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A Computational Bayesian Method for

Estimating the Number of Knots In Regression

Splines

Minjung Kyung∗

Abstract. To determine the size of the drug-involved offender population that

could be served effectively and efficiently by partnerships between courts and treat-

ment in the United States, a synthetic dataset is created by Bhati and Roman

(2009). Because of hidden structure and aggregation necessary to create variables,

there exists latent variance that can not be explained fully by a normal random ef-

fect model. Semiparametric regression is a well-known and frequently used tool to

capture the functional dependence between variables with fixed effect parametric

and nonlinear regression. A new Gibbs sampler is developed here for the number

and positions of knots in regression splines by expressing semiparametric regres-

sion as a linear mixed model with a random effect term for the basis functions.

Our Gibbs sampler exploits the properties of the multinomial-Dirichlet distribu-

tion, and is shown to be an improvement, in terms of operator norm and efficiency,

over add/delete one MCMC algorithms. We find that the Dirichlet distribution

with small values of the parameters results in a smaller number of knots and, in

general, good fit to the data. This approach is shown to reveal previously unseen

structures in the synthetic dataset of Bhati and Roman.

Keywords: Regression Splines, Multinomial-Dirichlet distribution, Bayesian Semi-

parametric Regression

1 Introduction

Is substance abuse treatment an effective method for reducing drug-involved offenses?
What treatment options are the most effective and cost-beneficial? These are important
policy questions for reducing crime and improving the lives of addicted individuals. A
key measurement objective in this literature is estimating the size of the drug-involved
offender population that could be served effectively and efficiently by partnerships be-
tween the courts and treatment regimes. Unfortunately, obtaining individual-level data
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that can be usefully aggregated is a much more difficult challenge than expected since
there exists considerable under-reporting, privacy restrictions, and medical issues in
such settings. Bhati and Roman (2009) recently approached this dilemma in a creative
way by constructing micro-level data from three nationally representative sources to
construct a 40,320 case synthetic dataset, which uses population profiles rather than
sampled observations.

Researchers create synthetic datasets (Rubin 1993) when the actual data in its raw
form are either unavailable or partially restricted due to privacy concerns. However,
it is often the case that in the aggregation process that creates synthetic data hidden
structures and latent information are formed in unexpected ways. What this suggests
is that the set of parametric models in our standard toolkit, linear and generalized
linear models, will be inadequate for explaining the key underlying relationships in
such data. Additionally, the data creation process used by Bhati and Roman (2009)
relies heavily on simulation models to estimate substance abuse treatment effect. The
work here develops a new Bayesian semiparametric regression model that balances user-
defined restrictions against pure data information, and is sufficiently flexible that it has
the ability to capture unusual or hidden features of the data that would ordinarily be
missed by conventional approaches. This approach requires a new variant of the Gibbs
sampler to provide posterior estimates.

Semiparametric regression is concerned with the flexible incorporation of nonlinear
functional relationships in regression analysis. Consider the typical setup of an n-
length outcome variable vector Y associated with the explanatory matrix R, which is
partitioned into two components, n × p matrix X and n × q matrix W, such that for
the ith case, i = 1, . . . , n, Yi is modeled as

E [Yi|Ri] = h (Xiβ + g(Wi)) , (1)

where g(·) is some unspecified “smooth” function to be estimated. This specification,
with known link function h(·), is therefore a form of semiparametric regression due to
the partitioned treatment of the covariates. Details about semiparametric regression
models are found in Ruppert et al. (2003) and Härdle et al. (2004). Recent applications
of these models are contained in Zhang and Davidian (2001), Zeng and Lin (2007), Yin et
al. (2008), and Maity et al. (2009). A likelihood-based approach is developed by Ke and
Wang (2001) with a semiparametric nonlinear mixed effects model (SNMM) that extends
the nonlinear mixed effects models where self-modeling nonlinear regression models are
used to fit repeated measures data. Fahrmeir and Lang (2001) proposed an approach
for Bayesian inference via Markov chain Monte Carlo (MCMC) methods in generalized
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additive and semiparametric mixed models. Our approach is a modernization of this
idea whereby the smoothing parameters of g(·) are updated on each cycle of the Gibb
sampler.

The creation and use of synthetic data has dramatically increased over the last
decade due to heightened attention to privacy issues, more powerful computation, de-
mand for larger datasets, a huge upswing in data mining work, and improved estimation
algorithms. When information is combined from multiple data sources in this process,
profiles are created, which are combinations of attributes that are considered in the
same way as actual individual observations. Thus, cases are created which are not ac-
tual individuals but characterizations of individuals that are in the aggregate unbiased.
In the case of Bhati and Roman (2009) the synthetic data contains a profile for ev-
ery client permutation, therefore allowing estimation of the effect of drug treatment on
every combination of client attributes and characteristics. Additionally, each profile is
tested against four differing treatment regimes to understand their efficacy in reducing
substance abuse. The application of the Bayesian semiparametric regression model de-
veloped in this work shows that Bhati and Roman miss key features present in their
synthetic data, and that these features substantially change the policy interpretation of
the results. Further evidence is supplied here to show that the adaptive semiparametric
algorithm reveals latent structure in benchmarking nonparametric datasets suggesting
that this approach is useful in very general contexts as well.

1.1 Relationship to Mixed Models

A semiparametric model can be expressed as a set of penalized regression splines, and,
more generally, as a linear mixed model. To allow the flexibility in the estimation of
a unknown function, constraints are widely used, typically with a roughness penalty,
which leads to parametric statistical models. In a classic work, Wahba (1977) derived
theoretical details showing that a nonparametric regression model can be rewritten in
the form of a linear combination of the fixed effect (trends) and the random effects (the
small-scale variations). Silverman (1985) then showed that spline smoothing provides a
natural and flexible approach to curve estimation and the smoothing parameter deter-
mines the degree to which the data are smoothed to produce the estimate. Stone (1985)
also showed that the closed additive approximation to a nonparametric regression model
g with explanatory variables is h∗ (·) = µ +

∑J
j=1 f∗ (·), which has been chosen subject

to the constraint that Df∗j = 0 for j = 1, . . . , J , minimizes mean squared error. French
et al. (2001) argued that good low-rank approximations (reduced knot, K < n) exist
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with the mixed model representation of smoothing splines by showing the equivalence of
the BLUP coefficient estimator of low-rank smoothing splines and to the exact smooth-
ing splines. These results allow for mixed model software solutions to perform the entire
fitting algorithm and for inference within the mixed model framework.

