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PHASE TRANSITIONS IN EXPONENTIAL RANDOM GRAPHS

BY CHARLES RADIN1 AND MEI YIN

University of Texas at Austin

We derive the full phase diagram for a large family of two-parameter
exponential random graph models, each containing a first order transition
curve ending in a critical point.

1. Introduction. We will treat a class of models of large, “dense” random
graphs, that is, simple graphs on n vertices in which the average number of edges
is of order n2. More specifically we will consider two-parameter families of expo-
nential random graphs in which dependence between the random edges is defined
through certain finite subgraphs H2, in imitation of the use of potential energy
to provide dependence between particle states in a grand canonical ensemble of
statistical physics. Intuitively, the two parameters allow one to adjust the density
of edges and the density of subgraphs H2, and analyze the extent to which spe-
cific values of these densities “interfere” with one another. Exponential random
graphs have been widely studied (see [3, 4] for a range of recent work) since the
pioneering work on the independent case by Erdős and Rényi [2]. We will con-
centrate on the phenomenon of phase transitions which can emerge for dependent
variables: a sharp, unambiguous partition of parameter ranges separating those val-
ues in which changes in parameters lead to smooth changes in the two densities,
from those special parameter values where the response in the densities is singular.
This subject has attracted enormous interest in mathematics, as well as in various
applied disciplines (some references may be found, e.g., in Häggström and Jonas-
son [6]). Analyses using mean-field and other uncontrolled approximations (see,
e.g., [10, 11]) have predicted such partitions, but with some qualitative error which
we discuss in the last section. There has recently been important progress by Chat-
terjee and Diaconis [1], including the first rigorous proof of singular dependence
on parameters. We will extend their result both in the class of models and param-
eter values under control and provide an appropriate formalism of phase structure
for such models.

2. Statement of results. We consider the class of models in which the proba-
bility of the simple graph Gn on n vertices is given by

P
β1,β2
n (Gn) = en2[β1t (H1,Gn)+β2t (H2,Gn)−ψn],(1)
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where H1 is an edge, H2 is any finite simple graph with p ≥ 2 edges, ψn =
ψn(β1, β2) is the normalization constant, t (H,Gn) is the density of graph homo-
morphisms H → Gn

t(H,Gn) = |hom(H,Gn)|
|V (Gn)||V (H)|(2)

and V (·) denotes the vertex set. Expectation of a real function of a random graph
is denoted Eβ1,β2{·}. Our main results are the following.

THEOREM 2.1. For any allowed H2, the pointwise limit

ψ∞(β1, β2) = lim
n→∞ψn(β1, β2)(3)

exists and is analytic at all (β1, β2) in the upper half-plane (β2 ≥ 0) except on a
certain continuous curve β2 = q(β1) which includes the endpoint

(
βc

1, βc
2
) =

(
1

2
log(p − 1) − p

2(p − 1)
,

pp−1

2(p − 1)p

)
.(4)

The derivatives ∂
∂β1

ψ∞ and ∂
∂β2

ψ∞ have (jump) discontinuities across the curve,

except at (βc
1, βc

2) where, however, all the second derivatives ∂2

∂β2
1
ψ∞, ∂2

∂β1∂β2
ψ∞

and ∂2

∂β2
2
ψ∞ diverge.

THEOREM 2.2. If the graph H2 is a p-star, p ≥ 2, then the pointwise limit
ψ∞(β1, β2) exists and is analytic at all (β1, β2) in the lower half-plane (β2 ≤ 0).

REMARK. A p-star has p edges meeting at a vertex.

COROLLARY 2.3. For any allowed H2, the parameter space {(β1, β2) :β2 ≥
0} consists of a single phase with a first order phase transition across the indicated
curve and a second order phase transition at the critical point (βc

1, βc
2).

To explain the language of phase transitions in Corollary 2.3 we first give a
superficial introduction to the formalism of classical statistical mechanics within
d-dimensional lattice gas models; for more details see, for instance, [9].

