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DNA copy number and mRNA expression are widely used data types
in cancer studies, which combined provide more insight than separately.
Whereas in existing literature the form of the relationship between these two
types of markers is fixed a priori, in this paper we model their association.
We employ piecewise linear regression splines (PLRS), which combine good
interpretation with sufficient flexibility to identify any plausible type of re-
lationship. The specification of the model leads to estimation and model se-
lection in a constrained, nonstandard setting. We provide methodology for
testing the effect of DNA on mRNA and choosing the appropriate model. Fur-
thermore, we present a novel approach to obtain reliable confidence bands for
constrained PLRS, which incorporates model uncertainty. The procedures are
applied to colorectal and breast cancer data. Common assumptions are found
to be potentially misleading for biologically relevant genes. More flexible
models may bring more insight in the interaction between the two markers.

1. Introduction. The genetic material of the human cancer cells often ex-
hibits abnormalities, of which DNA copy number aberrations are a prime example.
These aberrations comprise gains and losses of chromosome pieces that are highly
variable in size. Thereby, all or parts of a chromosome may have more or less than
the two copies received from the parents. Abnormal DNA copy numbers (different
from two) may alter expression levels of mRNA transcripts (encoding for func-
tional proteins) that map to the aberration’s genomic location. Apart from being
concordant (copy number tends to correlate positively with expression level), the
form of this association is not established and may even vary per gene. In this
paper we use high-throughput data available for tissue-specific samples from un-
related patients to study the relationship between copy number (DNA) and gene
expression (mRNA). We employ a wide class of interpretable models to reflect the
biological mechanism operating between these two molecular levels and identify
relevant markers that may serve as therapeutic targets.
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DNA copy number aberrations are often measured by array comparative ge-
nomic hybridization (aCGH) [Pinkel and Albertson (2005)]. This measuring de-
vice is similar to expression microarrays, which measure expression levels of thou-
sands of genes simultaneously but interrogate DNA rather than RNA. Thereby,
both profiling experiments produce a continuous value for every element/probe
on the array: a log2-value of optical fluorescence intensity. As experiments appear
similar, types of information differ and so are their subsequent treatment. To under-
stand the specific nature of these data, we include a description of their processing.

Normalization of mRNA expression profiles [Quackenbush (2002)] consists in
removing experimental artifacts (such as array differences, means, scales) and
yields, for every gene on each array, a continuous value (normalized log2-value)
which represents the amount of the gene’s transcript present in the sample. Prepro-
cessing of copy number/aCGH profiles aims to characterize the genomic instability
of each tumor sample and show deleted/duplicated pieces of chromosomes. Three
successive steps (illustrated in Figure 1) are typically executed to recover the aber-
ration states of all probes [van de Wiel et al. (2011)]. Through these steps, the
size, genomic position and type of copy number aberrations are determined for all
samples. In the first preprocessing step, the normalization of log2-values removes
technical or biological artifacts (such as tumor sample contamination, GC content)
and makes the data comparable across samples. Next, segmentation partitions the
genome of each sample into segments of constant log2-values. These segments are

FIG. 1. Plot of a copy number/aCGH profile from the breast cancer data set [Neve et al. (2006)]
showing the different preprocessing steps. Probes on the array are genomically ordered on the x-axis
(only the chromosome number is displayed). Black dots and orange segments indicate the normalized
and segmented log2-values (right y-axis), respectively. Bars represent “loss” (red) and “gain” (green
and reversed) membership probabilities (left y-axis). Amplifications are indicated by tick marks on
the top axis.
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considered a smoothed (and thus de-noised) version of their normalized counter-
parts. Segmentation is motivated by the biological breakpoint process on the DNA
that may cause differential copy number between neighboring locations. Finally,
calling assigns an aberration state to each segment. Probabilistic calling, usually
based on mixture models, results in a probability distribution over a set of or-
dered possible types of genomic aberrations (which we will refer to as states), typ-
ically comprising “loss” (<2 copies), “normal” (=2 copies), “gain” (3–4 copies)
and “amplification” (>4 copies). A state is attributed to each probe using a clas-
sification rule on the membership probabilities. Nonprobabilistic calling directly
assigns states to segmented values, for example, by using a threshold. Note that
larger segmented values almost always correspond to a larger or equal called copy
number (see Figure 1). All in all, the three steps of the preprocessing procedure
provide distinct, but strongly related, data sets: (1) the normalized, (2) segmented
and (3) called aCGH data. While most down-stream analyses use either segmented
or called data, we use them jointly.

Current methodology for integrative genomic studies assumes rather than ex-
plores the mathematical form of the relationship between copy number and expres-
sion level. The relationship is said to be either linear or stepwise (see examples in
Figure 2). A linear relationship is often assumed in combination with segmented
aCGH data. For instance, the strength of the DNA-mRNA association is measured
by a (modified) correlation coefficient [Lee, Kong and Park (2008), Lipson et al.
(2004), Salari, Tibshirani and Pollack (2010), Schäfer et al. (2009)]. Alternatively,
a linear regression approach is entertained [Asimit, Andrulis and Bull (2011), Gu,
Choi and Ghosh (2008), Menezes et al. (2009)]. Recently published multivariate
methods [Jörnsten et al. (2011), Peng et al. (2010), Soneson et al. (2010), van
Wieringen, Berkhof and van de Wiel (2010)] also assume linearity. A piecewise
DNA-mRNA relationship is considered when using the called aCGH data for inte-

FIG. 2. Illustration of the association between DNA and mRNA for three genes in the breast cancer
data set [Neve et al. (2006)] used in this study. Segmented copy number is on the x-axis, while gene
expression is on the y-axis. Symbols indicate the different states, namely, loss (�), normal (©) and
gain (�). The dashed and “continuous” lines give the fitted linear and stepwise models, respectively.
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grative analysis. van Wieringen and van de Wiel (2009) and Bicciato et al. (2009)
have proposed stepwise methods.

