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IMPROVED MULTIVARIATE NORMAL MEAN ESTIMATION WITH
UNKNOWN COVARIANCE WHEN p IS GREATER THAN n

BY DIDIER CHÉTELAT AND MARTIN T. WELLS1

Cornell University

We consider the problem of estimating the mean vector of a p-variate
normal (θ,�) distribution under invariant quadratic loss, (δ−θ)′�−1(δ−θ),
when the covariance is unknown. We propose a new class of estimators that
dominate the usual estimator δ0(X) = X. The proposed estimators of θ de-
pend upon X and an independent Wishart matrix S with n degrees of freedom,
however, S is singular almost surely when p > n. The proof of domination in-
volves the development of some new unbiased estimators of risk for the p > n

setting. We also find some relationships between the amount of domination
and the magnitudes of n and p.

1. Introduction. Suppose a p-dimensional random vector X is observed
which is normally distributed, with mean vector θ and unknown positive definite
covariance matrix �, and we wish to estimate θ under the invariant quadratic loss

L(θ, δ) = (δ − θ)′�−1(δ − θ).(1.1)

Since the covariance matrix � is unknown, a random matrix S is observed along
with X, which is assumed to be independent of X, and has a Wishart distribution
with n degrees of freedom, where p > n. In high-dimensional estimation prob-
lems, where p, the number of features, is nearly as large as or larger than n, the
number of observations, the ordinary least squares estimator does not typically
provide a satisfactory estimate of θ .

Modern data sets are increasingly becoming characterized by a number of fea-
tures that are much larger than the number of sample units (large-p, small-n) in
contrast to classical data sets where the number of sample units is often much
larger than the number of random variables (small-p, large-n). Modern applica-
tions in the p > n setting include examples from microarrays, association map-
ping, proteomics, radiology, biomedical imaging, signal processing, climate mod-
eling and finance. For instance, in the case of microarray data, the dimensionality
is frequently in the thousands or beyond, while the sample size is typically in
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the order of tens. The large-p, small-n scenario poses challenges in most infer-
ential settings. We are considering a canonical setting. For the usual multivariate
location-scale estimation problem let W = (W1, . . . ,Wp) denote an N × p matrix
of data (N is the number of observations and p the number of features), where
Wi are taken from a p-dimensional normal distribution with mean vector θ and
covariance matrix �. In this article we let the X and S be the sample mean and
covariance of the features, respectively. In the context of this notation, � = N−1�

and n = N − 1.
The usual estimator under invariant quadratic loss is δ0(X) = X. It is minimax

and admissible when p ≤ 2 and p ≤ n. However, when p ≥ 3 and p ≤ n, δ0(X)

remains minimax but is no longer admissible. Explicit improvements are known
in the multivariate normal case [Berger and Bock (1976), Berger and Haff (1983),
Berger et al. (1977), Gleser (1979, 1986), James and Stein (1961)] and in the case
of elliptically symmetric distribution [Fourdrinier, Strawderman and Wells (2003),
Srivastava and Bilodeau (1989)].

In this article we primarily concentrate on the case p > n and construct a class
of estimators, depending on the sufficient statistics (X,S), of the form

δ(X,S) = X + g(X,S),(1.2)

which dominate δ0(X) under invariant quadratic loss. Note that, although the loss
in (1.1) is invariant, the estimate in (1.2) may not be [except for δ0(X)]. This
class generalizes several estimators studied previously for the multivariate normal
distribution to the p ≤ n setting [Berger and Bock (1976), Berger and Haff (1983),
Berger et al. (1977), Gleser (1979, 1986), James and Stein (1961)]. Examples of
estimators we study here in this setting extend the class of so-called Baranchik
estimators and includes a new high-dimensional James–Stein estimator

δJS
a (X,S) =

(
I − aSS+

X′S+X

)
X,

where 0 ≤ a ≤ 2(n−2)
p−n+3 and S+ is the Moore–Penrose inverse of S.

The estimation of the inverse covariance matrix, namely, the precision ma-
trix �−1, of a multivariate normal distribution has been an important problem
in practical situations as well as from a theoretical perspective. But, when p > n,
the Wishart-distributed sample covariance matrix is singular; in this case, one is
tempted to construct estimators using the Moore–Penrose generalized inverse S+.
Recently there has been an increased interest in the problem of estimating the co-
variance matrix of large dimension given variables of dimension larger than the
number of observations [Bickel and Levina (2008), d’Aspremont, Banerjee and
El Ghaoui (2008), Konno (2009), Ledoit and Wolf (2004), Levina, Rothman and
Zhu (2008), Rothman et al. (2008)].

Our method of proof relies on an unbiased estimator of risk difference, say,
ρ(X,S). Specifically, we show that, for g(X,S) of the form − r(X′S+X)SS+

X′S+X
X, the
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estimator δ(X,S) = X + g(X,S) dominates X provided ρ(X,S) ≤ 0. In the next
section we present the main results and their proofs are given in Section 3. We need
Stein’s integration-by-parts identity [Stein (1981)] and the so-called Stein–Haff
identity for the singular Wishart distribution. The Stein–Haff identity was derived
by Haff (1979) and Stein (1977) for the full rank Wishart distribution. A similar
identity for the elliptically contoured model has been given by Fourdrinier, Straw-
derman and Wells (2003). We make some concluding comments in Section 4.

For a matrix M , let M ′ denote its transpose, M+ its Moore–Penrose pseudo-
inverse and ∂M

∂t
its componentwise derivative matrix, that is, the matrix such that

( ∂M
∂t

)ij = ∂Mij

∂t
. Moreover, let δij denote the Kronecker delta.

2. Main results. Let X be a random vector distributed as Np(θ,�) with un-
known θ and �. Suppose an estimator of � is available, say, S ∼ Wishartp(n,�),
with S independent of X. By definition of the Wishart distribution, we can write
S = Y ′Y for some matrix normal Y ∼ Nn×p(0, I ⊗�). An elementary property of
this distribution is that S is (almost surely) invertible if p ≤ n, and (almost surely)
singular if p > n [cf. Srivastava and Khatri (1979)].

An usual estimator of θ is δ0(X,S) = X; however, it turns out that this estima-
tor is inadmissible under quadratic loss. If some estimator S ∼ Wishartp(n,�) is
available, with n ≥ p ≥ 3, δ0 is dominated by the so-called James–Stein estimator

δJS(X,S) =
(

1 − (p − 2)/(n − p + 3)

X′S−1X

)
X.