For the ease of notation, we consider again the following linear semiparametric re-
gression model

Yi|Ri = Xiβ + g(Wi) + εi, (2)

where εi ∼ iid N
(
0, σ2

ε

)
for i = 1, . . . , n. Here, g is a unknown function and needs

to be estimated. The model (2) can be treated as a semiparametric regression when
the covariate is measured with error. We can consider smoothing splines to estimate
the unknown function g, but smoothing splines become less practical when n is large,
because they can use up to n knots. Thus, an alternative approach to spline fitting is
penalized splines, which are given by

g(Wi) =
K∑

k=1

γkBk (Wi) (3)

where K < n is the number of knots with the degree of the B-spline or the degree of
polynomial, and Bks denote basis functions. Here we define the order of positions of K

knots as κK = (κ1, . . . , κK)′. Thus, penalized spline fitting can be written generally as

min
γ
||y −Xβ − Sγ||2 + λγ′Dγ (4)

where λ > 0 is the penalty parameter, S is an n × K smoother matrix of Bk with
coefficient vector γ, and D is a symmetric positive semidefinite matrix.

For the semiparametric regression in exponential families with suitable link function
of h(·) in (1), we need to investigate a new parameterization of the hierarchical model
to derive a Gibbs sampler that more fully exploits the structure of the model. Also, for
the multivariate semiparametric regression, we can consider generalized additive models
(GAM) by an additive model predictor, interaction models with tensor products of spline
bases and bivariate radial basis functions, and the bivariate smoothing models with thin
plate spline family of smoothers. These issues are left to further research in this area.

There are various basis functions that have been used in this context. The truncated
power functions of degree p, natural cubic splines (Green and Silverman 1994), B-spline
basis function (Eilers and Marx 1996), and the radial basis functions (Ripley 1996) are
the most popular choices. Eilers and Marx (1996) showed that B-spline basis functions
provide more stable numerical properties than truncated power functions. They have
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local support, thus with different positions of knots with the same number of knots,
B-spline basis functions will have flexible forms.

For the degree of a spline p, Ruppert et al. (2003) discussed that if one is using a
linear spline with enough knots so that increasing the number of knots has no appreciable
effect on the penalized fit, then increasing the degree of the spline is also unlikely to
have a noticeable effect. In this paper, we do not restrict or prefix the degree of a spline.
Also, we do not restrict to a specific set of basis functions, as the following methods can
be applied to all basis functions.

Kauermann et al. (2009) discussed asymptotic properties of generalized penalized
spline smoothing if the spline basis increases with the sample size. They argue that the
equivalence of penalized spline fitting and generalized linear mixed models is asymptot-
ically justified only if the Laplace approximation holds. Also, they make use of a fully
Bayesian viewpoint by imposing prior distributions on all parameters and coefficients,
and show that a fully Bayesian formulation of the model yields approximately the same
results as a Laplace approximation even for growing dimensions of the spline basis. This
means that even though we express the semiparametric model as a form of mixed model,
these models share the same theoretical properties.

Furthermore, one of the merits of semiparametric models is that the Gauss-Markov
theorem generally holds, as in the linear regression model. There are various versions
of Gauss-Markov theorems for linear random effect models (Harville 1976) and for a
heteroscedastic linear model (Carroll 1982). Also, Pfeffermann (1984) discussed exten-
sions of the Gauss-Markov theorem to the case of stochastic regression coefficients and
Robinson (1988) discussed a

√
N consistent version of semiparametric regression. More

relevantly, for semiparametric models, Huang and Lu (2001) and French et al. (2001)
discuss Gauss-Markov theorems for fixed effect coefficient estimators by re-expressing
the nonparametric mixed effects model as a linear combination of the fixed effects and
the random effects by describing the space of fixed effects and the space of random
effects via subspaces of certain Reproducing kernel Hilbert spaces (RKHS) (Aronszajn
1950).

For better estimation and fitting of models to a given dataset with basis functions,
we need to carefully consider the number of knots K and the order of positions κK =
(κ1, . . . , κK)′. Early discussions about the penalized linear spline models with smaller
number of basis functions than sample size (K ≤ n) can be found in Parker and Rice
(1985), O’Sullivan (1986), Kelly and Rice (1990), Gray (1994), Hastie (1996), Eilers
and Marx (1996) and Ruppert and Carroll (2000). More discussions in recent years are
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presented in French et al. (2001), Ruppert (2002), Wand (2003), Ruppert et al. (2003)
and Claeskens et al. (2009).

1.2 Choosing Knots

In a regular penalized linear model (4), K, κK and λ will control the smoothness of
the model, and how much variational information can be captured in random effects
terms. The penalty parameter λ is a parameter that controls the bias and variance of
the random effects. Also, in practice, the number of knots K and their position in κK

are unknown, so we need to estimate them.

There has been much written on the choice of K and κK based on generalized cross
validation (GCV) using various smoothing methods (Friedman and Silverman 1989;
Hastie and Tibshirani 1990; Ruppert 2002; Ruppert et al. 2003; Woods 2006). Also,
there are knot selection methods based on stepwise selection (Stone et al. 1997) and on
a componentwise boosting algorithm with radial basis functions (Leitenstorfer and Tutz
2007). For Bayesian methods, reversible jump MCMC has been widely used (Denison
et al. 1998; Biller 2000; DiMatteo et al. 2001; Holmes and Mallick 2001).

Recently, Claeskens et al. (2009) provided a theoretical justification that, depending
on the number of knots, sample size and penalty, the theoretical properties of penalized
regression spline estimators are either similar to those of regression splines or to those
of smoothing splines, with a clear breakpoint distinguishing the cases. They prove that
a smaller number of knots leads to a smaller averaged mean squared error. Also, they
showed that using truncated polynomial basis functions leads to an optimal rate of
convergence independent of the assumption made on the number of knots.

Stochastic methods that move simultaneously in model space and parameter space
allow us a limitless range of possibilities for the choice of K and κK (Denison et al. 1998;
Biller 2000; DiMatteo et al. 2001; Holmes and Mallick 2001, 2003). Especially for the
Bayesian methods, since the dimensionality of the parameter space generally changes
with the model, reversible jump MCMC (RJMCMC) proposed by Green (1995), is some-
times used. However, the RJMCMC algorithm usually results in a slow mixing chain
because empty components arise and the sampler retains these for extended periods of
time.

