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BAYESIAN EMPIRICAL LIKELIHOOD FOR
QUANTILE REGRESSION1
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Bayesian inference provides a flexible way of combining data with prior
information. However, quantile regression is not equipped with a paramet-
ric likelihood, and therefore, Bayesian inference for quantile regression de-
mands careful investigation. This paper considers the Bayesian empirical
likelihood approach to quantile regression. Taking the empirical likelihood
into a Bayesian framework, we show that the resultant posterior from any
fixed prior is asymptotically normal; its mean shrinks toward the true pa-
rameter values, and its variance approaches that of the maximum empirical
likelihood estimator. A more interesting case can be made for the Bayesian
empirical likelihood when informative priors are used to explore common-
ality across quantiles. Regression quantiles that are computed separately at
each percentile level tend to be highly variable in the data sparse areas (e.g.,
high or low percentile levels). Through empirical likelihood, the proposed
method enables us to explore various forms of commonality across quantiles
for efficiency gains. By using an MCMC algorithm in the computation, we
avoid the daunting task of directly maximizing empirical likelihood. The fi-
nite sample performance of the proposed method is investigated empirically,
where substantial efficiency gains are demonstrated with informative priors
on common features across several percentile levels. A theoretical framework
of shrinking priors is used in the paper to better understand the power of the
proposed method.

1. Introduction. Quantile regression is a statistical methodology for the mod-
eling and inference of conditional quantile functions. Following Koenker and
Bassett (1978), we specify the τ th conditional quantile function of Y ∈ R given
X ∈ R

p+1 as

Qτ(Y |X) = X�β(τ),(1.1)

where τ ∈ (0,1), and β(τ) typically includes an intercept. Quantile modeling of
this type can be estimated for one or several percentile levels; we refer the details
on computation and basic asymptotic theory to Koenker (2005). Inferential meth-
ods for quantile regression have been developed by a number of researchers, in-
cluding Gutenbrunner and Jurečková (1992), Horowitz (1998), Chen et al. (2008)
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and Kocherginsky, He and Mu (2005). The τ -specific models allow for great flex-
ibility, as β(τ) for upper or lower quantiles can be distinct from central trends,
but the quantile estimates are highly variable in data-sparse areas. Taking advan-
tage of some commonality in the quantile coefficients β(τ) across τ can provide
a desirable balance in the bias-variance tradeoff. In this article, we consider using
prior information on β(τ) across several τ values. For example, a common slope
assumption for τ near 1 can improve the efficiency of high quantile estimation.
Other forms of informative priors on β(τ) may achieve a similar goal. Bayesian
methods are a natural way of combining data with prior information. The main
difficulty in putting the Bayesian method to work for quantile regression is that the
model on Qτ(Y |X) for one or any small number of τ values does not specify a
parametric likelihood, which is needed in the Bayesian framework.

Several authors have attempted to use a working likelihood in the Bayesian
quantile regression framework. Kottas and Gelfand (2001) and Kottas and Krnja-
jić (2009) used Dirichlet process mixture models. Reich, Bondell and Wang (2008)
assumed the error distributions to be an infinite mixture of normals. Dunson and
Taylor (2005) used an approximate method based on the Jefferey’s substitution
likelihood for quantiles. Yu and Moyeed (2001), Geraci and Bottai (2007) and
Yue and Rue (2011), among others, chose (asymmetric) Laplace distributions as
the working likelihood. Those approaches, mostly tailored toward a specific per-
centile level of τ , use Markov chain Monte Carlo algorithms as a useful means of
computation. Work of these authors provided numerical evidence that a Bayesian
approach to quantile regression has merits.

In this article, we focus on estimating several quantiles together. To do
so, we use the empirical likelihood (EL), introduced by Owen (1988), to in-
corporate quantile regression into a (pseudo-) Bayesian framework. Empirical
likelihood makes it easy to model several quantiles at the same time, allowing
informative priors on β(τ) across τ to be utilized. Statistical inference based
on empirical likelihood is known to enjoy good asymptotic properties, espe-
cially if the EL is associated with moment restrictions of sufficient smoothness.
Molanes Lopez, Van Keilegom and Veraverbeke (2009) considered the EL with
nonsmooth estimating equations under a general setting. A more comprehensive
review about empirical likelihood can be found in Owen (2001) and Chen and
Van Keilegom (2009). Since the moment restrictions for quantiles are placed on
nonsmooth functions, some researchers, including Chen and Hall (1993), Whang
(2006) and Otsu (2008) proposed using smoothed versions of the quantile estimat-
ing equations. The smoothed EL is further extended to weakly dependent processes
in Chen and Wong (2009) and censored data in Ren (2008). We choose to focus on
the exact moment conditions for quantiles without the complication of choosing
a smoothing parameter. Those moment conditions are also used in Wang and Zhu
(2011) and Kim and Yang (2011) for clustered data. In addition, we use a standard
MCMC algorithm to explore the posterior, to avoid the daunting task of directly
maximizing the empirical likelihood. In fact, the EL function given any proposed
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parameters is relatively easy to compute, even though the EL-maximization is
notoriously difficult, even in modest dimensions.

The empirical likelihood is not a likelihood in the usual sense, so the valid-
ity of the resultant posterior does not follow automatically from the Bayes for-
mula. Lazar (2003) discussed the validity of inference for the Bayesian empirical
likelihood (BEL) approach based on earlier work of Monahan and Boos (1992).
Schennach (2005) and Lancaster and Jun (2010) considered Bayesian exponen-
tially tilted empirical likelihood (ETEL), which can be viewed as a nonparamet-
ric Bayesian procedure with noninformative priors on the space of distributions.
Lancaster and Jun (2010) further considered Bayesian ETEL in quantile regres-
sion. For the inference of population means, Fang and Mukerjee (2006) investi-
gated the asymptotic validity and accuracy of the Bayesian credible regions, and
furthermore, Chang and Mukerjee (2008) showed that EL admits posterior based
inference with the frequentist asymptotic validity, but many of its variants do not
enjoy this property. In this article, we establish the asymptotic distributions of
the posterior from the BEL approach for quantile regression, which enable us to
evaluate efficiency gains from informative priors. Chernozhukov and Hong (2003)
discussed the asymptotic properties of the quasi-posterior distributions defined as
transformations of general statistical criterion functions. In our work, we establish
the asymptotic distributions of the posterior from the BEL approach for quantile
regression, and are particularly interested in the interaction of informative priors
and empirical likelihood on the asymptotic distribution of the posterior, which en-
ables us to evaluate efficiency gains from informative priors.

Ideas similar to BEL have been used by other researchers. Yin (2009) proposed
the Bayesian generalized method of moments (GMM), which can be adapted to
quantile estimation. Hahn (1997) considered Bayesian bootstrap in quantile re-
gression. Note that the GMM estimators are also defined through moment restric-
tions, which allow them to model multiple quantiles jointly. The GMM estimators,
the maximum empirical likelihood estimators (MELE) and some other EL-type
estimators generally have the same asymptotic distributions, but possibly different
higher order asymptotic properties; see Newey and Smith (2004) and Schennach
(2007). As discussed in Newey and Smith (2004), the empirical likelihood ap-
proach has advantages over the GMM estimators. Unlike GMM, the (asymptotic)
bias of the MELE does not grow with the number of moment restrictions. Further-
more, the efficiency of the GMM estimator relies on a covariance matrix estimate
for the estimating equations, which could be ill-conditioned when estimating mul-
tiple quantiles.

The recent development of Bayesian (conditional) density estimation using mix-
ture models enables nonparametric regression models on all quantiles simultane-
ously; see Müller, Erkanli and West (1996), Müller and Quintana (2004), Dunson,
Pillai and Park (2007) and Chung and Dunson (2009), among others. Theoreti-
cal results about posterior consistency can be found in Pati, Dunson and Tokdary
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(2010), Norets and Pelenis (2010) and the references therein. In contrast, our pro-
posed BEL approach targets a small number of selected quantiles without the need
to model the entire conditional distributions. A novel part of our work is its abil-
ity of employing informative priors to explore commonality across quantiles for
efficiency gains.

The rest of the paper is organized as follows. In Section 2, we introduce the
proposed BEL approach for quantile regression, and discuss model assumptions,
method of computation and use of informative priors. The asymptotic properties on
the BEL posteriors are provided in Section 3 for both fixed and a class of shrinking
priors. The theoretical framework of shrinking priors enables us to understand the
efficiency gains of the BEL approach over traditional methods. Section 4 demon-
strates the finite sample performance of the BEL approach through Monte Carlo
simulations with a focus on frequentist properties of BEL posterior intervals, and
efficiency gains from informative priors. In Section 5, we use a real data example to
show that the BEL approach can be used as a useful statistical downscaling method
for the projection of high quantiles of temperature from large scale climate models
to a local scale. Some concluding remarks are given in Section 6. The technical
details to support the theorems in Section 3 are provided in the Appendix.

