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Objective Bayesian Analysis of a
Measurement Error Small Area Model

Serena Arima∗, Gauri S. Datta† and Brunero Liseo‡

Abstract. We consider small area estimation under a nested error linear regres-
sion model with measurement errors in the covariates. We propose an objective
Bayesian analysis of the model to estimate the finite population means of the small
areas. In particular, we derive Jeffreys’ prior for model parameters. We also show
that Jeffreys’ prior, which is improper, leads, under very general conditions, to a
proper posterior distribution. We have also performed a simulation study where
we have compared the Bayes estimates of the finite population means under the
Jeffreys’ prior with other Bayesian estimates obtained via the use of the standard
flat prior and with non-Bayesian estimates, i.e., the corresponding empirical Bayes
estimates and the direct estimates.

Keywords: Bayesian inference, Jeffreys’ prior, small area model.

1 Introduction

In recent years, small area estimation has emerged as an important area of statistics as
private and public agencies try to extract the maximum information from sample survey
data. Sample surveys are generally designed to provide estimates of totals and means
of variables of interest for large subpopulations or domains. However, governments are
more and more interested in obtaining statistical summaries for smaller domains such
as states, provinces, or different racial and/or ethnic subgroups. These domains are
called small areas. In recent years, demand for reliable estimates for small area means
has greatly increased due to their growing use in formulating policies and programmes,
allocating government funds, regional planning and other uses. Policy makers are often
interested in targeting areas with particular needs in order to conduct specific actions:
for example, areas with the highest unemployment rates can be selected to carry out
training programmes to improve the possibilities of finding a job or becoming self-
employed. Other examples include poverty counts of school-age children at county
levels, income for small places and so on (see Rao (2003), chapter 5).

The simplest approach to the small area estimation problem is to consider direct
estimators, that is estimating the variable of interest using the domain-specific sample
data. However, it is well known that the domain sample sizes are rarely large enough
to support reliable and accurate direct estimators (Rao (2003); Ghosh and Rao (1994)).
Small area estimation tackles the problem of providing reliable estimates of one or
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several variables of interest in areas where the information available on those variables
is, on its own, not sufficient to provide accurate direct estimate. Estimates for all areas
are produced using the sample and some additional auxiliary information which should
be available for all small areas.

Indirect estimators are often employed in order to increase the effective domain
sample size by borrowing strength from the related areas using linking models, census,
administrative data and other auxiliary variables associated with the small areas. De-
pending on the type of data available, small area models are classified into two types:
area-level and unit-level. A comprehensive account of model-based small area estimation
under area-level and unit-level models is given in Rao (2003). In this paper we focus on
a unit-level nested error linear regression model with an area-level covariate subject to
measurement error. As documented in Ghosh et al. (2006), this model is more realistic
than other simpler models since it is often not possible to obtain exact measurements
of important covariates. Ghosh et al. (2006) propose a Bayesian hierarchical model for
estimating finite population small area means. They did not discuss the issue of the
choice of the priors, rather they used a conjugate prior, which is particularly suitable for
computation. However, the use of a conjugate prior leaves the problem of the selection
of the hyperparameter values unsolved. Also, since small area models are often used by
national institutes of statistics a certain degree of objectivity in the procedure seems
required.

To this end, we compute the Jeffreys’ prior, and we show that the corresponding
posterior distribution is proper, at least when more than six small areas are involved
in the analysis. Bayesian estimators obtained via the use of the Jeffreys’ prior usually
have excellent frequentist properties.

The paper is organized as follows. In Section 2 we introduce the small area model
with measurement error in the covariates and give a brief overview of the classical
estimation methods. In Section 3 we introduce the Bayesian estimation of small area
means with flat prior distributions as in Ghosh et al. (2006); in Section 4 the Jeffreys’
prior is derived and it is shown that the resulting posterior distribution is proper. In
Section 5 a small simulation study comparing different estimation methods is reported.
In Section 6 the estimation method is applied to real data. We conclude with a brief
discussion in Section 7.

2 Unit-level model with measurement error in an area-
level covariate

Consider a finite population, whose units are divided into m small areas. The population
size of the i-th area is Ni, i = 1, . . . ,m. Let Yij be the value of the variable of interest
associated with the j-th unit (j = 1, . . . , Ni) in the i-th area (i = 1, . . . , m). A random
sample of size ni ≥ 1 is drawn from the i-th area population and the sample data are
denoted by yij (i = 1, . . . , m; j = 1, . . . , ni). For each area, the value of a covariate xi is
observed with error on each of the ni units, so that the following nested linear regression
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model with an area-level covariate X is defined for j = 1, . . . , ni, i = 1, . . . , m as

yij = b0 + b1xi + vi + eij ,

Xij = xi + uij . (1)

In the above model, ni represents the sample size of the i-th domain, Xij is the observed
covariate value for the j-th unit in area i and xi is the unknown true “area-specific”
covariate value associated with yij . For simplicity, we are assuming xi is a scalar,
although the extension to the multiple regression case is mathematically simple. Further,
vi is the area-level random effect, eij is the random error and uij is the measurement
error affecting the covariate xi. Finally, random variables eij , vi, uij and xi are assumed
to be mutually independent with

eij
iid∼N(0, σ2

e); uij
iid∼N(0, σ2

u); vi
iid∼N(0, σ2

v); xi
iid∼N(µx, σ2

x).

Our model is a structural measurement error model. The vector of model parameters is
denoted by φ = (b0, b1, σ

2
e , σ2

u, σ2
v , σ2

x, µx). The typical goal of a finite population small
area analysis is estimation of the true area-level means (TM), that is,

γi =
1
Ni

Ni∑

i=1

Yij , i = 1, . . . ,m. (2)

In Ghosh et al. (2006) it is shown that, given the model parameters, the best (or Bayes)
predictor of γi, under a squared error loss, using the observed data yi = (yi1, . . . , yini)
is given by

γ̂i
B = (1− fiBi)ȳi + fiBi(b0 + b1µx), (3)

where fi = Ni−ni

Ni
is the finite population correction factor, ȳi = n−1

i

∑ni

i=1 yij and
Bi = σ2

e/(σ2
e + ni(σ2

v + b2
1σ

2
x)). Since the estimator in (3) involves unknown parameters,

Ghosh et al. (2006) proposed the following empirical Bayes estimator

γ̂i
EB = (1− fiB̂i)ȳi + fiB̂i(b̂0 + b̂1x̄) = (1− fiB̂i)ȳi + fiB̂iȳ (4)

where x̄ =
∑m

i=1 nix̄i/nT , x̄i = n−1
i

∑ni

i=1 xij , ȳ =
∑m

i=1 niȳi/nT , b̂0 = ȳ − b̂1x̄ and
b̂1 = (1−MSWx/MSBx)−1b̃1 where b̃1 =

∑m
i=1 niȳi(X̄i−X̄)∑m
i=1 ni(X̄i−X̄)2

.