The main contribution of this article is to extend this type of result to a more
general class of estimators in the p > n setting.

For some positive, bounded and differentiable function r : R → R, define the
Baranchik-type estimator

δr(X,S) =
(
I − r(X′S+X)SS+

X′S+X

)
X

(2.1)
= X + g(X,S),

where I is the identity matrix and S+ denotes the Moore–Penrose inverse of S.
This estimator generalizes the usual Baranchik (1970) estimator to the unknown
covariance setting for p > n.

THEOREM 1. Let min(p,n) ≥ 3. Suppose that:

(i) r satisfies 0 ≤ r ≤ 2(min(n,p)−2)
n+p−2 min(n,p)+3 ;

(ii) r is nondecreasing; and
(iii) r ′ is bounded.

Then under invariant quadratic loss, δr dominates δ0.
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Throughout the article we will use the expression tr(SS+), which of course
equals min(n,p). This notation allows us to simultaneously handle both the p > n

and n ≥ p cases. The condition min(p,n) ≥ 3 merely guarantees that condition
(i) of Theorem 1 holds for some r and is reminiscent of the dimension cutoff in
classical Stein estimation.

PROOF OF THEOREM 1. The hypotheses of the theorem imply that r is differ-
entiable almost everywhere. Under invariant quadratic loss, the difference in risk
between δr and δ0 is given by

�θ = Eθ

[(
X + g(X,S) − θ

)′
�−1(

X + g(X,S) − θ
)]

− Eθ

[
(X − θ)′�−1(X − θ)

]
(2.2)

= 2Eθ

[
g(X,S)′�−1(X − θ)

] + Eθ

[
g(X,S)′�−1g(X,S)

]
.

In order to show the domination result, we need to show that under the sufficient
conditions on r , (2.2) is nonpositive for all θ . First, for the leftmost term of (2.2)
it can be shown that

2Eθ

[
g(X,S)′�−1(X − θ)

] = 2Eθ

[
divXg(X,S)

]
.

Fourdrinier, Strawderman and Wells (2003) give a more general form of this result
in their Lemma 1(i); it is essentially an extension of Stein’s classical integration by
parts identity. By using Lemma 2 in Section 3, we have that

2Eθ

[
divXg(X,S)

] = −2Eθ

[
divX

r(X′S+X)SS+X

X′S+X

]

(2.3)

= −2Eθ

[
2r ′(X′S+X

) + r
(
X′S+X

) tr(SS+) − 2

X′S+X

]
.

For the right term of (2.2), we find, through Lemma 3 in Section 3,

Eθ

[
g(X,S)′�−1g(X,S)

]

= Eθ

[
tr

(
�−1Sr2(

X′S+X
)S+XX′S+S

(X′S+X)2

)]

= Eθ

[
n tr

(
r2(

X′S+X
)S+XX′S+S

(X′S+X)2

)

+ tr
(
Y ′∇Y

{
r2(

X′S+X
)SS+XX′S+

(X′S+X)2

})]
.

The finiteness of the risk of δr is guaranteed to hold by Theorem 2 in Section 3 for
all p and n.
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Now applying Lemma 1 in Section 3, we find

Eθ

[
n tr

(
r2(

X′S+X
)S+XX′S+S

(X′S+X)2

)

+ tr
(
Y ′∇Y

{
r2(

X′S+X
)SS+XX′S+

(X′S+X)2

})]

= Eθ

[
n
r2(X′S+X)

X′S+X
− 4r

(
X′S+X

)
r ′(X′S+X

)
(2.4)

+ r2(
X′S+X

)p − 2 tr(SS+) + 3

X′S+X

]

= Eθ

[
r2(

X′S+X
)n + p − 2 tr(SS+) + 3

X′S+X
− 4r

(
X′S+X

)
r ′(X′S+X

)]
.

Replacing (2.3) and (2.4) back into (2.2), we obtain

�θ = Eθ

[
r2(

X′S+X
)n + p − 2 tr(SS+) + 3

X′S+X

− 2r
(
X′S+X

) tr(SS+) − 2

X′S+X

− 4r ′(X′S+X
){

1 + r
(
X′S+X

)}]
.

Since r is nonnegative and nondecreasing, it follows that −4r ′(X′S+X){1 +
r(X′S+X)} ≤ 0. Finally, for the X and S such that r(X′S+X) 	= 0,

r2(
X′S+X

)n + p − 2 tr(SS+) + 3

X′S+X
− 2r

(
X′S+X

) tr(SS+) − 2

X′S+X
≤ 0

⇔ r
(
X′S+X

) ≤ 2(tr(SS+) − 2)

n + p − 2 tr(SS+) + 3
= 2(min(n,p) − 2)

n + p − 2 min(n,p) + 3
.

Therefore, under the three sufficient conditions on r , it follows that �θ ≤ 0 for
any θ , that is, the domination result holds. �

In the p > n setting, we obtain the following two corollaries.

COROLLARY 1. For p > n ≥ 3, δr dominates δ0 under invariant quadratic
loss for all r nondecreasing, differentiable and satisfying

0 ≤ r ≤ 2(n − 2)

p − n + 3
.(2.5)
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COROLLARY 2 (James–Stein estimator with large p and small n). For p >

n ≥ 3 and a ∈ R, the James–Stein-like estimator

δJS
a (X,S) =

(
I − aSS+

X′S+X

)
X(2.6)

dominates δ0 under invariant quadratic loss for all

0 ≤ a ≤ 2(n − 2)

p − n + 3
.

Note that if p is only moderately larger than n, Corollary 1 implies that one
can construct an estimator with substantial improvement over δ0. However, in the
ultra-high-dimensional setting the denominator in (2.5) could be quite large and,
consequently, the amount of improvement over δ0 could be quite small. The es-
timator in (2.6) generalizes the classical James–Stein with unknown covariance
matrix,

δJS
a (X,S) =

(
1 − a

X′S−1X

)
X,

which is, of course, restricted to the case p ≤ n, for a ∈ R+. In this setting, this
result is consistent with previous bounds in Fourdrinier, Strawderman and Wells
(2003) (where n − 1 is used instead of our n).

3. Technical results and proofs. It remains to clarify several of the some-
what technical computations used in the proof of Theorem 1. We provide them in
this section; these computations are likely to be of independent interest and show-
case several technical maneuvers that the reader could find useful in dealing with
singular Wishart matrices.