2. Bayesian empirical likelihood for quantile regression. In this section we
introduce the Bayesian empirical likelihood approach for quantile regression. We
begin with notation and definitions of the underlying models and moment restric-
tions. Let D = {(Xi, Yi), i = 1, . . . , n} be a random sample from the following
quantile regression model:

Qτ(Y |X) = X�β0(τ ),(2.1)

where X ∈ R
p+1 is composed of an intercept term and p covariates. We assume

that the distribution of the p covariates, GX , has a bounded support X . If the
design points are nonstochastic, the basic conclusions we obtain in this paper hold
under appropriate conditions on the design sequence, but we focus on the case
of random designs for simplicity. The unknown function β0(τ ), if specified over
all τ ∈ (0,1), describes the entire conditional distribution of Y given X, which
is denoted as FX in the rest of the paper. We consider the problem of estimating
k quantiles at τ1 < τ2 < · · · < τk , and let ζ0 = (β0(τ1), . . . , β0(τk)) be the true
parameter of interest in R

k(p+1). In most applications, k is a small integer. To
estimate ζ0, we use k(p + 1) dimensional estimating functions m(X,Y, ζ ), where
ζ = (β(τ1), . . . , β(τk)) and the components of m are

mdk+j (X,Y, ζ ) = ψτd+1

(
Y − X�β(τd+1)

)
Xj(2.2)

for d = 0,1, . . . , k − 1, j = 0,1, . . . , p, with

ψτ (u) =
{

1{u<0} − τ, u �= 0,
0, u = 0
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being the quantile score function, where 1{A} is an indicator function on the set A.
We hasten to add that ζ may contain fewer than k(p + 1) unknown parameters
when some common parameters are present in β(τ) at different quantile levels. In
such cases, the number of moment restrictions exceeds the number of unknown
parameters. As shown in Qin and Lawless (1994) for smooth estimating func-
tions, the maximum empirical likelihood estimator attains the optimal asymptotic
efficiency subject to those moment conditions. We expect the same for quantile
estimating functions.

For any proposed ζ , its profile empirical likelihood ratio is given by

R(ζ ) = max

{
n∏

i=1

(nωi)

∣∣∣∣
n∑

i=1

ωim(Xi,Yi, ζ ) = 0,ωi ≥ 0,

n∑
i=1

ωi = 1

}
.(2.3)

By a standard Lagrange multiplier argument, we have

R(ζ ) =
n∏

i=1

{nωi(ζ )},

where the weights ωi(ζ ) = [n{1+λn(ζ )�m(Xi,Yi, ζ )}]−1, and the Lagrange mul-
tiplier λn(ζ ) satisfies the following equation:

n∑
i=1

m(Xi,Yi, ζ )

1 + λn(ζ )�m(Xi,Yi, ζ )
= 0.

As discussed in Chen, Sitter and Wu (2002) and Qin and Lawless (1994), the exis-
tence and uniqueness of λn(ζ ) are guaranteed when the following two conditions
are satisfied:

(C1) The vector 0 ∈ R
k(p+1) is within the convex hull of {m(Xi,Yi, ζ ), i =

1, . . . , n}.
(C2) The matrix

∑n
i=1{m(Xi,Yi, ζ )m(Xi, Yi, ζ )�} is positive definite.

The first condition (C1) actually provides a feasible region of ζ supported by the
observations D, in which the proposed ζ has a valid empirical likelihood value.
If Yi < X�

i β(τd) at some τd for all i = 1, . . . , n, this proposed ζ will violate the
first condition, and then we regard its empirical likelihood value as 0. The second
condition (C2) requires the set of estimating functions to be linearly independent.
Noting that

E{m(X,Y, ζ0)m(X,Y, ζ0)
�} = � ⊗ E(XX�),

where the elements of the � matrix are �ij = τi ∧ τj − τiτj , the second condition
is generally satisfied for ζ near ζ0, as long as E(XX�) is positive definite.

For any proposed ζ , consider its empirical likelihood function R(ζ )/nn =∏n
i=1 ωi(ζ ). With a prior specification p0(ζ ) on the parameter ζ , we can formally

have the posterior density

p(ζ |D) ∝ p0(ζ ) × R(ζ ).(2.4)
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We call p(ζ |D) the posterior distribution from the BEL approach. This can be
viewed as a misnomer, chosen for the sake of convenience, because it is not really
a posterior in the strict sense. Lazar (2003) proposed a procedure to check whether
the empirical likelihood is valid for posterior inference based on the criteria pro-
vided in Monahan and Boos (1992). In this paper, we focus on the asymptotic
properties of the posterior distribution (2.4), and establish its frequentist validity
by first-order asymptotics.

Finding the maximum empirical likelihood estimator is a daunting task compu-
tationally, because the objective function is generally multi-modal. However, the
value of the empirical likelihood ratio R(ζ ) is relatively easy to compute given ζ ,
which makes the Metropolis–Hastings algorithm, as given in Hastings (1970), fea-
sible for sampling from the posterior. By choosing a proper prior, the posterior
in (2.4) is also proper. Therefore, by checking the detailed balance equation and
Theorem 4.2 in Gilks, Richardson and Spiegelhalter (1996), the distribution of the
MCMC sampler converges to the posterior in (2.4). More discussions on compu-
tation efficiency can be referred to Chernozhukov and Hong (2003). A Bayesian
framework has its own merits in applications where informative priors on β(τ)

might be more appropriate than a strict functional relationship on some of the pa-
rameters. For example, we may believe that the slopes in β(τ1) are roughly the
same as in β(τ2). Imposing strict equalities to reduce the number of unknown pa-
rameters in ζ might be hard to justify, but an informative prior on the difference of
two neighboring β(τ) can help regularize quantile estimation.

By using a standard Metropolis–Hastings algorithm for a given prior p0(ζ ), we
may use the average of the Markov chain on ζ as an estimate of ζ , when the poste-
rior looks close to normal; otherwise, we suggest using the mode of the posterior,
which maximizes (2.4). In the empirical investigations in Sections 4 and 5, we use
the posterior mode as the estimates.

In our empirical investigations, we have found that the posterior mode of the
slope parameters behaves well, but the intercept parameter in each β(τ) can be
better estimated in small samples if the following strategy is followed. Suppose
that β(τ) = (βI (τ ), βS(τ )), where βI (τ ) corresponds to the intercept, and βS(τ )

corresponds to the slope. Let β̂S(τ ) be the posterior mode/mean obtained from the
MCMC chain, we use the modified estimate β̂I (τ ) as the τ th sample quantile of
Yi − X�

Si β̂S(τ ), where XSi corresponds to Xi excluding the intercept term. This
modification does not alter the asymptotic distributions of the β̂(τ ). In the rest of
the paper, we always use this modification in the BEL estimate of quantile regres-
sion.

3. Asymptotic properties of BEL. In this section, we provide an asymptotic
justification of the BEL estimator for quantile regression by deriving the limit-
ing behavior of the posterior distribution as n → ∞. One noticeable point about
the estimating equations (2.2) is that they involve indicator functions, so the re-
sulting empirical likelihood ratio is nonsmooth in ζ . An asymptotic normality of
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the posterior distribution in the Bayesian empirical likelihood context was derived
heuristically in Lazar (2003) for smooth estimating equations. We rely on empiri-
cal process theory to establish a similar result for the BEL here.

As the first step, we shall prove the consistency of the maximum empirical like-
lihood estimator (MELE), which is a necessary condition for the asymptotic nor-
mality of the posterior.

3.1. Consistency of the MELE. We assume that the true parameter ζ0 falls into
a compact set of the parameter space, and the optimization is carried out over this
compact set. For notational convenience, let

ζ̂ = arg max{R(ζ )}
be the MELE, whose dependence on n and the compact set on ζ have been sup-
pressed in our notation. Note that the maximum empirical likelihood estimate
might not be unique, but the result here applies to any maximizer of the empirical
likelihood ratio, and all the maximizers converge to the same asymptotic value.

The estimating functions m(X,Y, ζ ) are not smooth in ζ , but it is worth not-
ing that the expectations of m(X,Y, ζ ) and the empirical likelihood function are
sufficiently smooth under the following assumptions.

ASSUMPTION 3.1. There exists a neighborhood N of ζ0 such that P(R(ζ ) >

0) → 1 for any ζ ∈ N , as n → ∞.

ASSUMPTION 3.2. The distribution function GX has bounded support X .

ASSUMPTION 3.3. The conditional distribution FX(t) of Y given X is twice
continuously differentiable in t for all X ∈ X .

ASSUMPTION 3.4. At any X ∈ X , the conditional density function F ′
X(t) =

fX(t) > 0 for t in a neighborhood of F−1
X (τd) for each d = 1, . . . , k.

ASSUMPTION 3.5. E{m(X,Y, ζ0)m(X,Y, ζ0)
�} is positive definite.

