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Bayesian Nonparametric Modelling of the

Return Distribution with Stochastic Volatility

Eleni-Ioanna Delatola* and Jim E. Griffint

Abstract. This paper presents a method for Bayesian nonparametric analysis of
the return distribution in a stochastic volatility model. The distribution of the
logarithm of the squared return is flexibly modelled using an infinite mixture of
Normal distributions. This allows efficient Markov chain Monte Carlo methods
to be developed. Links between the return distribution and the distribution of
the logarithm of the squared returns are discussed. The method is applied to
simulated data, one asset return series and one stock index return series. We
find that estimates of volatility using the model can differ dramatically from those
using a Normal return distribution if there is evidence of a heavy-tailed return

distribution.

Keywords: Dirichlet process, Asset Return, Stock Index, Off-set mixture represen-

tation, Mixture model, Centred representation

1 Introduction

The prices of financial assets are usually thought to behave according to some stylized
facts. The clearest example is that returns (the changes in the log price over a specified
period) have a standard deviation (or volatility) that changes over time. The main
purpose of stochastic volatility (SV) models is to describe this underlying time-varying
volatility. The first publication of a direct time-varying volatility model was by Taylor
(1982) who modelled the log of volatility by a latent AR(1) process. In line with the
work of Clark (1973) and Tauchen and Pitts (1983), the use of the AR process can be
explained as the representation of a random and uneven flow of new information, which

is hard to be modelled in a direct way. Taylor’s model for returns y1,¥2,...,Yyn i8
ye = Be e, (1)

hit1=p+ ¢ (he — p) + onne
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where h; is the log-volatility at time ¢, and €; and 7 are independent with mean zero and
unit variance. The log volatility process is an AR(1) process with persistence parameter
¢ (which must be between -1 and 1 for the process to be stationary), which implies that
the stationary distribution of h; has mean p and variance o7 /(1 — ¢*). The model is
unidentified but setting 5 =1 or u = 0 leads to an identified model. In this case, § or
exp(p/2) can be interpreted as the modal instantaneous volatility.

Commonly, €; and 7; are assumed Normally distributed. However, the assumption
of Normality for €; has been questioned in the literature and heavier tailed distribu-
tions have been proposed as alternatives. For example, Nakajima and Omori (2009)
and Jacquier et al. (2004) consider the ¢-distribution, Barndorff-Nielsen (1997) uses
the Normal-Inverse Gaussian, Mahieu and Schotman (1998) use a mixture of Normals
and Abanto-Valle et al. (2010) apply scale mixture of Normals using different mixing

parameters.

A well-known problem with Bayesian inference in the SV model in equation (1) is
that the likelihood has an intractable form. There are many computational schemes in
the literature that deal with this problem by including the log-volatilities hy, ho, ..., hy
in a Markov chain Monte Carlo (MCMC) sampler (see Broto and Ruiz (2004) for a
review). Jacquier et al. (1994) proposed a single state cyclic Metropolis-Hastings algo-
rithm to update the log-volatilities one at a time. Shephard and Kim (1994) showed that
when the persistence ¢ takes values close to unity and the variance 072] takes very small
values then the log-volatilities are highly correlated and the single-state algorithm gen-
erates highly correlated draws, leading to slow mixing of the sampler. Kim et al. (1998)
introduced a sampling scheme which updates the log-volatilities simultaneously using a
linearization of the model. Alternatively, random-length blocks of the log-volatilities in
the model in (1) can be jointly updated to reduce correlation in draws (see Jensen and
Maheu 2010; Abanto-Valle et al. 2010, in the context of mixture models).

The approach of Kim et al. (1998) expresses the basic SV model in equation (1) as

a linear state space model by taking the logarithm of the squares of the observations,
yi = logy:

Yy = he + 2 for t=1,...n (2)

where z; = loge?. The distribution of z; is a logx? if €2 is Normally distributed and so
Kalman filtering techniques cannot be directly applied. Kim et al. (1998) and Omori
et al. (2007) suggest using a mixture of Normals to approximate this distribution. This
allows a multi-state algorithm to be defined that updates all the log-volatilities simul-

taneously using a filtering forward backward sampling (FFBS) algorithm (Carter and
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Kohn 1994; Frithwirth-Schnatter 1994; Durbin and Koopman 2002) leading to faster
mixing than single-state algorithms. A problem with this parametrization is that the
returns can take values very close to zero or even in some cases zero, leading the trans-
formed values to be largely negative or undefined respectively. This problem is an
inlier problem which can be solved by introducing an offset parameter ¢ and defining
yr = log(y? + ¢) (Fuller 1996).

Our contribution is to propose a Bayesian nonparametric approach to estimating the
distribution of loge? and so avoid parametric assumptions about the return distribution.
Our model replaces the finite Normal mixture approximating the logx? distribution with
a Dirichlet process mixture model (DPM). This allows us to use the FFBS algorithm,
and thus to extend the work of Kim et al. (1998) and Omori et al. (2007). We use the
alternative representation of the DPM as introduced by Griffin (2010). Models with
nonparametric return distributions can capture features of the return data which the
parametric equivalents cannot fully capture (Gallant et al. 1997; Mahieu and Schotman
1998; Durham 2006). Durham (2006) states that, “... I find no evidence that even the
simple-factor models are unable to capture the dynamics of the volatility process. The
more critical problem is to capture the shape of the conditional returns distribution”.
From the above, one can conclude that simple parametric models will often be unable
to adequately model the conditional return distribution. A DPM model offers a flexible
alternative as it can be considered an infinite mixture model where the data specify the
number of mixing components. Additionally, efficient algorithms have been developed
that facilitate the sampling from the posterior of a DPM model (Neal 2000).