Assume each point in a d-dimensional cube

C = {−n,−(n − 1) · · ·0, · · · (n − 1), n
}d ⊂ Z

d(5)

is randomly occupied (by one particle) or not occupied, and assume there is a
(many-body) potential energy of fixed value a �= 0 associated with every occupied
subset of C congruent to a certain H2 ⊂ C. The interaction is attractive if a < 0
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and repulsive if a > 0. We define the probability that the occupied sites in C are
precisely c by

P
β,μ
n (c) = e−β[μE1(c)+aE2(c)]

Zn

,(6)

where the parameter β > 0 is called the inverse temperature, the parameter μ ∈
R is called the chemical potential, the normalization constant Zn(β,μ) is called
the partition function, H1 and H2 are subsets of C with H1 a singleton and the
cardinality |H2| ≥ 2, and Ej(c) is the number of copies of Hj in c. (We are using
“free” boundary conditions.) One of the basic features of the formalism is that
the free energy density, Fn(β,μ) = ln[Zn(β,μ)]/nd , contains all ways to interact
with or influence the system, so that “all” physically significant quantities can be
obtained by differentiating it with respect to β and μ. For instance,

∂

∂μ
Fn(β,μ) = −βEβ,μ

{
E1

nd

}
,(7)

the (average) particle density. To model materials in thermal equilibrium, calcula-
tions in this formalism normally require that the system size be sufficiently large,
and in practice one often resorts to using n → ∞. With this as motivation we
tentatively define a “phase” as a set of states (i.e., probability distributions) corre-
sponding to a connected region of the (β,μ) parameter space, which is maximal
for the condition that limn→∞ ∂j+k

∂βj ∂μk Fn(β,μ) are analytic in β and μ for all j, k.

One associates a “phase transition” with singularities which develop in some of
these quantities as the system size diverges. Such singularities are sometimes de-
tected in simulations through the variances σ 2

1 (n), σ 2
2 (n) of the particle and energy

densities, E1/nd,E2/nd , respectively. It is easy to check, for instance, that

∂2

∂μ2 Fn(β,μ) = β2ndσ 2
1 (n),(8)

and therefore a finite limit for ∂2

∂μ2 Fn(β,μ) as n → ∞ implies σ 2
1 (n) → 0 at

least as fast as 1/nd , while the divergence of ∂2

∂μ2 Fn(β,μ) more slowly than nd

as n → ∞ implies σ 2
1 (n) → 0 more slowly than 1/nd , and a jump discontinuity in

∂
∂μ

Fn(β,μ) as n → ∞ implies σ 2
1 (n) does not go to 0 as n → ∞. An important

simplification was proven by Yang and Lee [12] who showed that the limiting free
energy density F∞(β,μ) = limn→∞ Fn(β,μ) always exists and that certain limits
commute:

lim
n→∞

∂j+k

∂βj ∂μk
Fn(β,μ) = ∂j+k

∂βj ∂μk
lim

n→∞Fn(β,μ) = ∂j+k

∂βj ∂μk
F∞(β,μ).(9)

This implies that phases and phase transitions can be determined from the lim-
iting free energy density, and so a phase is commonly defined (see, e.g., [5]) as
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a connected region of the (β,μ) parameter space maximal for the condition that
F∞(β,μ) is analytic.

Using the obvious analogues for random graphs, with β1 playing the role of
−βμ and β2 the role of −βa (and therefore positive if and only if the model is “at-
tractive”), ψn = ψn(β1, β2) plays the key role of the free energy density Fn(β,μ).
We will show in Theorems 3.9 and 3.10 below that the limiting free energy den-
sity ψ∞(β1, β2) exists, and the proof of Theorem 2 by Yang and Lee [12], on the
commutation of limits, then goes through without any difficulty in this setting, so
we can again define phases and phase transitions through the limiting free energy
density, as follows.

