ngﬂr{fx(z) < ¢o(1 + o). This means that under
the sub-Gaussian condition on €, the n-NC condition
is £>-regular.

}SCO.

REMARK 3. The condition p(t;A) > min(k2/2,
Alt]) holds for the £g, £1, SCAD and capped £ penal-
ties in Table 1, so that Proposition 3 is directly appli-
cable with A = A*. In general, the condition of Propo-
sition 3 holds for all penalties considered in this pa-
per when the threshold level in (13) satisfies A* >
2(1 4+ o) (o /m)n~ ' 2(1 + /2In(2p/3)), in view of the
lower bound of p(¢; 1) in Proposition 1. For £y and ¢;
penalties, we may set {o = 0 in Proposition 3 [the extra
condition (19) is not necessary]. The simplified condi-
tion for the £( penalty is explicitly given in Theorem 3.
For the ¢ penalty, the n-NC condition is equivalent to
IXTelloo < nan.

3.2 Basic Properties of the Global Solution

We now turn our attention to the global solution
of (2) with a general subadditive nondecreasing reg-
ularizer p(t; A).

_Theorem 1 below gives ¢;-norm error bounds for
B — Bll; and a bound of the prediction error || X8 —
X2 that are comparable with known results for £;
regularization. This means that under appropriate £»
regularity conditions, the global solution of concave
regularization problems is no worse than the Lasso in
terms of the order of estimation and prediction errors.
Theorem 2 below shows that the global optimal solu-
tion of (2) is sparse, and under appropriate £, regular-
ity conditions, the sparsity is of the same order as || 8]0,
that is, ||;§||0 = O(||Blo)- Thus, (9) holds for the global
solution of (2). Moreover, if the second order derivative
of p(¢; 1) with respect to ¢ is sufficiently small, then the
global solution is also the unique sparse local solution
of (2). That is, if a vector B is a local solution of (2)
which is sparse, ||Blo = O(||Bllo), then B is the global
solution of (2).

For uniformly bounded penalty functions, the pre-
diction error bound requires only the n-NC condition
and the sparsity of the global solution requires only
an additional condition on the upper sparse eigenvalue
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of X. Thus, by Proposition 3, no condition on the lower
sparse eigenvalue is required for the prediction error
bound and the sparsity of the global solution. These re-
sults are stated as Corollary 1 and Corollary 2(i).

None of the results in this section require that
ming 40 | 33| be bounded away from zero. Further-
more, since these results require only £ regularity con-
ditions, they apply to the case of p > n as long as
s*(In p)/n is small.

We now present detailed technical statements. First
we consider the estimation of X and S.

THEOREM 1. Let S = supp(B), ﬁ be as in (2),
A* as in (13), and RIF,(&,S) as in (15). Consider
ne,1),and § =+ 1)/(1 —n), and assume that
the n-NC condition (18) holds. Then for all g > 1,

(20) 1B — Blly < (14 n)r*|S|Y9/RIF, (&, S),

andwitha; = (1+n)/RIF| (&, S), y* in Proposition 1,
and A(a, k; A) in (14),

IXB — XBI3/n <28 A(arr*, |S]; 1)
<26 min{(a; v 2), y*}(A*)*|S].

By using the bound A(ajA*,|S|; 1) < |S|y*(A*)?,
we obtain the following corollary.

COROLLARY 1. Consider penalties p(t;)) in-
dexed by the threshold level, \* = A in (13). Sup-
pose (18) holds. Let S = supp(B) and y* = max, p(t;
A)/A2. Then,

IXB —XBl5/n < 2{(1+m/(1 —n)}y*2*|S].