In this paper, we develop an overtly Bayesian method to find the number of knots
and the position of knots in a Gibbs sampling scheme. For this we need to consider
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various candidates for the position of knots. Typically, the observed data points have
been used as candidates for knots. If we consider a different point of view, the position
of knots can be thought of as a changepoint problem in the data sense (Moreno et al.
2005; Girón et al. 2007). This means that before and after a knot, the curve changes
directions or amount of curvature, or it drops or goes up suddenly. Thus, we propose
a method for the choice of K and κK based on the standard changepoint problem by
using Bayes Factors (BF) for the update instead of the likelihood function. In this
process, we apply a Dirichlet prior on the process of choosing the number of knots, K

and the order of positions, κK , and instead of λ, a Dirichlet prior on a changepoint
setup that controls the bias and variance of the random effects. Thus, in our model,
we don’t need to consider the penalty part with D and λ in a regular penalized linear
model (4). More details about the MCMC sampling schemes for the regression splines
are provided in the following sections.

2 A Bayesian Approach to Knot Selection

We now outline a Gibbs sampler for the semiparametric model, which is represented as
a linear mixed model where, at each iteration, we generate a length n vector κK and
recover the knot size through marginalization for K and κK .

To make the sampling scheme easier, let W1 ≤ W2 ≤ · · · ≤ Wn. Given the num-
ber of knots K and their positions κK , the linear mixed model representation of the
semiparametric model with basis functions can be written as

y = Xβ + Sγ + ε,

where S is an n × (K + 1) smoother matrix with K knots in the positions of κK =
(κ1, . . . , κK)′. Thus, Sik, the element in the ith row and kth column of S, is Bk (Wi)
in (3), which are basis functions only related to K knots. Also,

ε ∼ Nn

(
0, σ2I

)
and γ ∼ NK+1

(
0, σ2Σγ

)
.

Here, for W ∈ [a, b] with a = κ0 < κ1 < · · · < κK < κK+1 = b, we define

nk = number of observations in (κk, κk+1] , k = 0, . . . ,K,

n0 + n1 + · · ·+ nK = n, and we use

Σγ = diag{n0, n1, . . . , nK}.
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The given structure can also be considered as a subclustering of W ’s with subcluster
sizes n0, n1, . . . , nK . This means that the position of knots will determine the subgroups
and the subgroup size. Because the W ’s are assumed to be in increasing order, it is
easy to see that κ1 = Wn0 , κ2 = Wn0+n1 , . . . , and κK = W∑K−1

k=0 nk
. Thus, we are

marginalizing n knots into K knots in a manner similar to that of Kyung et al. (2010).

2.1 Sampling Scheme

The joint likelihood for regression parameters θ and κK with normal assumptions can
be written as:

LK

(
β, γ, σ2, κK |y

)
(5)

=
(

1
2πσ2

)n/2

e−
1

2σ2 |y−Xβ−Sγ|2
(

1
2πσ2

)(K+1)/2

|Σγ |−1/2e−
1

2σ2 γ′Σ−1
γ γ .

With a flat prior on κK and K, such as π (K) ∝ c and π (κK |K) ∝ c, and with
priors on the regression parameter π(θ) , we get the joint posterior distribution as:

π(θ, κK | y) =
LK(θ, κK |y)π(θ)∫

Θ

∑n−1
J=0

∑
κJ∈KJ

LJ(θ, κJ |y)π(θ)dθ
,

where

KK = {all possible K knots : (κ1, . . . , κK)}
= {(n0, . . . , nK) : all possible nk’s such that n0 + n1 + · · ·+ nK = n} .

Thus, the full conditional posteriors of θ and κK are

π(θ | κK ,y) =
LK(θ, κK |y)π(θ)∫

Θ
LK(θ, κK |y)π(θ)dθ

π(κK | θ,y) =
LK(θ, κK |y)∑n−1

J=0

∑
κJ∈KJ

LJ(θ,κJ |y)
.

We add the following uniform, normal, and inverted gamma (IG) priors:

µ ∼ π (µ) ∝ c, −∞ < µ < ∞
β|µ, σ2 ∼ N

(
b, dσ2I

)

σ2 ∼ IG(a1, b1),
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where b = (µ, 0, . . . , 0)′, a1 > 0 is the shape parameter, b1 > 0 is the scale parameter,
and c, d > 0 are constants. Here, θ =

(
β,b,γ, σ2

)′. For the priors on K and κK , we
add:

π (K) =
1
n

and π (κK |K) ∝ wK+1
n−1∏

j=0

Γ(nj),

where w is a weight. Alternatively for the prior on K, we can consider a truncated
Poisson distribution with hierarchical parameter ν that can be specified with a small
number for higher probability on smaller value of K. As stated in DiMatteo et al.
(2001), posteriors appear not to be sensitive to the precise specification of the prior on
K.

We now outline a Gibbs sampler that will generate from the conditionals by gener-
ating a length n vector κK and recovering the knot size through marginalization.

For t = 1, . . . T , at iteration t

1. Starting from
(
θ(t),κ

(t)
K

)
, with κ

(t)
K = (n(t)

0 , . . . , n
(t)
K )

draw : θ(t+1) ∼ π
(
θ | κ(t)

K ,y
)

, (6)

2. Given θ(t+1),

draw : q(t+1) = (q(t+1)
0 , . . . , q

(t+1)
n−1 )

∼ Dirichlet
(
α

(t)
0 , . . . , α

(t)
K , αK+1, . . . , αn−1

)

where κ
(t+1)
K′ ∝ wK′+1m(y|κ′K′)

(
n

n′0 · · · n′n−1

) n−1∏

j=0

[q(t+1)
j ]n

′
j , (7)

and n′0+ · · ·+n′n−1 = n with K ′+1 of the n′j > 0, and m(·) is the marginal distribution.
We note that the length of κ(t+1) is K ′ = K(t+1).

Sampling of the model parameters θ in (6) is straightforward (Appendix 6), so we
will concentrate on the sampling of κK and q, a vector of probabilities that decides the
number of knots and the order of positions.

The marginal distribution of K knots in positions κK will have the form of

m (y|MK) ∝
∣∣∣X ′

{
I− S

(
S′S + Σ−1

γ

)−1
S′

}
X

∣∣∣
−1/2 ∣∣(S′S + Σ−1

γ

)∣∣−1/2
(8)

×
[
b1 +

1
2
y′

{
Σ−1
∗ −Σ−1

∗ X
(
X ′Σ−1

∗ X
)−1

X ′Σ−1
∗

}
y
]−(n−p

2 +a1)
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where MK is a model with K knots in positions κK and Σ−1
∗ = I−S

(
S′S + Σ−1

γ

)−1
S′.