PROPOSITION 1. Let Y be an n × p matrix, S = Y ′Y , X a p vector and
F = X′S+X. It then follows that

(i)
{

∂S

∂Yαβ

}
kl

= δβkYαl + δβlYαk;

(ii)
∂F

∂Yαβ

= −2
(
X′S+Y ′)

α

(
S+X

)
β + 2

(
X′S+S+Y ′)

α

((
I − SS+)

X
)
β;

(iii)
∂{S+XX′SS+}kl

∂Yαβ

= (
S+S+Y ′)

kα

((
I − SS+)

XX′SS+)
βl

− S+
kβ

(
YS+XX′SS+)

αl − (
S+Y ′)

kα

(
S+XX′SS+)

βl

+ (
I − SS+)

kβ

(
YS+S+XX′SS+)

αl
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+ (
S+XX′)

kβ

(
YS+)

αl + (
S+XX′Y ′)

kα

(
S+)

βl

+ (
S+XX′S+Y ′)

kα

(
I − SS+)

βl

− (
S+XX′SS+)

kβ

(
YS+)

αl − (
S+XX′SS+Y ′)

kα

(
S+)

βl.

PROOF. First, notice that from the usual chain-rule that{
∂S

∂Yαβ

}
kl

= ∂

∂Yαβ

Skl = ∂

∂Yαβ

∑
q

YqkYql = δβkYαl + δβlYαk.

This shows (i).
Let A be a symmetric matrix and t ∈ R, then

∂A+

∂t
= −A+ ∂A

∂t
A+ + (

I − AA+) ∂A

∂t
A+A+

+ A+A+ ∂A

∂t

(
I − AA+)

.

This result was, it seems, first proved in Golub and Pereyra (1973), as their Theo-
rem 4.3, but can be found in standard textbooks on elementary linear algebra. Also,
again for A symmetric, we have AA+ = A+A and A(I −AA+) = (I −AA+)A =
A+(I − AA+) = (I − AA+)A+ = 0. This easily follows from elementary proper-
ties of the Moore–Penrose pseudoinverse.

Since S = Y ′Y , notice through a singular value decomposition argument that
SS+Y ′ = Y ′ and, thus, (I − SS+)Y ′ = 0. Using (i), we find that

∂F

∂Yαβ

= X′ ∂S+

∂Yαβ

X

= −∑
k,l

(
X′S+)

k{δβkYαl + δβlYαk}(S+X
)
l

+ ∑
k,l

(
X′S+S+)

k{δβkYαl + δβlYαk}((I − SS+)
X

)
l

+ ∑
k,l

(
X′(I − SS+))

k{δβkYαl + δβlYαk}(S+S+X
)
l

= −∑
l

(
X′S+)

βYαl

(
S+X

)
l − ∑

k

(
X′S+)

kYαk

(
S+X

)
β

+ ∑
l

(
X′S+S+)

βYαl

((
I − SS+)

X
)
l

+ ∑
k

(
X′S+S+)

kYαk

((
I − SS+)

X
)
β

+ ∑
l

(
X′(I − SS+))

βYαl

(
S+S+X

)
l
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+ ∑
k

(
X′(I − SS+))

kYαk

(
S+S+X

)
β

= −2
(
X′S+Y ′)

α

(
S+X

)
β + 2

(
X′S+S+Y ′)

α

((
I − SS+)

X
)
β,

which gives (ii).
Using (i), we have that for any conformable matrices A and B

(
A

∂S

∂Yαβ

B

)
kl

= ∑
i,j

Aki

{
∂S

∂Yαβ

}
ij

Bjl

= ∑
i,j

Aki{δβiYαj + δβjYαi}Bjl

= ∑
j

AkβYαjBjl + ∑
i

AkiYαiBβl

= Akβ(YB)αl + (
AY ′)

kαBβl.

Therefore, using again (I − SS+)Y ′ = 0,

∂{S+XX′SS+}kl

∂Yαβ

=
{
S+S+ ∂S

∂Yαβ

(
I − SS+)

XX′SS+

− S+ ∂S

∂Yαβ

S+XX′SS+ + (
I − SS+) ∂S

∂Yαβ

S+S+XX′SS+

+ S+XX′ ∂S

∂Yαβ

S+ + S+XX′SS+S+ ∂S

∂Yαβ

(
I − SS+)

− S+XX′SS+ ∂S

∂Yαβ

S+ + S+XX′S
(
I − SS+) ∂S

∂Yαβ

S+S+
}

kl

= (
S+S+Y ′)

kα

((
I − SS+)

XX′SS+)
βl

− S+
kβ

(
YS+XX′SS+)

αl − (
S+Y ′)

kα

(
S+XX′SS+)

βl

+ (
I − SS+)

kβ

(
YS+S+XX′SS+)

αl

+ (
S+XX′)

kβ

(
YS+)

αl + (
S+XX′Y ′)

kα

(
S+)

βl

+ (
S+XX′S+Y ′)

kα

(
I − SS+)

βl

− (
S+XX′SS+)

kβ

(
YS+)

αl − (
S+XX′SS+Y ′)

kα

(
S+)

βl,

which gives (iii). �
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LEMMA 1. Under the hypotheses of Theorem 1, we have

tr
(
Y ′∇Y

{
r2(

X′S+X
)SS+XX′S+

(X′S+X)2

})

= −4r
(
X′S+X

)
r ′(X′S+X

) + r2(
X′S+X

)p − 2 tr(SS+) + 3

X′S+X
,

where ∇Y is interpreted as the matrix with components (∇Y )ij = ∂
∂Yij

.

PROOF. To simplify computations, in what will follows, we let F ≡ X′S+X.
We then have[

Y ′∇Y

{
r2(F )

SS+XX′S+

F 2

}]
ij

= ∑
α,β

(
Y ′)

iα

∂

∂Yαβ

{
r2(F )

(SS+XX′S+)βj

F 2

}

= 2
∑
α,β

(
Y ′)

iαr(F )r ′(F )
∂F

∂Yαβ

· (SS+XX′S+)βj

F 2(3.1)

+ ∑
α,β

(
Y ′)

iαr2(F )
(∂/∂Yαβ){(SS+XX′S+)βj }

F 2(3.2)

+ ∑
α,β

(
Y ′)

iαr2(F )
−2 (∂F/∂Yαβ)(SS+XX′S+)βj

F 3 .(3.3)

To simplify (3.1) and (3.3), we apply Proposition 1(ii) to get
∑
α,β

(
Y ′)

iα

{
∂F

∂Yαβ

}(
SS+XX′S+)

βj

= −2
∑
α,β

(
Y ′)

iα

(
X′S+Y ′)

α

(
S+X

)
β

(
SS+XX′S+)

βj

+ 2
∑
α,β

(
X′S+S+Y ′)

α(Y )αi

(
S+XX′SS+)

jβ

((
I − SS+)

X
)
β

= −2X′S+X
(
SS+XX′S+)

ij .