REMARK 4. Corollary 1 can be readily applied to
the £, capped-£1, MCP and SCAD penalties described
in Table 1, where y* is also specified. It is worthwhile
to note that the prediction error bound in Corollary 1
does not depend on X, provided that the penalty is large
enough to guarantee NC. For the £ penalty, the NC re-
quires only [X; |2 = +/n on X, which we assume any-
way. For other concave penalties in Corollary 1, we are
only able to provide NC in Proposition 3 under a mild
condition on the upper eigenvalue of XgP AXp/n, but
not on the sparse lower eigenvalue of the Gram matrix.
In contrast, the sparse lower eigenvalue condition of
the Gram matrix (such as RE; or CIF;) is needed for
the Lasso. This presents a benefit of concave regular-
ization in prediction, compared with £1, at least from
an analytical point of view.

Next we provide an upper bound for the sparse-
ness of B based on Theorem 1 and the maximum

sparse eigenvalue «y(m). We denote by p(t;A) =
(0/0t)p(t; A) any value between the left- and right-
derivatives of p(-; A) and assume the left- and right-
differentiability of p(-;A) whenever the notation
o(t; A) is invoked. For example, if p(¢; 1) = A|t|, then
0(0%; A) = +£A and p(0; 1) can be any value in [—A, ]
(which, in all of our results, can be chosen as the most
favorable value unless explicitly mentioned otherwise).

THEOREM 2. Let {S, B, A*, n,&, a1} and A(a,k;
) be as in Theorem 1, and S = supp(B). Suppose that
the n-NC condition (18) holds. Consider ty > 0 and
integer mq > 0 satisfying mo = 0 for to = 0 and

J2Eic (mo) A(ara*, |SI; 1) /mo + [X e /n]
(22)
< inf p(s; M)

O<s<ty

for tg > 0. Then,
IS\ S| <m

=mo + [EA(ar1 )™, [S; 1)/ p(to; 1) .

The 7-NC condition implies | X &/nllcc < nA* by
Lemma 1 in [44]. If p(z; 1) is concave in ¢ > 0, then
the right-hand side of (22) can be replaced by p(fo; A)
and p(tp; ) > top(tp; ). These facts give the follow-
ing corollary for £+, bounded and £ penalties.

(23)

COROLLARY 2. (i) Let p(t;A) and y* be as in
Corollary 1. Suppose (2) is n-NC in the sense of (18)
and p(agh; A) = A(1—ay/y) for some ag > 0 and a; >
0. If mg = «|S| is an integer and 2y*ky(a|S]) /o <
(I—ar/y —=m?*(1 —n)/(1 +n), then

< . y*/ao
(24) |S\S|<m.—<a+—1_al/y>|5|.

(i1) Let SeD — supp(ﬁ“l)) with the Lasso (8) and
CIF; as in (6). In the event ||X—|—e/n||oo <nA,

2icy (o] S])/at
CIF ((1 + 1—n),S
25) 1(( 17)/(3 ), S)
LU S\ s <= als).
(1+m)?
REMARK 5. Theorem 2 and Corollary 2 imply that

the global solution B in (2) is sparse under appropriate
assumptions. Since the n-NC condition follows from
a bound on the upper sparse eigenvalue in Proposi-
tion 3, Corollary 2(i) asserts that for concave penal-
ties with finite y*, the sparsity of the global solution
does not require a condition on the lower sparse eigen-
value. For £ regularization, we may take mo =1ty =0



A GENERAL THEORY OF CONCAVE REGULARIZATION 587

with the convention x4 (0)/0 = 0 in (22). The Lasso
also satisfies the dimension bound |§\ S| <m V1 un-
der the SRC: {k (m + |S]|)/k—(m + |S]) — 1}/(2 —
2ap) < m/|S| with an ag € (0, 1), provided that A >
1+ 0(1)){K41r/2(m)/ao}0«/(2/n) In p [42]. An advan-
tage of (25) is to allow an A not dependent on the upper
sparse eigenvalue of the design for sub-Gaussian .

REMARK 6. Let «* = supy_,_{p(t;1) —
p(s;A)}/(s — t) be the maximum concavity of the
penalty. Suppose k_(|S| +m + m — 2) > «*. Then,
the penalized loss L, (b) in (2) is convex in all models
supp(b) = A with |A \ S| <m + m — 2. This condi-
tion has been called sparse convexity [42]. If m is as
in (23) or (24) and B is a local solution of (2) with
#j¢S:p ; # 0} < m, then the local solution must be
identical to the global solution.