Assumption 3.1 is to guarantee that the interior of the convex hull of {m(Xi,

Yi, ζ ) : i = 1, . . . , n} for ζ ∈ N contains the vector of zeros with probability tend-
ing to one. By (2.1), FX(X�β0(τd)) = τd for any d ≤ k and X ∈ X . Therefore,
for each d , β0(τd) is a solution to E{mdk+j (X,Y, ζ )} = 0, j = 0, . . . , p. Under
Assumption 3.4, β0(τd) is indeed the unique solution. Correspondingly, ζ0 is the
unique solution for E{m(X,Y, ζ )} = 0.

THEOREM 3.1. Under Assumptions 3.1–3.5, the MELE ζ̂ is a consistent esti-
mator of ζ0.
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The proof of Theorem 3.1 is sketched in the Appendix. The basic idea is to
check the conditions for consistency appearing in Theorem 5.7 of van der Vaart
(1998). Because those conditions require some uniform convergence properties
for collections of functions involving m(X,Y, ζ ), we use the empirical process
theory as a natural tool.

3.2. Asymptotic normality of the posterior. To validate the asymptotic normal-
ity of the posterior distribution (2.4), we make one more assumption.

ASSUMPTION 3.6. log{p0(ζ )} has bounded first derivative in a neighborhood
of ζ0.

Then we have the following theorem.

THEOREM 3.2. Under Assumptions 3.1–3.6, the posterior density of ζ has the
following expansion on any sequence of sets {ζ : ζ − ζ0 = O(n−1/2)}:

p(ζ |D) ∝ exp
{−1

2(ζ − ζ̂ )�Jn(ζ − ζ̂ ) + Rn

}
,(3.1)

where ζ̂ is the MELE,

Jn = nV �
12V

−1
11 V12,

V11 = � ⊗ E(XX�),

V12 = −∂E{m(X,Y, ζ )}
∂ζ

∣∣∣∣
ζ=ζ0

and Rn = op(1). When Jn is positive definite, we have J
1/2
n (ζ − ζ̂ ) converging in

distribution to N(0, I ).

There are clear similarities between Theorem 3.2 here and Theorem 1 of Lazar
(2003) for smooth estimating equations. We have considered fixed priors, a com-
mon scenario in the literature, where the limiting posterior distributions of ζ are
the same as the limiting sampling distribution of the MELE [cf. Qin and Lawless
(1994)]. An important remark follows.

REMARK 3.1. The results in Theorem 3.2 apply to the cases where the dimen-
sion of ζ is smaller than the dimension of the estimating functions m(X,Y, ζ ). For
ζ with a reduced dimensionality, the definition of V12 is taken to be the derivative
with respect to the reduced parameter vector.

Asymptotically, Theorem 3.2 justifies the use of the BEL approach for quantile
regression with respect to frequentist properties. When fX(X�β0(τd)) = fτd

is
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constant for all X, which is true for homoscedastic error models, we can simplify
V12 to

V12 = −diag(fτd
)d=1,...,k ⊗ E(XX�),

if ζ is of k(p + 1) dimensions. Because V11 = � ⊗E(XX�), the resultant asymp-
totic variance of the posterior quantity, J−1

n , is equivalent to the asymptotic vari-
ance of the usual quantile regression (RQ) estimates, as proposed in Koenker and
Bassett (1978). This property is not shared by all working likelihoods. If ζ is of
lower dimensions, the posterior variance no longer takes the same form, and im-
provements in the asymptotic variances over RQ become possible.

REMARK 3.2. An improper prior cannot guarantee a proper posterior dis-
tribution. In fact, the posterior will be improper for flat priors on ζ in the BEL
approach, and therefore we should avoid using flat priors on ζ .

Next, we consider a more interesting scenario where the prior distribution
shrinks with n. In this case, we use p0,n(ζ ) as priors, and make the following
assumption.

ASSUMPTION 3.7. The logarithm of the prior density p0,n(ζ ) is twice con-
tinuously differentiable, with the prior mode ζ0,n = O(1), and the matrix J0,n =
− ∂2 log{p0,n(ζ )}

∂ζ 2 |ζ=ζ0,n
= O(n).

By Assumption 3.7, log{p0,n(ζ )} can be Taylor expanded up to the quadratic
term as follows.

log{p0,n(ζ )} = log{p0n(ζ0,n)}
(3.2)

− 1
2(ζ − ζ0,n)

�J0,n(ζ − ζ0,n) + o(‖ζ − ζ0,n‖2).

Then we have the following result.

THEOREM 3.3. Under Assumptions 3.1–3.5 and 3.7, the posterior density of
ζ has the following expansion on any sequence of sets {ζ :‖ζ − ζ0‖ = O(n−1/2)}:

p(ζ |D) ∝ exp
{−1

2(ζ − θpost)
�Jn(ζ − θpost) + Rn

}
,(3.3)

where

Jn = J0,n + nV �
12V

−1
11 V12,

θpost = J−1
n (J0,nζ0,n + nV �

12V
−1
11 V12ζ̂ )

and Rn = op(1).
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Compared to Theorem 3.2, the additional term J0,n in both Jn and θpost in The-
orem 3.3 provides a balanced view of when and how an informative prior can
complement the likelihood in large samples. When J0,n = op(n), the posterior
expansion in Theorem 3.3 is the same as that of Theorem 3.2, so the empirical
likelihood will dominate the prior information. Obviously, if J0,n increases at a
faster rate than n, the prior will dominate the empirical likelihood. For the more
interesting case where J0,n increases at the rate of n, the BEL produces a consis-
tent estimate of ζ0 if ‖ζ0,n − ζ0‖ = op(1); otherwise, θpost may not converge to ζ0
in probability, that is, a bias may be introduced, but the variance is reduced. In the
latter case, the posterior in (3.3) does not directly lead to asymptotically valid pos-
terior inference. However, noting that Jn = J0,n + nV �

12V11V12 and J0,n is known,
the MCMC chain provides an estimate of the matrix nV �

12V11V12, which is what
we need to obtain asymptotically valid confidence intervals.

Shrinking priors are relevant when the informative priors are constructed from
data of a secondary source or when the hypothesis on common slope parameters
are not rejected by a statistical test.

In Theorem 3.3, the prior mode ζ0,n plays a role in the posterior mean, which
could be undesirable. For shrinking toward common slopes, we can use a class of
priors that eliminate the bias due to a mis-specified prior mode when the common
slope assumption holds. For each d = 1, . . . , k, let gd be a spherically symmetric
distribution with zero as its center as well as its mode, and with a finite second
order derivative at zero. We consider a prior on ζ as

�−1/2(
β(τ1) − βp,0

) ∼ g1 and
(3.4)

�
−1/2
d

(
β(τd) − β(τ1)

)|β(τ1) ∼ gd for d = 2, . . . , k

for any location vector βp,0 and scatter matrices � and �d of appropriate dimen-
sions. They vary with n in our theory, but we have suppressed the dependence in
notation. If we write

�d =
(

�d,I 0�
0 �d,S

)
,

where �d,I and �d,S represent the components of �d corresponding to the in-
tercept and the slope parameters in β(τd), respectively, for d = 2, . . . , k, we now
assume

‖�−1‖ = O(εn), ‖�−1
d,I‖ = O(εn) and ‖�d,S‖ = O(n−1)(3.5)

for some sequence εn = o(n). We have the following corollary.

COROLLARY 3.4. Suppose that the same conditions of Theorem 3.3 hold. If
the slope parameters in ζ0 are the same at τ1, . . . , τk , and a (shrinking) prior
satisfying (3.4) and (3.5) is used, the posterior mean of Theorem 3.3 becomes
θpost = ζ0 + Op(εn/n + n−1/2).
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Clearly, Corollary 3.4 indicates that the center of the posterior is asymptotically
unbiased for ζ0 with common slopes regardless of what the prior mode βp,0 is for
β(τd). All we need is to allow the prior variances of the slope differences to be in
the order of 1/n, but the prior variances of the other parameters increasing with n.
The idea of constructing such a class of shrinking priors applies more broadly than
what we have considered here with common slopes, but in our empirical work to
be reported, only independent normal and t-distributions will be used as gd .

4. Simulation studies. In this section, we use Monte Carlo simulations to
investigate the performance of the BEL methods (coverage probability and esti-
mation efficiency) from the frequentist viewpoint. We use the following notation
to distinguish BEL estimators with various priors on the slope parameters. The
usual quantile regression estimation at each τ will be denoted simply as RQ.

• BEL.s: BEL estimators of single quantiles using moment restrictions at each τ .
• BEL.c: BEL estimators based on joint moment restrictions assuming a common

slope parameter at several τ ’s.
• BEL.n: BEL estimators based on joint moment restrictions assuming that the

differences in slope parameters across τ ’s have normal priors with zero mean
and “small” variances.