The idea of using Bayesian nonparametric methods in stochastic volatility literature
has been seen in Jensen (2004) and Jensen and Maheu (2010). Jensen (2004) used a
DPM prior to model the distribution of the wavelet coefficients of z; for a fractionally
integrated SV model. Jensen and Maheu (2010) introduce a semiparametric SV model
which directly models the asset returns, without using the offset mixture model repre-
sentation. The model we propose is a semiparametric offset mixture model, where the
error terms of the observation equation are modelled nonparametrically with the DPM
model and having an AR(1) process for the latent log-volatilities. In the work of Jensen
and Maheu (2010), their semiparametric SV model uses the DPM representation which

mixes over both the mean and the variance.

The outline of this paper is: Section 2 describes the Dirichlet process and its use
in mixture modelling, Section 3 introduces the semiparametric SV model, Section 4

describes an MCMC sampler for inference, Section 5 gives a simulated example and
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some empirical examples, Section 6 is a discussion.

2 Dirichlet Process Mixture model

The Dirichlet process mixture of normals model (DPM) was introduced by Lo (1984)
and Ferguson (1983) and has become one of the most popular models in Bayesian non-
parametrics (for other models in the Bayesian nonparametrics see Miiller and Quintana

(2004)). The model can be constructed in the following way. Let

fe(2) = Zk:ij (Z ‘u;,df)
j=1

where N(z|u, 02) represents a Normal distribution with mean p and variance o2, and
P1,P2, ...,k follow a Dirichlet distribution with parameters (%, %, e %) This is
a k-component normal mixture model where the location parameter u;- and the scale

parameter 032- differ from component-to-component and p; are the mixing weights. If
72
J

it is straightforward to show that the limit of fi as k — oo is well-defined and it is a

we further assume that (u;, 0.”) are a priori independent and identically distributed,
Dirichlet process mixture model. Therefore, the DPM belongs in the class of infinite

mixture models. Alternatively, the k-component normal mixture model can be written

fulz) = / N (= | 0) deiut, o)

G =305 (1,77
j=1

where § (21, x9) represents the Dirac measure that places mass 1 on (z1,22). If ¢/, o'? PR

H, the measure Gy limits to a measure G with a Dirichlet process prior with mass pa-
rameter M and centring distribution H if kK — co. We will write this as G ~ DP(M, H).

Many authors have followed Escobar and West (1995) by specifying priors on u;- and
032. This must be informative for effective inference. We will use an alternative form
of prior suggested by Griffin (2010) which allows non-informative prior distributions for

parameters representing overall location and overall scale. The model for observation
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Z1,22,...,%p can be written
AT NN(/L;,O«J‘g), t=1,2,...,n (3)
w~G,  t=12....n
G ~DP (M, H)
H =N (po, (1 —a)o?), (4)

where 1 is the overall location, o2 is the overall scale and « is interpreted as a smooth-
ness parameter. The data, z;, are conditionally Normally distributed and only the
means u;- are distributed as a Dirichlet process with mass parameter M. This model
assumes that the mixing component variances are constant where o2 is the prior vari-
ance of z;. The prior expected distribution of z; is Normal with mean pg and variance

o2 which centres the prior of the distribution of z;.

Many efficient MCMC sampling schemes for these models have been developed (Es-
cobar and West 1995; Neal 2000). The model in (3) is a conjugate Dirichlet process
and so standard MCMC methods as described by Escobar and West (1995) can be used
directly. Griffin (2010) gives full details of the MCMC sampler needed for this model.

3 Semiparametric SV model

In this section, we present a semiparametric SV model (SPM) which has a nonpara-
metric specification for the conditional return distribution but retains the parametric
specification of the volatility process. In contrast to Jensen and Maheu (2010), the
model uses the linearized parametrization of the basic SV model and so makes use of
the sampling method of Kim et al. (1998) to efficiently update the volatilities in the
MCMC algorithm. The SPM model is

y: = h‘t + Zt, (5)

hivr = p+ ¢ (he — p) + oy,
where y; = log (y7 + ), 2 = loge? ~ F and 1, ~ N(0,1). By modelling the distribution
of yf, rather than y; directly, information about the sign of the return y; is lost. There-
fore, the distribution of y; or €; can only be recovered by making an assumption about
the distribution of the sign of the return. We will assume that the distribution of €;, and
SO yt, is symmetric. Although a strong assumption, Jensen and Maheu (2010) find little
evidence of skewness in their empirical examples and also find that a symmetric model

gives better out-of-sample prediction performance than a model which allows skewness.



906 Nonparametric SV modelling

0.25 T
—Normal
ot
0.2f|- Normal-Gamma| ]
0.15f B
0.1r B
0.05r |
99 15 10 s 0 5 10

Figure 1: Plot of loge? for three different distributions of ¢;.

To understand the types of distribution that z; may follow, Figure 1 shows the
distribution of z; for several popular choices for ¢;. These are: the Normal distribution,
the ¢ distribution with 5 degrees of freedom and the Normal-Gamma distribution. The
t5 distribution has a similar left tail to the Normal distribution but it has a heavy right-
hand tail. On the other hand, the Normal-Gamma distribution does not have as heavy
tails as the t5 and the distribution has a flatter left-hand tail and similar right-hand tail

to the Normal distribution.

It is very common to come across zero returns when fitting these models to observed
data. In the literature, different techniques have been proposed to treat these values
(Harvey 1990; Sandmann and Koopman 1998). We will model the zero returns by a
Normal distribution centred around loge (since yf = loge if 3, = 0) and model the
non-zero returns by a Dirichlet process mixture of Normals. This leads to the following

model for z,
p(2:) = WN (loge,08) + (1 — W) ijN (u;-,ozoﬁ) (6)
j=1

where W is the probability that a return is a zero return and o3 = 1 throughout the
paper. As well as affecting the fit of the model, the zero returns can also lead to slow
mixing of the MCMC sampling scheme if W = 0 (i.e. there is no component for the
zero returns). This is because the mixture model will capture the zero returns using
a component whose variance ao? will becomes very small which, in turn, leads to a

large number of components. The components in the Dirichlet process mixture model
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for the non-zero returns have the same variances. This is unusual for DPMs where
component variances are allowed to differ. Griffin (2010) shows that the assumption of
the same variances does not greatly affect inference about the unknown distribution in

many circumstances and can often lead to better out-of-sample predictive performance.