Using this, we get for (3.1)

2
∑
α,β

(
Y ′)

iαr(F )r ′(F )
∂F

∂Yαβ

· (SS+XX′S+)βj

F 2

(3.4)

= −4r(F )r ′(F )
(SS+XX′S+)ij

F
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and (3.3) becomes

∑
α,β

(
Y ′)

iαr2(F )
−2 (∂F/∂Yαβ) · (SS+XX′S+)βj

F 3

(3.5)

= 4r2(F )
(SS+XX′S+)ij

F 2 .

This leaves the term (3.2) to analyze. Using Proposition 1(iii),

∑
α,β

(
Y ′)

iα

∂

∂Yαβ

{(
SS+XX′S+)

βj

}

= ∑
α,β

(
Y ′)

iα

∂{S+XX′SS+}jβ
∂Yαβ

= ∑
α,β

{(
S+S+Y ′)

jαYαi

((
I − SS+)

XX′SS+)
ββ

− S+
jβ

(
Y ′)

iα

(
YS+XX′SS+)

αβ

− (
S+Y ′)

jαYαi

(
S+XX′SS+)

ββ

+ (
I − SS+)

jβ

(
Y ′)

iα

(
YS+S+XX′SS+)

αβ

+ (
S+XX′)

jβ

(
Y ′)

iα

(
YS+)

αβ

+ (
S+XX′Y ′)

jαYαi

(
S+)

ββ

+ (
S+XX′S+Y ′)

jαYαi

(
I − SS+)

ββ

− (
S+XX′SS+)

jβ

(
Y ′)

iα

(
YS+)

αβ

− (
S+XX′SS+Y ′)

jαYαi

(
S+)

ββ

}

= (
S+XX′SS+(

I − SS+))
ij

− (
SS+XX′S+)

ij − tr
(
S+XX′SS+)(

SS+)
ij

+ tr
((

I − SS+)
XX′SS+)(

S+)
ij

+ (
SS+XX′S+)

ij + tr
(
S+)(

SXX′S+)
ij

+ tr
(
I − SS+)(

SS+XX′S+)
ij

− (
SS+XX′S+)

ij − tr
(
S+)(

SXX′S+)
ij

= (
p − tr

(
SS+) − 1

){
SS+XX′S+}

ij − (
X′S+X

){
SS+}

ij .
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Next, applying this computation in (3.2), we obtain

∑
α,β

(
Y ′)

iαr2(F )
(∂/∂Yαβ){(SS+XX′S+)βj }

F 2

= (
p − tr

(
SS+) − 1

)
r2(F )

(SS+XX′S+)ij

F 2(3.6)

− r2(F )
(SS+)ij

F
.

Now we can combine (3.4), (3.6) and (3.5) together to complete the proof. That
is, we have

tr
(
Y ′∇Y

{
r2(F )

SS+XX′S+

F 2

})

= ∑
i

{
−4r(F )r ′(F )

(SS+XX′S+)ii

F

+ 4r2(F )
(SS+XX′S+)ii

F 2

+ (
p − tr

(
SS+) − 1

)
r2(F )

(SS+XX′S+)ii

F 2

− r2(F )
(SS+)ii

F

}

= −4r(F )r ′(F ) + r2(F )
p − 2 tr(SS+) + 3

F

as desired. �

LEMMA 2. Under the hypotheses of Theorem 1 we have

divX

r(X′S+X)SS+X

X′S+X
= 2r ′(X′S+X

) + r
(
X′S+X

) tr(SS+) − 2

X′S+X
.

PROOF. Again, to simplify computations, let us denote X′S+X by F . We find

divX

{
r(F )

SS+X

F

}

= ∑
i

∂

∂Xi

{
r(F )

(SS+X)i

F

}

= ∑
i

r ′(F )
∂F

∂Xi

(SS+X)i

F
+ r(F )

(∂/∂Xi){(SS+X)i}
F
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− r(F )
(∂F/∂Xi)(SS+X)i

F 2

= ∑
i

r ′(F )

{
∂

∂Xi

∑
k,l

XkXlS
+
kl

}
(SS+X)i

F

+ r(F )
(∂/∂Xi)

∑
k(SS+)ikXk

F

− r(F )
{(∂/∂Xi)

∑
k,l XkXlS

+
kl}(SS+X)i

F 2

= ∑
i

r ′(F )
{(

X′S+)
i + (

X′S+)
i

}(SS+X)i

F

+ r(F )
(SS+)ii

F
− r(F )

{(X′S+)i + (X′S+)i} · (SS+X)i

F 2

= 2r ′(F ) + r(F )
tr(SS+) − 2

F

as desired. �

The following result is an extension of a result in Konno (2009). This type of re-
sult was first obtained by Kubokawa and Srivastava (2008) and then was extended
by Konno (2009). In our generalization we make use of a divergence version of
Stein’s lemma that comes with somewhat weaker moment conditions, rather than
the element-by-element assumptions in Konno (2009). These weaker moment con-
ditions allow us to cover the p equals n and n + 1 cases.

LEMMA 3. Let Y ∼ Nn×p(0, In ⊗ �), let S = Y ′Y which has, by definition,
a Wishartp(n,�) distribution, and let G(S) be a p × p random matrix that de-
pends on S. Let ∇Y be interpreted as the matrix with components (∇Y )ij = ∂

∂Yij
,

and for A the symmetric positive definite square root of �, define Ỹ = YA−1 and
H = AGA−1. Then

E
[
tr

(
�−1SG

)] = E
[
n tr(G) + tr

(
Y ′∇Y G′)]

under the conditions

E
[∣∣divvec(Ỹ )

· vec(ỸH)
∣∣] < ∞,(3.7)

where vec(M) denotes the vectorization of a matrix M .

PROOF. Define S̃ = Ỹ ′Ỹ = A−1SA−1. Notice that, by construction, Ỹ ∼
Nn×p(0, In ⊗ Ip)—this means, by definition of the matrix normal distribution,
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that vec(Ỹ ) ∼ Nnp(0, Inp). We can write

E
[
tr(S̃H)

] = E

[ ∑
α,i,j

Ỹαi ỸαjHji

]

= E
[
vec(Ỹ ) · vec(ỸH)

]
.