REMARK 7. Consider penalties with A* = A which
hold for all penalties in Table 1. Let n € (0,1) and
A > 0 be fixed. Suppose Theorem 2 or Corollary 2 is
applicable with m < *|S] for a fixed constant «* and
all A > X,. Suppose, in addition, p(¢; 1) is continuous
in 1/A € [0, 1/A] uniformly in bounded sets of ¢. Un-
der the sparse convexity condition x_(|S| +m — 1) >
k4 > 0, with the maximum concavity «* in Remark 6,
the global solution forms a continuous path in R? as
a function of 1/A > 1/A,. This path is identical to the
output of the path following the algorithm in [42] if it
starts with 8 =0 at 1/ = 0. We will show in The-
orem 7 that gradient algorithms beginning from the
Lasso may also yield the global solution under the
sparse convexity condition.

As simple examples to illustrate Corollaries 1 and 2,
we consider the capped-£; penalty and the MCP with
A =A% and y* in Table 1. For the capped-£; penalty
with ag = y /2 in Corollary 2,

IXB —XBI3/n < 2SIy (1 +n)/( —n),
yie(@lS]) < a(l—n)?/(1+n)
=S\ S| < (@ + DIS].

For the MCP with «p = y /3, the same prediction
bound holds and

yicr(@lS]) < a@/3 = m*A—n/(1+mn)
= S\ S| < (@ +9/4)|S].
Note that, generally speaking, unless stronger condi-
tions are imposed, Theorem 2 only implies that | \
S| = 0(]S]) butnot | S\ S| =0 required for model se-

lection consistency. The model selection consistency
will be studied later in the paper.

3.3 The Global Solution of £, Regularization

This subsection considers the global optimal solu-
tion B0 of £y regularization in (11). We are inter-
ested in two results: sparsity of the global solution
and its model selection quality. For clarity, the two re-
sults are separately stated in two theorems. First, it is
shown that the global solution of £( regularization is
sparse. Moreover, with sub-Gaussian noise, the pre-
diction error bound for the £p penalty in Theorem 3
below does not depend on properties of the design
matrix X. This significantly improves upon the cor-
responding existing results for the Lasso and Dantzig
selector, which requires a nontrivial RE; or CIF; con-
dition on the design matrix X. It also improves upon
Corollary 1 since the n-NC condition holds explicitly
for A > (o/n)(1 + /2In(p/8))/+/n. If a certain lower
sparse eigenvalue of X'X/n is bounded from below
and the uniform signal strength condition (12) holds,
then we obtain in Theorem 4 below the selection con-
sistency for £( regularization, which implies the oracle
property.

We can now describe our first result, which says that
under appropriate conditions, the global solution of £y
regularization is sparse.

THEOREM 3. If for all b € RP:e"Xb <

An/n|bllo|Xb||2 for some n < 1, then (11) satisfies
the n-NC condition. It implies that the global optimal

solution of (11) satisfies
+n?
)
(L +mA2lIBlo
1—n ’
We also have the following result about model selec-
tion quality for £o regularization.

-~ 1
1B, < . I1Bllos

[XB“0 —XB]; <

THEOREM 4.  Assume that the assumption of The-
orem 3 holds. Let s = 2||Bllo/(1 — n?) and B° be

as in (3). Suppose IXT (Pse — &)|loo/n < /2k_(S)A,
where Pg is the orthogonal projection to the range of
Xs. Let S = supp(B), 8° = #{j € §S: |,B‘Jf| <

A2]Kk_(5)}, and S = supp(BU0). Then,
IS — 85| +0.55 — 5| <268°,
IX(B“ — B%)|5 < 22%8°.

If the error e is sub-Gaussian in the sense of As-
sumption 1, then the condition of Theorems 3 and 4
holds with at least probability 2 — ed for x> (o /n)(1+
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V2In(p/8))/+/n. Theorem 4 implies that model se-
lection consistency can be achieved if the condition
Min; csupp() |E3| > A//k_(s) holds, which implies
that 6% = 0.