DEFINITION 2.4. A phase is a connected region of the parameter space
{(β1, β2)}, maximal for the condition that the limiting free energy density,
ψ∞(β1, β2), is analytic. There is a j th-order transition at a boundary point of a
phase if at least one j th-order partial derivative of ψ∞(β1, β2) is discontinuous
there, while all lower order derivatives are continuous.

Theorems 2.1 and 2.2 thereby justify our interpretation in Corollary 2.3 that
each of our models consists of a single phase with a first order phase transition
across the indicated curve, except at the end (or “critical”) point (βc

1, βc
2), where

the transition is second order, superficially similar to the transition between liquid
and gas in equilibrium materials.

3. Proofs. Chatterjee and Diaconis have proven that the main object of inter-
est, ψ∞(β1, β2), exists for all β1 and nonnegative β2 and is the solution of a certain
optimization problem:

THEOREM 3.1 (Part of Theorem 4.1 in [1]). Fix one of our models and assume
H2 has p ≥ 2 edges. Then for all (β1, β2) in the upper half-plane (β2 > 0), the
pointwise limit ψ∞(β1, β2) = limn→∞ ψn(β1, β2) exists and

ψ∞(β1, β2) = sup
u∈[0,1]

(
β1u + β2u

p − 1

2
u logu − 1

2
(1 − u) log(1 − u)

)
.(10)

The following detailed analysis of this maximization problem is therefore fun-
damental to understanding the phase structure of our models, and we now address
it.

PROPOSITION 3.2. Fix an integer p ≥ 2. Consider the maximization problem
for

l(u;β1, β2) = β1u + β2u
p − 1

2u logu − 1
2(1 − u) log(1 − u)(11)

on the interval [0,1], where −∞ < β1 < ∞ and −∞ < β2 < ∞ are parameters.
Then there is a V -shaped region in the (β1, β2) plane with corner point (βc

1, βc
2)
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such that outside this region, l(u) has a unique local maximizer (hence global
maximizer) u∗; whereas inside this region, l(u) always has exactly two local max-
imizers u∗

1 and u∗
2. Moreover, for every β1 inside this V -shaped region (β1 < βc

1),
there is a unique β2 = q(β1) such that the two local maximizers of l(u;β1, q(β1))

are both global maximizers. Furthermore q is a continuous and decreasing func-
tion of β1.

REMARK. By the Lebesgue Differentiation theorem, q being monotone guar-
antees that it is differentiable almost everywhere.

PROOF OF PROPOSITION 3.2. The location of maximizers of l(u) on the in-
terval [0,1] are closely related to properties of its derivatives l′(u) and l′′(u),

l′(u) = β1 + pβ2u
p−1 − 1

2
log

u

1 − u
,(12)

l′′(u) = p(p − 1)β2u
p−2 − 1

2u(1 − u)
.(13)

We first analyze properties of l′′(u) on the interval [0,1]. Consider instead the
function

m(u) = 1

2p(p − 1)up−1(1 − u)
.(14)

Simple optimization shows

0 ≤ (p − 1)up−1(1 − u) ≤
(

p − 1

p

)p

,(15)

and the equality holds if and only if u = p−1
p

. Thus

pp−1

2(p − 1)p
≤ m(u) < ∞(16)

with the lower bound achieved only at u = p−1
p

, and m(u) decreases before this

minimum and increases after it. This implies that for β2 ≤ pp−1

2(p−1)p
, l′′(u) ≤ 0 on

the whole interval [0,1]; whereas for β2 >
pp−1

2(p−1)p
, l′′(u) will take on both positive

and negative values, and we denote the transition points by u1 and u2 (u1 <
p−1
p

<

u2).
Based on properties of l′′(u), we next analyze properties of l′(u) on the interval

[0,1]. For β2 ≤ pp−1

2(p−1)p
, l′(u) is monotonically decreasing. For β2 >

pp−1

2(p−1)p
, l′(u)

is decreasing from 0 to u1, increasing from u1 to u2 and then decreasing again from
u2 to 1.
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Based on properties of l′(u) and l′′(u), we analyze properties of l(u) on the in-
terval [0,1]. Independent of the choice of parameters β1 and β2, l(u) is a bounded
continuous function, l′(0) = ∞ and l′(1) = −∞, so l(u) cannot be maximized at

0 or 1. For β2 ≤ pp−1

2(p−1)p
, l′(u) crosses the u-axis only once, going from positive

to negative. Thus l(u) has a unique local maximizer (hence global maximizer) u∗.

For β2 >
pp−1

2(p−1)p
, the situation is more complicated and deserves a careful anal-

ysis. If l′(u1) ≥ 0 [resp., l′(u2) ≤ 0], l(u) has a unique local maximizer (hence
global maximizer) at a point u∗ > u2 (resp., u∗ < u1). If l′(u1) < 0 < l′(u2), then
l(u) has two local maximizers u∗

1 and u∗
2, with u∗

1 < u1 <
p−1
p

< u2 < u∗
2.

Notice that u1 and u2 are solely determined by the choice of parameter β2 >
pp−1

2(p−1)p
, and vice versa. By (14),

l′(u1) = β1 + 1

2(p − 1)(1 − u1)
− 1

2
log

u1

1 − u1
,(17)

l′(u2) = β1 + 1

2(p − 1)(1 − u2)
− 1

2
log

u2

1 − u2
.(18)

Consider the function

n(u) = 1

2(p − 1)(1 − u)
− 1

2
log

u

1 − u
.(19)

It is not hard to see that n(0) = ∞, n(1) = ∞, n(u) is decreasing from 0 to p−1
p

,

then increasing from p−1
p

to 1, and the global minimum value is

n

(
p − 1

p

)
= p

2(p − 1)
− 1

2
log(p − 1).(20)

This implies in particular that l′(u1) ≥ 0 for β1 ≥ 1
2 log(p − 1) − p

2(p−1)
. The only

possible region in the (β1, β2) plane where l′(u1) < 0 < l′(u2) is thus bounded by

β1 < 1
2 log(p − 1) − p

2(p−1)
and β2 >

pp−1

2(p−1)p
.

We now analyze the behavior of l′(u1) and l′(u2) more closely when β1 and
β2 are chosen from this region. Recall that by construction, u1 <

p−1
p

< u2. By

monotonicity of n(u) on the intervals (0,
p−1
p

) and (
p−1
p

,1), there exist continuous
functions a(β1) and b(β1) of β1, such that l′(u1) < 0 for u1 > a(β1) and l′(u2) > 0
for u2 > b(β1). a(β1) is an increasing function of β1, whereas b(β1) is a decreasing
function, and they satisfy

n
(
a(β1)

) = n
(
b(β1)

) = −β1.(21)

Also, as β1 → −∞, a(β1) → 0 and b(β1) → 1. By (14), the restrictions on u1 and
u2 yield restrictions on β2. We have l′(u1) < 0 for β2 < m(a(β1)) and l′(u2) > 0



2464 C. RADIN AND M. YIN

FIG. 1. The V -shaped region (with phase transition curve inside) in the (β1, β2) plane. Graph
drawn for p = 3.

for β2 > m(b(β1)). Notice that m(a(β1)) and m(b(β1)) are both decreasing func-
tions of β1, and as β1 → −∞, they both grow unbounded. By construction, for
every parameter value (β1, β2), l′(u2) > l′(u1). Also, for fixed β1, m(a(β1)) is the
value of β2 for which l′(u1) = 0, and m(b(β1)) is the value for which l′(u2) = 0.
Thus the curve m(b(β1)) must lie below the curve m(a(β1)). And together they
generate the bounding curves of the V -shaped region in the (β1, β2) plane where
two local maximizers exist for l(u). It is not hard to see that the corner point is

given by (βc
1, βc

2) = (1
2 log(p − 1) − p

2(p−1)
,

pp−1

2(p−1)p
). (See Figures 1–6.)

Fixing an arbitrary β1 < βc
1 , we examine the effect of varying β2 on the graph

of l′(u). It is clear from (12) that l′(u) shifts upward as β2 increases. As a result,

FIG. 2. Outside the V -shaped region, l(u) has a unique local maximizer (hence global maxi-
mizer) u∗. Graph drawn for β1 = −0.8, β2 = 0.1 and p = 3.
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FIG. 3. Outside the V -shaped region, l(u) has a unique local maximizer (hence global maximizer)
u∗. Graph drawn for β1 = −0.8, β2 = 2 and p = 3.

as β2 gets large, the positive area bounded by the curve l′(u) increases, whereas
the negative area decreases. By the fundamental theorem of calculus, the differ-
ence between the positive and negative areas is the difference between l(u∗

2) and
l(u∗

1), which goes from negative [l′(u2) = 0, u∗
1 is the global maximizer] to positive

[l′(u1) = 0, u∗
2 is the global maximizer] as β2 goes from m(b(β1)) to m(a(β1)).

Thus there must be a unique β2 :m(b(β1)) < β2 < m(a(β1)) such that u∗
1 and u∗

2
are both global maximizers. We denote this β2 by q(β1); see Figures 1 and 6.

By analyzing the graph of l′(u), we see that the parameter values of (β1, q(β1))

are exactly the ones for which positive and negative areas bounded by l′(u) equal
each other. An increase in β1 will induce an upward shift of l′(u), which must be
balanced by a decrease in β2 = q(β1). Similarly, a decrease in β1 will induce a
downward shift of l′(u), which must be balanced by an increase in β2 = q(β1).
This justifies that q is monotonically decreasing in β1. Furthermore, the continuity
of l′(u) as a function of β1 and β2 implies the continuity of q as a function of β1.

�

FIG. 4. Along the lower bounding curve of the V -shaped region, l′(u) has two zeros u∗
1 and u∗

2,
but only u∗

1 is the global maximizer for l(u). Graph drawn for β1 = −0.8, β2 = 0.769 and p = 3.
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FIG. 5. Along the upper bounding curve of the V -shaped region, l′(u) has two zeros u∗
1 and u∗

2,
but only u∗

2 is the global maximizer for l(u). Graph drawn for β1 = −0.8, β2 = 1.396 and p = 3.

COROLLARY 3.3. The transition curve β2 = q(β1) displays a universal
asymptotic behavior as β1 → −∞

lim
β1→−∞

∣∣q(β1) + β1
∣∣ = 0.(22)

PROOF. Assume β1 = β = −β2 + δ where |δ| �= 0, and define F(u,β) =
β(u − up), I (u) = −(1/2)u logu − (1/2)(1 − u) log(1 − u) and G(u) = δup +
I (u). Then �(u;β1, β2) = �(u,β) = F(u,β) + G(u). We will show, for suffi-
ciently negative β , that if δ > 0 the global maximum u∗ of �(u,β) equals u∗

2, while
if δ < 0 u∗ equals u∗

1. This implies, for these β , that −β − |δ| < q(β) < −β + |δ|,
which will prove the desired limit.

From the continuity of G(u) there exists η ∈ (0,1/p), such that |G(u) −
G(u0)| < |δ|/2 for all |u − u0| < η, for both u0 = 0 and u0 = 1. Recall that
u∗

1 < u1 <
p−1
p

< u2 < u∗
2. Since u − up = u(1 − up−1) > 0 on (0,1), there ex-

ists B < 0 such that for all β < B and u ∈ [η,1 − η], F(u,β) < −1 − |δ| and
therefore �(u,β) < 0 = �(0, β), so u∗ ∈ [0, η)∪ (1 −η,1]. Using that F(u,β) ≤ 0
for all β < 0 and all u ∈ [0,1], if δ > 0 and u < η < 1/p ≤ (p − 1)/p, then
�(u,β) < δ/2 < δ = �(1, β) so u∗ = u∗

2, while if δ < 0 and u > 1−η > (p−1)/p,
then �(u,β) < −|δ|/2 < 0 = �(0, β) and therefore u∗ = u∗

1. �

FIG. 6. Along the phase transition curve, l(u) has two local maximizers u∗
1 and u∗

2, and both are
global maximizers. Graph drawn for β1 = −0.8, β2 = 0.884 and p = 3.
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So far we have used results from [1] but have avoided specific reference to the
framework of graph limits, developed by Lovász et al, which was used to prove
those results. We now need to refer directly to graph limits; for the notation and an
introduction to this material see, for instance, [8] or [1].

THEOREM 3.4. Let Gn be a random graph on n vertices in one of our mod-
els. For parameter values of (β1, β2) in the upper half-plane β2 > − 2

p(p−1)
, the

behavior of Gn in the large n limit is as follows:

min
u∈U

δ�(G̃n, ũ) → 0 in probability as n → ∞,(23)

where U is the set of maximizers of (11).

PROOF. The assumptions of Theorems 4.2 or 6.1 in [1] are satisfied for pa-
rameter values β2 > − 2

p(p−1)
. By Proposition 3.2, along the curve (β1, q(β1)), the

maximization problem (11) is solved at two values u∗
1 and u∗

2; whereas off this
curve, it is solved at a unique value u∗. Thus in the large n limit, along the curve
(β1, q(β1)), Gn behaves like an Erdős–Rényi graph G(n,u) (u picked by some
distribution from u∗

1 and u∗
2); whereas off this curve, Gn is indistinguishable from

the Erdős–Rényi graph G(n,u∗). �

COROLLARY 3.5. Fix any β2 > βc
2 . Let H be an edge, so t (H,Gn) is the edge

density of Gn. Then there exists a continuous and decreasing function q−1(β2)

such that

lim
n→∞ P

β1,β2
n

(
t (H,Gn) > u2

) = 1 if β1 > q−1(β2)(24)

and

lim
n→∞ P

β1,β2
n

(
t (H,Gn) < u1

) = 1 if β1 < q−1(β2).(25)

Here u1 and u2 are defined as in the proof of Proposition 3.2: m(u1) = m(u2) =
β2.

REMARK. As β2 → ∞, u1 → 0 and u2 → 1 and the jump is noticeable even
for relatively small values of β2.

PROOF OF COROLLARY 3.5. As q(β1) is a continuous and decreasing func-
tion of β1, the inverse function q−1(β2) exists and is also continuous and de-
creasing. We examine the effect of varying β1 on the graph of l′(u) [and hence
on the global maximizers of l(u)]. First note that varying β1 does not change
the shape of l′(u). Inside the V -shaped region, there are three cases. Recall that
u∗

1 < u1 <
p−1
p

< u2 < u∗
2. For β1 = q−1(β2), positive and negative areas bounded

by l′(u) equal each other and thus u∗
1 and u∗

2 are both global maximizers. For
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β1 < q−1(β2), the graph of l′(u) shifts downward, negative area exceeds positive
area and thus u∗

1 is the global maximizer. For β1 > q−1(β2), the graph of l′(u)

shifts upward, positive area exceeds negative area and thus u∗
2 is the global maxi-

mizer. Outside the V -shaped region, there are two cases. Below the lower bound-
ing curve, l′(u) has a unique local maximizer u∗ < u1. Above the upper bounding
curve, l′(u) has a unique local maximizer u∗ > u2. Our conclusion then follows
from Theorem 3.4. �

THEOREM 3.6. Assume that in one of our models H2 is a p-star (p ≥ 2). For
all parameter values (β1, β2), the behavior of Gn in the large n limit is as follows:

min
u∈U

δ�(G̃n, ũ) → 0 in probability as n → ∞,(26)

where U is the set of maximizers of (11).

PROOF. This follows from related results in [1]. We separate the parameter
plane {(β1, β2)} into upper and lower half-planes. The upper half-plane (β2 ≥ 0)
satisfies the assumptions of Theorem 4.2, and the lower half-plane (β2 ≤ 0) satis-
fies the assumptions of Theorem 6.4. By similar reasoning as in Theorem 3.4, the
rest of the proof follows. �

The following is a straightforward application of the standard analytic implicit
function theorem, which can be found, for instance, in the text of Krantz and
Parks [7], so we omit the proof.

PROPOSITION 3.7. Off the end point (βc
1, βc

2), the local maximizer u∗ for
l(u;β1, β2) (u∗

1 and u∗
2 if inside the V -shaped region) is an analytic function of

the parameters β1 and β2.

PROPOSITION 3.8. Off the phase transition curve, l(u∗) = max l(u;β1, β2)

[l(u∗
1) or l(u∗

2) if inside the V -shaped region] is an analytic function of the param-
eters β1 and β2.

PROOF. It is clear that l(u;β1, β2) is analytic for u ∈ (0,1), β1 ∈ (−∞,∞),
and β2 ∈ (−∞,∞). Outside the V -shaped region, l(u) has a unique local maxi-
mizer u∗ in (0,1), which is analytic in β1 and β2 by Proposition 3.7. Inside the V -
shaped region, l(u) has two local maximizers u∗

1 and u∗
2, both have values in (0,1)

and are analytic in β1 and β2 by Proposition 3.7. Below the phase transition curve,
max l(u) is given by l(u∗

1), which coincides with l(u∗) along the lower bounding
curve. Above the phase transition curve, max l(u) is given by l(u∗

2), which coin-
cides with l(u∗) along the upper bounding curve. Our claim follows by realizing
that compositions of analytic functions are analytic as long as the domains and
ranges match up. �
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THEOREM 3.9. Let Gn be a random graph on n vertices in one of our models.
The limiting free energy density ψ∞ = limn→∞ ψn is an analytic function of the
parameters β1 and β2 off the phase transition curve in the upper half-plane β2 >

− 2
p(p−1)

.

PROOF. The assumptions of Theorems 4.1 and 6.1 in [1] are satisfied for pa-
rameter values β2 > − 2

p(p−1)
. Our claim then follows from Proposition 3.8. �

THEOREM 3.10. Assume that in one of our models H2 is a p-star (p ≥ 2).
The limiting free energy density ψ∞ = limn→∞ ψn is an analytic function of the
parameters β1 and β2 off the phase transition curve.

PROOF. The assumptions of Theorems 4.1 or 6.4 in [1] are satisfied. Our claim
again follows from Proposition 3.8. �

LEMMA 3.11 (Lovász–Szegedy [8]). Let U,W : [0,1]2 → [0,1] be two sym-
metric integrable functions. Then for every finite simple graph F ,∣∣t (F,U) − t (F,W)

∣∣ ≤ ∣∣E(F)
∣∣ · δ�(Ũ , W̃ ).(27)

PROOF OF THEOREMS 2.1 AND 2.2. The stated analyticity is proven in Theo-
rems 3.9 and 3.10, so we only need to examine the situation along the phase transi-
tion curve. We know from Theorems 3.4 and 3.6 that G̃n converges in probability
to u∗, off the curve. By Lemma 3.11, t (H1,Gn) then converges in probability to
t (H1, u

∗). As t (H1,Gn) is uniformly bounded in n, this implies that

Eβ1,β2

{∣∣t (H1,Gn) − t
(
H1, u

∗)∣∣} → 0 as n → ∞.(28)

Therefore

Eβ1,β2

{
t (H1,Gn)

} → Eβ1,β2

{
t
(
H1, u

∗)}
(29)

= u∗(β1, β2) = ∂

∂β1
ψ∞(β1, β2) as n → ∞.

Similarly,

Eβ1,β2

{
t (H2,Gn)

} → Eβ1,β2

{
t
(
H2, u

∗)}
(30)

= (
u∗(β1, β2)

)p = ∂

∂β2
ψ∞(β1, β2) as n → ∞.

By Corollary 3.5, these two first derivatives ∂
∂β1

ψ∞ and ∂
∂β2

ψ∞ are discontin-
uous across the curve (except at the end point). Let us now take a closer look
at the behavior of ψ∞ at the critical point. Recall that l′(u;βc

1, βc
2) is monoton-

ically decreasing on [0,1], and the unique zero is achieved at p−1
p

. Take any



2470 C. RADIN AND M. YIN

0 < ε < 1
p

. Set δ = min{l′(p−1
p

− ε),−l′(p−1
p

+ ε)}. Consider (β1, β2) so close
to (βc

1, βc
2) such that |β1 − βc

1 | + p|β2 − βc
2 | < δ. For every u in [0,1], we then

have |l′(u;β1, β2)− l′(u;βc
1, βc

2)| < δ. It follows that the zeros u∗(β1, β2) (u∗
1 and

u∗
2 if inside the V -shaped region) must satisfy |u∗ − p−1

p
| < ε, which easily im-

plies the continuity of ∂
∂β1

ψ∞ and ∂
∂β2

ψ∞ at (βc
1, βc

2). To see that the transition
at the critical point is second-order, we check the second derivatives of ψ∞ in its
neighborhood. Off the phase transition curve,

lim
n→∞

∂2

∂β2
1

ψn = ∂2

∂β2
1

ψ∞ = ∂

∂β1
u∗ = − 1

l′′(u∗)
,(31)

lim
n→∞

∂2

∂β1 ∂β2
ψn = ∂2

∂β1 ∂β2
ψ∞ = ∂

∂β1

(
u∗)p = −p(u∗)p−1

l′′(u∗)
,(32)

lim
n→∞

∂2

∂β2
2

ψn = ∂2

∂β2
2

ψ∞ = ∂

∂β2

(
u∗)p = −(p(u∗)p−1)2

l′′(u∗)
.(33)

But as was explained in the proof of Proposition 3.2, l′′(u∗) converges to zero as
(β1, β2) approaches (βc

1, βc
2); the desired singularity is thus justified. �

4. Summary. Much of the literature on phase transitions in exponential ran-
dom graph models uses techniques such as mean-field approximations, which are
mathematically uncontrolled. As such they have been useful in discovering inter-
esting behavior, but they can be misleading in detail. For instance, although phase
transitions have been discovered in this way for the two-star (H2 a two-star) [10]
and edge-triangle (H2 a triangle) models [11], the approximation leads to an error
in the qualitative nature of the transition, attributing phase coexistence to the full
V -shaped region of Figure 1 rather than just the curve β2 = q(β1); in other words
it does not distinguish the local maxima in the region from the global maxima.

Chatterjee and Diaconis [1] gave the first rigorous proof of singular behavior
in an exponential random graph model, the edge-triangle model. Our paper is an
extension of this important first step; besides extending the models and parameters
under control we have provided a mathematical framework of “phases” which we
hope will be useful in motivating future mathematical work in this subject. Our
results show that all models with “attraction” (β2 > 0) exhibit a transition qual-
itatively like the gas/liquid transition: a first order transition corresponding to a
discontinuity in density, with a second order critical point. In Theorem 7.1 of [1]
Chatterjee and Diaconis suggest that, quite generally, models with repulsion ex-
hibit a transition qualitatively like the solid/fluid transition, in which one phase has
nontrivial structure, as distinguished from the “disordered” Erdős–Rényi graphs,
which have independent edges. We have not yet been able to extend our results to
this regime, except for p-star models with “repulsion” (β2 < 0) which we prove do
not exhibit a transition. It is an important open problem to determine the qualitative
behavior of models based on an H2 with chromatic number above 2.
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