Thus, the Bayes Factor of a model with K knots in positions κK and a model with no
knots can be written as

BK0 (y) =
m (y|MK)
m (y|M0)

∝

∣∣∣X ′
{
I− S

(
S′S + Σ−1

γ

)−1
S′

}
X

∣∣∣
−1/2 ∣∣(S′S + Σ−1

γ

)∣∣−1/2

|X ′X|−1/2
(9)

×

b1 + 1

2y
′
{
Σ−1
∗ −Σ−1

∗ X
(
X ′Σ−1

∗ X
)−1

X ′Σ−1
∗

}
y

b1 + 1
2y

′
{
I−X (X ′X)−1

X ′
}

y



−(n−p

2 +a1)

Therefore, the posterior distribution of K and κK is

π (κK |y,K) =

∏K
j=0 Γ(nj)|Σγ |−1/2BK0 (y)

∑
κK∈KK

∏K
j=0 Γ(nj)|Σγ |−1/2BK0 (y)

=

∏K
j=0 Γ(nj)|Σγ |−1/2m (y|MK)

∑
κK∈KK

∏K
j=0 Γ(nj)|Σγ |−1/2m (y|MK)

(10)

and

π (K|y) =
wK+1

∏K
j=0 Γ(nj)|Σγ |−1/2m (y|MK)

∑n−1
K=0 wK+1

∑
κK∈KK

∏K
j=0 Γ(nj)|Σγ |−1/2m (y|MK)

. (11)

Here, |Σγ |−1 =
∏K

k=0

(
1

nk

)
.

The transition kernel of Markov chain in (7) is

k ((θ, κK) , (θ′, κ′K′)) = π (θ′ | κK ,y)
∫

Q

P (κ′K′ | q, θ′)f(q | κK)dq, (12)

with

P (κK |q, θ) =
wK+1BK0 (y)

(
n

n0 ··· nn−1

)∏n−1
j=0 q

nj

j∑n−1
K=0 wK+1

∑
κK∈KK

BK0 (y)
(

n
n1 ··· nn−1

)∏n−1
j=0 q

nj

j

and

f(q|κK) =
Γ(

∑n−1
j=0 αj)∏n−1

j=0 Γ(αj)

n−1∏

j=0

q
αj−1
j .

If we take αj = nj + 1 for all j = 0, . . . , n− 1 with nK+1 = · · · = nn−1 = 0,

Γ(
∑n−1

j=0 αj)∏n−1
j=0 Γ(αj)

n−1∏

j=0

q
αj−1
j =

Γ(2n)
n!

(
n

n0 · · · nK

) K∏

j=0

q
nj

j .
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Thus, with this choice, the transition kernel has π(θ, κK |y) as its stationary distribution.
The verification of the stationary distribution is the same as in Kyung et al. (2010) with
BF instead of the likelihood function.

For the estimation of w, we consider a gamma prior. Escobar and West (1995) use a
gamma prior on w and update Gibbs with an auxiliary variable method for a Bayesian
density estimation. Also, Blei and Jordan (2006) discussed that in the stick-breaking
representation, the gamma distribution is conjugate to the stick lengths. In the stick-
breaking representation, the mixing proportions are given by successively breaking a
unit length “stick” into an infinite number of pieces. The size of each successive piece
(stick length), proportional to the rest of the stick, is given by an independent draw from
a Beta(1, w) distribution with our notation. This means that the gamma distribution
is a good candidate for a prior on w. For all cases, w is a parameter that controls
the number of mixtures or the smoothness of the model in Dirichlet. However, in our
approach, the number of mixtures or the smoothness is controlled by κK . Thus w is
then insensitive to choosing the number of knots and their positions.

3 Generating the Positions of Knots

In this section we show how to generate the positions of knots according to (7). Then we
examine convergence rates, and establish that our sampler is an improvement, in terms
of operator norm and efficiency, over commonly used one knot add/delete algorithms.

3.1 Dirichlet Distribution

To generate the positions of knots based on (7), we use the Dirichlet distribution with
parameters α. The Dirichlet distribution is the multivariate generalization of the beta
distribution with density given by

f(q) =
Γ(

∑n−1
j=0 αj)∏n−1

j=0 Γ(αj)

n−1∏

j=0

q
αj−1
j with αi > 0 for all j, and

n−1∑

j=0

qj = 1.

First consider the simple case, (p, 1−p), with α = (α1, α2)
′. Then, (p, 1−p) has a beta

distribution with α1 > 0 and α2 > 0. For the beta distribution with α1 < 1 and α2 < 1,
if p → 0, then 1− p → 1 with high probability and vice versa. However, p ≈ 1− p will
occur with small probability. This means that one of (p, 1− p) will be much larger than
the other. For the case with α1 ≥ 1 and α2 ≥ 1, the probability of p ≈ 1 − p is high.
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Thus, p and 1− p will tend to be close to each other.

Now we consider the more general case with α = (α1, . . . , αm)′. Due to the restric-
tion that

∑m
j=1 qj = 1, if αj < 1 for all j = 1, . . . , m, some qj ’s will have larger values

than the others. This means that in the Gibbs sampler (7), if αj < 1 for all j = 1, . . . , n,
the number of knots tends to be smaller. However if we consider αj ≥ 1, the number of
knots tends to be close to n/2.

The general goal of the penalized linear spline models is good prediction with a
smaller number of basis function and knots than sample size, K < n. If we believe that
the original number of knots should be small, instead of K ≈ n/2, then we update the
Gibbs sampler for the number of knots and the position of these knots with

α
(t)
j =

{
n

(t)
j +1

n for j = 0, . . . , K
1
n for j = K + 1, . . . , n− 1.

(13)

In the following section, we discuss how the positions of knots with the number of knots
are generated based on a Dirichlet prior.

3.2 Generating κK

We follow the methods described in Kyung et al. (2010) for the number and the positions
of knots, updating the positions of knots with the marginalization of a multinomial-
Dirichlet distribution using a Metropolis-Hastings algorithm. In other words, based on
the value of the qj in (7), we generate a length n vector of indices of subclusters from the
multinomial, grouping the objects with the same indices, then remove the subclusters
with no elements. For example, let a candidate vector of indices for subclusters from the
multinomial be (1, 3, 1, 4, 5, 4, 1, 5, 5, 3)′ with n = 10 and W in increasing order. Thus we
sort the vector in increasing order, (1, 1, 1, 3, 3, 4, 4, 5, 5, 5). Here we remove zero counts
of indices, 2, 6, . . . , 10, and sum over the frequencies of indices. Then, n0 = 3, n1 = 2,
n2 = 2, n3 = 3 and n0 + · · · + n3 = 10. Therefore, the updated κ′K is (W3,W5,W7)
with 3 knots (K ′ = 3). The details about the marginalization of multinomial-Dirichlet
distributions are provided in the Appendix of Kyung et al. (2010).