4.1. Coverage properties. We first take a brief look at the coverage probabili-
ties of the posterior credible intervals obtained under BEL.s. To see the impact of
empirical likelihood, we also include in the comparison two other Bayesian meth-
ods, one based on the true parametric likelihood, and the other based on a working
likelihood.

The data are generated from Yi = βI +βS(Xi −2)+ei (i = 1, . . . , n), where the
true parameters are βI = 2, βS = 1, Xi and ei are independently generated from
the chi-square distribution with 2 degrees of freedom and N(0,4), respectively. We
are interested in estimating the median regression coefficients βI (0.5) and βS(0.5).
Independent priors of N(0,1002), are used on both parameters. We use the 2.5th
and the 97.5th percentiles of the Markov chain from BEL.s for τ = 0.5 to form
95% interval estimates for the parameters. The simulation study uses three differ-
ent sample sizes n = 100,400,1600 to see whether the intervals have desirable
coverage probabilities for modestly large n.

In addition to BEL.s, we include two other Bayesian methods:

• BTL: the Bayesian method using the true likelihood

n∏
i=1

σ−1φ

{
yi − βI (0.5) − βS(0.5)(xi − 2)

σ

}
,

where φ is the density of the standard normal distribution.
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• BDL: a pseudo Bayesian method using the Laplace density as the working like-
lihood

n∏
i=1

σ̃−1 exp
{
−|yi − βI (0.5) − βS(0.5)(xi − 2)|

2σ̃

}
,

where σ̃ is estimated by the mean of the absolute residuals from the RQ estimate
at τ = 0.5.

Similar MCMC sampling algorithms are used for all the three methods. The
BTL method can be viewed as a yardstick for any MCMC based method, be-
cause it uses the true parametric likelihood under the model, which is generally
unknown in practice. The reason to consider BDL is that the exponential compo-
nent of its working likelihood is the objective function of median regression. The
BDL method has been used earlier by Yu and Moyeed (2001) among others, but
in our empirical work, we have chosen to use a fixed value of σ in BDL, because
we have found that the MCMC chains have better mixing properties without in-
cluding σ as an unknown parameter. A sensible value of σ to use in BDL is the
RQ-based scale estimate. Table 1 provides the average coverage probability and
average length information for each of the three methods over 1000 samples at
each choice of n.

This simple simulation study shows that as the sample size increases, the pos-
terior intervals obtained from BEL.s and BTL approach the nominal levels 95%,
although the convergence is not as fast as we might have expected. Because the un-
derlying model has i.i.d. normal errors, the asymptotic relative efficiency of BEL.s
and BDL are approximately 67% of BTL, which helps explain the differences in
the interval lengths. We also note that BEL.s outperforms BDL by the frequentist
measures, even after we fixed the scale parameter in BDL.

TABLE 1
Comparison of 95% posterior intervals of the median regression parameters from three methods:

(1) BEL.s, (2) BTL based on the true likelihood and (3) BDL based on a working Laplace
likelihood. The coverage probability and lengths of the posterior intervals are computed

over 1000 data sets of sample sizes n = 100,400 and 1600

Coverage of 95% CI Length of 95% CI

n BEL.s BTL BDL BEL.s BTL BDL

100 βI (0.5) 0.97 0.94 0.98 1.06 0.80 1.11
βS(0.5) 0.98 0.94 0.98 0.58 0.41 0.58

400 βI (0.5) 0.97 0.95 0.98 0.43 0.40 0.55
βS(0.5) 0.94 0.95 0.98 0.22 0.20 0.28

1600 βI (0.5) 0.96 0.96 0.97 0.25 0.21 0.28
βS(0.5) 0.96 0.96 0.98 0.13 0.10 0.14
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Similar phenomena were observed in the interval estimation for other quantiles
and under several other error distributions, but we skip the details. A more exten-
sive report on estimation efficiency is given in the next subsection.

4.2. Efficiency of BEL under various priors. In this section, we investigate
the estimation efficiency of BEL.s, BEL.c and BEL.n for ζ at different percentile
levels, where the posterior modes are taken as the parameter estimates. The esti-
mation efficiency is measured by the estimated mean squared error (MSE), with
data generated from the following four models:

• Model 1: Y = X + Z + e, where X ∼ χ2(2), Z/2 ∼ Bernoulli(0.5) and e ∼
N(0,4), with X, Z and e being mutually independent;

• Model 2: same as Model 1 except that log(e) ∼ N(0,1);
• Model 3: Y = X + Z + (X/2 + 1)e, where X ∼ χ2(2), Z/2 ∼ Bernoulli(0.5)

and e ∼ N(0,4), with X, Z and e being mutually independent;
• Model 4: same as Model 3 except that log(e) ∼ N(0,1).

These models include two covariates, of which X is continuous, and Z is bi-
nary. Models 1 and 2 assume homoscedastic errors, and Models 3 and 4 allow the
error distributions to depend on X. We use bx(τ ), bz(τ ) to denote the two slope
parameters, and consider the adjusted intercept a(τ) as the fitted value of the τ th
quantile at the sample mean of (X,0). The reason that we consider this adjusted
intercept in the study, instead of the raw intercept, is that the fitted value at the
average design point of Xi is a more meaningful value than the fitted value at the
origin, which lies outside of the design space.

The three BEL methods (BEL.s, BEL.c and BEL.n) will be compared with RQ
and the composite quantile regression (CQR) of Zou and Yuan (2008). The CQR
assumes common slopes, and minimizes the sum of individual quantile loss func-
tions over several τ ’s of interest. The CQR is a direct competitor of BEL.c, because
they make the same assumption.

For Models 1 and 2, the common slope assumption holds, so there is no asymp-
totic bias for any of the methods we consider here. Table 2 shows the asymptotic
efficiencies of BEL.c and CQR relative to RQ, when several quantiles are esti-
mated jointly. It is clear that BEL.c and CQR are similar in efficiency for Model 1,
but BEL.c stands out for Model 2. The asymptotic efficiency of BEL.s and that
of RQ are the same; both of them are improved on by the other methods. Table 2
also includes comparisons at joint estimation of three quartiles, to indicate that the
efficiency gain of BEL.c and CQR from the comparisons are not limited to high
quantiles.

The asymptotic efficiencies do not depend on the choices of fixed priors. We
now focus on estimation of high quantiles with τ = 0.9,0.925,0.95 at the sample
size of n = 100, with the following priors:

• For BEL.s and BEL.c, we use the prior N(0,1002) for each intercept parameter,
and N(1,1002) for each slope parameter.
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TABLE 2
The table presents the ratio of the asymptotic MSE of the RQ estimators over that of the BEL.c or
CQR estimator for Models 1 and 2, when jointly estimating quantiles at τ = 0.25,0.5,0.75 and

τ = 0.9,0.925,0.95, respectively

Asymptotic relative efficiencies for slope estimators

τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9 τ = 0.925 τ = 0.95

Model 1
BEL.c/RQ 1.598 1.352 1.598 1.029 1.219 1.572
CQR/RQ 1.590 1.345 1.590 0.984 1.166 1.504

Model 2
BEL.c/RQ 1.006 3.280 14.942 1.032 1.677 3.261
CQR/RQ 0.541 1.763 8.032 0.756 1.227 2.386

• For BEL.n, we use the prior N(0,1002) for each intercept parameter, and
N(1,1002) for bx(0.9) and for bz(0.9). The informative priors used to regu-
late the differences between quantiles are, conditional on β(0.90), bx(0.925) ∼
N(bx(0.9),0.16), bx(0.95) ∼ N(bx(0.9),1), bz(0.925) ∼ N(bz(0.9),0.01) and
bz(0.95) ∼ N(bz(0.9),0.01).

Additional details of the Bayesian computations can be found in the supplemental
material [Yang and He (2012)]. The MSE’s of various estimators of β(τ) are given
in Table 3 for Models 1 and 2, and in Table 4 for Models 3 and 4. We make several
observations from those results:

• The performance of BEL.s is similar to or slightly better than that of RQ.
• When the common slope assumption holds, BEL.c has about the same (Model 1)

or better (Model 2) efficiency when compared with CQR. The estimators that
use informative priors on the slope parameters all improve on RQ. The dif-
ferences among various methods are more significant at upper quantiles (say
τ = 0.95) for heavier-tailed distributions.

• In Models 3 and 4, where the common slope assumption does not hold for bx(τ ),
BEL.c and CQR show efficiency gains on the estimation of bz(τ ), but losses in
the estimation of bx(τ ), due to bias. The BEL.n aims to reach a compromise in
the bias-variance trade-off, resulting in a better MSE than RQ.