Moreover B̂i = MSWy/(MSWy + niη̂m), with

MSWy = (nT −m)−1
∑m

i=1

∑ni

j=1(yij − ȳi)2; MSBy = (m− 1)−1
∑m

i=1 ni(ȳi − ȳ)2;
η̂m = max[0, (MSBy −MSWy)(m− 1)/gm]

and gm = nT − n−1
T

∑m
i=1 n2

i . Ghosh et al. (2006) proved that the estimator in (4) is
asymptotically optimal in the sense that

lim
m→+∞

m−1
m∑

i=1

E

[(
γ̂i

B − γ̂i
EB

)2
]

= 0.
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However, as noticed in Torabi et al. (2009), this estimator can be improved in several
aspects. First, the Bayes predictor in equation (3) does not consider all the sample
information provided by the covariate: more precisely, the expression γ̂EB

i is obtained
without conditioning upon the observed values of the Xij ’s, thus ignoring a relevant
piece of information. Second, similarly to any empirical Bayes estimator, γ̂B

i does not
fully exploit the hierarchical structure of the model; as such, it can only produce point
estimates of the unknown parameters and approximate standard errors. In order to ac-
count for the first issue, Torabi et al. (2009) proposed a fully efficient Bayes predictor by
taking into account all the available data and then derived its empirical Bayes version
by replacing the unknown parameters with their moment estimators. They also proved
that the new estimator is asymptotically optimal and provided an estimate of the mean
squared prediction error. However, neither estimator accounts for the hierarchical na-
ture of the model; to this end one needs to introduce a hierarchical Bayes procedure as
in Ghosh et al. (2006).

3 Hierarchical Bayesian model

Ghosh et al. (2006) introduced a hierarchical model to predict the population strata
means γi (i = 1, . . . ,m), when a covariate X is subject to measurement error. The
model can be written in the usual multi-stage way:

S1 yij = θi + eij j = 1, . . . , ni; i = 1, . . . , m, with eij
iid∼N(0, σ2

e);

S2 θi = b0 + b1xi + vi i = 1, . . . , m, with vi
iid∼N(0, σ2

v) and Xij = xi + uij , with
uij

iid∼N(0, σ2
u);

S3 xi
iid∼N(µx, σ2

x), i = 1, . . . , m;

S4 b0, b1, σ
2
e , σ2

u, σ2
v , σ2

x, µx are, loosely speaking, mutually independent with flat priors
over location parameters and inverse gamma distributions over the scale parame-
ters.

Ghosh et al. (2006) proved that, under general conditions, the resulting posterior dis-
tribution of the parameter vector is proper. Given the conjugacy of the prior densities,
it is straightforward to get a posterior sample via Gibbs sampling. Consequently, a
hierarchical Bayesian estimate of the finite population means can be easily obtained.

Ghosh et al. (2006) did not discuss in detail the issues related to the choice of the
hyperparameters in the inverse gamma distributions. They suggested to select vague
priors corresponding to small values of the hyperparameters. However, this is not a real
solution, especially in official statistics applications, where some form of objectivity is
required both from a scientific and a legal perspective. Without going into the details of
the philosophical debate on the meaning of “objectivity” in statistics, we believe that the
possibility of having a Bayesian solution largely acceptable by official statisticians would
be very important for practical applications. Noninformative priors on hyperparameters
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are routinely used in hierarchical linear mixed models. The usual situation is that, while
the resulting posterior means and the empirical Bayes predictors are in agreement with
the empirical Bayes approach, the corresponding frequentist and Bayesian measures
of uncertainty are not necessarily close. In order to obtain nonsubjective priors for
the hyperparameters in the hierarchical Bayes model, Datta and Rao (2010) derived
both the quantile matching and the Mean Squared Error (MSE) matching criteria of a
resulting hierarchical Bayes procedure to determine suitable nonsubjective priors. The
matching prior in Datta and Rao (2010), when the goal is to infer the small area mean
θi, depends on the sampling variance Di for the i-th area. Or for unit level models, the
matching prior depends on the area sample size ni. This implies that the same prior
will not continue to have good frequentist properties for all small areas.

In this paper we derive the Jeffreys’ prior for the model in (1). It is known that
Jeffreys’ prior is a reasonable objective prior when the entire parameter vector is the
parameter of interest. In applications related to our model the usual parameter of inter-
est is the area level population total (or mean), which depends on the whole parameter
vector: in other words we are interested in a function of the parameter vector, a situ-
ation not very different from a predictive scenario. In the next section we will derive
the Jeffreys’ prior and we also prove that, under very general conditions, the resulting
posterior distribution will be proper. The expression of the prior is quite complicated.
However, a relatively simple Markov chain Monte Carlo algorithm, based on the ARMS
(Adaptive Rejection Metropolis Sampling) strategy, can be implemented to produce a
posterior sample.

4 Jeffreys’ prior for hierarchical Bayesian model with mea-
surement error

The original model is defined by equation (1). We reparametrize the model as follows.
Let ti = xi − µx ∼ N(0, σ2

x) and set ν = b0 + b1µx. Then

b0 + b1xi + vi = ν + b1ti + vi, (5)

and consequently,

Zij =
(

Yij

Xij

)
=

(
ν + si + eij

µx + ti + uij

)

where si = vi + b1ti. It can be easily checked that (si, ti)′ ∼ N(02, ΣR) with

ΣR =
(

b2
1σ

2
x + σ2

v b1σ
2
x

b1σ
2
x σ2

x

)
. (6)

The likelihood function depends upon the observed data via the joint sufficient statistics

Z̄i =
1
ni

ni∑

j=1

Zij ∼ N

((
ν

µx

)
; ΣR +

1
ni

B

)
, i = 1, . . . , m,
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and Si =
∑ni

j=1(Zij − Z̄i)(Zij − Z̄i)′ ∼ W2(ni − 1, B), a Wishart distribution. Here
B = diagσ2

e , σ2
u. Then, setting λ = (ν, µx)′ and Ti = ΣR + 1

ni
B, the likelihood function

will be proportional to

L(λ, ΣR, B) ∝ |B|−nT−m

2

m∏

i=1

|Ti|− 1
2 exp

(
−1

2
trB−1

m∑

i=1

Si

)
(7)

exp

(
−1

2

m∑

i=1

(z̄i − λ)′T−1
i (z̄i − λ)

)
.