Using the divergence form of Stein’s lemma, which can be found in Lemma A.1
in Fourdrinier and Strawderman (2003), we obtain, under the moment conditions
outlined in (3.7),

E
[
vec(Ỹ ) · vec(ỸH)

] = E
[
divvec(Ỹ )

vec(ỸH)
]

= E

[ ∑
α,i,j

∂

∂Ỹαi

ỸαjHji

]

= E

[ ∑
α,i,j

δijHji + Ỹαj

∂Hji

∂Ỹαi

]

= E

[
n

∑
i

Hii + ∑
α,i,j

Ỹαj

∂

∂Ỹαi

Hji

]
.

This last expression can be expressed in a compact matrix form as

E
[
tr(S̃H)

] = E
[
n tr(H) + tr

((
Ỹ ′∇

Ỹ

)′
H

)]
.

Finally, we notice

E
[
tr(H)

] = E
[
tr

(
AGA−1)]

,

E
[
tr(S̃H)

] = E
[
tr

(
A−1SGA−1)]

,

E
[
tr

((
Ỹ ′∇

Ỹ

)′
H

)] = E
[
tr

(
A

(
Y ′∇Y

)′
GA−1)]

,

which concludes the proof. �

THEOREM 2. Let Y ∼ Nn×p(0, In ⊗�) and for A the symmetric positive def-
inite square root of �, let Ỹ = YA−1. Let r be any bounded differentiable nonneg-
ative function r : R → [0,C1] with bounded derivative |r ′| ≤ C2. Define

G = r2(
X′S+X

)S+XX′S+S

(X′S+X)2

and H = AGA−1. Then for all p and n

E
[∣∣divvec(Ỹ )

vec(ỸH)
∣∣] < ∞.(3.8)
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PROOF. We first compute divvec(Ỹ )
vec(ỸH). As always, to ease notation, we

shall write F = X′S+X. We have

divvec(Ỹ )
vec(ỸH)

= ∑
α,i,j

∂

∂Ỹαi

{ỸαjHji}

= n
∑
i

Hii + ∑
α,j

Ỹαj

∂Hji

∂Ỹαi

= n
∑
i

Hii + ∑
α,β,i,j

ỸαjAβi

∂

∂Yαβ

{
r2(F )

{AS+XX′SS+A−1}ji

F 2

}

= n
∑
i

Hii + ∑
α,β,i,j

ỸαjAβi

×
{

2r(F )r ′(F )
∂F

∂Yαβ

{AS+XX′SS+A−1}ji

F 2(3.9)

+ r2(F )

F 2

∑
k,l

Ajk

∂{S+XX′SS+}kl

∂Yαβ

A−1
li(3.10)

− r2(F )
{
AS+XX′SS+A−1}

ji

2 ∂F/∂Yαβ

F 3

}
.(3.11)

We simplify each part of the expression. For (3.9), using Proposition 1(ii), we find

2
∑

α,β,i,j

ỸαjAβir(F )r ′(F )
∂F

∂Yαβ

{AS+XX′SS+A−1}ji

F 2

= 4
r(F )r ′(F )

F 2

× ∑
α,β,i,j

{−(
X′S+Y ′)

αỸαj

{
AS+XX′SS+A−1}

jiAiβ

(
S+X

)
β

+ (
X′S+S+Y ′)

αỸαj

{
AS+XX′SS+A−1}

jiAiβ

((
I − SS+)

X
)
β

}
(3.12)

= −4
r(F )r ′(F )

F 2

(
X′S+Y ′YA−1AS+XX′SS+A−1AS+X

)

+ 4
r(F )r ′(F )

F 2

(
X′S+S+Y ′YA−1AS+XX′SS+A−1A

(
I − SS+)

X
)

= −4r(F )r ′(F ).
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Similarly, for (3.11)

∑
α,β,i,j

ỸαjAβir
2(F )

{
AS+XX′SS+A−1}

ji

2 ∂F/∂Yαβ

F 3

= 4
r2(F )

F 3

∑
α,β,i,j

(
X′S+Y ′)

αỸαj

{
AS+XX′SS+A−1}

jiAiβ

(
S+X

)
β

(3.13)

= 4
r2(F )

F 3

(
X′S+Y ′YA−1AS+XX′SS+A−1AS+X

)

= 4
r2(F )

F
.

This leaves us with (3.10). Using Proposition 1(iii), we obtain

∑
α,β,i,j

ỸαjAβi

r2(F )

F 2

∑
k,l

Ajk

∂{S+XX′SS+}kl

∂Yαβ

A−1
li

= r2(F )

F 2

∑
α,β,i,j,k,l

ỸαjAβiAjkA
−1
li

× {(
S+S+Y

)
kα

((
I − SS+)

XX′SS+)
βl

− S+
kβ

(
YS+XX′SS+)

αl

− (
S+Y

)
kα

(
S+XX′SS+)

βl

+ (
I − SS+)

kβ

(
YS+S+XX′SS+)

αl

+ (
S+XX′)

kβ

(
YS+)

αl

+ (
S+XX′Y ′)

kα

(
S+)

βl

+ (
S+XX′S+Y ′)

kα

(
I − SS+)

βl

− (
S+XX′SS+)

kβ

(
YS+)

αl

− (
S+XX′SS+Y ′)

kα

(
S+)

βl

}

= r2(F )

F 2

∑
α,β,i,j,k,l

{
Ajk

(
S+S+Y

)
kαỸαjAiβ

((
I − SS+)

XX′SS+)
βlA

−1
li

− Ỹ ′
jα

(
YS+XX′SS+)

αlA
−1
li AiβS+

βkAkj

− Ajk

(
S+Y

)
kαỸαjAiβ

(
S+XX′SS+)

βlA
−1
li

+ Ỹ ′
jα

(
YS+S+XX′SS+)

αlA
−1
li Aiβ

(
I − SS+)

βkAkj(3.14)
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+ Ỹ ′
jα

(
YS+)

αlA
−1
li Aiβ

(
XX′S+)

βkAkj

+ Ajk

(
S+XX′Y ′)

kαỸαjAiβ

(
S+)

βlA
−1
li

+ Ajk

(
S+XX′S+Y ′)

kαỸαjAiβ

(
I − SS+)

βlA
−1
li

− Ỹ ′
jα

(
YS+)

αlA
−1
li Aiβ

(
SS+XX′S+)