In this paper we develop model selection for piecewise linear regression splines
(PLRS) to decipher how DNA copy number abnormalities alter the mRNA gene
expression level. In addition, we propose a statistical test that accounts for model
uncertainty in the PLRS context to detect those genes that drive important shifts.
The PLRS framework encompasses the linear and stepwise relationships, but pro-
vides flexibility, while maintaining good interpretability. In particular, it accom-
modates differential DNA-mRNA relationships across states. This is biologically
plausible, because the cell has various post-transcriptional mechanisms to undo
the effects of DNA aberrations. For a given gene, the efficacy of such mechanisms
is likely to differ between gains and losses. For example, a gain can directly be
compensated by regulatory mechanisms that cause mRNA degradation, such as
methylation. On the other hand, a complete loss of both DNA copies (which is
more rare than partial loss) cannot be compensated at all.

Segmented and called data are incorporated into the analysis, and biologically
motivated constraints are imposed on the model parameters. As this makes model
selection and inference nonstandard, we provide methodology for testing the ef-
fect of DNA on mRNA within the context of PLRS and for selecting the appro-
priate model. We also present a novel and computationally inexpensive method
for obtaining uniform confidence bands. We apply the proposed methodology to
colorectal and breast cancer data sets, where we identify many genes exhibiting
nonstandard behavior.

2. Methods. We model the association between DNA copy number and
mRNA expression by piecewise linear regression splines (PLRS), with biologi-
cally motivated constraints on the coefficients. In this section we address model
selection and describe a modified Akaike criterion in this context. Further, we
present a method for determining uniform confidence bands, along with a statisti-
cal test for the effect of copy number on mRNA expression.

2.1. Model. Consider gene expression and aCGH profiling of n independent
tumor samples where for a given gene {yi, xi, si}ni=1 are available, with yi being the
normalized mRNA expression (log2 scale), xi the segmented copy number (log2
scale) and si the copy number state (“loss,” “normal,” “gain” and “amplification,”
coded by −1, 0, 1 and 2) value of the ith observation, respectively. Then, the “full”
model with S states (or parts) takes the form

yi = fα(xi; θ) + εi = θ0 + θ1xi +
S−1∑
j=1

1∑
d=0

θj,d(xi − αj )
d+ + εi.(1)

Here θ = {θ0, θ1, θ1,0, . . . , θS−1,0, θ1,1, . . . , θS−1,1} is a vector of 2 × S unknown
parameters, the εi are independent random variables each normally distributed
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with mean 0 and variance σ 2, and {αj } are S − 1 known knots. The quantity (a)d+
represents the positive part max(a,0) of a raised to the power d . The number of
aberration states S varies across genes. In this study no more than four differ-
ent aberration states are considered (S ≤ 4). Below, for the purpose of discussing
model (1) we consider the general case S = 4.

Knots {αj } are obtained using data from the calling preprocessing step. De-
pending on the type of calling, two possibilities present themselves. First, con-
sider nonprobabilistic calling which renders states {si}ni=1. Then, αj is taken to
be the midpoint of the interval between segmented values xi belonging to con-
secutive states (method I). This makes the (natural) supposition that the calling
values respect the ordering of the segmented values xi and should be reasonably
precise if the between-state intervals are small, which is typical (see Figure 2). Sec-
ond, consider probabilistic calling, which renders membership (or call) probabil-
ities: (pi,−1,pi,0,pi,1,pi,2). These reflect the plausibility of the segmented value
xi to belong to the states si ∈ {−1,0,1,2} [van de Wiel et al. (2007)]. Then for
j ∈ {1,2,3}, we estimate αj (method II) by

α̂j = arg max
α∈R

n∑
i=1

pi,j (i,α), j (i, α) =
{

j − 2, if xi ≤ α,

j − 1, if xi > α.
(2)

For instance, α2 is the knot between states 0 and 1. To determine its position, we
select for each sample its plausibility pi,0 of belonging to state 0 (when xi ≤ α2) or
pi,1 of belonging to state 1 (when xi > α2), and add over all samples. We select α2
to maximize the sum. The maximum may not be unique but described by a small
interval; in such a case, we use the corresponding midpoint. This method may be
preferable as it accounts for the uncertainty of the calling states. The two methods
taken here use data as provided by available calling algorithms. Proposed models
for this preprocessing step typically depend on data from all samples, which stabi-
lizes the estimation of αj . Furthermore, knots are to be interpreted as boundaries
between the (ordered) states {−1,0,1,2}, which gives us strong a priori knowl-
edge as to their placing (see Figure 2). Together, these two arguments support our
approach to consider knots in model (1) as being known. In Section 3 of the sup-
plementary material (SM) [Leday et al. (2013)], a simulation shows that standard
deviations of α̂j are indeed very small.

Model (1) contains seven basis functions besides the intercept θ0 and hence
is quite flexible. Our approach is to select appropriate basis functions (27 = 128
possible models) and estimate the parameters. The basis functions of degree zero
x �→ (x −α)0+ model discontinuities, and hence allow for a different effect of copy
number on expression for each state.