These findings are consistent with what we learned from the asymptotic com-
parisons shown in Table 2. The performance of BEL.n will of course depend on
the choice of priors on the difference in slopes. The purpose of our study is not to
demonstrate how to choose informative priors, but to show how informative priors
can make a difference. Our empirical work shows that any reasonable choice of
priors helps, even though an optimal choice is too much to ask for in general.
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TABLE 3
The table gives the n × MSE’s of several estimators for the adjusted intercepts and slope

parameters at three quantile levels τ = 0.9,0.925,0.95 for Models 1 and 2, where n = 100, and the
MSE is averaged over 500 samples from each model. The numbers in the brackets are the estimated

standard errors

Adjusted intercepts Slopes

Method a(0.9) a(0.925) a(0.95) bx(0.9) bz(0.9) bx(0.925) bz(0.925) bx(0.95) bz(0.95)

Model 1
BEL.s 22.0 26.5 35.6 3.0 11.7 3.5 13.8 4.2 19.8

(1.2) (1.5) (2.1) (0.2) (0.7) (0.2) (0.8) (0.3) (1.2)
BEL.n 23.1 25.7 31.5 3.3 12.3 3.4 12.3 3.9 12.4

(1.4) (1.6) (1.8) (0.2) (0.8) (0.2) (0.8) (0.2) (0.8)
BEL.c 26.6 27.9 34.1 3.4 13.9 3.4 13.9 3.4 13.9

(1.6) (1.7) (2) (0.2) (0.8) (0.2) (0.8) (0.2) (0.8)
CQR 22.8 25.7 30.0 3.2 12.7 3.2 12.7 3.2 12.7

(1.4) (1.5) (1.8) (0.2) (0.8) (0.2) (0.8) (0.2) (0.8)
RQ 22.3 26.9 36.5 3.3 12.1 3.7 14.4 4.4 19.2

(1.3) (1.7) (2.2) (0.2) (0.7) (0.3) (0.9) (0.3) (1.2)

Model 2
BEL.s 76.4 126.6 291.3 9.5 42.4 13.5 71.7 26.2 159.2

(5.6) (10.5) (32) (0.9) (3.1) (1.1) (5.3) (2.7) (15.4)
BEL.n 78.7 95.0 150.0 9.4 43.6 10.3 43.8 14.5 43.7

(5.9) (6.1) (9.1) (0.8) (3.3) (0.8) (3.3) (1.1) (3.3)
BEL.c 86.8 100.5 158.3 9.1 46.9 9.1 46.9 9.1 46.9

(7.5) (8.1) (10.1) (0.8) (4.1) (0.8) (4.1) (0.8) (4.1)
CQR 109.3 125.5 175.9 12.7 61.7 12.7 61.7 12.7 61.7

(11.1) (11.3) (15.5) (1.2) (5.2) (1.2) (5.2) (1.2) (5.2)
RQ 76.4 136.4 280.6 10.0 41.6 14.9 73.4 26.5 144.3

(5.5) (14.3) (27.8) (0.9) (3.3) (1.4) (6.3) (2.8) (13.6)

5. An application to temperature downscaling. In recent decades much fo-
cus has been placed on understanding potential future climate changes. Meteorol-
ogists have developed various climate models to simulate atmospheric variables
for both historical and future time periods under different greenhouse gas emis-
sion scenarios. Statistical downscaling approaches utilize those large-scale model
simulations to predict small-scale regional climate changes; see Wilby and Wigley
(1997) for a review. Quantifying nearly extreme events in climate studies is an
important task, for which quantile regression is a naturally appealing tool. How-
ever, high quantiles are usually hard to estimate with RQ due to the inherently
limited number of observations in the tail of the distributions. In this section, we
consider the BEL methods for statistical downscaling of daily maximum temper-
ature. We used the observed daily maximum temperature (TMAX) of Aurora, IL
station from 1957–2002 as the response variable. The predictors are the simu-
lated daily maximum temperature (RTEM) and an indicator of wet days (RAIN)
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TABLE 4
Simulation results for Models 3 and 4; see the caption of Table 3 for more details

Adjusted intercepts Slopes

Method a(0.9) a(0.925) a(0.95) bx(0.9) bz(0.9) bx(0.925) bz(0.925) bx(0.95) bz(0.95)

Model 3
BEL.s 90.2 103.0 138.7 31.0 35.9 34.3 42.6 42.7 66.2

(5.2) (5.8) (9.0) (1.9) (2.4) (2.0) (2.6) (2.6) (4.7)
BEL.n 95.6 111.0 129.4 37.1 41.4 44.9 41.5 54.8 41.7

(5.6) (6.1) (7.5) (2.3) (2.8) (2.7) (2.9) (3.3) (2.8)
BEL.c 104.3 119.2 143.0 37.7 43.5 45.3 43.5 62.7 43.5

(6.9) (7.2) (8.1) (2.3) (2.9) (2.7) (2.9) (3.3) (2.9)
CQR 94.6 102.8 118.0 32.8 38.4 33.8 38.4 42.5 38.4

(5.9) (6.3) (7.3) (2.0) (2.6) (1.9) (2.6) (2.4) (2.6)
RQ 91.4 106.9 132.5 30.6 33.8 35.0 42.4 42.9 59.2

(5.3) (6.8) (8.3) (1.9) (2.2) (2.0) (2.8) (2.5) (3.9)

Model 4
BEL.s 334.5 507.5 1085.1 96.5 134.1 144.6 213.5 252.4 547.6

(25.7) (40.0) (109.5) (8.4) (10.1) (12.3) (17.6) (19.9) (57.8)
BEL.n 277.0 346.8 518.0 97.3 124.7 125.6 124.7 196.9 125.1

(22.2) (22.2) (30.0) (5.8) (9.2) (6.1) (9.3) (8.6) (9.3)
BEL.c 391.6 453.4 659.8 111.9 160.5 137.2 160.5 214.7 160.5

(42.2) (44.6) (62.8) (7.6) (16.9) (7.2) (16.9) (8.7) (16.9)
CQR 530.1 520.0 663.9 142.0 195.3 140.1 195.3 175.0 195.3

(56.4) (52.1) (58.2) (12.0) (18.8) (10.3) (18.8) (9.5) (18.8)
RQ 340.3 552.0 1014.6 102.9 123.9 154.6 215.0 252.7 481.5

(25.9) (56.6) (101.1) (8.3) (9.6) (11.5) (19.0) (17.8) (46.0)

from the ERA-40 reanalysis model introduced in Uppala et al. (2005). A wet day
is denoted by RAIN = 1, when the precipitation from ERA-40 is more than 1.2
kg/s/m2. About 30% of the days are categorized as wet days in Aurora. We used
the following linear quantile regression model:

Qτ(TMAX|RTEM,RAIN) = a(τ) + bx(τ )RTEM + bz(τ )RAIN(5.1)

at high quantiles τ = 0.99,0.995,0.999. The quantile at τ = 0.999 is nearly ex-
treme relative to our sample size, so the asymptotic theory developed in this paper
might be questioned. We choose to consider such high quantiles partly to test the
limits of our BEL methods.

We applied the following BEL methods with normal priors N(0,10002) on each
parameter to estimate the parameters of Model (5.1), unless otherwise specified:

• BEL.c and BEL.s as introduced in Section 4.
• BEL.z: the BEL estimator that assumes bz(0.99) = bz(0.995) = bz(0.999).
• BEL.t: the BEL estimator that assumes that given bx(0.99) and bz(0.99),

(bx(0.995) − bx(0.99))/0.02, (bz(0.995) − bz(0.99))/0.14, (bx(0.999) −
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TABLE 5
Average effective sample sizes of the Markov chains used in the downscaling example

Method SPLIT 1 SPLIT 2 SPLIT 3

BEL.c 976 933 364
BEL.z 542 633 747
BEL.t 672 701 515

bx(0.99))/0.35 and (bz(0.999) − bz(0.99))/1.16 are independent priors as the t
distribution with degrees of freedom 3.

The scaling used in the prior distributions of BEL.t was chosen in rough propor-
tion to the variances of those parameter estimates from RQ, and no optimality is
claimed here. To assess the performances of various methods, we randomly split
the data from each year into two parts, a fitting period and a testing period, with
equal sizes of 7889 days in each part. We used the BEL methods and RQ for the
fitting period in estimating the model parameters and then applied the fitted model
to the testing period to predict the τ th quantile of TMAX. We randomly split the
data three times, and labeled them as SPLIT 1, SPLIT 2 and SPLIT 3, respectively.
The average effective sample sizes of the Markov chains for the BEL methods used
here are shown in Table 5, as calculated by the R function effectiveSize() in the R
package coda.