βkAkj

− Ajk

(
S+XX′SS+Y ′)

kαỸαjAiβ

(
S+)

βlA
−1
li

}

= r2(F )

F 2

{
tr

(
AS+S+Y ′YA−1) · tr

(
A

(
I − SS+)

XX′SS+A−1)

− tr
(
A−1Y ′YS+XX′SS+A−1AS+A

)
− tr

(
AS+Y ′YA−1)

tr
(
AS+XX′SS+A−1)

+ tr
(
A−1Y ′YS+S+XX′SS+A−1A

(
I − SS+)

A
)

+ tr
(
A−1Y ′YS+A−1AXX′S+A

)
+ tr

(
AS+XX′Y ′YA−1) · tr

(
AS+A−1)

+ tr
(
AS+XX′S+Y ′YA−1)

tr
(
A

(
I − SS+)

A−1)
− tr

(
A−1Y ′YS+A−1ASS+XX′S+A

)
− tr

(
AS+XX′SS+Y ′YA−1)

tr
(
AS+A−1)}

= r2(F )

F 2 · {−X′S+X − tr
(
SS+) · X′S+X

+ X′S+X + X′SS+X · tr
(
S+) + X′S+X · (

p − tr
(
SS+))

− X′S+X − X′SS+X · tr
(
S+)}

= r2(F )

F

(
p − tr

(
SS+) − 1

)
.

Having re-expressed divvec(Ỹ )
vec(ỸH), we now need to bound it above. By virtue

of (3.12), (3.13) and (3.14), we have

E
[∣∣divvec(Ỹ )

vec(ỸH)
∣∣]

= E

[∣∣∣∣n tr(H) + 4
r2(F )

F
(3.15)

+ (
p − tr

(
SS+) − 1

)r2(F )

F
− 4r(F )r ′(F )

∣∣∣∣
]

≤ C2
1
∣∣3 + p − tr

(
SS+) + n

∣∣E
[

1

F

]
+ 4C1C2.
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It only remains to show that E[ 1
F

] is finite. By definition of the Wishart ma-
trix distribution, we can define a T ∼ Wishartp(n, In) such that S = AT A. Let
T = H ′DH be the spectral decomposition of T , with D = diag(λi). Write the
eigenvalues of T + as λ+

i , so that D−1 = diag(λ+
i ), and let λ+

min be the small-
est nonzero eigenvalue of T +. The following two identities follow from Tian and
Cheng (2004) [Theorem 1.1, equations (1.2) and (1.4)] and symmetry of T :

(AT A)+ = (
T +T A

)+
T +(

AT +T
)+

,

(
T +T A

)+(
T +T

) = (
T +T A

)+
.

Using these identities, we have

X′S+X = X′(AT A)+X = X′(T +T A
)+

T +(
AT +T

)+
X

= ∑
k

{
X′(T +T A

)+
H ′}2

kλ
+
k

≥ λ+
min · X′(T +T A

)+
H ′H

(
AT +T

)+
X

= λ+
min · X′(T +T A

)+(
T +T

)(
AT +T

)+
X

= λ+
min · X′(T +T A

)+(
AT +T

)+
X.

Applying Cauchy–Schwarz provides us with the bound

X′(T +T A
)+(

T +T A
)
X ≤ X′(T +T A

)+(
AT +T

)+
XX′(AT +T

)(
T +T A

)
X

so that we then have

1

F
= 1

X′S+X
≤ 1

λ+
min

1

X′(T +T A
)+(

AT +T
)+

X

≤ 1

λ+
min

X′AT +T AX

X′(T +T A)+(T +T A)X
.

To ease notation, let us write Q = AT +T A and R = (T +T A)+(T +T A). Collect-
ing the results together, we bound (3.15) by

≤ C2
1
∣∣3 + p − 2 tr

(
SS+) + n

∣∣E
[

1

λ+
min

X′QX

X′RX

]
+ 4C1C2.(3.16)

We now use some independence results. We can write the singular value decom-
position of T as T = H ′DH , but we can also write it as T = H ′

1D1H1, where H1

is semi-orthogonal (H1H
′
1 = I ) and D1 is the matrix of the positive eigenvalues

of T . If T has full rank (i.e., n ≥ p), then this coincides with the singular value de-
composition of T . In the full rank case, Srivastava and Khatri (1979) [Section 3.4,



3154 D. CHÉTELAT AND M. T. WELLS

equation (3.4.3)] provide the joint density of H and D = diag(di) in the standard
Wishart case (which applies to T ) as

fH,D(H,D)
(3.17)

= C(p,n)|D|(n−p−1)/2
[
etr

(
−1

2
D

)][∏
i<j

(di − dj )

]
gp(H)

for constants C(p,n) and functions gp . Therefore, H and D are independent. In
the rank-deficient case (p > n), Srivastava (2003) (Section 3) provides an equiva-
lent expression which, in the singular Wishart case, gives

fH1,D1(H1,D1)
(3.18)

= K(p,n)|D1|(p−n−1)/2
[
etr

(
−1

2
D1

)][∏
i<j

(di − dj )

]
gn,p(H1)

for constants K(p,n) and functions gn,p , so, again, we find H1 and D1 indepen-
dent by factorization. Now, λ+

min is a function, in the full rank case (resp., rank-
deficient case), of only D−1 (resp., D−1

1 ), and we can write T +T = H ′H (resp.,
T +T = H ′

1H1), so λ+
min and T +T are independent. Being functions of S, they are

also both independent of X. Now, the nonzero eigenvalues of T + are the inverses
of the nonzero eigenvalues of T , a general fact about Moore–Penrose pseudo-
inverses. Therefore, denoting the largest eigenvalue of T as λmax, we can split up
the expectations in (3.16) and get the bound

≤ C2
1
∣∣3 + p − 2 tr

(
SS+) + n

∣∣E[λmax]E
[
X′QX

X′RX

]
+ 4C1C2.(3.19)

Now, it follows from positive semi-definiteness of T that E[λmax] ≤ E[tr(T )].
If n ≥ p, tr(T ) ∼ χ2

pn [cf. Muirhead (1982), Theorem 3.2.20] and so E[tr(T )] =
pn < ∞. If p > n, recall we can write T = Z′Z for Z ∼ Nn×p(0, In ⊗ Ip)

by definition of the Wishart distribution; and ZZ′ ∼ Wishartn(p, In) so that
tr(T ) = tr(ZZ′) ∼ χ2

pn; so, again, E[tr(T )] = pn < ∞. Therefore, in either case,
E[λmax] ≤ pn < ∞.