This framework is a natural fundament to test meaningful hypotheses. For ex-
ample, the hypothesis that for a given state there is an effect of copy number on
mRNA can be expressed in terms of a linear function of the parameters being zero
(
∑

j θj,1 = 0); a difference between the effects of two adjacent states corresponds
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to knot deletion. The submodel consisting of piecewise constant functions [without
the functions x �→ x and x �→ (x −α)1+] allows testing the difference in expression
between states based on discrete genomic information.

To increase biological plausibility, aid interpretation and increase the stability
of estimation, we impose a set of linear constraints on the parameters. As it is
generally believed that direct causal effects of DNA on mRNA should be positive,
we constrain all slopes to be nonnegative. More exactly, we constrain the slope
corresponding to the “normal” state to be nonnegative (θ1 + θ1,1 ≥ 0), while others
are forced to be at least equal to the latter (implied by θ1,1 ≤ 0 for losses, θ2,1 ≥ 0
for gains and θ2,1 + θ3,1 ≥ 0 for amplifications). For the same reason we constrain
jumps θj,0 from state to state to be nonnegative. Note that the restrictions adopted
here force the slope of the “normal” state to be small or null and make the natural
assumption that a normal copy number is not expected to affect (at least severely)
gene expression.

The maximum likelihood estimator of the unknown vector of coefficients θ

solves the following convex optimization problem:

minimize
θ

(y − Xθ)T (y − Xθ) subject to Cθ ≥ 0.(3)

This can be solved by quadratic programming [Boyd and Vandenberghe (2004)].
The vector y = {y1, . . . , yn} denotes the expression signature of a given gene and X
the associated matrix of covariates designed according to (1). The full row-rank
matrix C expresses the constraints that are imposed on the parameters. For the
4-state full model we define C as the matrix in⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ0

θ1

θ1,0

θ1,1

θ2,0

θ2,1

θ3,0

θ3,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≥ 0.(4)

2.2. Model selection. Given R competing statistical models, with log-
likelihoods Lr (θr) based on a kr × 1 parameter vector θr and with correspond-
ing maximum likelihood estimators (MLE) θ̂r , the Akaike information criterion
(AIC) selects as best the model that minimizes

AICr = −Lr (θ̂r ) + kr .(5)

This information criterion consists of two parts: the negative maximized log-
likelihood, which measures the lack of model fit, and a penalty for model com-
plexity. Although AIC has found wide application, it is less suitable for models
that include parameter constraints, as in our situation. It can be adapted as follows.
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The original motivation for the criterion [Akaike (1973)] is to choose the model
that minimizes the Kullback–Leibler (KL) divergence to the true distribution of
the data. Indeed, the criterion AICr is (under some conditions) an asymptotically
unbiased estimator of this KL divergence. The likelihood at a given parameter
is an unbiased estimate of the KL divergence at this parameter, but evaluating
it at the maximum likelihood estimator introduces a bias caused by “using the
data twice,” which is compensated by the penalty kr [Bozdogan (1987)]. In the
constrained case (i.e., subject to Cθ ≥ 0) we can follow the same motivation, but
must account for a different behavior of the maximum likelihood estimator and
the resulting bias. Intuitively, the penalty adjusts for an expected increase in the
maximized log-likelihood when variables are added to the model, which is less
likely under constraints. The likelihood of violation of the constraints must be
taken into account.

Hughes and King (2003) adapted the AIC criterion using the asymptotic distri-
bution of the Wald test statistic. In the constrained situation this statistic is not dis-
tributed as a chi-squared random variable anymore, but as a probability weighted
mixture of chi-squared random variables [see Chernoff (1954), Gouriéroux, Holly
and Monfort (1982), Kodde and Palm (1986) or van der Vaart (1998), Theo-
rem 16.7]. It is of the form (partially inequality constrained Wald statistic)

pr∑
h=0

w(pr,h)χ2(kr − pr + h),(6)

where pr is the number of inequality constraints and w(pr,h) are weights [with∑
h w(pr, h) = 1], which can be interpreted as the probabilities under the null

hypothesis that the constrained maximum likelihood estimator θ̃r satisfies h out of
pr constraints.

Hughes and King (2003) propose to use the one-sided AIC (OSAIC), which
is an asymptotically unbiased estimator of the KL divergence in the presence of
one-sided information:

OSAICr = −Lr (θ̃r ) +
pr∑

h=0

w(pr,h)(kr − pr + h).(7)

Calculating the weights is a combinatorial problem, which aims to determine the
probability that the vector θ̃r lies in any face of dimension h [Grömping (2010),
Kudô (1963), Shapiro (1988)]. This can be computationally intensive as the num-
ber of variables, kr , increases [Grömping (2010)]. However, in this study the
largest model has eight free parameters (because S ≤ 4). Therefore, the model
selection procedure is still very fast (a couple of seconds).

2.3. Testing. To evaluate the effect of DNA copy number on expression, we
test the hypothesis H0 : Cθ = 0 against the alternative H1 : Cθ 
= 0,Cθ ≥ 0, that is,
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we test that all inequality constraints are satisfied as equalities against the possi-
bility that at least one of them is strict. From (4) we observe that all parameters
except the intercept θ0 are subject to inequality constraints and that the null hy-
pothesis reduces the model to the intercept.