The Jeffreys’ prior can be obtained as the square root of the determinant of the 7 by 7
Fisher Information matrix I. An easy calculation shows that I is block diagonal, that
is the location parameter λ is orthogonal to both ΣR and B; also the λ-block does not
depend on λ itself. Following the suggestion of Jeffreys (1961), as reported in Kass and
Wasserman (1996), the location parameter λ should be treated separately assuming a
uniform prior on both the coordinates. The same result would be obtained by using the
reference prior approach with (ΣR, B) as the parameter of interest. Indeed we are in
the situation where λ is a location parameter. Then the Jeffreys’ prior will be

πJ(λ, θ) ∝ det(I(θ))−1/2

where I(θ) is computed taking λ as fixed and θ = (σ2
e , σ2

u, σ2
v , σ2

x, b1). In our case I(θ)
does not actually depend on λ and, incidentally, the result obtained by using the above
approach or by first integrating λ and then computing the Fisher information matrix
on the integrated likelihood coincide. After integrating out λ with respect to a uniform
prior, the integrated log-likelihood function `(ΣR, B) is

`(ΣR, B) = −nT −m

2
log |B| − 1

2

m∑

i=1

log |Ti| − 1
2

log |
∑

i

T−1
i | − 1

2
trB−1

m∑

i=1

Si

− 1
2

m∑

i=1

z̄′iT
−1
i z̄i +

1
2

(∑

i

T−1
i z̄i

)′(∑

i

T−1
i

)−1 (∑

i

T−1
i z̄i

)
.

The Jeffreys’ prior can be then obtained as the square root of the determinant of the 5
by 5 Fisher information matrix I, whose elements are
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I[Σ(11)
R ,Σ(11)

R ] = 1
2

∑m
i=1

(
Ψ(11)

i

)2

I[Σ(11)
R ,Σ(12)

R ] =
∑m

i=1 Ψ(11)
i Ψ(12)

i

I[Σ(11)
R ,Σ(22)

R ] = 1
2

∑m
i=1

(
Ψ(12)

i

)2

I[Σ(11)
R , B(11)] = 1

2

∑m
i=1

1
ni

(
Ψ(11)

i

)2

I[Σ(11)
R , B(22)] = 1

2

∑m
i=1

1
ni

(
Ψ(12)

i

)2

I[Σ(12)
R ,Σ(22)

R ] =
∑m

i=1 Ψ(12)
i Ψ(22)

i

I[Σ(12)
R , B(11)] =

∑m
i=1

1
ni

Ψ(12)
i Ψ(11)

i

I[Σ(12)
R , B(22)] =

∑m
i=1

1
ni

Ψ(12)
i Ψ(22)

i

I[Σ(22)
R ,Σ(22)

R ] = 1
2

∑m
i=1

(
Ψ(22)

i

)2

I[Σ(22)
R , B(11)] = 1

2

∑m
i=1

1
ni

(
Ψ(12)

i

)2

I[Σ(22)
R , B(22)] = 1

2

∑m
i=1

1
ni

(
Ψ(22)

i

)2

I[Σ(12)
R ,Σ(12)

R ] =
∑m

i=1

(
Ψ(12)

i

)2

+ Ψ(11)
i Ψ(22)

i

I[B(11), B(22)] = 1
2

∑m
i=1

1
n2

i

(
Ψ(12)

i

)2

I[B(22), B(22)] = 1
2

nT−m
(B(22))2

+ 1
2

∑m
i=1

1
n2

i

(
Ψ(22)

i

)2

I[B(11), B(11)] = 1
2

nT−m
(B(11))2

+ 1
2

∑m
i=1

1
n2

i

(
Ψ(11)

i

)2

where we denote by Ψi the inverse of Ti and by Ψ(hj)
i the element of row h and

column j of the matrix Ψi.

Our main result is that the Jeffreys’ prior always produces a proper posterior and
it can be routinely used as an objective prior for small area models with structural
measurement error.

Theorem: When m > 6, the Jeffreys’ prior produces a proper posterior distribution.

Proof : See Appendix.

5 Simulation study

We conducted a simulation study to compare the performance of the proposed Jeffreys’
prior (JP) with flat priors (FP) proposed in Ghosh et al. (2006) and with the empirical
Bayes estimator (EB). To this end, following the simulation scheme in Ghosh et al.
(2006) and the suggestions of the referees, we simulate data under four scenarios based
on different choices of prior parameters and different sample sizes. In Scenario 1 we
created a finite super-population of size 1400 spread across m = 12 strata of sizes
Ni respectively equal to 50, 250, 50, 100, 200, 150, 50, 150, 100, 150, 100 and 50. The
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responses yij are generated under the super-population model as considered in this study
with b0 = 100, µx = 19.4, b1 = 2, σ2

e = 100, σ2
u = 16, σ2

x = 2737 and σ2
v = 25. A 2%

simple random sample was used to generate samples from each stratum. Accordingly,
the sample sizes ni for the 12 strata are given, respectively, by 1, 5, 1, 2, 4, 3, 1, 3, 2,
3, 2 and 1.

In Scenario 2, sensitivity about the sample sizes is investigated. A super-population
of size 140000 is considered and a 5% simple random sample was used to generate
samples from each stratum. The same prior parameter values of Scenario 1 are used.