3.3 Convergence Properties

Given κK , the sampling of the model parameters from π(θ|κK y) is straightforward.
Thus, in investigating convergence we only need to be concerned with the convergence
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of the Markov chain on the number and position of knots.

If we ignore the model parameters for now, then we are concerned only with conver-
gence of the chain to the stationary distribution, that is

π(κK) = π(n0, . . . , nK) =
Γ(w)

Γ(n + w)
wK+1

K∏

j=0

Γ(nj),

with the expected value of K,

E(K) =
n∑

i=1

w

w + i− 1
. (14)

The full conditionals, ignoring the model parameters, are given by

P (a = j|n0, . . . , nK) =





nj

n−1+w for j = 0, . . . ,K

w
n−1+w for j = K + 1.

, (15)

where a is an index. With a similar argument, the full conditionals from the chain in
(7) are

P (a = j|n0, . . . , nK) ∝





nj

n−1+w
qj+1
αj+1

for j = 0, . . . ,K

w
n−1+w

qj+1
αj+1

for j = K + 1.

(16)

Notice that for qj = αj (j = 0, . . . , n− 1) (the normalization is not important), we see
that the one-knot add Gibbs sampler (15) is the same as (16). Based on Hobert and
Marchev (2008), it can be shown that for αj = nj + 1 for j = 0, . . . ,K and αj = 1 for
j = K+1, . . . , n−1, the kernel of (16) dominates the kernel of (15) with smaller variance
for any square-integrable function with any m > 0. Details about the derivation of full
conditionals and the dominated convergency are in Kyung et al. (2010).

However, if αj ’s have the form in (13), we are not able to compare the transition
kernel of (16) to the kernel of (15), because the transition kernel of our chain has a
different stationary distribution. If we consider more details about the full conditionals
in (16), we know from the properties of the Dirichlet distribution that

E (qj) =
αj∑n−1

j=0 αj

for j = 0, . . . , n− 1.

Also, we know that qj ’s determine K and κK . Thus, the αj ’s have an important role
in the Markov chain to update the number of knots, K and the positions of knots, κK ,
similar to m in (14).



806 Number of Knots in Regression Splines

Halpern (1973) proved that when the locations of all possible knots are assumed to
be known but the subset of these which are the actual knots is unknown, the posterior
distribution of the Bayesian spline regression is proper for natural conjugate and vague
priors. The subset of all possible knots, that is, the set of actual knots, forms a model.
Thus, with conjugate priors of the form of a marginal distribution on the index of the
model, or with non-informative priors which are a function of number of elements in
each subset of knots, the posterior distribution of the Bayesian spline is proper. For the
location of the knot, a prior probability based on a discrete distribution is assigned to
each subset of the possible locations, and the posterior probability has been calculated to
choose the model with highest posterior probability. Also, the optimal predictor based
on the marginal distribution for the model and the mean vector for the coefficients is
derived for a loss function which is a generalization of that appearing in Lindley (1968).
This loss function is squared error loss plus the amount of shrinkage which controls the
number of knots.

Our model setting fits Halpern’s Bayesian spline setting with conjugate priors except
it has one more step to generate the number and positions of knots. A uniform distri-
bution is assigned as a prior and our chain is updated to a new number and position
of knots with higher posterior probability. Specifically when we generate the number
and positions of knots, we start from n knots then marginalize over the empty sets; this
implies conditionally consistent multivariate proper normal priors on coefficients γ. We
can then combine the parametric part Xβ to a component of the nonparametric part.
Therefore, from Lemma 2 of Halpern (1973), any sample from the posterior distribution
of our proposed model is proper and the set of multivariate normal posteriors on coeffi-
cients will be conditionally consistent with the chosen number (K) and positions (κK)
of knots. Also, with non-empty intervals between knots in our setting, from Theorem
1 of Halpern (1973), the posterior mean of coefficients γ in our model is the optimal
predictor for the expected loss function which is an addition of the expected squared
error loss and the risk of wrong number (K) and position (κK) of knots.

4 Simulations and Data Analysis

To illustrate the proposed nonparametric approach and required Gibbs sampler, we
present a simulation study and two data analyses. The parameter w is known to be
insensitive to the choice of data, thus we fix w = 1 because the number of knots and the
position of knots will be controlled by α in the Dirichlet distribution. We compare small
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and large parameter values over α in the Dirichlet distribution. In these applications,
a Poisson distribution with mean ν as a prior on the number of knots K is tested. As
discussed in Section 2.1, the posteriors appear insensitive to the value of λ, thus we fix
λ = 3 for convenience.

We also compare our proposed Gibbs sampler to recently proposed nonstationary
methodologies that couple stationary Gaussian processes (GP) with treed partitioning
done in Gramacy and Lee (2008). GP regressions accommodate prior knowledge in the
form of covariance functions. The covariance term is considered with the correlation
function of a neighbor. Tree GP regression uses treed partitioning through RJMCMC
and in each partition (branch of the tree), independent local GP regressions are ap-
plied. The tgp package for R is developed for Bayesian nonstationary, semiparametric
nonlinear regression and design by treed Gaussian processes with jumps to the limiting
linear model by Gramacy (2007). GP models are well known for effectively fitting ar-
bitrary functions or surfaces. The GP sampling proposed by Gramacy and Lee (2008)
commences with RJMCMC which allows a simultaneous fit of the tree and the GPs at
its leafs. In this paper, we consider GP regression and tree GP regression models to
compare to our proposed semiparametric models.

4.1 Simulations

We begin with the simple smooth test functions:

1. f(x) = x + 2 exp
(−16x2

)
, x ∈ [−2, 2]

and

2. f(x) = sin(x) + 2 exp
(−30x2

)
, x ∈ [−2, 2].

Simulated data are drawn from the rescaled function with support in the unit interval.
The first function comes from Denison et al. (1998). In the original setting, it is evalu-
ated at 200 regularly spaced points with normally distributed noise having mean 0 and
standard deviation σ = 0.4 but in our simulation, we evaluated at 200 regularly spaced
points with σ = 0.3. The second function comes from DiMatteo et al. (2001). Origi-
nally, it has been evaluated at 101 regularly spaced points with σ = 0.3 in DiMatteo et
al. (2001) and we evaluate at 101 regularly spaced points with σ = 0.3.