We employ the likelihood ratio statistic LR = 2(L1 − L0), where L0 and L1 are
the maximized log-likelihood under the null and alternative hypotheses, respec-
tively. The test rejects the null hypothesis for large values of

min
Cθ≥0

(y − Xθ)T (y − Xθ) − min
Cθ=0

(y − Xθ)T (y − Xθ).(8)

This can be shown [Robertson, Wright and Dykstra (1988)] to be equivalent to
rejecting for large values of

χ2 = (θ̃ − θ̃=)T �−1
X (θ̃ − θ̃=),(9)

where θ̃ and θ̃= are the maximum likelihood estimators under the inequality and
the equality constraints, respectively, and �X = σ 2(XT X)−1 is the covariance ma-
trix of the unconstrained least squares estimator. For known error variance σ 2 the
chi-bar-squared statistic χ2 may be employed with null distribution approximated
by a weighted mixture of χ2 distributions [Chernoff (1954), Gouriéroux, Holly
and Monfort (1982)]. As σ 2 is typically unknown, we use instead the so-called
E-bar-squared statistic [Grömping (2010), Robertson, Wright and Dykstra (1988),
Shapiro (1988), Silvapulle and Sen (2005)]

E
2 = (θ̃ − θ̃=)T �−1

X (θ̃ − θ̃=)

(θ̃ − θ̃=)T �−1
X (θ̃ − θ̃=) + (y − Xθ̂ )T (y − Xθ̂ )

.(10)

Here �X = XT X. The null distribution of this statistic is a weighted mixture of
Beta distributions of the form

p∑
h=0

w(p,h)B
(
h/2, (n − p)/2

)
,(11)

where p is the number of parameters and B(a, b) refers to a beta distribution with
shape parameters a and b. The mixing weights are the same as in (6) (applied to
the full model); unknown parameters are estimated by their MLEs.

Further details on these test statistics can be found in Robertson, Wright and
Dykstra (1988), Shapiro (1988), Silvapulle and Sen (2005).

2.4. Confidence bands. Confidence bands (CBs) for the (spline) function x �→
fα(x; θ) in equation (1) should take both the model selection procedure [Buckland,
Burnham and Augustin (1997)] and the constraints into account.

Initially we implemented a bootstrap procedure [Grömping (2010)], accounting
for model uncertainty along the lines of Burnham and Anderson (2002), who pro-
pose the construction of so-called unconditional confidence intervals where only
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the selected model is considered for each bootstrap sample. Unfortunately, simu-
lated coverage probabilities were below (and sometimes far below, e.g., 0.6 instead
of 0.95) the nominal level, probably due to the presence of the inequality con-
straints in our model [Andrews (2000)]. We therefore developed an “exact” alter-
native based on the E-bar-squared statistic (10), using semidefinite programming
to achieve computational efficiency. A simulation study reported in Section 3.2
shows that this approach yields accurate uniform CBs.

2.4.1. Problem formulation. We start by the construction of a joint confidence
region for all parameters θ in the full model, including the intercept θ0, by inverting
the likelihood ratio test described previously. Analogously to equation (10), define

E
2
(θ) = (θ̃ − θ)T �−1

X (θ̃ − θ)

(θ̃ − θ)T �−1
X (θ̃ − θ) + (y − Xθ̂ )T (y − Xθ̂ )

.

Then a (1 − α)% confidence region R for θ is

R = {
θ :E

2
(θ) ≤ Q1−α,Cθ ≥ 0

}
,(12)

where Q1−α denotes the (1 − α)-quantile of the beta mixture distribution in (11).
Here we increment the first parameter of the Beta distributions to (h + 1)/2, be-
cause presently we include the intercept as a parameter, whereas before it was free
under the null hypothesis. Interval estimation based on inversion of a likelihood
ratio statistic is known to possess good properties [Arnold and Shavelle (1998),
Brown, Cai and DasGupta (2003), Meeker and Escobar (1995)].

Given the confidence region R, we compute a confidence band by determin-
ing for each x the minimum and maximum values fα(x; θ) = xT θ . This means
determining

inf
θ∈R

xT θ and sup
θ∈R

xT θ.

Thus, a simple linear function must be minimized (or maximized) subject to linear
and ellipsoidal inequality constraints. In the following section, we show that this
(convex) problem can be solved efficiently by semidefinite programming.

2.4.2. Semidefinite programming. A semidefinite program [Vandenberghe
and Boyd (1996)] is concerned with the minimization of a linear objective function
under the constraint that a linear combination of symmetric matrices is positive
semidefinite:

minimize
y∈Rm

bT y subject to F(y) = F0 +
m∑

i=1

yiFi � 0.(13)

The vector b ∈ R
m and the symmetric (n × n) matrices F0, . . . ,Fm are fixed,

and the expression F(y) � 0 means that the matrix F(y) is positive semidefi-
nite [i.e., zT F (y)z ≥ 0, ∀z ∈ R

n]. Because a linear matrix inequality constraint
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F(y) � 0 is convex, the program can be solved efficiently using interior-point
methods [Vandenberghe and Boyd (1996)].

We may express the optimization problem of the previous section as a
semidefinite program, based on two equivalences, given by Vandenberghe and
Boyd (1996) and provided in Appendix B. For convenience, we replace the el-

lipsoidal constraint E
2
(θ) ≤ Q1−α by (Mθ − Mθ̃)T (Mθ − Mθ̃) ≤ λ, where

λ = (y − Xθ̂ )T (y − Xθ̂ )Q1−α/(1 − Q1−α) and �−1
X = MT M . Given this, the

semidefinite program is

minimize
θ

xT θ subject to F(θ) = F0 +
p∑

i=1

θiFi � 0,(14)

where

F0 =
(

0 0
0 F

(2)
0

)
, Fi =

(
F

(1)
i 0

0 F
(2)
i

)
, i = 1, . . . , p,

with the submatrices defined as

F
(1)
i = diag(ci), F

(2)
0 =

(
I −Mθ̃

(−Mθ̃)T λ

)
and F

(2)
i =

(
0 mi

mT
i 0

)
.

Here mi and ci denote the ith column vector of the matrices M and C [the matrix
of linear restrictions expressed in (3)], respectively.

The optimization procedure needs to be repeated twice in order to determine
the lower and upper bounds on xT θ . Even though this must next be repeated for
every new instance x to obtain a confidence band, the overall procedure is fast. For
instance, for 100 new instances computation on a 2.66 GHz Intel quad-core took
less than 12 s (without parallel computing).

3. Simulation. We conducted simulation experiments to: (1) determine the
accuracy of estimates as provided by PLRS (Section 3.1); (2) examine the coverage
probabilities of the method proposed in Section 2.4 (Section 3.2); and (3) evaluate
the performance of the PLRS screening test in detecting associations of various
functional forms (Section 3.3).

3.1. Point estimation. The simulation study examined the accuracy of the es-
timates obtained by fitting piecewise splines or a simple linear model. For simplic-
ity, we consider a two-state model (normal and gain) and the knot was fixed to 0.5.
Data were generated according to the following:

• model 1: y = 1 + a2(x − 0.5)1+, a2 ∈ {0,0.5,1,2,5}
• model 2: y = 1 + 0.5x + (a2 − 0.5)(x − 0.5)1+, a2 ∈ {0,0.5,1,2,5}.
The first state (normal) has no or little effect on expression. The linear func-
tion is contained in both models, and is found for a2 = 0 and a2 = 0.5, re-
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TABLE 1
Squared bias and variance (in parentheses) of the slope estimates of the linear and piecewise spline

models as a function of the true slope a2, noise σ and model. In bold: setting for which the true
model is linear

σ = 0.25 σ = 0.75

Model a2 linear piecewise linear piecewise

1 0 0.002 (0.004) 0.007 (0.012) 0.015 (0.033) 0.047 (0.090)
0.5 0.070 (0.011) 0.002 (0.039) 0.050 (0.060) 0.000 (0.193)
1 0.282 (0.011) 0.004 (0.045) 0.270 (0.081) 0.008 (0.271)
2 1.114 (0.011) 0.003 (0.045) 1.124 (0.094) 0.027 (0.339)
5 6.962 (0.011) 0.003 (0.042) 6.908 (0.103) 0.022 (0.393)

2 0 0.060 (0.008) 0.063 (0.009) 0.075 (0.053) 0.124 (0.097)
0.5 0.000 (0.009) 0.005 (0.019) 0.000 (0.066) 0.030 (0.146)
1 0.058 (0.008) 0.000 (0.036) 0.055 (0.070) 0.006 (0.180)
2 0.545 (0.008) 0.000 (0.041) 0.521 (0.075) 0.000 (0.289)
5 4.782 (0.008) 0.000 (0.046) 4.857 (0.073) 0.004 (0.320)

spectively. We generated errors from a normal distribution N (0, σ 2) where σ ∈
{0.1,0.25,0.5,0.75,1}. This resulted in 25 cases for each of the two models (5 val-
ues of a2 times 5 values of σ ). The sample size was set to 80, and the 80 values of
x were generated from a uniform distribution U (0,1).

We were interested in comparing the precision of the estimates of the slope
a2 when fitting a linear or a piecewise linear model (the latter with a single knot
placed at 0.5; 4 parameters). For each of the 25 cases we repeated the simulation
experiment 1000 times and computed the estimator of the slope for both models.
Table 1 reports the empirical squared bias and variance over the 1000 repetitions.
For clarity only the results for σ = 0.25 and σ = 0.75 are displayed. Complemen-
tary results can be found in Section 2 of SM.

Not surprisingly, the piecewise model can capture the relationship well in all
cases: the squared bias is small, and the variance never unduly large. On the other
hand, the estimate of the slope given by the linear model is strongly biased for
larger values of the slope a2. As expected, the variance of the PLRS estimate is
usually somewhat larger than that of the linear model estimate. However, this dif-
ference is much less prominent than for the squared bias. When the data generating
process is linear, that is, when a2 = 0 in model 1 and a2 = 0.5 in model 2, the dif-
ference between the estimates from the linear and PLRS models is smaller than in
the other cases.

The study suggests that, when estimating or testing the effect of DNA copy
number on mRNA expression, there is potentially more to lose than to gain (due
to misspecification versus overspecification of the model) by applying the linear
instead of the piecewise linear spline model.
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TABLE 2
Simulated coverage probability for different sample sizes, noise levels

and significance levels

σ = 0.5 σ = 1

α = 0.05 α = 0.1 α = 0.05 α = 0.1

n = 20 0.953 0.898 0.968 0.922
n = 40 0.952 0.883 0.967 0.926
n = 80 0.939 0.863 0.960 0.915

3.2. Uniform CBs. To study the coverage probabilities of the method pro-
posed in Section 2.4, we simulated data according to the model y = 1 + (x −
0.5)0+ + (x − 0.5)1+, with x-values drawn from a uniform distribution U (0,1).
Gaussian errors of standard deviation σ ∈ {0.5,1}, and three sample sizes n ∈
{20,40,80}. For a given data set we computed the confidence band on a grid
of 10 equidistant values, for two different significance levels α ∈ {0.05,0.1}, and
checked whether the 10 corresponding values of the function in the display fall si-
multaneously into the estimated confidence band. (For computational reasons the
simulation was limited to 10 values; we believe that using the continuous range
would not have altered the findings.) Table 2 shows the empirical coverage proba-
bilities over 10,000 data sets for each situation.