In Scenarios 3 and 4, sensitivity of variability parameters is studied. In Scenario 3,
we increase the variability of the data fixing σ2

e = 1000. On the other hand, in Sce-
nario 4, small values have been fixed for variability parameters: in particular, σ2

e = 1,
σ2

u = 5, σ2
x = 1 and σ2

v = 1. For the other parameters, the same values of Scenario
1 have been used. For each scenario, we generated R = 300 independent sets of nor-
mal variates u

(r)
i , i = 1, ..., m, v

(r)
i , i = 1, ..., m, e

(r)
ij , i = 1, ...,m, j = 1, ..., Ni with mean

0 and variances σ2
u, σ2

v and σ2
e . We also generated true x

(r)
i , i = 1, ..., m from a nor-

mal distribution with mean µ and variance σ2
x. Using ui, eij , vi, xi the values Y

(r)
ij and

X
(r)
ij have been computed according to the model in equation (1). The r-th simulated

population mean of the i-th area is given by γ
(r)
i = N−1

i

∑Ni

j=1 y
(r)
ij . From each simu-

lated population, we generated simple random samples y
(r)
ij , j = 1, ..., ni; i = 1, ...,m and

X
(r)
ij , j = 1, ..., ni; i = 1, ..., m. Using simulated values, we computed the sample mean

γ̂
SM(r)
i = 1

ni

∑ni

i=1 y
(r)
ij . The empirical Bayes estimates γ̂

EB(r)
i of the true mean γ

(r)
i

have been computed as in equation (4).

Similarly, for each simulated population, we estimated the true means according to
the hierarchical model proposed in Section 3. We computed γ̂

FP (r)
i when flat priors

have been used for the unknown parameters as in Ghosh et al. (2006). With respect to
the hyperparameters of the prior distributions we considered uniform (−∞; +∞) priors
for b0, b1 and µx. We also fixed the parameters of the inverse gamma distributions of
the variance components ae, be, au, bu, av, bv, ax, bx all equal to 0.002. Different values of
the inverse gamma parameters give similar results. We also computed γ̂

JP (r)
i when the

proposed Jeffreys’ prior is applied. Markov Chain Monte Carlo (MCMC) algorithms
have been used in order to sample from the joint posterior distribution: in particular,
location parameters λ = (b0, µ) have been updated using a standard Gibbs sampling
scheme, since the full conditional distribution is

λ|θ ∼ N2

(
(

m∑

i=1

T−1
i )−1(

m∑

i=1

T−1
i z̄i); (

m∑

i=1

T−1
i )−1

)

where θ = (σ2
e , σ2

u, σ2
v , σ2

x, b1). On the other hand, for the parameters θ, for which
the Jeffreys’ prior has been derived, full conditional distributions cannot be obtained
in a closed form: we produce samples from the joint posterior distribution using the
Adaptive Rejection Metropolis Sampling (ARMS) algorithm originally proposed in Gilks
et al. (1995). We obtain 2K = 50000 samples from the posterior distribution and
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half of them are discarded as burn-in. The estimator of the true mean of area i of
the r-th simulated data set is derived as γ̂

JP (r)
i = 1

K

∑K
k=1 γ̂

JP (r)
ik where γ̂

JP (r)
ik =

(1 − fiB
(r)
ik )ȳ(r)

i + fiB
(r)
ik (b(r)

0k + b
(r)
1k µ

(r)
k ) (i = 1, ...m; k = 1, ..., K; r = 1, ..., R). The

estimator γ̂
FP (r)
i has been computed similarly. It must be noted that for the Bayesian

hierarchical model with flat priors (FP), a Gibbs sampler algorithm can be adopted in
order to generate samples from the joint posterior distribution (Ghosh et al. (2006)).
However, for fair comparison with JP, we used the ARMS algorithm with equal starting
values and with the same boundary constraints.
For each estimation method we then computed the empirical mean squared prediction
error (EMSPE) as follows

EMSPE(γ̂i) =
1
R

R∑
r=1

(γ̂(r)
i − γ

(r)
i )2 (8)

Tables 1, 2, 3 and 4 report the sample sizes and the empirical mean squared prediction
error computed with the different methods for each county. The counties are denoted
by i = 1, ..., 12 in the tables.

i ni SM EB FP JP
1 1 74.28 32.75 30.72 28.92
2 5 23.26 19.64 17.87 16.17
3 1 73.93 48.84 42.06 42.43
4 2 47.98 28.81 22.93 18.53
5 4 20.50 15.97 15.25 16.69
6 3 39.59 31.72 19.62 19.80
7 1 94.73 25.06 20.58 21.54
8 3 30.26 17.29 14.02 13.82
9 2 48.89 25.79 21.87 21.72

10 3 37.99 24.46 19.63 18.19
11 2 50.98 30.46 21.88 21.99
12 1 89.11 19.08 17.49 17.45

Table 1: Simulation study: scenario 1

i ni SM EB FP JP
1 25 3.74 3.94 3.86 3.66
2 125 0.96 0.91 0.90 0.90
3 25 4.79 3.52 3.44 3.41
4 50 2.01 2.20 2.11 2.06
5 100 1.16 1.05 1.07 1.04
6 75 1.59 1.61 1.59 1.56
7 25 3.75 4.91 3.61 3.85
8 75 1.13 1.19 1.14 1.14
9 50 1.54 1.73 1.57 1.61

10 75 1.34 1.55 1.33 1.34
11 50 1.77 1.90 1.81 1.83
12 25 3.52 4.33 3.57 3.45

Table 2: Simulation study: scenario 2

Table 1 shows that according to the EMSPE, the estimators based on the hierarchical
Bayesian model are doing better than both the sample mean and the EB estimator.
More precisely, FP and JP estimators are doing better than both the sample means
and the EB estimator in 11 of the 12 counties. However, comparing the two model
based estimators, JP is doing better than the FP in seven of the 12 counties. With
respect to Scenario 2, Table 2 clearly shows that all methods perform better in terms
of EMPSE with respect to the previous scenario because of the larger sample size. Also
the same conclusion can be drawn in terms of relative performance of the different
methods. FP and JP perform similarly and overcome both EB and SM. In Scenario 3
the larger data variability makes EB and SM perform much worse than the two model-
based estimators that continue to behave similarly (see Table 3). On the other hand, an
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i ni SM EB FP JP
1 1 951.08 109.36 75.95 73.91
2 5 165.49 62.96 54.79 48.16
3 1 923.58 121.32 76.51 77.05
4 2 553.12 94.76 60.98 60.90
5 4 169.18 67.31 55.14 54.35
6 3 314.89 95.39 56.38 57.05
7 1 890.34 120.96 72.70 73.97
8 3 352.18 91.60 61.63 60.69
9 2 627.41 94.11 64.90 64.92

10 3 352.04 101.98 82.10 82.14
11 2 475.79 89.60 53.27 53.77
12 1 1017.80 143.64 83.36 82.84