Table 6 reports the normalized differences as a performance validation measure,

d = O − E√
τ(1 − τ)n

,(5.2)

where n is the total number of days for prediction, O is the number of days when
the observed TMAX exceeds the predicted τ th quantile of TMAX and E indicates
the expected number of days, that is, E = n(1−τ). The normalized differences are
shown for the whole testing period, as well as for two subsets, one subset being the
lower half of RTEM, and the other subset being the wet days (RAIN = 1). The use
of these ad hoc subsets is meant to assess performances more comprehensively.
The normalized differences greater than 2 in absolute values are marked as bold in
Table 6, from which we have the following observations. First, over the whole test-
ing period, the normalized differences of each BEL method are stable across ran-
dom splits, but those from RQ predictions vary noticeably. For the testing periods
and for the selected subsets, the BEL methods perform better than RQ, especially
at τ = 0.999. Second, among the BEL methods, BEL.c performs relatively worse,
but BEL.t and BEL.z do well. When we used the ANOVA test of Koenker and
Bassett (1982) for the null hypothesis of common slopes at τ = 0.99,0.995,0.999,
the hypothesis of bx(0.99) = bx(0.995) = bx(0.999) was rejected at 5% level of
significance. This helps explain the inferior performance of BEL.c relative to the
other BEL methods, but all of them outperform RQ.
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TABLE 6
The table presents the normalized differences calculated by (5.2). The row names provide the

method used for model fitting. In the column names, the Whole period indicates all the data in the
testing period are used; Lower RTEM indicates the testing data with RTEM below its median;

Wet days indicates the testing data with RAIN equals to 1

Whole period Lower RTEM Wet days

Method >0.99 >0.995 >0.999 >0.99 >0.995 >0.999 >0.99 >0.995 >0.999

SPLIT 1
BEL.c 0.012 0.089 0.040 −0.871 −0.163 1.036 0.402 0.142 −0.316
BEL.z 0.012 0.089 0.040 −0.230 −0.163 −0.476 0.804 0.142 −0.316
BEL.t 0.012 0.089 0.040 −1.351 −0.163 −1.483 −0.201 0.142 0.949
RQ −2.930 −2.306 −1.742 −2.151 −1.743 −1.987 −1.005 −1.276 −1.582

SPLIT 2
BEL.c 0.012 0.089 0.040 0.250 0.515 1.540 2.659 1.591 0.329
BEL.z 0.012 0.089 0.040 1.530 −0.163 0.532 0.642 0.452 0.329
BEL.t 0.012 0.089 0.040 1.050 1.192 0.532 1.650 1.022 0.329
RQ 0.012 −0.390 3.958 1.370 0.063 1.540 0.843 0.737 4.139

SPLIT 3
BEL.c 0.012 0.089 0.040 −1.511 −0.163 0.532 −2.188 −1.543 −0.308
BEL.z 0.012 0.089 0.040 0.250 −0.163 −1.483 −1.381 −0.974 0.962
BEL.t 0.012 0.089 0.040 −0.871 −0.163 −0.979 −0.776 −0.690 1.596
RQ −0.666 −0.869 −2.454 0.250 −0.388 −1.483 −1.583 −1.259 −1.577

Our empirical study shows that BEL methods can easily improve on RQ as
downscaling methods for high quantiles. Informative priors will help further if the
“prior makers” are well informed. In climate studies, for example, historical data
are generally available from multiple stations nearby, which can lead us to helpful
informative priors on slope parameters in the quantile models. In this sense, the
shrinking priors considered in Theorem 3.3 are relevant.

A natural question in climate downscaling is the autocorrelation of measure-
ments over time. In this section we have bypassed this issue on two grounds. First,
the quantile regression estimation under the working assumption of independence
is typically consistent under weakly dependent models; see He, Zhu and Fung
(2002). Second, we verified empirically that the autocorrelation in TMAX was
well represented by the autocorrelations in the predictors used in Model (5.1), and
the signs of the residuals of the quantile models were nearly uncorrelated. In more
general applications, however, it will be desirable to incorporate dependence in an
appropriate way, and future research is clearly called for in this regard. Another
interesting area of future work is to perform downscaling at a group of stations
and include spatial correlation in the model. A recent paper by Reich, Fuentes and
Dunson (2011) made a successful attempt at Bayesian spatial quantile regression,
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and the idea of BEL with informative priors can be further explored in spatial
modeling.

6. Discussion. In this paper, we propose using empirical likelihood as a work-
ing likelihood for quantile regression in Bayesian inference. We justify the valid-
ity of the posterior based inference by establishing its first order asymptotics. The
BEL approach avoids the daunting task of directly maximizing the EL function
and allows informative priors to be utilized. Although the idea of Bayesian quan-
tile regression is not new, the work provides an important addition to the litera-
ture by providing the basic theory for incorporating possibly informative priors on
multiple quantiles. The efficiency gains are demonstrated through both theoreti-
cal calculations and empirical investigations, when some common features across
quantiles are explored. If common slopes are assumed, it is hard for the CQR
method to find optimal weights in balancing the quantile loss function at differ-
ent τ levels, but the empirical likelihood approach does so naturally. The use of
informative priors is also related in spirit to penalized optimization, but the lack
of a good overall objective function for several quantile levels makes the usual
regularization method difficult to formulate. The EL approach has the ability to
adapt automatically across quantile levels, and the BEL approach enables flexi-
ble priors to be utilized in a simple way. Our theoretical framework of shrinking
priors provides good understanding of how informative priors and likelihood can
complement each other in the BEL approach.

This paper uses empirical likelihood, but some of its variants such as the ETEL,
may work as well. The recent work of Lancaster and Jun (2010) provided an ap-
proximation to the posterior from the Bayesian ETEL of quantile regression at a
given τ . Although their approximation was not strong enough to imply posterior
convergence for the Bayesian ETEL, it can be strengthened using the approach we
provide for BEL. We hope that comparisons in a broader class of working likeli-
hoods together with efficient algorithms will be further developed in the future.

APPENDIX: PROOFS

We begin with lemmas about the smoothness properties of functions involving
the estimating functions (2.2). Note that the estimating functions (2.2) involve an
indicator function, and as a result, the results obtained in Qin and Lawless (1994)
for smooth functions do not apply. While the work of Qin and Lawless (1994)
relies on the Taylor expansions, our proof uses the general theorem related to M-
estimators in van der Vaart (1998) and the quadratic expansion approximating the
EL function provided in Molanes Lopez, Van Keilegom and Veraverbeke (2009).
We use xj to indicate the j th component in the covarariates vector X for j =
0, . . . , p, that is, X = (x0, x1, . . . , xp) with x0 = 1.



BAYESIAN EMPIRICAL LIKELIHOOD FOR QUANTILE REGRESSION 1121

A.1. Preparatory results. We discuss the properties of functions involving
the estimating function m(X,Y, ζ ). Under Assumptions 3.2 and 3.3 about GX and
FX , E{m(X,Y, ζ )} can be sufficiently smooth.

LEMMA A.1. Under Assumptions 3.2 and 3.3, we have the following results:

(L1) E{m(X,Y, ζ )} and E{m(X,Y, ζ )m(X,Y, ζ )�} are twice continuously dif-
ferentiable with respect to ζ .

(L2) There exist k(p + 1) dimensional compact neighborhoods Cξ and Cζ

around 0, in which E[m(X,Y, ζ )/{1+ξ�m(X,Y, ζ )}] is twice continuously differ-
entiable in ζ ∈ Cζ and ξ ∈ Cλ, and E[m(X,Y, ζ )m(X,Y, ζ )�/{1+ξ�m(X,Y, ζ )}]
is uniformly continuous with respect to ζ ∈ Cζ and ξ ∈ Cλ.

PROOF. To show (L1), note that for each d = 0, . . . , k − 1 and j = 0, . . . , p,
there is

E{mdk+j (X,Y,β(τ))} = E
{(

1{Y≤X�β(τd+1)} − τd+1
)
xj

}
= EX

[
xj

{
EY |X

(
1{Y≤X�β(τd+1)} − τd+1

)}]
= EX[xj {FX(X�β(τd+1)) − τd+1}].

Under Assumptions 3.2 and 3.3, E{m(X,Y, ζ )} is twice continuously differen-
tiable. Consider the cases i ≤ l for the second moments. By the definition of re-
gression quantiles, X�β(τi) ≤ X�β(τl), and therefore,

E{mik+j (X,Y, ζ )mlk+m(X,Y, ζ )}
= EX

[
xjxm

{
EY |X

(
1{Y≤X�β(τi+1)} − τi+1

)(
1{Y≤X�β(τl+1)} − τl+1

)}]
= EX[xjxm{FX(X�β(τi+1)) − τl+1FX(X�β(τi+1))

− τi+1FX(X�β(τl+1)) + τi+1τl+1}],
which is twice continuously differentiable in ζ .

Similarly, (L2) follows from

E
mdk+j (X,Y, ζ )

1 + ξ�m(X,Y, ζ )

= EX

[ ∑
0≤s≤d

(1 − τd+1)xj

1 + ξ�m∗
s

{FX(X�β(τs+1)) − FX(X�β(τs))}

− ∑
d<s≤k

τd+1Xj

1 + ξ�m∗
s

{FX(X�β(τs+1)) − FX(X�β(τs))}
]
,

where we assume τ0 = 0, τk+1 = 1, m∗
0 = ((1 − τ1)X

�, . . . , (1 − τk)X
�)� and

m∗
s = (−τ1X

�, . . . ,−τsX
�, (1 − τs+1)X

�, . . . , (1 − τk)X
�)� for s = 1, . . . , k.
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Because m∗
s is bounded, 1 + ξ�m∗

s could be bounded away from 0 for ξ in
a sufficiently small compact neighborhood Cξ . Then E[mdk+j (X,Y, ζk)/{1 +
ξ�m(X,Y, ζ )}] is also twice continuously differentiable in ζ and ξ . Similarly,
we have E[m(X,Y, ζ )m(X,Y, ζ )�/{1 + ξ�m(X,Y, ζ )}] is uniformly continuous
with respect to ζ ∈ Cζ and ξ ∈ Cλ. �

A.2. Consistency of the MELE. By Assumptions 3.2–3.4, the equation
E{m(X,Y, ζ )} = 0 has the unique solution ζ0. Define

�n(ζ ) = −n−1
n∑

i=1

log{1 + λn(ζ )�m(Xi,Yi, ζ )},(A.1)

where λn(ζ ) satisfies

n∑
i=1

m(Xi,Yi, ζ )

1 + λn(ζ )�m(Xi,Yi, ζ )
= 0.

Recall that

ζ̂ = arg max{�n(ζ )},
we define the expected value of �n(ζ ) as

�(ζ ) = −E[log{1 + ξ(ζ )�m(X,Y, ζ )}],(A.2)

where ξ(ζ ) satisfies

E

{
m(X,Y, ζ )

1 + ξ(ζ )�m(X,Y, ζ )

}
= 0.

By Lemma A.1, Assumption 3.5, and the implicit function theorem, ξ(ζ ) uniquely
exists in the neighborhood Cλ of 0 ∈ R

k(p+1). To show that ζ̂ is a consistent esti-
mator of ζ0, it is sufficient to check the conditions of Theorem 5.7 of van der Vaart
(1998). That is, we shall check

sup
ζ

|�n(ζ ) − �(ζ )| p→ 0(A.3)

and

sup
‖ζ−ζ0‖>ε

�(ζ ) < �(ζ0)(A.4)

for any ζ within the compact neighborhood Cζ of ζ0 and ε > 0.

LEMMA A.2. Under Assumptions 3.1–3.5, (A.4) holds.
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PROOF. It is easy to see ξ(ζ0) = 0 because E{m(X,Y, ζ0)} = 0, and then
�(ζ0) = 0. By the Taylor expansion, we have

�(ζ ) = −ξ(ζ )�E

{
m(X,Y, ζ )

1 + ξ(ζ )�m(X,Y, ζ )

}
− 1

2
E

{
(ξ(ζ )�m(X,Y, ζ ))2

(1 + α(ζ )�m(X,Y, ζ ))2

}

for some α(ζ ) on the line segment between 0 and ξ(ζ ). On the right-hand side of
the above equation, the first term equals 0, and the second term with the negative
sign included is strictly negative, and thus �(ζ ) < 0 for ζ �= ζ0. So within the
compact neighborhood Cζ of ζ0, we have

sup
‖ζ−ζ0‖>ε

�(ζ ) < �(ζ0). �

To check (A.3), we first expand �n(ζ ) − �(ζ ) as

�n(ζ ) − �(ζ ) = Q1 + Q2,(A.5)

where

Q1 = −n−1
∑

1≤i≤n

[log{1 + λn(ζ )�m(Xi,Yi, ζ )}]

+ E[log{1 + λn(ζ )�m(Xi,Yi, ζ )}],
Q2 = −E[log{1 + λn(ζ )�m(Xi,Yi, ζ )}] + E[log{1 + ξ(ζ )�m(Xi,Yi, ζ )}].

To show the uniform convergence of (A.5), we need the following lemma.

LEMMA A.3. (i) The class of constant functions: C0 = {λ,λ ∈ C} is
P-Glivenko–Cantelli (P-G–C) class, where C is some compact set in R. (ii) For
bounded X, the class of functions

F1 =
{

m(X,Y, ζ )

1 + λ�
n m(X,Y, ζ )

: ζ ∈ Cζ , λn ∈ Cλ

}
and

F2 = {
log({1 + ξ�m(X,Y, ζ )} : ζ ∈ Cζ , ξ ∈ Cλ

}
are P-G–C, where Cλ is a compact neighborhood around 0 ∈ R

k(p+1), and Cζ is
a compact neighborhood around ζ0 ∈ R

k(p+1).

PROOF. (i) According to Theorem 8.14 of Kosorok (2008) and the fact that
C0 is a collection of bounded functions, we only need to show that C0 is VC-
class, as defined in Section 9.1.1 in Kosorok (2008). The P-measurability will be
guaranteed by the measurability and boundedness of the constant functions in C0.
The collection of all subgraphs of functions in C0 is S0 = {(x, y), y < λ}. For any
two points (x1, y1), (x2, y2) in R

2, assume y1 ≤ y2, it is impossible that S0 would
include (x2, y2) while excluding (x1, y1). Therefore, based on the definition of
VC-subgraph Class, we have VC(C0) = 2 < ∞, i.e., C0 is a VC class. (ii) From
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Lemma 9.12 and Lemma 9.8 of Kosorok (2008), we know that the class of indi-
cator functions G0 = {1{Y≤X�β}, β ∈ R

p+1} is a VC-class. From (vi) and (vii) in
Lemma 9.9 of Kosorok (2008), the sets of estimating functions

Gd = {(
1{Y≤X�β(τd )} − τi

)
xj ,β(τd) ∈ R

p+1,0 ≤ j ≤ p
}
,

1 ≤ d ≤ k, are VC-class. Because X is bounded, Gd is P-G–C class by Theo-
rem 8.14 of Kosorok (2008). Then by Theorem 9.26 of Kosorok (2008), it follows
that F1 and F2 are P-G–C. �

We now verify (A.3). We will check the uniform convergence of Q1 and Q2 in
(A.5). Because F2, in which ξ is not related to (X,Y ), is P-G–C, the uniform con-
vergence implied by P-G–C guarantees the convergence of Q1. For Q2, because
log{1 + ξ(ζ )�m(Xi,Yi, ζ ))} is bounded, by the dominate convergence theorem,

we only need to show λn(ζ )
p→ ξ(ζ ) uniformly in ζ . Because λn(ζ ) is actually a

Z-estimator, the approximate zero of a data-dependent function of ξ(ζ ) as defined
in Chapter 5.1 in van der Vaart (1998), then by using the standard arguments of
Z-estimator in van der Vaart (1998) and by the fact that F1 is P-G–C, we have

λn(ζ )
p→ ξ(ζ ) uniformly in ζ .

The proof of Theorem 3.1 is now complete.

A.3. Asymptotic normality of the posterior. In our notation, we have

log{Rn(ζ )} = n�n(ζ ),(A.6)

where Rn(ζ ) is the empirical likelihood ratio of ζ . To expand �n(ζ ) up to the
quadratic term, we use Assumption 3.5. We also use the following lemma, which
is taken from the quadratic expansion provided in Lemma A.6 of Molanes Lopez,
Van Keilegom and Veraverbeke (2009) but formulated to suit our setting.

LEMMA A.4. Assume that the results of Lemma A.1 and Theorem 3.1 hold.
Under Assumptions 3.1–3.5, and additional conditions (C1)–(C3) listed below, we
have

�n(ζ ) = −1
2(ζ − ζ0)

�V �
12V

−1
11 V12(ζ − ζ0) + n−1/2(ζ − ζ0)

�V �
12V

−1
11 Mn

(A.7)
− 1

2n−1M�
n V −1

11 Mn + op(n−1)

uniformly in ζ , for ζ − ζ0 = O(n−1/2), and

ζ̂ − ζ0 = n−1/2(V �
12V

−1
11 V12)

−1V �
12V

−1
11 Mn + op(n−1/2),(A.8)

where ζ̂ is the MELE of ζ0, Mn = n−1/2 ∑n
i=1 m(Xi,Yi, ζ0) and V11 and V12 are

the same as defined in Theorem 3.2.

(C1) ‖∑n
i=1[m(Xi,Yi, ζ ) − E{m(Xi,Yi, ζ )}]‖ = Op(n1/2), uniformly in ζ in

a o(1)-neighborhood of ζ0.



BAYESIAN EMPIRICAL LIKELIHOOD FOR QUANTILE REGRESSION 1125

(C2) ‖∑n
i=1[m(Xi,Yi, ζ )m(Xi, Yi, ζ )� − E{m(Xi,Yi, ζ )m(Xi, Yi, ζ )�}]‖ =

op(n), uniformly in ζ in a o(1)-neighborhood of ζ0.
(C3) ‖∑n

i=1[m(Xi,Yi, ζ ) − E{m(Xi,Yi, ζ )} − m(X,Y, ζ0) + E{m(X,Y,

ζ0)}]‖ = op(n1/2), uniformly in ζ for ζ − ζ0 = Op(n−1/2).

To use the expansion (A.7), we shall verify that (C1)–(C3) are satisfied.

LEMMA A.5. Under Assumptions 3.2–3.4, Conditions (C1)–(C3) are satisfied
for the estimating functions m(X,Y, ζ ) of (2.2).

PROOF. Because the collection of estimating functions m(X,Y, ζ ) is
P-Donsker class, we have (C1). By the fact that the collection of the product of the
estimating functions is P-G–C, we have (C2). By applying Lemma 4.1 of He and
Shao (1996) to m(X,Y, ζ ), we obtain (C3). �

PROOF OF THEOREM 3.2. By Lemma A.5, Lemma A.4, (A.7) and (A.6), we
have

p̃(ζ |D) = p0(ζ ) × Rn(ζ )

= p0(ζ ) × exp
{
−n

2
(ζ − ζ0)

�V �
12V

−1
11 V12(ζ − ζ0)

+ n1/2(ζ − ζ0)
�V �

12V
−1
11 Mn − 1

2
M�

n V −1
11 Mn + op(1)

}
.

Because of (A.8), we have

p̃(ζ |D) = p0(ζ ) × exp
{
−n

2
(ζ − ζ0)

�V �
12V

−1
11 V12(ζ − ζ0)

+ n(ζ − ζ0)
�V �

12V
−1
11 V12(ζ̂ − ζ0)

− 1

2
M�

n V −1
11 Mn + op(1)

}

= p0(ζ ) × exp
{
−n

2
(ζ − ζ0)

�V �
12V

−1
11 V12(ζ − 2ζ̂ + ζ0)

− 1

2
M�

n V −1
11 Mn + op(1)

}

= p0(ζ ) × exp
{
−n

2
(ζ − ζ̂ )�V �

12V
−1
11 V12(ζ − ζ̂ ) + op(1)

}
.

By Assumption 3.6, we have

log{p0(ζ )} = log{p0(ζ0)} + O(n−1/2)
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for ζ − ζ0 = O(n−1/2). Then we have

p̃(ζ |D) = p0(ζ0) exp
{−1

2(ζ − ζ̂ )�Jn(ζ − ζ̂ ) + op(1)
}
,(A.9)

where Jn = nV �
12V

−1
11 V12. For any n, we have p(ζ |D) ∝ p̃(ζ |D), and thus (3.1)

holds.
Because Jn is positive definite, we have

p
(
J 1/2

n (ζ − ζ̂ )|D) ∝ exp
{−1

2

(
J 1/2

n (ζ − ζ̂ )
)�(

J 1/2
n (ζ − ζ̂ )

) + op(1)
}

(A.10)

for any ζ − ζ0 = O(n−1/2). Therefore, to show

J 1/2
n (ζ − ζ̂ )

D→ N(0, I ),

it remains to show that

P
(‖J 1/2

n (ζ − ζ̂ )‖ > δ
) → 0,

when δ → ∞ and n → ∞. From (A.9), we have for any ζ = ζ̂ + J
−1/2
n t ,

Rn(ζ ) × p0(ζ )
p→ p0(ζ0) exp{−‖t‖2/2}.

Because of Rn(ζ ) × p0(ζ ) ≤ p0(ζ ), by the dominate convergence theorem, we
have∫

‖t‖>δ
p0(ζ̂ + J−1/2

n t)Rn(ζ̂ + J−1/2
n t) dt → p0(ζ0)

∫
‖t‖>δ

exp{−‖t‖2/2}dt

for any δ ≥ 0. Then it leads to

P
(‖J 1/2

n (ζ − ζ̂ )‖ > δ|D) =
∫
‖t‖>δ p0(ζ̂ + J

−1/2
n t)Rn(ζ̂ + J

−1/2
n t) dt∫

‖t‖>0 p0(ζ̂ + J
−1/2
n t)Rn(ζ̂ + J

−1/2
n t) dt

→
∫
‖t‖>δ exp{−‖t‖2/2}dt∫
‖t‖>0 exp{−‖t‖2/2}dt

= (2π)−k(p+1)/2
∫
‖t‖>δ

exp{−‖t‖2/2}dt

< ε

for sufficiently large δ. �

PROOF OF THEOREM 3.3. Similar to the proof of Theorem 3.2, we have

p̃(ζ |D) = p0,n(ζ ) × exp
{
−n

2
(ζ − ζ̂ )�V �

12V
−1
11 V12(ζ − ζ̂ ) + op(1)

}
.(A.11)

By Assumption 3.7, we have

log{p0,n(ζ )} = log{p0,n(ζ0,n)} − 1
2(ζ − ζ0,n)

�J0,n(ζ − ζ0,n) + op(1)



BAYESIAN EMPIRICAL LIKELIHOOD FOR QUANTILE REGRESSION 1127

for ‖ζ − ζ0‖ = O(n−1/2) and bounded ζ0,n. Combined with (A.11), we have

p̃(ζ |D) = Cn exp
{−1

2(ζ − θpost)
�Jn(ζ − θpost) + Rn

}
,

where Jn = J0,n + nV �
12V

−1
11 V12, θpost = J−1

n (J0,nζ0,n + nV �
12V

−1
11 V12ζ̂ ), Rn =

op(1), and Cn is some constant that does not depend on ζ , and has the follow-
ing expression:

Cn = p0,n(ζ0,n) exp
{
−1

2
ζ�

0,nJ0,nζ0,n − n

2
ζ̂�V �

12V
−1
11 V12ζ̂ + 1

2
θ�

postJnθpost

}
.

Therefore, we have (3.3). �

PROOF OF COROLLARY 3.4. The prior density p0,n(ζ ) can be written as

logp0,n(ζ ) = C + log
{
g1

(
�−1/2(

β(τ1) − βp,0
))}

+
k∑

d=2

log
{
gd

(
�

−1/2
d

(
β(τd) − β(τ1)

))}
,

where C is some constant not depending on ζ . Clearly, the prior mode is β(τd) =
βp,0 for all d = 1, . . . , k. Then we have

α2 logp0,n(ζ )

αβ2(τ1)

∣∣∣∣
ζ=1k⊗βp,0

= �−1/2g′′
1 (0)�−1/2

g1(0)
+

k∑
d=2

�
−1/2
d g′′

d (0)�
−1/2
d

gd(0)
,

and for d = 2, . . . , k,

α2 logp0,n(ζ )

αβ(τ1)αβ(τd)

∣∣∣∣
ζ=1k⊗βp,0

= α2 log{gd(�
−1/2
d (β(τd) − β(τ1)))}

αβ(τ1)αβ(τd)

∣∣∣∣
ζ=1k⊗βp,0

= −�
−1/2
d g′′

d (0)�
−1/2
d

gd(0)
,

α2 logp0,n(ζ )

αβ2(τd)

∣∣∣∣
ζ=1k⊗βp,0

= α2 log{gd(�
−1/2
d (β(τd) − β(τ1)))}
αβ2(τd)

∣∣∣∣
ζ=1k⊗βp,0

= �
−1/2
d g′′

d (0)�
−1/2
d

gd(0)
.

Note that for a spherically symmetric gd with its mode and center as zero, we have

g′′
d (0)

gd(0)
= CdI,
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where I is the (p + 1) × (p + 1) dimensional identity matrix, and Cd > 0 are
constants for d = 1, . . . , k. Then, we have

J0,n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C1�
−1 +

k∑
d=2

Cd�−1
d −C2�

−1
2 · · · Ck�

−1
k

−C2�
−1
2 C2�

−1
2 · · · 0

...
...

. . .
...

−Ck�
−1
k 0� · · · Ck�

−1
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and therefore,

J0,n(ζ0,n − ζ0)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C1�
−1(

βp,0 − β0(τ1)
) +

k∑
d=2

Cd�−1
d,I

(
β0,I (τd) − β0,I (τ1)

)
C2�

−1
2,I

(
β0,I (τ1) − β0,I (τ2)

)
...

Ck�
−1
k,I

(
β0,I (τ1) − β0,I (τk)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where β0,I (τd) is the intercept parameter in β0(τd). Under the assumption in (3.4)
and (3.5), ‖J0,n(ζ0,n − ζ0)‖ = O(εn) and ‖J0,n‖ is increasing at the rate of n. Then
Assumption 3.7 is satisfied, and Theorem 3.3 applies.

Note that the posterior mean θpost in Theorem 3.3 can be written as

θpost = ζ0 + nJ−1
n V �

12V
−1
11 V12(ζ̂ − ζ0) − J−1

n J0,n(ζ0,n − ζ0).

By (A.8), we have ‖ζ̂ − ζ0‖ = Op(n−1/2). Then we have the posterior mean

θpost = ζ0 + Op(εn/n + n−1/2). �
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ditional details on the implementation of the Bayesian computations used in the
empirical studies reported in this paper.
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