The simulated coverage probabilities are close to their corresponding nominal
values. Even though the coverage procedure is motivated by asymptotic approxi-
mations, this is true even when the sample size is small, in agreement with previous
literature on likelihood-based interval estimation.

3.3. PLRS screening test. We evaluated the performance of the PLRS testing
procedure in detecting associations of various functional shapes. PLRS was com-
pared to the LM test (see Section 4.2), Spearman’s correlation test and the test
proposed by van Wieringen and van de Wiel (2009). SM Figures 2 to 11 show
partial ROC curves (sensitivity versus type I error α, where α ≤ 0.2) and partial
AUC. Details are provided in SM Section 4. Here, we summarize the results.

The PLRS test yielded good performance in detecting various types of associa-
tions. It achieved the highest AUC in 68 out of the 90 simulation cases (against 23
for LM). When the true effect is linear, PLRS performed reasonably well. In other
cases, it always produced a high, if not the highest, AUC. In particular, PLRS pre-
sented a clear advantage over others in detecting partial effects on gene expression,
that is, when only one abnormal state (among others) affects expression. In all, re-
sults suggest that PLRS accommodates well both continuous and discrete genomic
information and, unlike others, is able to detect various types of association.
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4. Application. The proposed framework was applied to two data sets. The
first data set [Carvalho et al. (2009); available at ncbi.nlm.nih.gov/geo; accession
number GSE8067] consists of copy number and gene expression values for 57
samples of colorectal cancer tissue. These were generated with BAC/PAC and
Human Release 2.0 oligonucleotide arrays, respectively. Normalization is as in
Carvalho et al. (2009). aCGH data were segmented with the CBS algorithm of
Olshen et al. (2004) and discretized with CGHcall [van de Wiel et al. (2007)].
Matching of mRNA and aCGH features was based on minimizing the distance be-
tween the midpoints of the genomic locations of the array elements. The final data
set comprises 25,869 matched features. The second data set [Neve et al. (2006);
available from Bioconductor] consists of copy number and expression data for
50 samples (cell lines) of breast cancer, profiled with OncoBAC and Affymetrix
HG-U133A arrays. Preprocessing of mRNA expression is described in Neve et al.
(2006). aCGH data were segmented and called as above. The resulting data set
contains 19,224 matched features. For the colorectal and breast cancer data sets,
knots of the PLRS model were estimated using methods I and II, respectively.

We first present some global results on model selection, and next consider test-
ing the association between DNA and mRNA. Finally, some relevant relationships
are illustrated.

4.1. Model selection with the OSAIC procedure. Table 3 reports the number
of genes for which our procedure (column OSAIC) selects a certain type of model,
for both data sets. Clearly, both the piecewise linear model and the piecewise level
model are selected a large number of times. Different procedures such as AIC
and BIC, BICr = −2 · Lr (θ̃r ) + log(n) · kr , which put bigger penalities on larger
models (too large given the constraints), still often prefer piecewise splines. This
gives strong evidence on the inadequacy of both the simple linear and piecewise
constant models for many genes. In Section 1 of SM, an overlap comparison of the
three procedures shows differences induced by the different penalty functions.

TABLE 3
The number of times a model is selected by type of model, by three model selection procedures, for

the two data sets

Carvalho et al. (2009) Neve et al. (2006)

Type of model OSAIC AIC BIC OSAIC AIC BIC

Intercept 14,720 18,083 21,700 5081 6968 9379
Simple linear 4916 3674 2043 5262 6689 6345
Piecewise level 2667 1977 992 2761 2477 1608
Piecewise linear 3566 2135 1134 6120 3090 1892

http://www.ncbi.nlm.nih.gov/geo/
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TABLE 4
Number of associations with an estimated false discovery rate below 0.1 for different model

comparisons

H0 Ha Carvalho et al. (2009) Neve et al. (2006)

Intercept linear 1726 9783
Intercept full 1554 9105

4.2. Testing the effect of DNA on mRNA. The hypothesis that DNA copy num-
ber has no effect on mRNA expression corresponds to model (1) with only the in-
tercept parameter θ0 nonzero. We tested this as the null model both versus the full
model (1) (test “PLRS”) and versus the linear submodel (test “LM”), with the pur-
pose to compare these two screening models in their effectiveness to detect an
association. A third possibility would be to test the null model versus the model
selected by the OSAIC procedure. However, because this would naively suggest
that the form of the relationship is known a priori, we did not pursue this option.
For the PLRS test a minimum number of five observations (the default being three)
per state was imposed.

Table 4 gives the number of associations with a q-value below 0.1 [based on the
Benjamini and Hochberg (1995) FDR]. The LM test is seen to detect slightly more
associations as being significant than the PLRS test. This may be a consequence of
the fact that the linear model involves fewer parameters. However, closer inspec-
tion shows that the sets of detected genes are not nested, and the PLRS test is able
to detect biologically meaningful genes that are not detected by the LM test. To
illustrate, three DNA-mRNA relationships are plotted in Figure 3. The first cor-
responds to an association detected as significant with the LM test, but not with
the PLRS test. Reciprocally, the last two associations (genes PDE3B and CLIP1)
are detected with the PLRS test but not with the LM test. The figure shows that
the PLRS test is able to detect relationships for which an effect is present for only
a few samples (but at least five). Identifying the last two genes may be more im-
portant than the first, as they are more interesting potential targets for studying
individual effects.