If a parametric distribution is assumed for z;, the mean of z; is fixed and so p is
identified. However, the mean is random if z; is given a nonparametric prior and so p
cannot be easily separated from the mean of z; without making additional assumptions.
Thus, in the MCMC sampling it is easier to subsume p into z; leading to the re-
parameterized model

yr = hi + 2, (7)

:-4-1 = ¢h; + Ont (8)

where h} = hy — p, zf = z + p and h} ~ N(0,02/(1—¢?)). After imposing this
constraint, the mean of h} is fixed to be zero and inference can be made for the SPM.
This constraint has also been used by Bush and MacEachern (1996) and Jensen and
Maheu (2010). It is still useful to have an estimate of y in order to be able to compare
the results of the SPM to results from the SV model in (1) with € having a Normal
distribution. This is achieved by noting that E[z}] = p + E[z]. If we assume that
E[z:] = —1.2704 (which is chosen to match the value if €; follows a Normal distribution)

which leads to the approximate value p = E[z}] + 1.2704.

Our posterior inference is about the distribution of 2} but we are typically interested
in the distribution of €;. If we assume that ¢; is symmetric, then the distribution of €; can
be recovered from the distribution of z;. The variance and kurtosis of ¢; are also useful
summaries of the distribution. The log of the variance of ¢; can be approximated using
the expected value of 2} and the kurtosis of €, can be approximated using the variance of
zy. These statements follow from taking a second order Taylor series expansion around

E[€?] and approximating the first term moments of z} by

E () = p+E(2) ~ p+ logE (¢7) _;(EV[S];
and 2
VD=V~ o ke 41

(V ()

where K(e;) is the kurtosis (the fourth central moment) of €;. Therefore,

K(e) =V (2) — 1. 9)
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and
exp{p}V () = exp{E (27) + V (3]) /2}.

The formula for p and the expression for V (¢;) and K (¢;) all involve E[z}] and V[z}].
These are hard to calculate from an MCMC sampler since they involve infinite sums.

We will use the following approximations:

k
E[zf|¢] = Wloge + (1 — W) Z

j=1

Uz /‘

n—i—MMJ—i—M—l—nMO

and

k /
Sier (v (002 +2)) + M (1 +02)

Vizr[¢] =W ((loge)® +1) + (1 =W - 10
410) =W ((loge)? +1) + (1~ W) i (10

— (p—1.2704)%. (11)

where ¢ = (W,c,k,n1,...,ng, pth, .., f, o, a,02, M) and n; is the number of ob-

servations allocated to the j** non-zero cluster and k is the number of distinct non-
zero clusters. The posterior expectation, E[zf|y], can be calculated using the estima-
tor E[z}ly] = + Zj\[:l E [2f )] where M), ... @) is an MCMC sample from the
posterior distribution. Similarly V [zf]y] can be estimated by = Zj\]:l V [z |wW] +

N _ ~ 2
v 2 (B L] - Blarlyl) -
We assume the following priors for the parameters of the SPM model:

¢ ~N(0,10) x I;_q 1], op ~1G(2.5,0.025),

where IG (a, b) is an inverted Gamma distribution with mean (if a > 1) -2+ and variance
(if a > 2) m (as in Kim et al. (1998)) and N (4, 0?) X I|, ) represents a Normal
distribution with mean y and variance o2 restricted to the interval (a,b) and so imposes
stationarity of the log-volatility process (as in Jacquier et al. (2004)). The prior for
W follows a Beta distribution, W ~ Be (0.1,0.9). The mass parameter of the Dirichlet

process, M, has the prior suggested by Griffin and Steel (2004),
_ o rey Mt
(T )* (M +6)*

where 0 denotes a prior sample size and A is a variance parameter. While Griffin (2010)

p(M)

suggests a sampler for updating «, in this paper we keep the value fixed using two
different values for « = 0.01 and o = 0.05 as suggested by Griffin (2010), to show its
effect in the density estimation process. The effect of the different priors for the DPM
is discussed in Griffin (2010).
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4 MCMC algorithm

In this section we briefly discuss the steps of the MCMC algorithm to fit the SPM model.
More details of the algorithm can be found in Appendix A. Let, y* = (y3,v3, ..., yy),
h = (hy, ho,...,hy) and p’ = (,ull,u;, ...,H;L). Indicator variables s = (s, so, . .., $,) are
introduced to allocate the observations to the distinct values of the Dirichlet process.

We propose the following steps for the algorithm to update the parameters:

Initialize ¢, 07, 02, o, ', M,s, and W.

Sample h|y*, ¢, ag,ag,uo, w, M, W,s.

Sample S|y*a QS,O'%,U?,,LL(), Il'la M7 VV7 h.

Sample o2, o, ', M, Wy*, 6,02, h.

Sample ¢703‘y*70§vﬂ“07 “/7 Mv stv h.

The full algorithm is described in Appendix A but the steps are briefly described here.

Updating Log-Volatilities

The representation of the SV model in (5) and the choice of a mixture of Normals for
z; enables us to make easier inference. Conditional on s, the model for y* is a Gaussian
dynamic linear model and so the log-volatilities h can be updated simultaneously using
the forward filtering backward sampling (FFBS) algorithm (Carter and Kohn 1994;
Frithwirth-Schnatter 1994; Durbin and Koopman 2002).

Updating Mixture Components

The allocation variables s and the parameters of the mixture model can be updated
using the methods described by Griffin (2010) which uses standard methods for Dirichlet

process mixture models.