Our implementation focuses on Gibbs sampling with the marginal distribution,
m (y|MK). We computed the mean squared error for our Bayes method and GP models
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Function 1. Function 2.
AMSE Number of knots AMSE Number of knots

Small valued 0.008 (0.002) 13.33 (0.916) 0.019 (0.007) 8.57 (0.365)
Large valued 0.026 (0.007) 83.70 (3.092) 0.025 (0.008) 39.82 (2.103)
GP regression 0.008 (0.003) − 0.017 (0.005) −
tree GP 0.008 (0.003) 2 0.017 (0.006) 2

Table 1: Average mean squared errors with standard errors on 50 samples. Small
and large valued parameters of Dirichlet distribution in MCMC, and GP and tree GP
regressions are compared. (Number of knots for tree GP regressions is the number of
change points to fit independent GP models.)

as:

MSE =
1
n

n∑

i=1

{
f̂(xi)− f(xi)

}2

,

where f̂(xi) is an estimate and f(xi) is the true function. The Bayesian estimates of
E [f(x)|y] are found from our Markov chain Monte Carlo process with runs of 5000
following burn-ins of 5000.

Here, with MCMC, we compare:

� a large valued parameter in the Dirichlet distribution

αj =

{
nj + 1 for j = 0, . . . , K

1 for j = K + 1, . . . , n− 1

� versus a small valued parameter in the Dirichlet distribution

αj =

{
nj+1

n for j = 0, . . . , K
1
n for j = K + 1, . . . , n− 1.

The average mean squared error (AMSE) with standard errors based on 50 samples
of data, and the average number of knots are reported in Table 1. We observe that the
semiparametric model as a linear mixed model fits well for all examples shown by small
mean squared error (MSE). For generated data from Function 1, the MSE and number
of knots from a small valued parameter in the Dirichlet distribution are smaller than
these from a large valued parameter. For this function, the number of knots has a big
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Figure 1: Left panel is the rescaled smooth Function 1 and right panel is the rescaled
smooth Function 2.

effect on the fit with a preference on a small number of knots. However, for Function
2, the number of knots does not have a big effect on the fit.

Compared to GP and tree GP regressions, our semiparametric model with a small
valued parameter in the Dirichlet distribution tends to recover precision on GP regres-
sions. AMSEs are not different numerically for Function 1 and Function 2. Tree GP
has been fitted with three independent local GP regressions. From Figure 1, we clearly
observe three partitions if we consider local regressions for Function 1 and Function 2.
Graphically, in Figure 1, we also observe that Function 1 has a small number of change
points, but Function 2 shows a large number of change points. Also, the estimated curve
with small valued parameter and the estimated curves of GP and tree GP regressions
are close to the true function , but the estimated function with large valued parameter
is close to the data points.

We now consider one-dimensional simulated data which is partly a mixture of sines
and cosines, and partly linear that is considered in Gramacy (2007):

f(x) =

{
sin

(
πx
5

)
+ 1

5 cos
(

4πx
5

)
x < 9.6

x
10 − 1 otherwise.

From the true model itself, we expect that the independent local regression in each
partition, tree GP regression, will show superiority among others. However, in Figure
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Figure 2: Mixture of sines and cosines and partly linear function.

Small valued Large valued GP regression tree GP

AMSE 0.054 (0.007) 0.014 (0.004) 0.002 (0.001) 0.002 (0.001)
Number of knots 7.42 (3.761) 38.65 (2.305) − 1

Table 2: Average mean squared errors with standard errors on 50 samples. Small
and large valued parameters of Dirichlet distribution in MCMC, and GP and tree GP
regressions are compared. (Number of knots for tree GP regressions is the number of
change points to fit independent GP models.)

2, we observe that our semiparametric regression with a large valued parameter in
the Dirichlet distribution also tends to capture wiggly curves well. The average mean
squared error (AMSE) with standard errors based on 50 samples of data, and the average
number of knots are reported in Table 2. The AMSEs of GP regressions are smaller
than AMSEs of our models. Tree GP regressions fit two independent GP regressions
on each partition and the partition point is the given degenerate point x < 9.6. In
our model, the number and position of knots depend on the subsample sizes instead
of the correlation with neighbors. Thus, our method might not recover the true model
as much as tree GP regression, but without considering all possible partitions, the
semiparametric regression tends to fit the appropriate smoothed curve on data. In
other words, the proposed semiparametric model is simpler and faster, while capturing
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the main features.

4.2 Data Analysis: Nitrogen Oxides in Engine Exhaust

Originally, Brinkman (1981) conducted an experiment of a single-cylinder engine with
ethanol or indolene to see how the nitrogen oxides (NOx) concentration in the exhaust
depended on the compression ratio (C) and the equivalence ratio (E). There were 88
runs with ethanol; for these runs, E varied from .535 to 1.232, C took one of five values
ranging from 7.5 to 18, and the values of E and C were nearly uncorrelated. There were
22 runs with indolene; for these runs, C took just one value, 7.5, and E ranged from 0.665
to 1.224. In this example, we only consider the data with ethanol. This data has been
analyzed with various methods, but Cleveland and Devlin (1988), Breiman (1991) and
Gu (2002) used smoothing methods. Cleveland and Devlin (1988) applied the locally
quadratic smoother based on an adaptation of Mallows’s Cp, the M plot and argued that
an additive fit of E and C is inappropriate because of a substantial interaction. Breiman
(1991) used a product method of multivariate functions for estimating an underlying
smooth function of noisy data by a sum of products of the univariate functions. For
the NOx data, it has been argued that 2 knots are enough to estimate the function of
E and there is a non-removable interaction in these data. In these analysis, an NO1/3

x

transformation has been used, but Gu (2002) made a log-transformation because the
NOx concentrations are positive with some near-zero readings. As it has been argued,
the effect of equivalence ratio was dominant, but the compression ratio had little impact.
Gu (2002) used a cubic spline fit with estimating smoothing parameter λ estimated after
seeing a rough cross-validation fit.

We use a log-transformation on NOx and we compare our methods to the cubic
spline fit of Gu (2002), GP regression and tree GP regression based on the residual sum
of squares (RSS)

RSS =
1
n

n∑

i=1

{ŷi − yi}2 ,

where ŷi is an estimate from the cubic spline and yi is the observation. Two models
have been applied to this data previously:

Model 1. log10 (NOx) = β0 + β1E + g (E) + ε

Model 2. log10 (NOx) = β0 + β1E + β2C + β3E× C + g (E) + ε.