The first gene in Figure 3 also illustrates that the testing procedures may differ
considerably in q-values, even though the estimated regression function found by
the two models is the same. This is partly explained by the difference in complexity
between the alternative models. However, we note that q-values for a single gene
are not directly comparable, since they also depend on p-values of other genes.
In Appendix A, we provide, for selected genes, p- and q-values for the different
types of tests.

4.3. Results for selected genes. In this section we show the estimated rela-
tionships for selected genes. The selection is based on the Cancer Gene Census
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FIG. 3. Association between DNA and mRNA for different genes in the breast cancer data set
[Neve et al. (2006)]. Segmented copy number is on the x-axis, while gene expression is on the y-axis.
Symbols indicate the different states, namely, loss (�), normal (©) and gain (�). Grey surfaces
correspond to 95% uniform CBs. The top left values correspond to q-values of tests LM and PLRS,
respectively. The dashed line gives the fitted LM model; the “continuous” spline is the fitted PLRS
model.

list (available at www.sanger.ac.uk/genetics/CGP/Census/) and on our observation
that some associations are atypical. Also, we show results for genes C20orf24,
TCFL5 and TH1L, which were reported in Carvalho et al. (2009) as important for
colorectal cancer progression.

Figures 4 and 5 show nine DNA-mRNA associations for each of the two data
sets. Each plot displays the fit of the linear model and of the PLRS model chosen
by the OSAIC criterion. Uniform 95% confidence bands (that account for model
selection uncertainty) are also plotted. (Some curious shapes result from the fact
that pointwise variation bursts near the boundaries and around knots.)

Both figures show a diverse set of forms of associations. Fitted models with
jumps reveal that discrete copy number states can, by themselves, explain varia-
tion in expression. This is even more true when a piecewise level relationship is
identified (as for genes APC and MTUS1 in Figure 4). More generally, piecewise
linear models capture effects that differ for losses, gains and/or amplifications.
Statistically speaking, this has the advantage of giving more accurate estimates of
slope(s), as is clearly observed for genes ATMIN, PITPNA and PTEN in Figure 5.
Having a better estimator, we may expect a better test. From a biological point
of view, the ability to distinguish effects between states may help the detection of
onco and tumor-suppressor genes. Moreover, genes for which these effects concern
only a few samples may also be interesting to biologists for studying individual ef-
fects.

The simple linear model is observed to be a tight template for modeling. As a
matter of fact, it is potentially misleading when the relationship really depends on
the underlying copy number state. This happens to be the case for known cancer
genes (see FGFR1, PAK1 and PTEN in Figure 5). As a result, when testing the
effect of DNA on mRNA with the LM and PLRS tests (see Section 4.2), one may

http://www.sanger.ac.uk/genetics/CGP/Census/
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FIG. 4. Association between DNA and mRNA for different genes in the colorectal cancer data set.
Segmented copy number is on the x-axis, while gene expression is on the y-axis. States are indicated
by different symbols: loss (�), normal (©), gain (�) and amplification (×). Grey surfaces corre-
spond to 95% uniform CBs. In all cases the piecewise linear model is preferred to the simple linear
one (dashed line). The top left values correspond to the p- and q-values of the PLRS test.

obtain a considerable difference between the p-values, and hence q-values (see
Appendix A). For this reason the proposed framework may improve the detection
of (highly) significant associations and their ranking.
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FIG. 5. Association between DNA and mRNA for different genes in the breast cancer data set. Seg-
mented copy number is on the x-axis, while gene expression is on the y-axis. States are indicated by
different symbols: loss (�), normal (©), gain (�) and amplification (×). Grey surfaces correspond
to 95% uniform CBs. In all cases the piecewise linear model is preferred to the simple linear one
(dashed line). The top left values correspond to the p- and q-values of the PLRS test.

Finally, we dwell on the notion of effect in itself. The notion of “association” is
broad, and can be expressed both by an intercept and a slope. This can imply a clear
difference in interpretation with respect to the linear model. Consider the simple
example of gene MTUS1 in Figure 4, where a piecewise level model is preferable.
Here intuition clearly tells us that one is more interested in assessing the difference
in expression level between samples presenting loss and normal aberrations than
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an overall trend. Therefore, a linear model may focus on the wrong quantity of
interest, whereas the PLRS procedure may yield meaningful interpretation.

We concentrated on comparing our results with those of the linear model. How-
ever, it is clear from Figures 4 and 5 that also the other alternative, the piecewise
level model (which allows only horizontal lines per state), is often not adequate
(see TH1L and PITPNA).

5. Conclusion. We proposed a statistical framework for the integrative anal-
ysis of DNA copy number and mRNA expression, which incorporates segmented
and called aCGH data. By using discrete aCGH data we improved model flexibil-
ity and interpretability. The form of the relationship is allowed to vary per gene.
Model interpretation is ameliorated with biologically motivated constraints on the
parameters. This complicates the statistical procedures for identifying and infer-
ring the relationship between the markers, but we provided methods for model se-
lection, interval estimation and testing the strength of the association. We applied
the methodology to two real data sets. Many (reported) genes exhibited interesting
behavior.

A novelty of this work is the combined use of segmented and called aCGH data.
Which of the two data types is more suitable is a matter of debate in the aCGH
community, and may depend on the type of downstream analysis [van Wieringen,
van de Wiel and Ylstra (2007)]. Our method provides a compromise that uses both
characteristics of the data.