Updating SV parameters

We have found that it is necessary to mix between two parameterizations of the model
when updating the SV parameters. This is because the log-volatilities h and the pa-

rameters (gb, o?], u) are usually highly correlated. Two main approaches for improving
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the mixing have been proposed in the literature: reparametrize the model into a form
that reduces the dependence between the parameters and the log-volatilities (Gelfand
et al. 1995; Papaspiliopoulos et al. 2007) or to use a scheme that updates jointly the
parameters and the log-volatilities (Kim et al. 1998; Chib et al. 2002; Andrieu and
Roberts 2009). In this paper, we will use the first solution. In particular, we introduce
a centred and non-centred parameterization (Gelfand et al. 1995) of the SPM model and
update the parameters using a hybrid Gibbs sampler that chooses a parameterization
with some probability at each step of the Gibbs sampler. The model in equation (8) is
represented using the non-centred parameterization for u, i.e. p and the log-volatilities
are a priori independent. The alternative parametrization is the centered defined by the

reparameterization from (z',h) to (u*, h*) where u% = p; + po and hy = hy — po.

5 Results

In this section, the semiparametric SV model (SPM) is fitted to simulated data, asset
return data and stock index data. The results for the SPM model with o« = 0.01 and
a = 0.05 are compared to the results with the parametric SV model (PM) where ¢,
follows a Normal distribution using the algorithm of Kim et al. (1998). The fit of the
models will be assessed using log predictive scores as proposed by Kim et al. (1998).

The average log predictive score for one-step ahead predictions is given by

T
1 > . )
LPS = T i=1 logp (yz Y1:(i-1) 9)

where yt., = (y%, 95, ...,y7) and 0 is an estimate of the model parameters and the one-
step ahead predictive density is given by

YI;(¢_1),9A) ://p<y:‘

Smaller values of the LPS indicate a better fitting model. Monte Carlo approximations

P (y

hi,é>p(hi

hi—hé) p (hi—l ’}q;(i_n,é) dh;dh;_1.

to the integral in p (yz* yf:(i_l), é) for all i can be efficiently calculated using draws

from p (hi,l ‘yi‘:(ifl), é) sampled using standard sequential Monte Carlo methods. The
model parameters are (¢, 072], 1) in the parametric model and (¢, 072,, F) in the nonpara-
metric model which are all estimated by their posterior means. In the sequential Monte
Carlo sampler, it is useful to represent the posterior mean of F' by a mixture of normals.
The approximating mixture of normals is calculated by minimizing the Kullback-Leibler

divergence between the approximation and the posterior mean of F'.
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We often find that the different models have similar LPS values. Consequently, it is
useful to have a measure that concentrates on the prediction of tail events. We propose
the average log predictive tail score for one-step ahead predictions which restricts at-
tention to those events in the upper 100a% of the empirical distribution of the squared

returns and is defined by

T
LPTS, = ———— » I(y} > za)logp (y
Z I(yz > ZO& ;

yi. (i— 1)79)

where z, represents the upper 100a% point of the empirical distribution of the returns.
The LPTS cannot be formally used for model selection as it is not considered a proper
scoring rule (see Gneiting and Raftery 2007) but can be useful for understanding how

the model performs for tail events.

The approximation in (9) implies that the kurtosis of the distribution of ¢; can
be approximated by the variance of z;. Therefore, the posterior distribution of o2 =

V[zf|¥], given in (11), is reported in the results.

SPM (a=0.01) | SPM (« =0.05) | PM
Simulated 32930 32210 25738
Microsoft 55734 55349 34413
S&P 500 64274 67328 42530

Table 1: CPU times (in seconds) for the Semiparametric model with o = 0.01 and
a=0.05 for c = 1074,

CPU times in seconds of running each model and dataset for 50 000 iterations using
code written in Matlab with a 2GHz Intel Core 2 Duo processor are given in Table 1. All
results are calculated by running the sampler, coded in Matlab, for 200 000 iterations
using two quad core Xeon 2.53Ghz CPUs. The first 100 000 draws are discarded as burn-
in period and, after this period, we retain every 10" draw to reduce autocorrelation
between draws. The datasets that we will be using for our analysis are: simulated

returns, Microsoft returns and S&P 500 returns.

5.1 Simulated Data

We generated 3000 data points from the basic SV model in (1), with ¢ = 0.97 p = 0,
0727 = 0.0225 and ¢; following a Student t-distribution with 7 degrees of freedom. The

data used are shown in Figure 2.
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0 500 1000 15t00 2000 2500 3000

Figure 2: Simulated Data: the actual values of y;.

Figure 3 presents the autocorrelation function for sampled values from each param-
eter of SPM with a = 0.01. The autocorrelations decay quickly for all parameters apart
from M and o2 but these parameters do not show a large degree of autocorrelation.

This suggests that the SPM sampler mixes quickly.

True SPM (a = 0.01) SPM (a = 0.05) PM

6 | 0.97 | 0.960 (0.928, 0.979) | 0.965 (0.938, 0.982) | 0.904 (0.841, 0.942)
p | 0.000 | 0.023 (-0.145,0.197) | 0.095 (-0.07,0.269) 0.267 (0.135,0.403)
o, | 0.15 | 0.161 (0.116,0.232) | 0.145 (0.100,0.202) | 0.304 (0.230,0.404)
o 5.482 (5.009,6.115) | 4.929 (4.778,5.082)

M 0.360 (0.070,1.144) | 2.622 (0.445,17.453)

k 4 (2,7) 19 (5,90)

W 0.028 (0.012,0.043) | 0.000 (0.000,0.003)

Table 2: Simulated Data: Posterior medians and 95% Credible Intervals for the Semi-
parametric (SPM) and Parametric (PM) for ¢ = 1074,

Table 2 contains the posterior estimates for the parameters of PM and SPM with
a = 0.01 and o = 0.05. PM poorly estimates all parameters of the model with ¢
underestimated, and p and o, overestimated. In contrast, both instances of the semi-
parametric model estimate all parameters of the model well. The t7 distribution has a
kurtosis of 5. The posterior median kurtosis is approximately 4.5 when a = 0.01 and
3.9 when a = 0.05. Therefore, the kurtosis is a little underestimated but still has a
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Figure 3: Autocorrelation Plot for SPM with « = 0.01

value that is larger than the value associated with a Normal distribution. We also used
the method of Nakajima and Omori (2009) to fit a model with a ¢-distribution (with
unknown degrees of freedom). The results are very similar to those for the SPMs with

the posterior median kurtosis being 4.5.