3.4 Approximate Local Solutions

This section considers penalties p(¢; A) which are
both left- and right-differentiable, for which one can
define (approximate) local solutions that are what nu-
merical optimization procedures compute. We provide
sufficient conditions for the uniqueness of the sparse
local solution of (2) and its equality to both the oracle
least squares and global solutions.

Theorem 5 below considers the distance between
two approximate local solutions. An immediate con-
sequence of the result says that under appropriate as-
sumptions, there is a unique sparse local solution of
(2) that corresponds to the oracle least squares solu-
tion ﬁ“. Therefore, the unique local solution has the
oracle property. Moreover, this unique local solution
has to be the global optimal solution according to The-
orem 2. While Theorem 5 shows that it is possible
for a penalty that is not second order differentiable to
have a unique sparse local solution, it requires the uni-
form signal strength condition (12) for such penalties.
In contrast, with a second order differentiable concave
penalty, (12) is not needed in Theorem 5 for sparse lo-
cal solutions to be unique. This suggests an advantage
for using smooth concave penalties which may lead to
fewer local solutions under certain conditions.

Theorem 6 below gives sufficient conditions un-
der which the global optimal solution of (2) achieves
model selection consistency. These sufficient con-
ditions generalize the irrepresentable condition (10)
for the model selection consistency of the Lasso.
However, unlike the irrepresentable condition for the
Lasso, which is not an £, regularity condition, for
a concave penalty where (3/0t)p(t; ») = 0 for suffi-
ciently large ¢, the generalized irrepresentable condi-
tion required in Theorem 6 automatically holds when
ming 20 | B‘;| is not too small and, thus, it is trivially an
£ regular condition. Moreover, for appropriate non-
convex penalties, it is possible to achieve a selection
threshold of optimal order as in the uniform signal
strength condition (12).

Suppose p(t; A) is both left- and right-differentiable.
Given an excess v > 0, a vector ﬁ € R? is an approxi-
mate local solution (ALS) of (2) if

26)  |XTXB —y)/n+pB: 0| <v.

This B is a local solution if v = 0. Note that, by con-
vention, p(f; 1) can be chosen to be any value between
p(t_; A) and p(t4; A) to satisfy the equation. In this
subsection we provide estimates of distances among
the ALS of (2) and use them to prove the equality of
oracle approximate local and global solutions of (2).
This gives the selection consistency of the global so-
lution studied in Section 3.2. The oracle LSE is con-
sidered as an ALS. In addition, we define a sufficient
condition for the existence of a sign consistent local so-
lution which generalizes the irrepresentable condition
for the Lasso selection and becomes an ¢, regularity
condition on X for a broad class of concave penalties.

We first provide estimates of distances among the
ALS of (2). We use the following function 6 (¢, k) to
measure the degree of nonconvexity of a regularizer
p(t; X) att € R. To our knowledge, this is the first time
that it is introduced explicitly.

DEFINITION 4. For k > 0 and f € R, define
0(t, k)
= sup{—sgn(s — 1)(p(s; 1) — H(; 1)) — ks — 1]}
N

Moreover, given u = (ul,...,up)T € R?, we let
9(“,/{)=[9(M],K),...,9(MP,K)].

We are mostly interested in values of 6(¢, x) that
achieve zero. We note that 6(f,x) = 0 for convex
o(t, 1) with k > 0. More generally, let «* be the max-
imum concavity as in Remark 6. Then, 6 (¢, k) = 0 for
all ¢ iff &« > k*. For p(t+; 1) < p(t—; 1), 0(¢t, k) >0
for all finite k. However, we only need 6(¢, k) = 0 for
a proper set of ¢ in our selection consistency theory.
As an example, for k = 2/y, the capped-£; penalty
p(t; A) = min(y)\z/2, Alt]) gives 0(¢, k) =0 when ei-
ther t =04 or [t| > yA.

The following theorem shows that under appropriate
assumptions, two sparse approximate local solutions
E(l) and ,E(z) are close.