Table 3: Simulation study: scenario 3

i ni SM EB FP JP
1 1 2.06 0.94 0.96 0.90
2 5 0.44 0.38 0.36 0.33
3 1 1.80 0.73 0.74 0.70
4 2 0.95 0.68 0.69 0.60
5 4 0.48 0.42 0.42 0.37
6 3 0.74 0.55 0.51 0.48
7 1 1.99 0.90 0.88 0.88
8 3 0.71 0.53 0.51 0.46
9 2 1.06 0.66 0.62 0.61

10 3 0.66 0.55 0.54 0.48
11 2 0.98 0.63 0.64 0.61
12 1 1.96 0.86 0.92 0.83

Table 4: Simulation study: scenario 4

interesting conclusion can be drawn looking at Table 4: when the variability is low, as
in the case of Scenario 4, the estimates obtained with the hierarchical model with flat
prior show larger error than those obtained when Jeffreys’ prior is involved. Moreover,
in some situations, FP performs even worse than EB. The variability of the posterior
estimates when vague priors are used is not surprising: interesting discussions about
the consequences of using flat priors in mixed models can be found in Gelman (2006)
and Hobert and Casella (1996).
The main message of this paper is that one can simply adopt a Bayesian approach
based on Jeffreys’ prior in order to provide an easy-to-use inferential procedure which is
optimal, from a frequentist perspective and that, therefore, it should be easily adopted
by official agencies.

6 Data analysis

We use the well known crop data by Battese et al. (1988) for a comparative analysis.
Sample surveys have been designed to estimate crop areas for large regions: predicting
crop areas for small areas such as counties is a difficult task due to the lack of availability
of data from farm surveys in these areas. In their paper, Battese et al. (1988) considered
data for 12 counties in Iowa, obtained from the 1978 June Enumerative Survey of the
US Department of Agriculture as well as from the satellite LANDSAT during the 1978
growing season. The purpose was to predict the area under soy bean and corn in these
counties.

We consider prediction of soy bean data using soy bean pixels only as covariates. In
order to apply the proposed model, we incorporate possible measurement errors in the
values of the covariates. As Ghosh et al. (2006) we generate copies of x-observations
and then apply the model described in Section 3. The procedure is repeated 100 times
and finally the estimates and their standard errors are computed using the averaging
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principle. Table 5 provides the predicted hectares and the estimated standard errors of
the predicted hectares for each county when the hierarchical Bayesian model is applied
using flat priors (γ̂(FP )

i ) and using the proposed Jeffreys’ prior (γ̂(JP )
i ). Standard errors

of the direct estimators are reported in the last column of the table. It appears from
the table that in the presence of measurement errors, the predicted values based on
the Jeffreys’ prior result in an error reduction with respect to those obtained using flat
priors. Both methods clearly outperform the direct estimates.

County k γ̂
(FP )
i γ̂

(JP )
i SE(γ̂(FP )

i ) SE(γ̂(JP )
i ) SE(ȳi)

Cerro Gordo 1 31.00 36.70 19.90 18.20 29.10
Hamilton 1 101.90 100.70 19.90 18.20 29.10
Worth 1 100.10 99.10 19.90 18.20 29.10
Humboldt 2 44.20 47.00 14.10 12.90 20.60
Franklin 3 56.90 58.40 11.50 10.50 16.80
Pocahontas 3 115.50 114.40 11.50 10.50 16.80
Winnebago 3 88.90 88.90 11.50 10.50 16.80
Wright 3 97.00 96.70 11.50 10.50 16.80
Webster 4 111.00 110.30 10.00 9.10 14.60
Hancock 5 115.60 114.80 8.90 8.10 13.00
Kossuth 5 115.90 115.10 8.90 8.10 13.00
Hardin 5 101.10 100.70 8.90 8.10 13.00

Table 5: Predicted hectares of soy bean with corresponding standard errors, using
soy bean pixels as the only covariate. γ̂

(FP )
i and γ̂

(JP )
i correspond respectively to the

predicted hectares obtained with hierarchical Bayesian model with flat priors and with
the proposed Jeffreys’ prior. The last column shows the standard error of the direct
estimates.

6.1 Computational details

The publicly available R software (RDevelopmentCoreTeam (2011)) has been used for
implementation. R code is available on the web page of the first author1. As remarked
by one of the referees, the ARMS algorithm is known to be sensible to the choice of
the boundary values. Plausible boundary values can be chosen taking into account
frequentist parameter estimates. We defined boundary constraints by considering the
point frequentist estimation ± ten times their standard error. This procedure allows us
to have plausible and sufficiently large boundary constraints.
Chain convergence has been ascertained by visual inspection using standard convergence
diagnostic tools, such as trace plots and autocorrelation plots. Figure 1 and Figure 2
show the trace plot and the autocorrelation function of parameter σ2

v and b1 estimated
using Battese data. Also for the other parameters convergence diagnostic tools do not
provide any convergence warnings.

1https://sites.google.com/site/webpageserenaarima/publications/ba-rcode
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Figure 1: Battese data: trace plot and autocorrelation function of parameter σ2
v .

With respect to the computational cost, we used ARMS for both vague priors and
Jeffreys’ prior. When using ARMS as the sampling method, flat priors and the proposed
Jeffreys’ prior have clearly the same computational cost. However, when Gibbs sampling
can be applied (and this is the case for FP), the computational cost is clearly reduced:
for 1000 simulations, the computational cost of ARMS is more or less three times the
computational cost of the Gibbs sampling.

7 Summary and conclusion

In this paper we have proposed an objective Bayesian analysis of small area models with
measurement error in the covariates. We have derived the Jeffreys’ prior for the unknown
parameters and we have shown that this prior leads, under very general conditions, to
a well defined proper posterior distribution. Jeffreys’ prior is not a conjugate prior, so
ad-hoc Markov Chain Monte Carlo algorithms have been proposed in order to produce a
sample from the joint posterior distribution. The estimated small area means have been
compared with those obtained with a Bayesian hierarchical model with vague priors,
the empirical Bayes estimates and the direct estimates. As revealed in our simulation
study, according to the EMSPE, estimators based on the hierarchical Bayesian model
usually perform better than sample means and the EB estimators. Estimators based
on vague priors and Jeffreys’ prior are very similar and they also have similar EMSPEs,
although the estimator based on Jeffreys’ prior is in some cases more precise than the
one based on vague priors. We stress the fact that although producing similar results,
the ideas behind the two approaches are very different: any subjective prior could
be criticized on the ground that final inference could (even strongly) depend on the
values of the hyperparameters and the use of vague priors (with ad-hoc values for the
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Figure 2: Battese data: trace plot and autocorrelation function of parameter b1.

hyperparameters) cannot be considered a real solution to this problem. The subjectivity
related to the prior choices makes the official statisticians more suspicious with respect
to the Bayesian approach. We believe that the proposed objective Bayesian approach
would be largely acceptable by official statisticians and would lead to a more effective
dissemination of the Bayesian methodologies in this field.