The compression ratio, C, has five distinct values; it could have been treated as an
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Figure 3: Left panel is a scatterplot of NOx with estimated curves of Model 1 and right
panel is with estimated curves of Model 2.

ordinal discrete variable and interaction has been considered. The numerical results are
displayed in Table 3 and the graphical functional fits are in Figure 3.

From Table 3, we observe that the number of knots which has been detected by the
proposed methods with small valued parameters in Dirichlet distribution is the same
as Breiman (1991). With C and interaction between E and C (Model 2), the RSS is
smaller than the RSS of Model 1, because as it has been argued, there exists a non-
removable interaction in these data. The curve estimation with cubic splines tries to
smooth out the dataset by reducing a function of RSS (cross-validation); thus the cubic
spline curve fit has smaller RSSs. GP regression behaves similar to cubic spline models,
and tree GP has the smallest RSS among the techniques. From Figure 3, we observe
that an estimated curve based on small valued parameter in the Dirichlet distribution
is showing smaller estimated valued in the highest peaks of data, but bigger estimated
valued in the tails of the data. From the left panel in Figure 3, for Model 1, we observe
that compared to the cubic spline curve, GP regression and tree GP regression, the
small valued parameter curve has a lower peak with thick tails. It might be the reason
why RSS of the small valued parameter curve is larger than the RSS of the cubic spline
curve. As discussed with the simulations, the large valued curve is more sensitive to the
data points, but less smooth. The right panel in Figure 3 is based on the Model 2. C is
an ordinal discrete variable, thus the estimated curves are not as smooth as in the left
panel. However, if we consider C and interaction in the model, the estimated curves are
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Model 1 Model 2
RSS Number of knots RSS Number of knots

Cubic Spline 0.067 − 0.027 −
GP regression 0.066 − 0.023 −
tree GP 0.061 3 0.013 3
Small valued 0.091 2 0.050 2
Large valued 0.119 34 0.088 31

Table 3: Residual sum of squares and number of knots from NOx concentration data.
For Model 1 and Model 2, small and large valued parameters of the Dirichlet distribution
in MCMC are compared. Also, cubic spline fit of Gu (2002), GP regression and tree
GP regression are compared. (Number of knots for tree GP regressions is the number
of change points to fit independent GP models.)

more sensitive to the data points compared to the model with E only. In this data set,
there are more data points in the right hand side tail; thus a small valued parameter
curve tries to give more weight onto the right tail with somewhat less weight on higher
peaks. The cubic spline curve is attempting to smooth out the data points based on the
point value and GP regressions are trying to smooth out the data points considering
the correlation with neighbor points. However, the proposed semiparametric regression
is also attempting to smooth out the data points with the basis functions which are
determined based on the subsample sizes n0, n1, . . . , nK . This technique is a somewhat
different setup for positions of knots compared to others and it might be the reason for
the above results.

5 Crime Reducing Benefits In Treating Drug Involved Of-

fenders

Returning to our primary data interest, we look at the synthetic dataset problem de-
scribed in Section 1. Empirical investigation of “Going to Scale” in drug interventions
in the United States, 1990, 2003 (Bhaty and Roman, 2009) has been done to determine
the size of the drug-involved offender population that could be served effectively and
efficiently by partnerships between the courts and treatment regimes. From micro-level
data of three nationally representative sources, a dataset of 40,320 cases which is de-



814 Number of Knots in Regression Splines

BLACK.FEMALE OTHER.FEMALE WHITE.FEMALE BLACK.MALE OTHER.MALE WHITE.MALE

0
20

0
40

0
60

0
80

0
10

00

Box Plots of Estimated Number of Arrestees by Race and Gender

Figure 4: Box Plots of Estimated Number of Arrestees by Race and Gender

fined using population profiles was constructed. The principal investigators combined
information from the National Survey on Drug Use and Health, 2003 (USDHHS 2006)
and the Arrestee Drug Abuse Monitoring (ADAM) Program in the United States, 2003
(USDJNIJ 2004) to estimate the likelihood of drug addiction or dependence problems
and develop nationally representative prevalence estimates. They used information in
the Drug Abuse Treatment Outcome Study (DATOS), 1991-1994: [United States] (US-
DHHS 2010) to compute expected crime reducing benefits of treating various types of
drug involved offenders under four different treatment modalities.

In this dataset, age, race, gender, offense, history of violence, history of treatment,
co-occurring alcohol problem, criminal justice system status, geographic location, arrest
history, and a total of 134 prevalence and treatment effect estimates and variances are
all included. Moreover, the principal investigators obtained estimates of crime reducing
benefits for all crimes as well as select sub-types. The four different treatment modalities
considered from DATOS were Long-Term Residential Treatment (Modality 1), Short-
Term Inpatient Treatment (Modality 2), Outpatient Methadone Treatment (Modality
3) and Outpatient Drug-Free Treatment (Modality 4).

Among these 145 variables, in this example, the estimated number of arrestees
(ESIZE) by weighting on the prevalence in the population of interest is considered as the
dependent variable Y . In the original data, ADAM provides information on the number
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of times individuals were arrested in the year prior to the current booking. Using the
empirical similarity between synthetic profiles and ADAM sample members, Bhaty and
Roman computed the expected number of arrests for particular profiles. Thus, by rescal-
ing based on the prevalence in the population of interest, ESIZE has been created. For
independent variables, we consider age (AGE), current offense status (OFFENSE) - Violent,
Drug, Property, or Other, history of substance abuse or dependent treatment (THIST) -
Yes or No, geographical location (GEO) - Rural, Urban and Suburban areas, number of
prior arrests (AHIST) - 0, 2, 5, 10, or 20 , and eight abuse/dependence variables which
are estimated based on the four treatment modalities;

TECij , for i = 1, . . . , 4 and j = 0, 1.

Here subscript i is an index of Modality, and j = 0 is for ABUSE and j = 1 is for
DEPENDENCE.

This is a large dataset (n = 40, 320), so all variables are trivially significant at α =
0.05 with a standard GLM. Figure 4 shows box plots of ESIZE by race and gender. For
the BLACK MALE case, it is showing skewness to the right with large values of ESIZE.
Compared to distributions of other race and gender combinations, the distribution of
the black male case shows broadly skewed large variance. For these data, a regular
GLM might not be enough to capture the large variance. Thus, instead of considering
the whole dataset, in this paper, we used part of the dataset which is for black males
with violence and alcohol history under criminal justice status. There are n = 840 cases
meeting this new criterion.