The form of association between copy number and expression in breast cancer
is also explored in the recent paper Solvang et al. (2011) (which we received after
completion of this paper). This interesting paper distinguishes (only) between lin-
ear and quadratic types of effect and uses (only) two types of aberrations, without
distinguishing gains from amplifications. The interpretation of the coefficients in
our model seems to be simpler.

The proposed methodology is also applicable to the joint analysis of copy num-
ber and microRNA expression. This class of noncoding RNA was shown to play
an important role in tumor development. Our method may be particularly suitable
for these data, because microRNA transcripts are often expressed in part of the
samples only.

Next generation sequencing data will impose new challenges, which will be
taken up in future work. This type of data provides higher resolution than microar-
rays, while reducing biases, in particular, at the lower end of the spectrum. Because
expression levels are measured as counts rather than intensities, the distribution of
the response variable cannot be assumed to be Gaussian and, hence, a different
noise model is needed.

In short, we provide methodology for statistical inference and model selection in
the framework of constrained PLRS, and show that this is able to reveal interesting
DNA-mRNA relationships for cancer genes. The method is implemented in R and
available as a package from www.few.vu.nl/~mavdwiel/software.html.

http://www.few.vu.nl/~mavdwiel/software.html
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TABLE 5
p and q-values of the test when under the alternative hypothesis Ha the linear, OSAIC-selected and
the full models are successively considered. The top and bottom parts correspond, respectively, to

the selected genes from the colorectal and breast data

Linear OSAIC Full

p q p q p q

APC 2.49e-02 2.04e-01 2.26e-02 6.38e-02 2.49e-02 2.12e-01
ATP11A 7.34e-06 9.79e-04 5.88e-06 2.98e-04 2.08e-05 2.26e-03
C20orf24 1.71e-12 2.21e-08 3.06e-13 1.14e-09 3.68e-13 4.76e-09
JMJD6 5.44e-09 4.85e-06 1.78e-08 4.31e-06 2.99e-08 1.89e-05
MTUS1 6.83e-07 1.77e-04 6.38e-08 1.06e-05 1.72e-07 6.34e-05
RPRD1B 3.18e-06 5.45e-04 5.17e-07 5.02e-05 1.13e-06 2.67e-04
TCFL5 6.49e-06 8.88e-04 1.75e-08 4.31e-06 1.01e-07 4.22e-05
TH1L 1.06e-10 3.25e-07 2.72e-13 1.14e-09 7.14e-13 6.16e-09
TP53 6.54e-03 9.87e-02 9.42e-05 2.25e-03 2.55e-04 1.34e-02

ATMIN 1.12e-09 6.45e-08 1.13e-09 4.56e-08 5.24e-09 2.96e-07
CCND1 1.91e-08 5.71e-07 3.56e-08 6.88e-07 1.62e-07 4.15e-06
CEP350 8.55e-08 1.93e-06 3.07e-10 1.69e-08 5.74e-10 5.33e-08
EIF3H 1.70e-12 4.88e-10 8.22e-15 3.75e-12 1.05e-13 6.74e-11
ERBB2 4.46e-10 3.18e-08 4.34e-10 2.15e-08 2.48e-08 9.64e-07
FGFR1 1.62e-06 2.03e-05 3.99e-10 2.02e-08 8.90e-09 4.34e-07
PAK1 1.15e-10 1.21e-08 <2.2e-16 <2.2e-16 2.66e-15 3.94e-12
PITPNA 1.85e-06 2.25e-05 8.40e-10 3.66e-08 1.62e-08 6.93e-07
PTEN 7.27e-09 2.64e-07 9.10e-15 4.02e-12 9.55e-15 9.66e-12

APPENDIX A: TESTING

See Table 5.

APPENDIX B: SEMIDEFINITE PROGRAMMING

Here, we provide the two equivalence relationships from Vandenberghe and
Boyd (1996) that are necessary to express the semidefinite program. We recall
that a linear matrix inequality (LMI) type of constraint includes, among others,
linear and convex quadratic inequalities. These are the two types of constraints
we are interested in. To express them as two LMIs, we make use of the following
equivalences.

A linear inequality constraint Ax + b ≥ 0, where A = [a1 · · ·ak] and x ∈ R
n, is

equivalent to the following LMI:

F(x) = F0 +
k∑

i=1

xiFi � 0,

where F0 = diag(b), Fi = diag(ai), i = 1, . . . , k. diag(v) represents the diagonal
matrix with the vector v on its diagonal.
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A convex quadratic constraint (Ax + b)T (Ax + b) − cT x − d ≤ 0, where A =
[a1 · · ·ak] and x ∈ R

n, is equivalent to the following LMI:

F(x) = F0 +
k∑

i=1

xiFi � 0,

where

F0 =
(

I b

bT d

)
, Fi =

(
0 ai

aT
i ci

)
, i = 1, . . . , k.

Multiple LMIs can be expressed as a single one using block diagonal matrices
[VanAntwerp (2000)].
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SUPPLEMENTARY MATERIAL

Complementary results and simulations (DOI: 10.1214/12-AOAS605SUPP;
.pdf). We present a simulation study which compares the performance of the PLRS
testing procedure in detecting associations of various functional shapes with that
of other procedures. Additionally, we provide an overlap comparison of model
selection procedures, complementary results for the simulation on point estimation
and a description of the simulation on the precision of knots.
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