8 Proof of Theorem

Note that the posterior distribution of (ΣR, B) is

π(ΣR, B|Y ) ∝ πJ (ΣR, B)L(ΣR, B)

where L(ΣR, B) is the integrated likelihood, πJ(ΣR, B) is the Jeffreys’ prior defined in
Section 4, and

B =
(

σ2
e 0
0 σ2

u

)
, ΣR =

(
b2
1σ

2
x + σ2

v b1σx

b1σx σ2
x

)
=

(
σR11 σR12

σR12 σR22

)
.

We will prove the theorem by showing that there exists a positive integrable function
f(ΣR, B) such that πJ (ΣR, B)L(ΣR, B) ≤ f(ΣR, B) uniformly. The lengthy proof has
been split into 3 lemmas as follows:

� Lemma 1 : we provide a non-negative function h(ΣR, B) such that πJ (·) ≤ h(·) ;
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� Lemma 2 : we provide a non-negative function g(ΣR, B) such that the integrated
(with respect to λ) likelihood function L(·) is bounded above by g(·);

� Lemma 3 : we show that f(ΣR, B) = h(ΣR, B)g(ΣR, B) is integrable over the
parameter space.

Lemma 1 There exists a function h ≥ 0 such that πJ(ΣR, B) ≤ h(ΣR, B).

Proof: Let Ti = ΣR + 1
ni

B. Let Ψi be the inverse of Ti and Ψ(hj)
i the (h, j) element

of Ψi. Positive definiteness implies that (Ψ(12)
i )2 ≤ Ψ(11)

i Ψ(22)
i . An upper bound for the

Jeffreys’ prior can be obtained by deriving an upper bound for each diagonal element
of the Fisher information matrix.
Note that

Ψ(11)
i =

σR22 + n−1
i σ2

u(
σR11 + n−1

i σ2
e

) (
σR22 + n−1

i σ2
u

)− (σR12)2

Ψ(22)
i =

σR11 + n−1
i σ2

e(
σR11 + n−1

i σ2
e

) (
σR22 + n−1

i σ2
u

)− (σR12)2
.

Both Ψ(11)
i and Ψ(22)

i are increasing functions of ni, and

I[Σ(11)
R ,Σ(11)

R ] =
1
2

m∑

i=1

(
Ψ(11)

i

)2

≤ m

2

[
σR22 + n∗−1σ2

u(
σR11 + n∗−1σ2

e

) (
σR22 + n∗−1σ2

u

)− (σR12)2

]2

(9)

I[Σ(22)
R ,Σ(22)

R ] =
1
2

m∑

i=1

(
Ψ(22)

i

)2

≤ m

2

[
σR11 + n∗−1σ2

e(
σR11 + n∗−1σ2

e

) (
σR22 + n∗−1σ2

u

)− (σR12)2

]2

(10)

where n∗ = max1≤i≤m ni. Similarly,

I[Σ(12)
R ,Σ(12)

R ] =
m∑

i=1

[
(Ψ(12)

i )2 + Ψ(11)
i Ψ(22)

i

]
≤ 2

m∑

i=1

Ψ(11)
i Ψ(22)

i

≤ 2m
(σR22 + n∗−1σ2

u)(σR11 + n∗−1σ2
e)

[(σR22 + n∗−1σ2
u)(σR11 + n∗−1σ2

e)− (σR12)2]2
. (11)

The two diagonal elements in the Fisher information matrix corresponding to σ2
e and

σ2
u are given by

I[B(11), B(11)] =
1
2

m∑

i=1

[
1
n2

i

(Ψ(11)
i )2 +

ni − 1
σ4

e

]

I[B(22), B(22)] =
1
2

m∑

i=1

[
1
n2

i

(Ψ(22)
i )2 +

ni − 1
σ4

u

]
.
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Taking the derivative with respect to ni, one sees that Ψ(11)
i /ni is decreasing in ni and

it is maximized at ni = 1. The same happens to Ψ(22)
i /ni and an upper bound for

I[B(11), B(11)] and I[B(22), B(22)] is given by

I[B(11), B(11)] ≤ m

2

[(
σR22 + σ2

u

(σR11 + σ2
e)(σR22 + σ2

u)− σ2
R12

)2

+
n∗ − 1

σ4
e

]
(12)

I[B(22), B(22)] ≤ m

2

[(
σR11 + σ2

e

(σR11 + σ2
e)(σR22 + σ2

u)− σ2
R12

)2

+
n∗ − 1

σ4
u

]
. (13)

For simplicity of notation, we denote I[Σ(11)
R , Σ(11)

R ] = IσR11
, etc. From (9), (10) and

(11) we get

(
IσR11

IσR22
IσR12

) 1
2 ≤ const

[
(σR22 + σ2

u)
3
2 (σR11 + σ2

e)
3
2

[
(σR11 + σ2

e)(σR22 + σ2
u)− σ2

R12

]3
]

(14)

Let
ω11 = σR11σ

−2
e , ω22 = σR22σ

−2
u , ω12 = σR12 (σeσu)−1 ; (15)

then

(I[B(11), B(11)]I[B(22), B(22)])
1
2 ≤ const

σ2
eσ2

u

[
k1 +

(1 + ω11)(1 + ω22)
[(1 + ω11)(1 + ω22)− ω2

12]2
(16)

+
k2(1 + ω22)

(1 + ω11)(1 + ω22)− ω2
12

+
k3(1 + ω11)

(1 + ω11)(1 + ω22)− ω2
12

].