THEOREM 5. Let B be the ALS of (2) with ex-
cess v and A = ﬁ(l) — B(z). Let k1 (-) be the sparse
eigenvalues in (4) and SG) = supp(ﬁ(j)). Consider
any S C {1, ..., p} with k = |S|, integer m such that
m+k> |§(1) U §(2)|, and 0 <k <k_(m + k). Then,

s 2 (m + k)
IXAIG/n < = s

(1 2
27) Alo(Bs, | <)
+ 5D\ 501620, ) + v)
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with v = {(w1/2 4 WOHYU12 4ng

1S\ S?| < Jinf [#{j €5 1B,V < ho/yfie—(m +k))
0>
(28)
+ [IXA3/(33n)]-

If, in addition, 0(0+,x) = 0 and pO0+;1) >
IXEXBD —y)/nlloo with S 2 SV and |S| > k, then

3O\ s

29
@ _ 32 /k_(m 4 k) + i m)}IXA[3/n + 5]

PO+ 1) — [Xg (XBD —y)/nllo)?

Let S = supp(B). For comparison between a sparse
local or global solution ﬁ(z) with |S@ \ §| <m and an
oracle solution E(l) with SO = . the sparse convex-
ity condition implies ﬁ@ = E(l) when «* < k_(|S]| +
m) as in Remark 6. However, since «* = oo when
p(t+; 1) < p(t—; X) at a point ¢ > 0, the sparse con-
vexity argument requires the continuity of p(z; A) for
t > 0. This does not apply to the capped-£¢; penalty.
In Theorem 5, if 6(0+, x) = 8(BY’, k) = 0 with x <
k_(|S| + m), then XA = 0 and, hence, B® = gD
[since K_(|§(1) U §(2)|) > 0]. Thus, the sparse con-
vexity condition is much weakened to cover all left-
and right-differentiable penalties such as the capped-
£1. On the other hand, Theorem 5 does not weaken
the sparse convexity condition for the MCP, for which
0(0+;k) =0 iff «k > «x* =1/y iff 6(¢; k) = 0 for all
t > 0. It is worth pointing out that for a piecewise dif-
ferentiable penalty that is not second order differen-
tiable, the condition G(E(SD, k) = 0 (thus, the unique-
ness of local solution) typically requires |3 j(1)| to be
large to avoid the discontinuities of p(¢; A) when j € S.
As pointed out in Remark 6, this is not necessary when
the penalty is second order differentiable. This means
that there can be advantages of using smooth penalty
terms that may have fewer local minimizers under cer-
tain conditions.

As a simple working example to illustrate Theo-
rem 5, we consider the capped ¢; penalty. Let S =
supp(B). Assume that « =«x_(m+|S])/2 > 2/y. Then
0(t, k) = 0 when either t = 0=+ or |¢| > y A. Therefore,
if we define ﬁ(l) as 5,-(1) = 3;’ when |,§?| > yA and
B(j ) = 0 otherwise, then

8v

XA|3/n< ——-——,
IXAIR/n <

and by taking Ag = yA/k_(m +|S]), we have
IXA|3
202k_(m+|S)hn’
3[1.25k4 (m) XA |15 /n +VP]
(A= IX5 XBD —y)/nlloc}?

We now consider selection consistency of the global
solution (2) by comparing it with an oracle solution
with Theorem 5. For this purpose, we treat the ora-
cle LSE as an ALS by finding its excess v in (26),
and provide a sufficient condition for the existence of
a sign consistent oracle local solution. This sufficient
condition is characterized by the following extension
of the quantities ;" and 6] in (10) from the ¢; to gen-
eral penalty:

S\ 8@ <
%

S\ S| <

61 = inf{0: | (X§ Xs/n) "' p(vs + B%s: 1)| o, <61,
Yvslloo <627},

0 = sup{ [ X3 Xs(X§Xs) ' p(vs + B%s: 1) | oo /A
[Vslloo < 6127},

where S = supp(8) and B" is the oracle LSE in Def-
inition 1(d). Note that when p(B8%g; 1) =0, 6; =0 is
attained with vg = 0 and, consequently, 6, = 0.

THEOREM 6. (i) Let S = supp(B) and Pgs be
the projection to the column space of Xg. Suppose
p(t; )) is left- and right-differentiable in t > 0 and
IX{:Peelloo < p(O-+; A). Then, the oracle LSE B° sat-
isfies the ALS condition (26) with v = ||,<')(B"S; M2
If, in addition, the 1n-NC condition (18) holds and
v=0=0(B° «) with a certain k < x_(m + |S|) and
m in (23) or (24), then B° is the global solution of (2).

(i) Suppose ,(')g; A) is lﬁ’lifOl’mly continuous in t in
the region Ujes[ﬂ? — 0y, ,33 + 61]. Suppose

sgn(EO) =sgn(p), m1§1|l§7| > 010%,
jes’
(30) * Tpl
2> [ X Pye/n| /(1 —62)+.

Then, there exists a local solution ﬁo of (2) satisfy-
ing sgn(B?) = sgn(B) and ||B° — B°lloc < 11" If, in
addition, (18) holds and 6(B°, k) = 0 with a certain
Kk < k—_(m+|S|) and m in (23) or (24), then ﬁ” is the
global solution of (2).

REMARK 8. (i) Consider the capped-£;, MCP
and SCAD (Table 1). For the capped-£; penalty,
Q(EO,K) =0 for k > 2/y and minj¢g |E‘j’.| > yA, and
v =0 for min;cg |/§‘}| > y /2. For the MCP, 6(-, k) =
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0 for « > 1/y, and v = 0 for min g |,§3| > yA. For
the SCAD penalty, 6(-,k) =0 for« > 1/(y — 1), and
v =0 for minjeg |,§;’~| > yA. (ii) For the ¢; penalty,
p(b) = sgn(b) so that (30) is identical to (10) for
the Lasso selection consistency. For concave penalties,
|p(t; A)| is small for large |z|, so that {#1, 6>} are typ-
ically smaller than {6, 65} for strong signals. In such
cases, (30) is much weaker than (10).

For nonconvex penalties such that 6(¢; 1) = 0 when
|| > aoA for some constant ap > 0, we automatically
have /(B%s: A) = 0 when min;cs |B9| > aoh, which
implies that 6y = 6, = 0. This special case gives the
following easier to interpret corollary as a direct con-
sequence of Theorems 5 and 6.

COROLLARY 3. Let S = supp(B) and Pg be the
projection to the column space of Xs. Suppose p(t; A)
is left- and right-differentiable in t > 0 and
||XT Pie/nllo < PO+ 1). If (18) holds and
,o(ﬂ s;A) =0, and 9(;30 k) =0 with a certain k <
k—(m—+|S|) and m in (23) or (24), then }30 is the global
solution of (2). Moreover, for any other exact local so-
lution ﬂ of (2) that is sparse with | sup(ﬂ) \ S| <m,we

have ,B ﬂ"

Consider the simple examples of the capped-£;
penalty and MCP. For the capped-£; penalty p(¢; A) =
min(yA2/2, Alt]), we pick a sufficiently large y such
that y > 2/k_(|S| + m) for the m in (23) or (24).
This will be possible with m =< | S| when «_(m) is uni-
formly bounded away from zero for small m(In p)/n
and |S|(Inp)/n is even smaller. For the MCP, we
pick y > 1/k_(|S| 4+ m) for the m in (23) or (24). If
minjeg | Eﬂ > y A, then the conditions of Corollary 3
are automatically satisfied for both penalties when
||XT PLe /1|lco < A (which holds for sub-Gaussian er-
rors aEd A = o04/(n/2)log p). It follows that in this
case, B¢ is the global solution of (2), and there is no
other local solution with no more than m nonzero-
elements out of S. The essential condition here is
the n-NC condition (18), which is an £, condition.
Note that in view of Corollary 2, the RIF condi-
tion is not essential for the equality of the global
and oracle solutions in these examples, both with fi-
nite y* = y /2. A similar result holds for the SCAD
penalty, with somewhat different constant factors. The
requirement of mineg | //3\(]’| > y A is natural for vari-
able selection, and it directly follows (with probabil-
ity 1 — &) from the condition of minjcg |B;] > YA +
o(1 4+ ZIn(ST/3)A /(X Xs) for sub-Gaussian
errors under Assumption 1.

3.5 Approximate Global Solutions

We have mentioned in Remark 7 that the gradient al-
gorithm from the Lasso may yield the global solution
of (2) for general p(¢; A) under a sparse convexity con-
dition or its generalization. Here we provide sufficient
conditions for this to happen. This is done via a notion
of approximate global solution.

The results in Section 3.4 show that if one can find
a local solution of (2) and the solution is sparse, then,
under appropriate conditions, it is the global solution
of (2) and it is close to the oracle least squares solu-
tion B". It is possible to design numerical procedures
that find a sparse local solution of (2). For such a pro-
cedure, results of Section 3.4 directly apply. This sec-
tion further develops along this line of thinking. Theo-
rem 7 shows that if a local solution is also an approx-
imate global solution, then it is sparse. This fact can
be combined with results in Section 3.4 to imply that,
under appropriate conditions, this particular local solu-
tion is the unique sparse local solution (which is also
the global solution). Moreover, such a solution can be
obtained via the Lasso followed by gradient descent,
as it can be shown that the Lasso is a sufficiently accu-
rate approximate global solution of (2) for the result to
apply. _

Given v > 0 and b € R?, we say that a vector 8 € R”
is a {v, b} approximate global solution of (2) if

1~ -
|55 1XB = yI3+ |oGBi )]
G

1
- [%||Xb—y||%+ | o(b; A>||1] <v

To align different penalties at the same threshold level,
we assume throughout this subsection that A* depends
on p(t; 1) only through A in (13), e.g., A* = A.

One method of finding a sparse local solution is
to find a local solution that is also an approximate
global solution. This can be achieved with the follow-
ing simple procedure. First, we find the Lasso solution
B(E') of (8). The following theorem shows that it is a
{v, B} approximate global solution of (2) with a rela-
tively small v under proper conditions. Now we can
start with this solution 73\(41) and use gradient descent
to find a local solution B of (2) that is also an ap-
proximate global solution. The following theorem then
shows that, under appropriate conditions, this local so-
lution is sparse. Therefore, results from Sections 3.2
and 3.4 can be applied to relate it to the true global
solution of (2).
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THEOREM 7. Consider a penalty functions p(t; 1)
with & = A* in (13). Suppose the n-NC condition (18)
Sfor p(t; M) with0 <n < 1.

(1) Suppose m = O(|SQ in (25) or under the SRC
in Remark 5 for the Lasso €1 jn (8). Then, the Lasso
ﬁ(zl) is a {v, B} approximate global solution for the
penalty p(t; 1) with v < A2|S]. 5

(ii) Assume that p(t; \) is continuous att = 0. Let 8
be a local solution of (2) that is also a {v, B} approxi-
mate global solution. Let &' =2/(1 —n). Consider ty >
0 and integer mg > 0 such that {2/c+(mo)b/m0}1/2 +
IXTe/nlloo < infocs<ip(s:2), where b =
&' max{v, A(a|A], ISy M)} with a) = (1 + n)/
RIF (£, S) and )} :=sup,~ |6(t; 1)|. Then,

#{j ¢ S: B #0) < :=mo+ |b/p(to; 1)].

REMARK 9. If p(#; 1) is concave in ¢, then A} =
p(0+; A), and infos-4 p(s; 1) can be replaced by
p(to; &) for choosing (79, mg). Theorem 7 applies to
the £1, capped-£1, MCP and SCAD penalties with A =
A* and b = & max(v, |S|y*A?), but not to the bridge
penalty for which A} = y* = o0.

Theorem 7 shows that the £ solution /ﬂ\(zl) is {v, B}
approximately global optimal with v = O(|S [(A*)2)
in (31), and that a local solution 8 which is also ap-
proximate global optimal is a sparse local solution.
Thus, with b = O((A*)2|S]) and p(t; 1) =< (A*)* <
(AT)Z, the local solution B obtained with gradient de-
scent from ﬁ(m is sparse with #{j ¢ S:,Ej #0} =
O(|S]). Here we assume that a line-search is performed
in the gradient descent procedure so that the objec-
tive function always decreases (and thus each step
leads to an {v, B} approximate global optimal solu-
tion). Now Remark 6 can be applied to this sparse lo-
cal solution, providing suitable conditions for this so-
Iution to be identical to the global optimal solution. If
minjes |Bj| > CAuniy for a sufficiently large C, Corol-
lary 3 (or Theorems 5 plus 6) can be applied to identify
this local solution as the oracle LSE (or penalized LSE)
and the global solution.

It is worth pointing out that results of this paper con-
cerning the global solution can be applied under the
NC condition. For a general penalty function, this re-
quires the condition (19) to hold for the upper sparse
eigenvalue. Although this is an £, condition, it is not
needed for either the £1 or £( penalty as pointed out in
Remark 3. In fact, this condition is also not needed if
we consider the local solution obtained with more spe-
cific numerical procedures such as [42, 48] that lead to
specific sparse local solutions with oracle properties.

Nevertheless, it is useful to observe that if the extra
condition (19) holds, then such a local solution is also
the unique global solution, and it can be obtained via
other numerical procedures.

4. DISCUSSION

This paper gave a general survey of previous re-
sults for high-dimensional sparsity analysis using con-
vex penalty (Lasso) and various concave penalties. In
particular, specific local solutions for certain concave
penalties were studied previously. However, the rela-
tionship of these local solutions and their relationship
to the global solution was unknown. In the context of
these earlier results, we presented a general theory of
concave penalty which tries to answer the following
questions:

e What’s the relationship among local minima from
different procedures?

e What’s the property of a global optimal solution?

e Can we find a global optimal solution efficiently
of nonconvex sparse regularization under £, condi-
tions?

Our results answer the above questions. While the the-
ory developed in the paper is general, we are specially
interested in £g regularization (which is natural for
sparse recovery problems) and smooth regularization
(for which local minimum can be naturally defined).
For ¢y regularization, we show that the global solution
is sparse. Moreover, under appropriate £, conditions, it
recovers the oracle least squares solution, and thus is
model selection consistent with the oracle property.
Since the £y penalty is discontinuous at zero, it is
difficult to solve with traditional numerical algorithms.
For this reason, we consider smooth penalties that
have well defined local minimum solutions. For such
penalties, this paper provides affirmative answers to
the above questions under appropriate ¢, conditions.
Specifically, we proved the following results:

e The global solution is sparse.

e Approximate global solution is sparse if it is also a
local solution.

e There is a unique sparse local solution that has the
oracle property.

e The approximate global solution for the nonconvex
penalty can be achieved by the Lasso.

This motivates the following numerical procedure. We
first start with the Lasso solution and then use gradi-
ent descent to decrease the nonconvex objective value
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with appropriate concave penalty until it converges to a
local minimum solution. Our theory shows that, under
appropriate £, conditions, the solution from this pro-
cedure converges to the unique global solution that is
sparse, and thus it has the oral property.

In summary, our results imply the following: under
appropriate ¢, regularity conditions, plus appropriate
assumptions on the penalty p(¢; A), procedures con-
sidered earlier such as MCP [42] or multi-stage con-
vex relaxation [19, 46, 51] give the same local solu-
tion that is also the global minimizer of (2). Moreover,
other procedures (such as the Lasso followed by gra-
dient descent) can be designed to obtain the same so-
lution. Therefore, these results present a coherent view
of concave regularization by unifying a number of ear-
lier approaches and by extending a number of previous
results. This unified theory presents a more satisfactory
treatment of concave high-dimensional sparse estima-
tion procedures.
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