We still have to check that the expectation involving X, Q and R in (3.19)
is finite. Let r = rk(R) = rk(Q) = rk(S) and write the spectral decomposi-
tion of (T +T A) as U
U ′, with 
 = diag(L,0(p−r)) where L is the vec-
tor of the r nonzero eigenvalues of (T +T A). Then R = (T +T A)+(T +T A) =
U diag(Ir ,0(p−r))U

′; let us define the p× (p−r) matrix E = U [0(p−r)×rI(p−r)]′,
that is, so that RE = 0 and E has full column rank p − r . Notice that QE =
AT +T AU [0(p−r)×rI(p−r)]′ = AU
U ′U [0(p−r)×rI(p−r)]′ = 0. Since Q and R

are symmetric positive semidefinite, we can use results in Magnus (1990) [Theo-
rem 1(i) with A = Q and B = R] to conclude that

E

[
X′QX

X′RX

]
< ∞.

This concludes the proof of the theorem. �
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4. Numerical study. This section provides some numerical results to show-
case the improvement in risk of the minimax estimator over the usual estimator.
More precisely, we compared the James–Stein estimator in (2.6) given by

δJS =
(
I − (n − 2)SS+

(p − n + 3)X′S+X

)
X

and the usual estimator δ0 = X under invariant loss. (In addition, we consid-
ered the positive James–Stein estimator to be discussed in Section 5.) The em-
pirical approximations of the invariant risk of these estimators were plotted for
p = 10,20,50 and n = p

2 ,p − 1. Three covariance matrix structures were consid-
ered:

Spiked: A diagonal matrix with the first p/2 diagonal elements equal to 1, and
the last p/2 equal to 10.

Autoregressive: Autoregressive covariance matrices of the form

� =

⎛
⎜⎜⎜⎝

1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1
. . .

⎞
⎟⎟⎟⎠

for ρ = 0.5.
Block diagonal: Block diagonal matrices with p/2 blocks of the form

( 1
ρ

ρ
1

)
for ρ = 0.5.

In all cases, the true mean was chosen as θ ∝ (1, . . . ,1).
We remind the reader that the risk of the trivial estimator is always p, regardless

of θ or �. With this in mind, we see from Figure 1 that in all six scenarios the pat-
tern of domination of the new estimator is similar to one of the usual James–Stein
estimators. Also note that, as predicted by the theoretical results, the domination
decreases as the smaller n tends to p.

5. Comments. An interesting property of the Moore–Penrose inverse is that
for any A, AA+ is the matrix that projects onto the subspace spanned by A (its
column space). It follows that the proposed generalized Baranchik estimator can
be expressed as

δr(X,S) = (
I − SS+)

X +
(

1 − r(X′S+X)

X′S+X

)
SS+X

(5.1)

= PS⊥X +
(

1 − r(X′S+X)

X′S+X

)
PSX,

where PS = SS+ and PS⊥ = I − SS+ are the projection matrices onto the column
space of S and its orthogonal complement, respectively. In terms of the kernel and



3156 D. CHÉTELAT AND M. T. WELLS

FIG. 1. The risk function plots of δJS
a and δJS+

a for a = (n− 2)/(p −n+ 3) are in the left and right
columns, respectively. The lines, from thinnest to thickest, are for p = 10,20 and 50. The solid and
dashed lines are, respectively, for n = p/2 and n = p − 1.



IMPROVED NORMAL MEAN ESTIMATION FOR p > n 3157

image of the symmetric matrix S, Ker(PS⊥) = Im(S) and Im(PS⊥) = Ker(S+).
When p > n, this means we can interpret our estimator as applying shrinkage only
on the component of X in the subspace spanned by our covariance matrix estima-
tor S. In particular, note that the estimator PSδr(X,S) = (1 − r(X′S+X)

X′S+X
)PSX dom-

inates PSX under invariant loss function (1.1), since R(PSδr, θ) − R(PSX, θ) =
R(δr, θ) − R(X, θ) ≥ 0 if r satisfies the conditions of Theorem 1. This suggests
there might be an easier, more abstract proof of Theorem 1, one not relying on
brute computations but on the already known full rank S case, although we have
not been able to obtain such a result.

A natural extension of the James–Stein estimator, δJS
a in (2.6), is a positive-part-

type James–Stein estimator. The form of the estimator in (5.1) suggests

δJS+
a = (

I − SS+)
X +

(
1 − a

X′S+X

)
+
SS+X,(5.2)

where b+ = max(b,0). Simulation evidence from Figure 1 suggests that for a =
(n − 2)/(p − n + 3), δJS+

a dominates δJS
a under invariant loss.

One of the interesting differences between the n > p and p > n cases is the
reversal of the roles of p and n. This is essentially due to the distribution of the
singular values of S. Recall that for S = AT A, T ∼ Wp(n, In). We can write the
singular value decomposition of T as T = H ′DH , but we can also write it as
T = H ′

1D1H1, where H1 is semi-orthogonal (H1H
′
1 = I ) and D1 is the matrix of

the positive eigenvalues of T . If T has full rank (i.e., n ≥ p), this coincides with
the singular value decomposition of T . In the full rank case the joint density of H

and D is given in (3.17), whereas in the rank-deficient case (p > n) joint density
is given by (3.18), from which stems the reversal of the roles of p and n.

In the heteroscedastic normal mean estimation problem, James and Stein (1961)
used the loss function that was weighted by the inverse of the variances and, con-
sequently, the problem is essentially transformed to the homoscedastic case under
ordinary squared error loss. Similarly, in this article, we used the invariant loss
function in (1.1), therefore skirting a somewhat subtle issue. In the heteroscedas-
tic setting where there are differing coordinate variances, minimax estimation and
Bayes (or empirical Bayes) estimates can be qualitatively different. It turns out that
minimax estimators in general shrink most on the coordinates with smaller vari-
ances, while Bayes estimators shrink most on large variance coordinates. Brown
(1975) shows that the James–Stein shrinkage estimator does not dominate the X

when the largest variance is larger than the sum of the rest. Moreover, Casella
(1980) points out that the James–Stein shrinkage estimator may not be a desirable
shrinkage estimator under heteroscedasticity even when it is minimax. Morris and
Lysy (2012) and Brown, Nie and Xie (2013) give an excellent perspective on mini-
maxity of the shrinkage estimator from Bayes and empirical Bayes points of view.
Consequently, it would be of interest to examine the shrinkage patterns of the pro-
posed estimates in the case of a noninvariant loss function and assess how well the
invariant loss works for p > n applications.
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One can imagine an extension of the results of this article beyond the normal
distribution setting. Consider a model with the joint density for (X,S) the form

f
(
tr�−1[

(X − θ)(X − θ)′ + S
])

,(5.3)

where the p×1 location vector θ and the p×p scale matrix � are unknown. In the
setting of p ≤ n, Fourdrinier, Strawderman and Wells (2003) and Kubokawa and
Srivastava (2001) give some results on improved location estimation for elliptically
symmetric distributions. For more on elliptical symmetry and the various choices
of f (·) in (5.3), see Fang, Kotz and Ng (1990); the class in (5.3) contains models
such as the multivariate normal, t- and Kotz-type distributions.

Finally, simulation study reveals that, when p is much larger than n, the esti-
mate of � and �−1 are quite poor. This observation agrees with Kubokawa and
Srivastava (2008), where Haff (1979)-type improved estimates of � are proposed.
It would be of interest to use an improved estimator of � in δr(X,S) in (2.1). As
pointed out in the testing context by Srivastava and Fujikoshi (2006) and Srivastava
(2007), a shortcoming of S+ is that the associated estimator is only orthogonally
invariant, while the sample mean vector is invariant.

Acknowledgments. The authors are grateful to the Associate Editor and refer-
ees for helpful comments that strengthened the exposition and scope of this paper.

REFERENCES

BARANCHIK, A. J. (1970). A family of minimax estimators of the mean of a multivariate normal
distribution. Ann. Math. Statist. 41 642–645. MR0253461

BERGER, J. O. and BOCK, M. E. (1976). Combining independent normal mean estimation problems
with unknown variances. Ann. Statist. 4 642–648. MR0403085

BERGER, J. and HAFF, L. R. (1983). A class of minimax estimators of a normal mean vector for ar-
bitrary quadratic loss and unknown covariance matrix. Statist. Decisions 1 105–129. MR0694363

BERGER, J., BOCK, M. E., BROWN, L. D., CASELLA, G. and GLESER, L. (1977). Minimax esti-
mation of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix. Ann.
Statist. 5 763–771. MR0443156

BICKEL, P. J. and LEVINA, E. (2008). Regularized estimation of large covariance matrices. Ann.
Statist. 36 199–227. MR2387969

BROWN, L. D. (1975). Estimation with incompletely specified loss functions (the case of several
location parameters). J. Amer. Statist. Assoc. 70 417–427. MR0373082

BROWN, L. D., NIE, H. and XIE, X. (2013). Ensemble minimax estimation for multivariate normal
means. Ann. Statist. To appear.

CASELLA, G. (1980). Minimax ridge regression estimation. Ann. Statist. 8 1036–1056. MR0585702
D’ASPREMONT, A., BANERJEE, O. and EL GHAOUI, L. (2008). First-order methods for sparse

covariance selection. SIAM J. Matrix Anal. Appl. 30 56–66. MR2399568
FANG, K. T., KOTZ, S. and NG, K. W. (1990). Symmetric Multivariate and Related Distributions.

Monographs on Statistics and Applied Probability 36. Chapman & Hall, London. MR1071174
FOURDRINIER, D. and STRAWDERMAN, W. E. (2003). On Bayes and unbiased estimators of loss.

Ann. Inst. Statist. Math. 55 803–816. MR2028618

http://www.ams.org/mathscinet-getitem?mr=0253461
http://www.ams.org/mathscinet-getitem?mr=0403085
http://www.ams.org/mathscinet-getitem?mr=0694363
http://www.ams.org/mathscinet-getitem?mr=0443156
http://www.ams.org/mathscinet-getitem?mr=2387969
http://www.ams.org/mathscinet-getitem?mr=0373082
http://www.ams.org/mathscinet-getitem?mr=0585702
http://www.ams.org/mathscinet-getitem?mr=2399568
http://www.ams.org/mathscinet-getitem?mr=1071174
http://www.ams.org/mathscinet-getitem?mr=2028618


IMPROVED NORMAL MEAN ESTIMATION FOR p > n 3159

FOURDRINIER, D., STRAWDERMAN, W. E. and WELLS, M. T. (2003). Robust shrinkage esti-
mation for elliptically symmetric distributions with unknown covariance matrix. J. Multivariate
Anal. 85 24–39. MR1978175

GLESER, L. J. (1979). Minimax estimation of a normal mean vector when the covariance matrix is
unknown. Ann. Statist. 7 838–846. MR0532247

GLESER, L. J. (1986). Minimax estimators of a normal mean vector for arbitrary quadratic loss and
unknown covariance matrix. Ann. Statist. 14 1625–1633. MR0868326

GOLUB, G. H. and PEREYRA, V. (1973). The differentiation of pseudo-inverses and nonlinear least
squares problems whose variables separate. SIAM J. Numer. Anal. 10 413–432. MR0336980

HAFF, L. R. (1979). An identity for the Wishart distribution with applications. J. Multivariate Anal.
9 531–544. MR0556910

JAMES, W. and STEIN, C. (1961). Estimation with quadratic loss. In Proc. 4th Berkeley Sympos.
Math. Statist. and Prob., Vol. I 361–379. Univ. California Press, Berkeley, CA. MR0133191

KONNO, Y. (2009). Shrinkage estimators for large covariance matrices in multivariate real and com-
plex normal distributions under an invariant quadratic loss. J. Multivariate Anal. 100 2237–2253.
MR2560366

KUBOKAWA, T. and SRIVASTAVA, M. S. (2001). Robust improvement in estimation of a mean
matrix in an elliptically contoured distribution. J. Multivariate Anal. 76 138–152. MR1811829

KUBOKAWA, T. and SRIVASTAVA, M. S. (2008). Estimation of the precision matrix of a singular
Wishart distribution and its application in high-dimensional data. J. Multivariate Anal. 99 1906–
1928. MR2466543

LEDOIT, O. and WOLF, M. (2004). A well-conditioned estimator for large-dimensional covariance
matrices. J. Multivariate Anal. 88 365–411. MR2026339

LEVINA, E., ROTHMAN, A. and ZHU, J. (2008). Sparse estimation of large covariance matrices via
a nested Lasso penalty. Ann. Appl. Stat. 2 245–263. MR2415602

MAGNUS, J. R. (1990). On certain moments relating to ratios of quadratic forms in normal variables:
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