Using (14) and (17), an upper bound for the Jeffreys’ prior is then

h(σe, σu, ω) ∝ 1
σ5

eσ5
u

[
k1(1 + ω11)

3
2 (1 + ω22)

3
2

[(1 + ω11)(1 + ω22)− ω2
12]

3 +
(1 + ω11)

5
2 (1 + ω22)

5
2

[(1 + ω11)(1 + ω22)− ω2
12]

5

+
k2(1 + ω11)

3
2 (1 + ω22)

5
2

[(1 + ω11)(1 + ω22)− ω2
12]

4 +
k3(1 + ω11)

5
2 (1 + ω22)

3
2

[(1 + ω11)(1 + ω22)− ω2
12]

4

]
(17)

which proves Lemma 1.

Lemma 2: There exists a function g such that L(ΣR, B|Y ) ≤ g(ΣR, B|Y )

Proof. We rewrite the model as follows:

Y1ij = XT
1ijβ1 + v1i + e1ij

Y2ij = XT
2ijβ2 + v2i + e2ij
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where

Y1i = col1≤j≤niY1ij Y1 = col1≤i≤mY1i v1 = col1≤i≤mv1i e1i = col1≤j≤nie1ij

X1i = col1≤j≤ni
XT

1ij T1 = col1≤i≤mX1i e1 = col1≤i≤m Z1 = ⊕1ni

Similarly, Y2, v2, X2, Z2 and e2 are defined. Let e1ij
iid∼N(0, σ2

1); e2ij
iid∼N(0, σ2

2);
(v1i, v2i)′ ∼ N2(0, ΣV ) (i = 1, . . . , m; j = 1, . . . , ni), β1 and β2 are vectors of length p1

and p2 respectively and

Z =
(

Z1 0
0 Z2

)
, β =

(
β1

β2

)
, v =

(
v1

v2

)
,

X =
(

T1 0
0 T2

)
, e =

(
e1

e2

)
, Y =

(
Y1

Y2

)
,

where X is a (2n× (p1 + p2)) matrix of rank p1 + p2. Then the original model can be
written as a linear mixed model

Y = Xβ + Zv + e (18)

with e ∼ N(0, R), v ∼ N(0, G) for positive definite (p.d.) matrices R and G, where
R = diag(σ2

1In, σ2
2In),

∑m
i=1 ni = n and In is the n-dimensional identity matrix. Notice

that VarY = ZGZT + R = Σ. The likelihood function can be written as

L(Σ, β) = |Σ|− 1
2 exp

(
−1

2
(Y −Xβ)T Σ−1(Y −Xβ)

)
. (19)

Let K =
(
Σ−1 − Σ−1X

(
XT Σ−1X

)−1
XT Σ−1

)
. A standard calculation shows that,

after adopting a uniform prior for β, the integrated likelihood function for Σ is

L̃(Σ) ∝ |Σ|− 1
2 |XT Σ−1X|− 1

2 exp
(
−1

2
Y T KY

)
. (20)

We provide an upper bound for each of the three factors of the likelihood function,
namely |Σ|− 1

2 , |XT Σ−1X|− 1
2 and exp

(− 1
2Y T KY

)
.

Suppose λ(m)(> 0) is the largest eigenvalue of G so that G ≤ λ(m)I2m. Then for c > 1

Σ = ZGZT + R ≤ R + λ(m)ZZT ≤ R + cλ(m)ZZT

=⇒ Σ + cλ(m)XXT ≤ R + cλ(m)(XXT + ZZT )

=⇒ Y T [Σ + cλ(m)XXT ]−1Y ≥ Y T [R + cλ(m)WWT ]−1Y, (21)

where W = (X,Z). After some algebra it is possible to show that WWT = FHFT ,
where F = diagF1, F2 is a full-column rank matrix and H = diagH1,H2 is a p.d.
matrix.
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For suitable matrices A,B, U, V , using the identity

(A + UBV )−1 = A−1 −A−1U(B−1 + V A−1U)−1V A−1

and taking c → +∞ one gets

(Σ + cλ(m)XXT )−1 → Σ−1 − Σ−1X(XT Σ−1X)−1XT Σ−1 = K.

By applying the same formula to (R + cλ(m)FHFT )−1 and taking c → +∞ one gets
from (21) that

Y T KY ≥ Y T [R−1 −R−1F (FT R−1F )−1FT R−1]Y. (22)

Since R = diagσ2
1In, σ2

2In, it follows that

FT R−1F = diagσ−2
1 FT

1 F1, σ
−2
2 FT

2 F2, FT R−1Y =
(

σ−2
1 FT

1 Y1

σ−2
2 FT

2 Y2

)

and (FT R−1F )−1 = diagσ2
1(FT

1 F1)−1, σ2
2(FT

2 F2)−1. Hence,

Y T [R−1 −R−1F (FT R−1F )−1FT R−1]Y =
s2
1

σ2
1

+
s2
2

σ2
2

,

where s2
1 = Y T

1 [I − F1(FT
1 F1)−1FT

1 ]Y1 and s2
2 = Y T

2 [I − F2(FT
2 F2)−1FT

2 ]Y2. Thus

exp
(
−1

2
Y T KY

)
≤ exp

(
− s2

1

2σ2
1

− s2
2

2σ2
1

)
. (23)

To evaluate |Σ| and |XT Σ−1X|, we arrange the elements of Y as shown below:

Yij =
( Y1ij

Y2ij

)
, Xij =

( xT
1ij 0T

0T xT
2ij

)
, Yi = coli≤j≤niYij , Xi = coli≤j≤niXij .

Let si =
(

v1i
v2i

)
, eij =

( e1ij
e2ij

)
. Write V ar(si) = ΣV and V ar(eij) =

( σ2
1 0

0 σ2
2

)
= Σe.

Let Σi = V ar(Yi) = Ini ⊗ Σe + Jni ⊗ ΣV where ⊗ is the Kronecker product operator
and Jk is a k squared matrix of 1s. As proved in Rao (1973) (Problem 1.3, p.68)

|Σi| = |Σe|ni−1|Σe + niΣV | = |Σe|ni |I2 + niΣ−1/2
e ΣV Σ−1/2

e |.

Hence

|Σ| =
m∏

i=1

|Σi| = |Σe|n
m∏

i=1

|I2 + niΣ−1/2
e ΣV Σ−1/2

e |.

In order to define an upper bound for |XT Σ−1X| = ∑m
i=1 XT

i Σ−1
i Xi, we note that:

Σ−1
i =

(
Ini −

1
ni

Jni

)
⊗ Σ−1

e +
Jni

ni
⊗ (Σe + niΣv)−1.
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Let Oi be an ni × ni orthogonal matrix such that

Oi

(
Ini

− 1
ni

Jni

)
OT

i = diag1, 1, . . . 1, 0; Oi

(
1
ni

Jni

)
OT

i = diag0, 0, . . . , 0, 1 (24)

and set Qi = Oi ⊗ I2. By (24), and noting that (A⊗B) (C ⊗D) = (AC) ⊗ (BD), it
follows that

QiΣ−1
i QT

i = Qi

[(
Ini

− 1
ni

Jni

)
⊗ Σ−1

e +
Jni

ni
⊗ (Σe + niΣv)−1

]
QT

i

= diagΣ−1
e , Σ−1

e , . . . , Σ−1
e , (Σe + niΣv)−1.

Then
XT

i Σ−1
i Xi = cT

i diagΣ−1
e , Σ−1

e , . . . , Σ−1
e , (Σe + niΣV )−1ci

where ci = (cT
i1, . . . , c

T
ini

)T = QiXi. Hence,

XT
i Σ−1

i Xi =
ni−1∑

k=1

cT
ikΣ−1

e cik + cT
ini

(Σe + niΣV )−1cini
.

Note that cT
ikΣ−1

e cik = diagσ−2
1 αik1α

T
ik1, σ

−2
2 αik2α

T
ik2 where αiku =

∑ni

j=1 oikjXuij (u =
1, 2). It follows that

XT
i Σ−1

i Xi ≥
ni−1∑

k=1

cT
ikΣ−1

e cik = diagσ−2
1

ni−1∑

k=1

αik1α
T
ik1, σ

−2
2

ni−1∑

k=1

αik2α
T
ik2.

Since X is a 2n × (p1 + p2) matrix of rank p1 + p2, we can conclude that if n −m ≥
p1, n−m ≥ p2

|XT Σ−1X|− 1
2 ≤ const σp1

1 σp2
2 . (25)

Also

|Σ|−1/2 = σ−n
1 σ−n

2

m∏

i=1

|I2 + niΣ−1/2
e ΣV Σ−1/2

e |−1/2. (26)

Hence

|Σ|− 1
2 |XT Σ−1X|− 1

2 ≤ const σ
−(n−p1)
1 σ

−(n−p2)
2

m∏

i=1

|I2 + niΣ
− 1

2
e ΣV Σ−

1
2

e |− 1
2

≤ const σ
−(n−p1)
1 σ

−(n−p2)
2

m∏

i=1

|I2 + Σ−
1
2

e ΣV Σ−
1
2

e |− 1
2

= const σ
−(n−p1)
1 σ

−(n−p2)
2 |I2 + Σ−

1
2

e ΣV Σ−
1
2

e |−m
2 . (27)

From (27) and (23), we can conclude that

|Σ|− 1
2 |XT Σ−1X|− 1

2 exp
(
−1

2
Y T KY

)

≤ const σ
−(n−p1)
1 σ

−(n−p2)
2 |I2 + Σ−

1
2

e ΣV Σ−
1
2

e |−m
2 exp

(
− s2

1

2σ2
1

− s2
2

2σ2
1

)

= g(ΣR, B|Y ). (28)
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Lemma 3 The function f = g · h is a non-negative integrable function.
Proof: From (17) and (28), an upper bound function f for the posterior density is

|Σ|− 1
2 |XT Σ−1X|− 1

2 exp
(
−1

2
Y T KY

)
πJ(ΣR, B)

≤ σ
−(n−p1+5)
1 σ

−(n−p2+5)
2 |I2 + Ω|−m

2 exp
(
− s2

1

2σ2
1

− s2
2

2σ2
1

)

×
[

k1(1 + ω11)
3
2 (1 + ω22)

3
2

|I2 + Ω|3 +
(1 + ω11)

5
2 (1 + ω22)

5
2

|I2 + Ω|5

+
k2(1 + ω11)

3
2 (1 + ω22)

5
2

|I2 + Ω|4 +
k3(1 + ω11)

5
2 (1 + ω22)

3
2

|I2 + Ω|4
]

. (29)

where Ω =
(

ω11 ω12
ω12 ω22

)
is a p.d. matrix. We need to check the integrability of the function

in (29). It suffices to prove that the quantity

σ
−(n−p1+5)
1 σ

−(n−p2+5)
2

|I2 + Ω|m
2 +3

exp
(
− s2

1

2σ2
1

− s2
2

2σ2
1

)
(1 + w11)

a
2 (1 + w22)

a
2 (30)

is integrable, with a = 5. Taking the integral with respect to σ2
1 and σ2

2 one can see
that integrability is achieved if

n− pj > 0, j = 1, 2,

that is when n > max(p1, p2). Now we consider the integrability of

h(Ω) = |I2 + Ω|−m
2 −3(1 + ω11)

a
2 (1 + ω22)

a
2 .

For a > 0,
(1 + ω11)

a
2 (1 + ω22)

a
2 ≤ (1 + ω11 + ω22)a.

Thus
h(Ω) ≤ |I2 + Ω|−m

2 −3(1 + ω11 + ω22)a = h∗(Ω).

Let l1 > l2 > 0 be the eigenvalues of Ω. Then |I2+Ω| = (1+l1)(1+l2) and 1+ω11+ω22 =
1 + l1 + l2. It follows that h∗(Ω) = (1 + l1)(1 + l2)

−m
2 −3(1 + l1 + l2)a. Then

∫
h∗(Ω)dΩ =

∫∫

0≤l2≤l1≤∞

(1 + l1 + l2)a

[(1 + l1)(1 + l2)]
m
2 +3

dl1dl2

=
∫ ∞

0

∫ ∞

0

[(1 + z)(1 + t) + z]a

(1 + z)m+5(1 + t)
m
2 +3

dzdt

=
a∑

j=0

(
a

j

) ∫ ∞

0

za−j

(1 + z)m−j+5
dz

∫ ∞

0

1
(1 + t)m/2−j+3

dt, (31)

where we have used the change of variable l2 = z, l1 = z +(1+z)t. Hence the integral
(31) is finite if and only if
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m > (2a− 4) and m− a + 4 > 0.

It follows that the posterior is proper provided that m > 6 and n−max(p1, p2) > 0.
This concludes the proof of Theorem 1.
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