Figure 4 shows the fitted volatilities for both the SPM and the PM for ¢ = 10~*
and the posterior mean of the density of logeZ. Panel (a) in Figure 4 shows that the
posterior means of the volatilities under PM tend to undersmooth the volatilities with
extra peaks introduced. The SPM models are able to estimate the volatilities well. We
might expect that the semi-parametric model leads to larger uncertainty in the estimates
of the volatilities since the model is less restricted. Panels (¢) and (d) of Figure 4 show
the credibility intervals for the SPM models which are very similar to those for a model
with a ¢-distribution for €;. Panel (E) of Figure 4 shows the predictive distribution of
the SPM using different values of a. Both choices lead to a satisfactory fit to the true
distribution used to generate the data. The lack of fit of the Normal distribution used
in PM is shown by the sharper decline of the density in the right-hand tail.

Table 3 shows the log predictive scores for SPM with a = 0.01 and o = 0.05, and for
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Figure 4: Simulated Data: Posterior mean volatilities for the PM and SPMs (Panel A);
posterior median and 95% credible interval for: PM (Panel B), SPM (a = 0.05) (Panel
C) and SPM (a = 0.01) (Panel D); Posterior mean distributions (Panel E).

PM. Overall, the LPS is smaller for the SPMs for all the offsets examined. However, the
differences between the models tend to be small. The results for the two tail measures
show that LPTSy o5 is similar under the PM and the SPMs but the SPMs outperform
the PM for LPTSgg;. We found that small values of the offset, for example ¢ = 1077,
can lead to poor predictive performance for tails events and this suggests that a larger
value of ¢ would lead to more reliable results. Therefore, we use ¢ = 10~* in the following

examples.

5.2 Real data examples

We fitted the SPM and PM models to the compounded returns in percentages (which is
yr = 100log(r¢/r¢—1) where 7 is the price at time t) of Microsoft (MSFT) from January
4, 1993 to December 31, 2008, which has 4030 data points, and the Standard and Poors
500 (S&P 500) index from March 13, 1980 to June 6, 2000, which has 5136 data points.
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Offset | SPM (o =0.01) SPM (a=0.05) PM
LPS c=1073 2.10 2.09 2.13
c=10"* 2.14 2.14 2.15
c=10"" 2.15 2.15 2.16
LPTSp05 | c=1073 3.06 3.08 2.99
c=10"* 3.13 3.06 3.00
c=10"" 3.12 3.13 2.99
LPTSp01 | c=1073 4.36 4.50 4.60
c=10"* 4.43 4.13 4.60
c=10"" 4.41 4.42 4.58
Table 3: Simulated Data: Log-Predictive Scores for competing models: PM, and SPM

with o = 0.01 and o = 0.05.

The data are depicted in Figure 5.

SPM (o = 0.01) SPM (o = 0.05) PM

¢ | 0.999 (0.996,0.999) | 0.996 (0.991,0.999) | 0.978 (0.967,0.987)
po| 1.291 (-0.204, 3.811) | 1.187 (0.442, 2.120) | 1.139 (0.837, 1.439)
o2 | 0.059 (0.051, 0.067) | 0.078 (0.061, 0.103) | 0.200 (0.165, 0.240)
o2 | 5.421 (5.299, 5.539) | 5.546 (5.395,5.722)

M | 22.96 (11.89, 44.00) | 33.69 (9.67, 75.1/)

k 123 (72,197) 141 (55, 283)

W | 0.017 (0.019, 0.023) | 0.016 (0.010, 0.022)

Table 4: MSFT: Posterior medians and 95% credible intervals for SPM with @ = 0.01
and a = 0.05 and PM for ¢ = 10~4.

Table 4 contains the results for the MSFT returns. The posterior median of ¢ is
larger under the SPMs and the posterior median of 072] is smaller under the SPMs. This
suggests that the PM tends to undersmooth the estimated volatilities and over-reacts
to large absolute returns (and shows a similar pattern to the results for the simulated
data). Although the posterior medians of ¢ for the SPMs are close to 1, this does not
imply violation of the stationarity assumption. With the SPMs, the parameter p is
smaller, suggesting a smaller variance for ¢, and ¢ is estimated to be much larger than
4 suggesting that the distribution of ¢; is heavy tailed. This suggests that the PM again
over-estimates the variance to compensate for the lighter tails of the assumed return

distribution. Finally, the posterior median of the number of clusters k is relatively big
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Figure 5: The returns of (a) Microsoft and (b) the S & P 500 index.

while the posterior median of W indicates the existence of zero returns. These findings

are similar to those found by Jensen and Maheu (2010).

Other posterior summaries for the MSF'T returns are shown in Figure 6. The poste-
rior mean of the density of loge? is shown in panel (E) and shows a bimodal distribution.
The larger mode represents the main body of the data but a second mode is introduced
at a much smaller value of loge7. This secondary mode is caused by the larger number
of zero log-returns. The position of the mode is sensitive to the choice of ¢ since a zero
return is recorded as logc?. The posterior distributions of the volatilities are shown in

the other panels and illustrate a smoother estimate for the SPMs compared to the PM.