These data are used to detect significant factors with controlling hidden structures
and latent information. GP regression and tree GP regression implement Bayesian
regression models of varying complexity and allow for the explicit estimation of predic-
tive uncertainty when considering neighbor points. Thus GP regression and tree GP
regression are not meaningful for the purpose of the data analysis in this section.

For this smaller dataset, we consider a linear mixed effect model (LMEM) and semi-
parametric model. For LMEM, we use TEC10 as a random effect term. We observe from
LMEM that most demographical variables are significant at α = 0.05, but 8 prevalence
and treatment effect estimated variables are not significant. Modality 1 is strongest
abuse/dependence treatment; thus we might expect that it decreases the number of
drug-involved offenders. However, if you fit LMEM to the dataset of black males with
violence and alcohol history under criminal justice status, Long-Term Residential Treat-
ment has no statistically reliable effect with ESIZE at the 0.95 level. Also, other treat-
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RSS Number of knots

LMEM 153.67 −
Natural Cubic Spline 267.53 −
Small valued 270.17 10
Large valued 270.78 228

Table 4: Residual sum of squares and number of knots from crime reducing benefits
data. Small and large valued parameters of the Dirichlet distribution in MCMC are
compared. Also, linear mixed effect model (LMEM) with random effect TEC10 and
natural cubic spline fit on TEC10 are compared.

ment methods are not statistically reliable either. It might be due to large variances
(various variabilities of estimation or scaling) for these 8 estimated variables. Thus,
we consider a semiparametric model with natural cubic spline (NCS) on TEC10. For
the semiparametric fit, we consider the regular NCS method based on generalized cross
validation and our proposed Gibbs sampling with large and small valued parameters in
the Dirichlet distribution.

From Table 4, we observe that the RSS of LMEM is smaller than the RSSs of the
regular NCS semiparametric model and our proposed models. Coefficients of LMEM
are estimated based on the restricted maximum likelihood method to reduce variance
in this dataset, thus we might expect the RSS of LMEM to be smallest compared to
other models. For these data, the number of knots has little effect on the fit, because
RSS with the small valued parameter of the Dirichlet distribution is close to the RSS
with the large valued parameter. However, from Figure 5, we observe that our pro-
posed semiparametric model with a Dirichlet prior distribution has uniformly smaller
95% highest posterior density (HPD) intervals than the standard NCS semiparametric
model and LMEM. This variance reduction property in linear Dirichlet random effects
models has been proved theoretically by Kyung et al. (2009). They showed that if the
data vector does not consist of a contrast within observations between each position of
knots, the mean of the posterior distribution of the variance from the Dirichlet random
effect model is smaller than that of the regular normal random effects model. However,
in most cases we might not be able to find such contrast. The left panel in Figure
5 shows 95% intervals for the demographical variables, AGE, OFFENSE, THIST, GEO and
AHIST. HPD intervals of the proposed semiparametric model (small and large) are no-
ticeably smaller than intervals from regular models (LMEM and NCS). The right panel
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Figure 5: 95% highest posterior density (HPD) Intervals. The HPD intervals for
LMEM and NCS models are given in Pink and Green, respectively, and intervals for the
proposed semiparametric model with small valued and large valued parameter models
are given in Red and Black, respectively.

in Figure 5 shows 95% intervals of eight estimated abuse/dependence variables based
on the four different treatment modalities. The TEC10 variable is used in the smoothing
method, so the credible intervals for the coefficients include zero for all models. How-
ever, all other coefficients in our proposed semiparametric model are reliably different
from zero. Therefore, our proposed method gets rid of unexpected and hidden variance
and correlation under the data structure efficiently and provides a smoother curve fit
with small variance compared to other regular methods.

From Figure 5, we observe that for black males with violence and alcohol history also
under criminal justice status, if the current offense case is violence (OFFENSE=VIOL)
and if drug abuse/dependent has been treated (THIST=YES), the number of arrestees
(ESIZE) tends to decrease compared to drug offense (OFFENSE=DRUG) and no treat-
ment history (THIST=NO). Also, as the number of previous arrests (AHIST) increases,
the estimated number of following arrests tends to decrease. Considering four differ-
ent drug abuse/dependent treatments, treatment for drug abuse in each of the domains
(modalities) (TEC20, TEC30, TEC40) substantially reduces the number of arrestees. Specif-
ically, outpatient methadone treatment (Modality 3) is shown to be the most efficient
method to reduce the number of arrests. However, for those at greatest risk of drug de-
pendence (TEC11, TEC21, TEC31, TEC41), reverse treatment in each of the modalities tends
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to create an increase in the number of arrests. This might be the reason that, compared
to abuse, the drug dependence treatment is not intensive, and the standard categoriza-
tion method of abuse or dependence is not restricted. Thus, by trying more intensive
drug abuse/dependence care, drug-involved recidivism should be reduced. When we
use a standard method to fit a nonlinear model, we are not able to detect this hidden
information, but by using the proposed method, we reduce the variance in the data
structures and find better fitting models with greater predictive qualities. Note that
using the Dirichlet distribution to generate the positions of the knots gives us a powerful
implementation of a Stein-rule like estimator.

6 Discussion

For synthetic data, in the aggregation process hidden structures and latent information
are created in unexpected ways. What this suggests is that the usual set of parametric
models will be inadequate for explaining the key underlying relationships in such data.
Thus we developed a new Bayesian semiparametric regression model that balances user-
defined restrictions against pure data information, and which is sufficiently flexible that
it has the ability to capture unusual or hidden features of the data that would ordinarily
be missed by conventional approaches. For the analysis of synthetic data of crime-
reducing benefits in treating drug-involved offenders who are black males with violence
and alcohol history under criminal justice status, when we used standard methods to
fit a nonlinear model, we were not able to detect this hidden information. However by
using our proposed method, we remove more variance in the data structure and we find
a more smooth and informative model for better prediction.

To control the number of knots, we use the Dirichlet distribution with large valued
parameter for a large number of knots and with small valued parameter for a small
number of knots. For the function with a small number of change points, the number of
knots has a big effect on the fit with a preference on a small number of knots; therefore
a Dirichlet distribution with a small valued parameter for the number and positions
of knots in MCMC performs better compared to that with a large valued parameter
based on the mean squared error. From simulation, we observe that the estimated curve
with a small valued parameter is close to the true function, but the estimated function
with large valued parameter is close to the data points. