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ESTIMATING THE OCCURRENCE RATE OF DNA PALINDROMES
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A DNA palindrome is a segment of letters along a DNA sequence with
inversion symmetry that one strand is identical to its complementary one run-
ning in the opposite direction. Searching nonrandom clusters of DNA palin-
dromes, an interesting bioinformatic problem, relies on the estimation of the
null palindrome occurrence rate. The most commonly used approach for esti-
mating this number is the average rate method. However, we observed that the
average rate could exceed the actual rate by 50% when inserting 5000 bp hot-
spot regions with 15-fold rate in a simulated 150,000 bp genome sequence.
Here, we propose a Markov based estimator to avoid counting the number of
palindromes directly, and thus to reduce the impact from the hot-spots. Our
simulation shows that this method is more robust against the hot-spot effect
than the average rate method. Furthermore, this method can be generalized
to either a higher order Markov model or a segmented Markov model, and
extended to calculate the occurrence rate for palindromes with gaps. We also
provide a p-value approximation for various scan statistics to test nonrandom
palindrome clusters under a Markov model.

1. Introduction. A chromosome is a long double-stranded helix of DNA that
consists of adenine—thymine (A-T) pairs or cytosine—guanine (C—G) pairs. Thus,
one DNA strand decides the sequence of its complementary strand. A DNA palin-
drome with minimum half length L is defined as a segment of DNA letters with
half length greater than or equal to L that one strand is identical to its complemen-
tary one running in the opposite direction. This inversion symmetry increases the
probability to form secondary structures conferring significant biological functions
ranging from RNA transcription to DNA replication [Leach (1994)].

It has been observed that DNA palindromes are common candidates for search-
ing genetic motifs involved in different cellular processes, including gene tran-
scriptions, gene replications, and gene deletions. For example, among nine oc-
tameres (segments with 8 bp) suggested to be transcription factor binding sites,
three are palindromes [FitzGerald et al. (2004)]. Many studies have focused on in-
vestigating the occurrence rates of palindromes in suspicious regions against ran-
dom sequences. For example, Lisnic et al. (2005) investigated the frequencies of
palindromes in the yeast Saccharmyces cerevisiae genome. Chew, Cho and Le-
ung (2005) proposed various score schemes to quantify palindromes and found
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an association between high score regions and the replication origins. Lu et al.
(2007) compared the scores of the suspicious regions, including introns, exons,
and upstream of transcription start sites, against simulated random sequences, and
reported that meaningful sites tend to have higher palindrome scores.

The analysis of these comparisons strongly depends on the null occurrence rate.
This rate usually is estimated by the genome-wide average or the i.i.d. model-
based method using the DNA letter frequencies [Chew, Cho and Leung (2005)].
We tested these two methods on a herpes virus sequence bohvl (sequence ID
“BHV1CGEN?”). Its average rate is 0.00178 and the i.i.d. model-based estimate
is 0.00073. The large discrepancy between these two alerted us, and further stud-
ies indicated that the average rate might be biased due to hot-spots, and the i.i.d.
model might be too naive to describe the DNA sequence. Therefore, we propose
a Markov based estimator using the DNA pairs’ frequencies in addition to the let-
ters’ and get the estimate 0.00109. Compared to the i.i.d. model, the Markov model
is more close to real sequences but yet not too complicated to estimate its param-
eters. The simulation shows that our method performs better than the average rate
in estimating the null occurrence rate against hot-spots under a variety of model
settings. We also show that this method can be generalized for either a higher or-
der Markov model or a segmented Markov model. Furthermore, we demonstrate
that this method can be extended to calculate the occurrence rate when the DNA
palindrome contains a gap.

Many related p-value approximations have been developed based on the as-
sumption that the events can be modeled as a Poisson process. This assumption
has been justified in many cases including DNA palindromes [Reinert and Schbath
(1998); Leung et al. (2005); Hansen (2009)]. Chan and Zhang (2007) developed
a method to approximate the p-value for a scan of score statistics over a Poisson
process, when the score can be modeled through an exponential family. To apply
their method, the analytic formula for the moment generating function (MGF) of
the score is required. However, the distribution of the palindrome scores has not
been well studied except the length score under the i.i.d. assumption. Thus, we
develop a method to derive the analytic formulae for the MGF of various scores
under a Markov model. Another challenge in calculating the p-value approxima-
tions of scan statistics is to calculate an overshoot function [Woodroofe (1979);
Siegmund (1985); Tu (2009)]. This function relates to the characteristic function
of a random variable defined by the difference between the statistic and the thresh-
old given the condition that the statistic exceeds the threshold. We provide a more
general formula to calculate the overshoot functions on various scores under a
Markov model.

In this paper we first show that three scores for detecting DNA palindrome clus-
ters proposed by Chew, Cho and Leung (2005) can be formulated as likelihood
ratio statistics. Second, we show that the occurrence rates can be calculated accu-
rately under a Markov model. Third, we derive the moment generating function
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for various scores under a Markov model. Fourth, we present a p-value approxi-
mation method for those statistics to detect DNA palindrome clusters. In Section 3
we show the results on both real data and simulated data. This paper ends with
a brief discussion. The related derivations are collected in online supplementary
materials [Tu, Wang and Huang (2013a)].

2. Method.

2.1. Notation and the log-likelihood ratio statistics. Let N(t) be the count-
ing process for the palindrome events and let Ny, (f) = N(t + w) — N(¢) denote
the number of palindromes whose starting positions fall in the interval (¢, r + w].
Leung et al. (2005) proved that N (¢) can be approximated by a Poisson process
under a Markov model. We let X; be the score for the ith palindrome (event) along
the genome sequence, and Sy, () is the summation of the palindrome scores in
(st +wl:

N(t+w)
(1) Svwr =Y. Xi.
i=N(t)+1

To search the clusters of palindromes, Chew, Cho and Leung (2005) proposed
three schemes to quantify palindromes, including the palindrome count score
(PCS), the palindrome length score (PLS), and the base-pair weighted score of
order m (BWS,;,). PCS gives the same score for each DNA palindrome; PLS gives
the score as the palindrome length divided by its minimum required length; and
BWS,, gives the score as the minus log-likelihood under Markov order m assump-
tion.

We would like to show that both N, () and Sy, () are equivalent to the log-
likelihood ratio statistics when the alternative hypotheses are properly constructed.
This equivalence is useful for developing the p-value approximations. Under the
Poisson process model, we also assume that X;’s can be treated as i.i.d. with a
density function fy(x) = fo(x)exp(6x — ¢ (0)), where fp(x) is an unknown dis-
tribution and ¢ (0) = log [ e%* fo(x) dx is its log of the MGF. For events that occur
outside of the interval (¢,, f, + w], the parameters are (Ao, fp). For events that oc-
cur in the interval (¢,, t, + w], the parameters for N(¢) and X; are (A4, 6,). The
null hypothesis is that A, = Ao and 6, = 6y. When ¢, is known, the likelihood ratio
18 fo,.00 (Nw(ta), SNy, 1))/ fro.00 Nw(ta), Sy, 1,)), and the likelihood is as follows:

Fr.0(Nw(@®), Sn, )
= fi.(Nw®) fo(Sn,, @) | Nuw(®))

_ (Aw)Nw (t)e—kw

N(t+w)
Ny (0! ( [1 fO(xi)) exp(0Sn,, (1) — Nu ()¢ (6)).

i=N()+1

Because ¢, is usually unknown, we search for the maximum of the statistic over
all possible .
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Case 1. If the alternative hypothesis is constructed as H,:A, = A1 > Ao and
6, = 6, then the log-likelihood ratio statistic is equivalent to PCS in Chew, Cho
and Leung (2005):

fk],@o(Nw(t)v SNw(l‘))>

max/; (A1, 6p) = maxlog(
i t FrotoWNuw(®). Sny(e)

(2 N
— max Ny (1) 1og(—1) — (1 = AQ)w.
t )\,0

Case 2. If the alternative hypothesis is constructed as H,:A, = A1 > Ao and
6, = 61 > 6y, where A1 and 0 are constrained to satisfy

A
3) log<k—(1)> — ((®) — ¢ (00)) =0,

the log-likelihood ratio statistic in formula (4) can be equivalent to PLS or BWS,,
proposed by Chew, Cho and Leung (2005), depending on the definition of X;’s:

Srr.o0 (Nw(1), SN,,,(t)))
Sro.00 (Nw (@), SN, 1)

mtaxl, (A1,601) = mlaxlog<
4)

It can be observed that (2) is equivalent to max; Ny, (¢) and (4) is equivalent
to max; Sy, (r). While (2) tests only the Poisson parameter A, (4) tests both the
Poisson parameter A and the score parameter 6 with the constraint (3). Ny, () can
be treated as a special case of Sy, () with X; =1 for each i.

We applied the method developed by Chan and Zhang (2007) to derive the
threshold value of max; Sy, ). Let N(¢) be a Poisson process with mean Ao and
the log of the MGF of X; is ¢ (). X;’s are i.i.d. with mean pq, then

ol e, Swwco 2 )

5) ~ 1 —exp{—(W — w)vs, 6, (b — hopo)e P17 =20]

x (2mwhi[$61) + $*@n]) ).
where W is the total length of the sequence, d)(@l) and &(91) are the first and
the second derivative of ¢ (01) representing the mean and the variance of X; with
density fp, (x), and vy, g, is an overshoot function indexed with (61, A1) satisfying
the equations:

wA1¢'(61) =0,
log(A1/%0) = ¢(01) — ¢ (6h).

It is obvious from (5) that A always plays a crucial role in deciding the critical
value for the tests. The most challenging part in applying (5) to calculate the p-
value is to calculate the overshoot function vy, ¢,. As a pioneer, Woodroofe (1979)
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derived a computable formula to calculate the overshoot function for i.i.d. nonar-
ithmetic random variables given the characteristic functions. Tu (2009) generalized
this formula for i.i.d. arithmetic random variables. Incorporating their results, we
develop Theorem 4 for more general cases.

2.2. Occurrence rate of DNA palindromes under Markov model. Let T be a
4 x 4 matrix with Tj; = Pp,p, PEJ« 5, Which groups together the transition probabil-
ities of symmetric complementary pairs, where (b1, by, b3, bs) = (A, C, G, T) and
b ;j refers to the complementary letter of b;. T is considered as a quasi transition
matrix because the sum of its rows do not equal one.

THEOREM 1. Assume that DNA letters along the genome sequence follow a
Markov model with transition probability {P, | a,b € {A, C, G, T}} and letter
frequency P\ = (ma mc mg 7r). The occurrence probability of a palindrome I;
(given a starting position i) with minimum half length L is

6) = P(I1i = L) = PTH" Py,
where ||I; || denotes the corresponding maximum length, and
P/=(Pxr Pcc Poc Pra),

and
PaaPrr  PacPor  PagPct  ParPar
PcaPrc  PccPoc PcgPcc  PerPac
PcaPrc PocPoc PcscPcc  ParPac
PraPra  PrcPga  PrgPca  PrrPaa

REMARK 1. Theorem 1 gives an exact formula to calculate the palindrome
occurrence rate under a Markov model. To apply this formula, one needs to es-
timate the Markov parameters including the stationary probabilities {7, | a €
{A,C, G, T}} and the transition matrix {P,, | a,b € {A, C, G, T}} which usually
are estimated by the letter frequencies of W letters and the pair frequencies of
W — 1 letter pairs, where W is the total sequence length. Because the size of the
hot-spot regions is much smaller than W these Markov parameter estimations are
not heavily influenced by hot-spots and neither is A to estimate the null occur-
rence rate. On the other side, for the rare events like the DNA palindromes, the
average rate counts the total number of palindromes of which a nonnegligible por-
tion is potentially contributed from the hot-spots in real sequences and, hence, the
average rate is easily inflated when estimating the null occurrence rate.

REMARK 2 (i.i.d. model). When the Markov model is reduced to the i.i.d.
model, P| becomes

/
Py=(nt 7 7mc maA),



1100 I-P. TU, S.-H. WANG AND Y.-F. HUANG

and T becomes P P;. Thus,
-1
(7) ria. =PI = L) = Py(PP) " Py = (PyPy)" =41,
where y = 2(wanT 4+ mcrg). Equality (7) has been shown in Leung et al. (2005).

REMARK 3 (Higher order Markov models). When the DNA sequence does
not follow a first-order Markov model, a higher order Markov model may be con-
sidered. Theorem 1 can also be applied to higher order Markov models. For ex-
ample, a four-state second-order Markov model can be described as a first-order
Markov model with sixteen states, in which each state represents one adjacent
letter pair, like ajar where a; € {A, T, G, C} and the probability model becomes
P(ajazas) = P(ayax) P(azaz | ajaz). Under this setting, only four elements in
each row or each column of the 16 x 16 transition matrix will be nonzero, be-
cause Py ay a30, = 01if ap 7 a3. The elements in the corresponding quasi transition
matrix will be like Py, qy,a3a4 Pasaz,a,a,- The corresponding Py in (6) is a column
vector with length sixteen, in which the elements are like Py, 4y aydr Payas,ara, -

REMARK 4 (Segmented Markov models). Another alternative model is the
segmented Markov model which relaxes the stationary condition [Chen and Zhou
(2010)]. Considering a three-state segmented Markov model {£1, &>, &3}, each state
contributes total length Wi, W> and W3 and has its own p-values p1, p and p3.
Two constraints on these p-values are 1 — (1 — p1)(1 — p2)(1 — p3) = 0.05 by the
Bonferroni approximation on the overall 0.05 significance level and - = =
‘ﬁ,—i that the p-values are proportional to their contributed length. Given change
points that separate different hidden states &’s, each parameter set can be estimated,
respectively. As such, Theorems 1 and 4 can be applied to calculate the palindrome

occurrence rate for each set and their corresponding thresholds.

REMARK 5 (Hairpin structures). It is of interest to consider DNA palindromes
with gaps. When a gap exists at the center position of a DNA palindrome, the sin-
gle strain segment may form a hairpin secondary structure [Leach (1994)]. Theo-
rem 1 can be extended to calculate the occurrence rate for such patterns. Consider a
palindrome with the half-length > L and a gap with length g at the center position
of the palindrome, then the probability to see such a pattern given a start position
is PiT " 'diag((P? — PP=2)P) when B > 2 and P{T%~!diag(P P) when g = 1,
where P is the transition matrix with the index order (A C G T) for row and
(T G C A) for column. The technical derivation is in Appendix A.2.

THEOREM 2. Under the same assumption discussed in Theorem 1, the PLS
score for the ith palindrome is defined as X; = ||I;||/L conditional on ||I;|| > L.
As such, the MGF for X; is

t
8) KpLs(t) = E(eX" | |I;]| > L) = /\e—P(;TH(I — ety NI = T) Py
M
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REMARK 6 (i.i.d. model). When the Markov model is reduced to the i.i.d.
model,

-y

o0
Keis(t) =Y & E(yk =y )yt = =1Ly

k=L

THEOREM 3. Under the same assumption discussed in Theorem 1, the BWS
score is defined as X; = —log(P (I;)) conditional on ||I;|| > L. Then, the MGF for
X i is

1 _ _
) Kpws(t)=E[X' ||| > L] = Wv/(z)(l —0m) () @),

where v(t) = (vi (1) va(t) v3(t) v4(t)) is defined as vi(t) = (I — T)Pol)'™;
Q(t) is defined as Q;j(t) = (T;))'™"; and u(t) = (u1(t) us(t) uz(t) us(t)) is
defined as u;(t) = (P11~ withi =1, ..., 4.

REMARK 7 (i.i.d. model). When the Markov model is reduced to the i.i.d.
model,

(1 _ )l—t L

(10) Kaws() = -0 — ().
W 14

where y, = P o) Pa(t) = 2[(7TA7TT)1 S (JTcn’G)l ". To provide a more general

approx1mat10n for the p-value of maximum of (1), we develop Theorem 4.

THEOREM 4. Let N be a Poisson process with constant rate Ao > 0 and let

random variables X1, ..., X, L fo,(-) with the MGF exp(¢(0)). Let Ay and 6,
satisfy two conditions: (a) wi1¢'(01) = b. (b) log(h1/r9) — (¢ (61) — ¢ (6p)) = 0.

Let W — 00 as w — 00 such that W — w — 00. Then
Py <0£I;22XW SNy (s) = b)
~ 1= exp{=(W = w)vz, 0, (b — hopo)e™ O
x 2mwai[$6) + o2 6n]) ),
1—Ege” 57+ @1—%)

(= ) Bys,, and I (b) = b0 — 6y)/w — (A1 — Ao). The defi-

nition of St and the proof of Theorem 4 are put online.

where vy, 9, =

REMARK 8. Theorem 4 follows Theorem 1 of Chan and Zhang (2007) but
extends their result to allow more varieties of scores on the events. The assump-
tions of Theorem 4 include that the event can be modeled as a Poisson process
and the scores for those events are i.i.d. It has been reported that the approxima-
tion error percentage (compared to the Monte Carlo simulation) is less than 5%
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when W = 20w and w = 9 unit length in Tu (2013). However, in such an applica-
tion to search nonrandom palindrome clusters, the window size 9 bp cannot cover
even one palindrome. Thus, the issue of choosing w is addressed by efficiently
searching the clusters. The criterion should be that w needs to be large enough to
cover the clusters but not too large to dilute its density. In our experience, 500 to
1000 bp is a reasonable size of w to search the palindrome clusters of the herpes
virus genomes. Another example appeared in Chan and Zhang (2007) that they
used the window size 245 to search GATC clusters as DAM sites in an E. coli
genome sequence.

3. Real data analysis and simulations. We studied 27 herpes virus genome
sequences among which bohv1 with total length 135,301 bp is chosen as our model
sequence. Two replication origins of bohvl have been reported in the literature
[Leung et al. (2005)] and there exist distinct deviations among its average rate
(0.00178), Markov model estimate (0.00109), and the i.i.d. estimate (0.00073). Its
transition matrix and stationary probabilities are estimated as'

A C G T
0.1854 0.3288 0.3556 0.1303
0.1258 0.2932 0.4347 0.1463 |,

0.1343 0.4512 0.2994 0.1151
0.1141 0.3151 0.3695 0.2012

Thohvl = (0.1354  0.3588 0.3654 0.1405).

Pbohvl =

H Qo »

(11)

We also employed a second-order Markov model on bohvl1, and estimated the
occurrence rate as 0.00113. The closeness of this value to that from a first-order
Markov model (0.00109) suggests the appropriateness of a first-order Markov
model for this sequence. We followed the criterion that minimum half length times
the square of the occurrence rate is most close to 0.16 proposed in Leung et al.
(2005). Thus, among the 27 herpes virus sequences, we use L > 6 as the palin-
drome criterion for 5 sequences including bohvl, cehvl, hsv2, muhv4, and thv,
and L > 5 for the remaining 22 sequences.

3.1. Real data analysis. We downloaded from the EBI Nucleotide Sequences
database 27 herpes virus genome sequences. For each sequence, we estimated its
own transition matrix and stationary probabilities. Theorem 1 was then applied to
estimate the null occurrence rate for each sequence. These results are compared
with the average rate estimates in Figure 1. As shown, the average rate estimates
have higher values except for the sequence athv3. Based on these two occurrence

IStandard errors of the estimated transition probabilities are roughly ./0.4-0.6/135,301 =~
0.0013.
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27 herpes virus genomic sequences were downloaded from the EBI Nucleotide Sequences
database. Two methods for estimating the null palindrome rates are presented, including the aver-
age rate and the Markov model based estimator. We used the abbreviation for naming the genome
sequences that was used in Leung et al. (2005).

rate estimates and given the total length for each sequence, Theorem 4 is applied
to derive the 0.05 significance thresholds for the scan statistics of PLS and BWS,
shown in Figure 2. Both the PLS and the BWS scan scores of bohvl1, hhv6, and
hhv8 become significant at the 0.05 thresholds when the average rate estimator is
replaced by the Markov rate estimate. These results suggest that the Markov rate
estimate is potentially more powerful in detecting nonrandom clusters.

Figure 3 presents a more detailed analysis for bohv1. For both PLS and BWS
plots, two peaks occur at positions 113,488 and 124,582, and they are close to

(a) PLS method

(b) BWS method

(=3 S +
® 3
0 + Scan Score +
T + o | + Scan Score
+ (: l:::z:g:g Emlaersv;) S + o Threshold (Markov)
Q- 9 ® Threshold (Average)
o
o, - 2 37 +
8 7 + 8
® . . ++ . 3 g | +
= . +a ee o+ + + 5§+. N + + +
i‘éag 89005058588580 (.Ja °© . + +' +$ * 5++0
ol + * ++ + s8°+ ° 84&'¢8558985505§9 3350385 ®eo
c - + + ++ + c o + o
-T2 e @ | o Yo« —oT Y2 ey Qo | a Y- _ o
o] E22EZEEE22s 3 e85 yEzzE 59EEEEEEEEsyzEiEEelresyezzd
55888888800 c5522EEEEL2EE8E C1c555888888ccc5522EEEELLEERT
DNA sequence DNA sequence
F1G. 2. The thresholds based on the two occurrence rate estimates for the 27 herpes virus genomic

sequences are compared. The solid circles label the thresholds derived by the average rates and the
empty circles by the Markov model estimates. The crosses are the maximum scores for each sequence.
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F1G. 3. The PLS and BWS scan scores are shown verse their genomic positions of bohv1. The blue
horizontal lines are the thresholds by our occurrence rate estimate and the green lines are by the
average rates. The red circles label the position of the replication origins of bohvl. Two peaks of
PLS and BWS occur at positions 113,488 and 124,582, and they are close to two replication origins,
respectively, at positions 111,080-111,300 (OriS) and 126,918-127,138 (OriS) [Leung et al. (2005)].

two replication origins, respectively, at positions 111,080-111,300 (OriS) and
126,918-127,138 (OriS) [Leung et al. (2005)]. The scores and the threshold val-
ues by both the Markov rate estimate and the average rate are summarized in Ta-
ble 1. Matlab scripts for calculating thresholds are provided [Tu, Wang and Huang
(2013b)]. The scores are above the thresholds by the Markov rate and below that by
the average rate. The analysis based on the Markov rate estimate is consistent with
the hypothesis that nonrandom palindrome clusters may play a role to search the
replication origins, proposed by Chew, Cho and Leung (2005). The discrepancies
between these two methods could be due to the nonrandom palindrome clusters of
bohv1 which cause the inflation of the average rate. The Markov rate estimates are

TABLE 1
Two peaks which are close to two replication origins of bohv1 happen to share the same scores for
both PLS and BWS. A Markov model estimate provides a more robust occurrence rate estimate
against nonrandom clusters which leads to more appropriate threshold values and gains power

bohv1 Scores of Thresholds by Thresholds by
sequence two peaks Markov model average method
PLS 8.67 7.84 10.08

BWS 105.3 100.9 127.4
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TABLE 2
Three methods for estimating the palindrome occurrence rate are compared on both i.i.d. and
Markov random sequences. If the model is correctly spectﬁed both model calculation estimators
are consistent with the mean rate. If the model is not correct, A M still performs well but A does not

No hot-spots ) i x M x
i.i.d. random sequences 0.00073 0.00073 0.00071
Markov random sequences 0.00073 0.00109 0.00101

based on the letter frequencies and the pair frequencies of the whole genome in
which the effect from those clusters becomes negligible.

3.2. Simulation study. When there exists no nonrandom clusters, the palin-
drome events along these random sequences could be well approximated by a ho-
mogeneous Poisson process, for either a Markovian sequence or an i.i.d. sequence
[Leung et al. (2005)]. In this case, the average rate is the maximum likelihood es-
timator (MLE) for the occurrence rate and can be treated as a target reference. Ta-
ble 2 shows that when i.i.d. random sequences are generated, all the three methods
perform equally well. However, when Markov random sequences are generated,
the i.i.d. model-based estimator 0.00073 falls below 27.7% of the target 0.00101.
The reason is that the i.i.d. model is a submodel of the Markov model while the
reverse is not true. Thus, the Markov model is a better choice than the i.1.d. model.

We designed a simulation experiment to investigate the power performance of
the estimates when hot-spot regions exist for a first-order Markov model. We used
Poonvi and mpony1 to generate a stationary random sequence of length 150,000 and
then simulated the hot-spots by inserting various intensity of palindromes that are
resampled from the bohv1 palindrome bank. The length distribution of this bank
is shown in Table 3. We set five 1000 bp regions with palindrome occurrence rates
(ri,ri,r1,m, ) X )A\M, where )A\M = 0.00109 is the Markov rate estimate of the
bohv1 sequence.

We chose r1 = 20 to make the average rate close to that of bohv1 and let r; €
{6,7,8,9,10} to check their power performance. The palindrome insertion for
each hot-spot includes three steps: (a) to generate a Poisson random number M
with mean 10004 3;7;; (b) to resample M palindromes from the bohv1 palindrome

TABLE 3
The length distribution of the palindromes collected from bohv1. The genome length is 135,301 bp
and the total number of palindromes (half length > 6) is 241

Half length 6 7 8 9 10 11 12 13 14 15 16 17 18 =>19
Counts 132 54 22 10 12 4 4 1 0 0 1 0 1 0
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TABLE 4
Powers are compared for using N m and X to estimate the null occurrence rates of DNA palindromes
when five 1000 bp hot-spots are inserted with relative intensity (r1,r1,r1,r2,13) into a 150,000 bp
DNA sequence generated by a Markov model. ri = rp = 0 is presented as the control group in
which no palindromes are inserted. Powers are defined as the frequencies of detecting the hot-spot
based on 250 replicates. For the hot-spot region with r1 = 20, the power reaches 1 and hence is not
shown in the table. Only the powers for the two sites with r intensity are shown. A tends to
overestimate the occurrence rates and constructs an overly conservative test, leading to power loss

Markov model Average method
r r by M Threshold Powers r Threshold Powers
PLS
0 0 0.00109 7.90 0.000  0.000 0.00109 7.88 0.000  0.000
20 0 0.00111 7.97 0.000  0.000 0.00151 9.21 0.000  0.000
20 6 0.00111 7.98 0.644 0.616 0.00161 9.53 0.480 0.464
20 7 0.00111 7.97 0.756  0.776  0.00164 9.63 0.636  0.628
20 8 0.00112 7.99 0.844 0.836  0.00165 9.67 0.708 0.716
20 9 0.00111 7.99 0.920 0.900 0.00166 9.74 0.840  0.800
20 10  0.00111 7.99 0972 0964 0.00168 9.79 0912 0916
BWS
0 0 0.00109 101.65 0.000  0.000 0.00109 101.45 0.000  0.000
20 0 0.00111 102.22 0.000  0.000 0.00151 118.62 0.000  0.000
20 6 0.00111 102.34 0.644 0.608 0.00161 122.40 0.452  0.460
20 7 0.00111 102.28 0.736  0.768  0.00164 123.41 0.640 0.572
20 8 0.00112 102.41 0.856  0.828 0.00165 123.78 0.696  0.708
20 9 0.00111 102.39 0912 0.884 0.00166 124.41 0.812  0.788
20 10  0.00111 102.39 0972 0956 0.00168 124.91 0.892  0.908

bank; (c) to start at M uniformly random positions inside the 1000 bp segments,
the DNA letters are replaced with the resampled palindromes. For each generated
sequence, both Markov rate and average rate are estimated and their corresponding
threshold values are derived by Theorem 4. The comparisons between the two
estimate methods on occurrence rates, threshold values, and powers based on 250
replicas are presented in Table 4. The powers for those hot-spots with intensity
r1 = 20-fold intensity reach one for both two methods of all cases and thus are
omitted from the table.

When there exists no hot-spot (r; = r, = 0), both methods match very well on
estimating the occurrence rate and thus share similar thresholds. When the three
hot-spots are generated (r; = 20 and rp = 0), the average rate becomes 0.00151
(39% increase) while the Markov rate is 0.00111 (2% increase), resulting in thresh-
old values 9.21 and 7.97 for PLS, and 122.40 and 102.34 for BWS. When r; =20
and r; increases up to 10, the Markov estimate increases no more than 3%, while
that by the average rate goes up to 54%. The PLS and BWS threshold values for
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TABLE 5
Three hidden states (1, &>, £3) are constructed to generate the segmented Markov model. The letter
frequencies and the palindrome occurrence rates for the three states &1, &, and &3 are presented. &)
has a higher CG ratio and &3 has a lower one. The stationary probability distribution for
(&1,&7,83) is (0.8, 0.1,0.1)

State A C G T Occurrence rate
& 0.1354 0.3588 0.3654 0.1405 0.00109
& 0.0833 0.4138 0.4162 0.0867 0.00310
& 0.1874 0.3038 0.3146 0.1941 0.00049

our Markov method are virtually the same and that for the average method goes
more than 23%. Evidently, our method gains more power.

We further applied a hidden Markov model (HMM) to generate segmented
Markov DNA sequences. We first generated a three-state-Markov chain S; €
{&1, &>, &3} whose stationary probabilities are (0.8, 0.1, 0.1) for 1 <¢ < 30. Given
each state S; = &;, we used its own transition matrix to generate the DNA let-
ters of length 5000. Thus, we generated a segmented Markovian DNA sequence
of length 150,000 [Chen and Zhou (2010)]. We used Pyony1 as the transition ma-
trix for & and added 0.05 on the second and the third column and deducted 0.05
from the first and the fourth columns of Pyopy; to generate the transition matrix
for & and then we exchanged the addition and deduction to generate that for &3.
By doing so, & has higher CG ratio and &3 has lower CG ratio compared to that
of bohv1 and the average transition matrix keeps the same as Pyony1. The station-
ary probabilities and the occurrence rates for the three states are summarized in
Table 5.

In Table 6 we compare the power performance of the average method and the
Markov method when the underlying sequence follows a segmented model. Ta-
ble 6 has similar results as that in Table 4. The two methods, by the Markov
model and the average rate, match very well when no hot-spot exists. When
hot-spots constitute a significant portion of the total counts, the average rate is
inflated to result in power loss and, by contrast, our Markov method is robust
against the hot-spot effect and gains more power in detecting the nonrandom clus-
ters.

In summary, both simulations of the first-order Markov model and the seg-
mented model show that the average rate can overestimate the occurrence rate
seriously due to the hot-spots effect and lead to power loss eventually. On the
other hand, the Markov rate estimate is robust against the hot-spots and can main-
tain the threshold values appropriately and thus gains more power than the average
rate method.

4. Discussion. In scan statistics, the average rate method is popular for esti-
mating the null occurrence rate. In this paper, however, we report that the average
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TABLE 6
Powers are compared for using N m and X to estimate the null occurrence rates of DNA palindromes
when five 1000 bp hot-spots are inserted with relative intensity (r1,r1,r1,r2,13) into a 150,000 bp
DNA sequence generated by a three-state segmented Markov model. The parameters of the three
states are in Table 5. ri = rp =0 is presented as the control group in which no palindromes are
inserted. Powers are defined as the frequencies of detecting the hot-spot based on 250 replicates.
For the hot-spot region with ri = 20, the power reaches 1 and hence is not shown in the table. Only
the powers for the two sites with r intensity are shown. A tends to overestimate the occurrence
rates and constructs an overly conservative test, leading to power loss

Markov model Average method
rn n by M Threshold Powers X Threshold Powers
PLS
0 0 0.00109 7.91 0.000  0.000 0.00109 7.89 0.004  0.000
20 0 0.00111 7.96 0.000  0.000 0.0015 9.18 0.000  0.000
20 6 0.00111 7.97 0.632 0.656 0.00161 9.54 0.488 0.512
20 7 0.00111 7.98 0.768 0.764  0.00164 9.62 0.628  0.644
20 8 0.00111 7.98 0.896  0.868 0.00164 9.64 0.780  0.712
20 9 0.00111 7.99 0.940 0936 0.00166 9.70 0.872  0.836
20 10 0.00112 7.99 0948 0.924 0.00167 9.78 0.884  0.880
BWS
0 0 0.00109 101.74 0.000  0.000 0.00109 101.54 0.000  0.000
20 0 0.00111 102.17 0.000  0.000 0.00150 118.34 0.000  0.000
20 6 0.00111 102.27 0.636  0.640 0.00161 122.57 0.464 0.488
20 7  0.00111 102.32 0.744 0.764  0.00164 123.36 0.584  0.600
20 8 0.00111 102.33 0.876  0.848 0.00164 123.53 0.776  0.728
20 9 0.00111 102.39 0944 0.924 0.00166 124.18 0.860  0.804
20 10 0.00112 102.4 0932 0916 0.00167 124.72 0.888 0.872

rate method does not always work. The average rate can overestimate the null
occurrence rate up to 50% above the actual number, because the hot-spots have
the potential of contributing to a large portion of the number of events, especially
when the null occurrence rate is very low. Thus, we propose an estimator based
on a Markov model and define it as a function of the Markov parameters so we
can estimate the Markov parameters by the letter frequencies and the adjacent pair
frequencies without using the number of events. Therefore, as long as the size of
the hot-spot regions is much smaller than the total length of the genomes, the es-
timated Markov parameters would have little influence on the presence of the hot-
spots, rendering our method insensitive to the hot-spot effect. Our study suggests
that a model-based estimator might be more appropriate than the average rate for
null occurrence rate estimation, especially when the Poisson process involves rare
events with hot-spots, which are quite common in epidemiology studies involving
rare diseases.
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SUPPLEMENTARY MATERIAL

Supplement A: Appendix for the paper “Estimating the occurrence rate
of DNA palindromes” (DOI: 10.1214/12-AOAS622SUPPA; .pdf). The technical
proofs for the theorems and corollaries in this paper are put in Supplement A as
the appendix.

Supplement B: Matlab scripts for the paper “Estimating the occurrence
rate of DNA palindromes” (DOI: 10.1214/12-A0AS622SUPPB; .zip). The mat-
lab scripts to calculate the thresholds derived in Theorem 4 are provided. The in-
struction is in the file “README.txt.”
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