The predictive performance of the SPMs and PM for the MSF'T asset returns series
are shown in Table 5. The results regarding the LPS score are qualitively the same for
all the offset parameters apart from ¢ = 107 where the PM is favoured. That is why
we employ the LPTS to see how the models behave in extreme events. The difference

is much more pronounced for the tail scores which substantially favour the SPMs for
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Figure 6: MSFT: Posterior mean volatilities for the PM and SPMs (Panel A); posterior
median and 95% credible interval for: PM (Panel B), SPM (« = 0.05) (Panel C) and
SPM (a = 0.01) (Panel D); Posterior mean distributions (Panel E).

c¢=1072 and ¢ = 10~%. In the case of ¢ = 10~7, the PM seems to be doing a better job
than the SPM.

Results of applying these models to a further asset price (General Motors from
January 2, 1980 to December 31, 1996) are presented in Delatola and Griffin (2010) and

show similar features to those identified in this analysis.

Table 6 shows the results of fitting the SPMs and the PM to the S & P 500 data. The
inference has similar features to the inference for the asset return data. The posterior
median of the persistence parameter, ¢, is estimated to be larger for the SPMs and
the variance of the volatility equation, 0%,
credible intervals for orf] with the PM and SPMs do not cross). As in the case of the

Microsoft returns, the posterior median for ¢ for the SPM model might be close to 1,

was estimated to be smaller (again, the 95%

but this does not imply a violation of the stationarity. The estimated value of o2 is
smaller than with the asset return data and suggests that the return distribution has a

lower level of kurtosis.
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Offset | SPM (o =0.01) SPM (a=0.05) PM

LPS c=10"3 2.13 2.16 2.13
c=10"* 2.18 2.18 2.16

c=10"" 2.26 2.50 2.21

LPTSp05 | c=1073 3.99 3.88 4.62
c=10"* 4.39 4.57 5.40

c=10"" 8.50 18.57 7.45

LPTSp 0, | c=1073 3.95 3.61 4.79
c=10"* 4.14 4.09 5.90

c=10"" 10.61 26.24 9.10

Table 5: MSFT: Log-Predictive
0.01 and o = 0.05.

Score for competing models: PM and SPM with a =

SPM (o = 0.01) SPM (o = 0.05) PM

¢ | 0.994 (0.989,0.998) | 0.994 (0.989,0.998) | 0.982 (0.972,0.990)
i | -0.193 (-0.704, 0.503) | -0.213 (-0.639,0.251) | -0.348 (-0.556,-0.096)
o, | 0.072 (0.057,0.090) | 0.073 (0.058,0.091) | 0.144 (0.113,0.173)
o2 | 4.239 (5.346,7.116) | 3.592 (3.520,4.621)

M | 0621 (0.185,1.771) | 2.195 (0.447, 15.407)

k 6 (3, 13) 17 (6, 46)

W | 0.037 (0.001, 0.047) | 0.039 (0.001, 0.118)

Table 6: S & P 500: Posterior medians and 95% credible intervals for SPM with o = 0.01
and o = 0.05 and PM for ¢ = 10~%.

Figure 7 shows the estimated volatilities and posterior mean of the distribution of
loge?. The posterior mean volatilities and the credibility intervals for the volatility
are very similar for the PM and SPMs, indicating the similarity of the asset return
distribution for the SPMs and the PM.

As far as predictability is concerned, the results in Table 7 indicate that both the
PM and the SPMs seem to have the same ability for the S & P 500 data with LPS.
The tail LPS scores show a slightly different picture. With the S & P 500 data, the
LPTSg.05 shows better predictive performance for the SPMs, the same can be seen for
the LPTSg.o1-
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Figure 7: S & P 500: Posterior mean volatilities for the PM and SPMs (Panel A);
posterior median and 95% credible interval for: PM (Panel B), SPM (« = 0.05) (Panel
C) and SPM (a = 0.01) (Panel D); Posterior mean distributions (Panel E).

6 Discussion

This paper presents a method for Bayesian semiparametric inference in stochastic volatil-
ity models. The volatility equation is given a parametric form and the return distri-
bution is modelled nonparametrically. The method models loge? rather than €, (as
considered by Jensen and Maheu (2010)). This allows efficient computational meth-
ods using forward-filtering backward-smoothing methods to be applied to the difficult
problem of updating the log-volatilities in a Gibbs sampler. We discuss links between
the mean and variance of loge? and the variance and kurtosis of ¢, which allows us to
simply interpret inference from our model. The results of fitting the model to data
suggest that the model can give very different estimates of volatility to the standard
parametric model with a Normal return distribution when there is evidence that the
return distribution has heavy tails. In this case, the parametric model substantially
undersmooths volatility. Out-of-sample results show that the model gives much better
prediction than the parametric model in certain cases, particularly asset returns which

seem to have heavier than Normal tails. We also show that the model gives similar
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Offset | SPM (o =0.01) SPM (a=0.05) PM

LPS c=10"3 2.10 2.10 2.10
c=10"* 2.24 2.13 2.12

c=10"" 2.13 2.13 2.13

LPTSgp s | c=1073 3.56 3.54 3.96
c=10"* 3.54 4.40 4.55

c=10"" 4.70 4.70 4.85

LPTSg.05 | c=10"3 3.79 3.77 4.04
c=10"* 3.97 4.48 5.12

c=10"" 6.21 6.25 6.52

Table 7: S & P 500: Log-Predictive Scores for competing models: PM, SPM with
a = 0.01 and « = 0.05.

results to the parametric model if the return distribution is Normal or close to Normal.

The current paper is a first step in the development of flexible semiparametric
Bayesian models for stochastic volatility in discrete time which can be fitted efficiently.
The model currently lacks a leverage effect and the volatility equation is given a simple
form. Future work will consider the addition of a leverage effect and further nonpara-

metric modelling of the volatility equation.

Appendix: MCMC algorithm for SPM model

In this section, we give in detail the MCMC scheme for the SPM.

o Initialize: ¢, o7, po, 02, W, s and p'. We denote s = {s:}7_y, h={h};_, and
’ ’ k
n = { ,ui} where k is the number of clusters.
i=1
e Updating hly*, ¢, afl,s,az.

the FFBS algorithm presented in Kim et al. (1998).

The log-volatilities, h, can be updated jointly using

e Updating s: The indicator variables can be drawn using inversion sampling,

W\/l;zexp{—ﬁ(yf—ht—logc)z} i=1
0

’ 2 . —

(1—W)mexf’{—é(y?—ht—uo)2} i=k"'+ 1.
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Let n;* = Z?:l;j;ﬁt I(s; = k) and k™ be the number of clusters excluding the
observation at time ¢. Also, denote by n; the number of observations that belong
to the non-zero return cluster. In the above scheme, we sample the indicator
variables, where s; = 1 indicates that the observation belongs to the zero-return

cluster and belongs to the non-zero cluster for all other values of s; .

e Choosing parametrizations. With probability 0.5 each, choose between updating
the parameters using the centered or non-centered parametrization of the SV

model.

Non-centred Parametrization

— Updating u;. For each of the nonzero components, the full conditional dis-

tribution follows a Normal distribution :

o 2

e}
. 1 ) . 1
o tia &t 1a

— Updating pg. For the non-centered parametrization, pg is Normal distributed

with mean:

1—¢? 1— ¢ 2
0'30 0_72] hy + J% Z (her1 — dhy)
t=1

and

2
o
o2 — n

o (g =11 -¢)+ (1—¢?)

— Updating o2: The full conditional of o2 follows an inverted-Gamma:

’ 2 2
, n % k /
e ng+k 1 21:21 (y: - U&v) N Zi:] (,Ui - MO)
2 2 o 1-—a

— Updating ¢. The scheme to update ¢ is a Metropolis-Hastings algorithm.
We propose a value for ¢, ¢*, from a truncated Normal distribution in the

interval [—1, 1],

Z?ﬁfl (he — p0) (Rt g1 — pio) &
n,—1 ’ nh—1
=1 (Rt — po) 21 (he — po)

¢* ~ N[fl,l]
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We accept the proposal with probability min(1, exp {g(¢*) — g(¢)}) where

(h1 — p10)?(1 — ¢?)
20,2]

() = log(6) - + gloa(1 - 7).

— Updating 0727. The full conditional distribution for 0,27 is an inverted-Gamma

2Ry gy & ~ TG <2.5 n ”;g)

where

(s = 10 (1 = %) + 55321 (hess — o) — o(he = j)*

*=0.02
B =0.025 + 3

Centred Parametrization

To apply the MCMC scheme for the centered parametrization, set uf = ul + po
and and h} = hy — po.

— Updating pg. The full conditional for pg in the centered parametrization,

which concerns only the nonzero components, follows a Normal distribution:

N(Ziuﬁjl—®ﬁ>.

!
k Ng

— Updating o2: The full conditional of o2 follows an inverted-Gamma:

’

’ 2 k 2
ng+k 1|22 (¥ —u3) i ()
2 2 o 11—

IG

— Updating ¢. The scheme to update ¢ is a Metropolis-Hastings algorithm.
We propose a value for ¢, ¢*, from a truncated Normal distribution in the

interval [—1, 1],

/
n,—1
N =1 hihiy J%
¢" ~ N1 7 S —
n,—1 n,—1
2 h* 2 h*
t=1 t t=1 t

We accept the proposal with probability min(1, exp {g(¢*) — g(¢)}) where

h1- ) | 1

20127 2

9(¢) = logm(¢) — log(1 — ¢?).
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— Updating 0727. The full conditional distribution for 0727 is an inverted-Gamma

2%, s Iy ~ IG (2.5 n ”;)

where )
* ny,—1 * *
hi2(1—¢°) + 32, (hiy, — oh})?

B =0.025 + 5

We transform to pu; = pf — po and hy = h} + po in order to be consistent

with the non-centered parametrization of the SPM.

Updating M: The scheme used to update M is the ones used in Griffin (2010). It
is an independence Metropolis-Hastings sampler.

Updating W. The full conditional of W follows a Dirichlet distribution:

WNDir(1+(n—n,2),4+n/2).

Updating u: According to the DPM, u can be estimated as

k
= Wloge+ (1 —W) Z

j=1

1y
n+ M

po | + 1.2704.

/+ M
Hi M+n

Updating ¢2: Similar to the step above we have,

Zle (nj (aa? + u;z)) +M (u% + Uf)
ny + M
+ W ((loge)? +1) — (1 — 1.2704)°.

o =(1-W)

References

Abanto-Valle, C., Bandyopadhyay, D., Lachos, V., and Enriquez, I. (2010). “Robust
Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of
normal distributions.” Computational Statistics and Data Analysis, 54: 2883—2898.
902

Andrieu, C. and Roberts, G. O. (2009). “The Pseudo-Marginal Approach For Efficient
Monte Carlo Computations.” Annals Of Statistics, 37(2): 697-725. 910



924 Nonparametric SV modelling

Barndorff-Nielsen, O. E. (1997). “Normal inverse Gaussian distributions and stochastic
volatility modelling.” Scandinavian Journal Of Statistics, 24: 1-13. 902

Broto, C. and Ruiz, E. (2004). “Estimation methods for stochastic volatility models: a
survey.” Journal of Economic Surveys, 18: 613-649. 902

Bush, C. and MacEachern, S. (1996). “A semiparametric Bayesian model for randomised
block designs.” Biometrika, 83: 275-285. 907

Carter, C. K. and Kohn, R. (1994). “On Gibbs sampling for state space models.”
Biometrika, 81: 541-553. 902, 909

Chib, S., Nadari, F., and Shephard, N. (2002). “Markov chain Monte Carlo methods
for stochastic volatility models.” Journal of Econometrics, 108: 281-316. 910

Clark, P. K. (1973). “A Subordinated Stochastic Process Model with Finite Variance
for Speculative Prices.” Econometrica, 41: 135-55. 901

Delatola, E.-I. and Griffin, J. E. (2010). “Bayesian Nonparametric Modelling
of the Return Distribution with Stochastic Volatility.” Technical Report
UKC/SMSAS/10/012, School of Mathematics, Statistics and Actuarial Science, Uni-
versity of Kent. 917

Durbin, J. and Koopman, S. J. (2002). “A simple and efficient simulation smoother for
state space time series analysis.” Biometrika, 89(3): 603-616. 903, 909

Durham, G. B. (2006). “Monte Carlo methods for estimating, smoothing, and filtering
one- and two-factor stochastic volatility models.” Journal of Econometrics, 133: 273~
305. 903

Escobar, M. D. and West, M. (1995). “Bayesian Density Estimation and Inference Using
Mixtures.” Journal of the American Statistical Association, 90: 577-588. 904, 905

Ferguson, T. S. (1983). “Bayesian Density Estimation by Mixtures of Normal Distri-
butions.” In Rizvi, M. H., Rustagi, J., and Siegmund, D. (eds.), Recent Advances In
Statistics: Papers in Honor of Herman Chernoff on His Sixtieth Birthday, 287-302.
New York: Academic Press. 904

Frithwirth-Schnatter, S. (1994). “Data augmentation and dynamic linear models.” Jour-
nal of Time Series Analysis, 15: 183-202. 903, 909

Fuller, W. A. (1996). Introduction to statistical time series. New York: Wiley. 903



E.-1. Delatola and J. E. Griffin 925

Gallant, A. R., Hsieh, D., and Tauchen, G. (1997). “Estimation of stochastic volatility
models with diagnostics.” Journal of Econometrics, 81: 159-192. 903

Gelfand, A. E., Sahu, S., and Carlin, B. (1995). “Efficient Parametrization for Normal
Linear Mixed Effects Models.” Biometrika, 82: 479-488. 910

Gneiting, T. and Raftery, A. E. (2007). “Strictly Proper Scoring Rules, Prediction, and
Estimation.” Journal of the American Statistical Association, 102(477): 359-378.
911

Griffin, J. E. (2010). “Default priors for density estimation with mixture models.”
Bayesian Analysis, 5(1): 45-64. 903, 904, 905, 907, 908, 909, 923

Griffin, J. E. and Steel, M. F. J. (2004). “Semiparametric Bayesian inference for stochas-
tic frontier models.” Journal of Econometrics, 123: 121-152. 908

Harvey, A. C. (1990). Forecasting, Structural Time Series Models and the Kalman
Filter. Cambridge University Press. 906

Jacquier, E., Polson, N. G., and Rossi, P. (2004). “Bayesian analysis of stochastic
volatility models with fat-tails and correlated errors.” Journal of Econometrics, 122:
185-212. 902, 908

Jacquier, E., Polson, N. G., and Rossi, P. E. (1994). “Bayesian Analysis of Stochastic
Volatility Models.” Journal of Business & Economic Statistics, 12: 371-389. 902

Jensen, M. J. (2004). “Semiparametric Bayesian Inference of Long-Memory Stochastic
Volatility Models.” Journal of Time Series Analysis, 25(6): 895-922. 903

Jensen, M. J. and Maheu, J. M. (2010). “Bayesian semiparametric stochastic volatility
modeling.” Journal of Econometrics, 157: 306-316. 902, 903, 905, 907, 916, 919

Kim, S., Shephard, N., and Chib, S. (1998). “Stochastic Volatility: Likelihood Inference
and Comparison with ARCH Models.” Review of Economic Studies, 65: 361-393.
902, 903, 905, 908, 910, 920

Lo, A. Y. (1984). “On a class of Bayesian Nonparametric estimates: 1. density esti-
mates.” Annals Of Statistics, 12: 351-357. 904

Mabhieu, R. J. and Schotman, P. C. (1998). “An empirical application of stochastic
volatility models.” Journal of Applied Econometrics, 13: 333-360. 902, 903



926 Nonparametric SV modelling

Miiller, P. and Quintana, F. A. (2004). “Nonparametric Bayesian Data Analysis.”
Statistical Science, 19(1): 95-110. 904

Nakajima, J. and Omori, Y. (2009). “Leverage, heavy-tails and correlated jumps in
stochastic volatility models.” Computational Statistics & Data Analysis, 53: 2335—
2353. 902, 913

Neal, R. M. (2000). “Markov Chain Sampling Methods for Dirichlet Process Mixture
Models.” Journal of Computational and Graphical Statistics, 9: 249-265. 903, 905

Omori, Y., Chib, S., Shephard, N., and Nakajima, J. (2007). “Stochastic volatility
with leverage: Fast and efficient likelihood inference.” Journal of Econometrics, 140:
425-449. 902, 903

Papaspiliopoulos, O., Roberts, G. O., and Skold, M. (2007). “A general framework for

the parametrization of hierarchical models.” Statistical Science, 22: 59-73. 910

Sandmann, G. and Koopman, S. J. (1998). “Estimation of stochastic volatility models
via Monte Carlo maximum likelihood.” Journal of Econometrics, 87(2): 271-301.
906

Shephard, N. and Kim, S. (1994). “Bayesian Analysis of Stochastic Volatility Models:
Comment.” Journal of Business & Economic Statistics, 12: 406-410. 902

Tauchen, G. E. and Pitts, M. (1983). “The Price Variability-Volume Relationship on
Speculative Markets.” Econometrica, 51: 485-505. 901

Taylor, S. J. (1982). “Financial returns modelled by the product of two stochastic
processes - a study of daily sugar prices 1961-79.” In Anderson, O. D. (ed.), Time
Series Analysis: Theory and Practice 1, 203-226. North-Holland. 901

Acknowledgments

The work in this paper was supported by EPSRC Doctoral Training Grant EP/P503388/1 and

forms part of Eleni-Ioanna Delatola’s PhD thesis.





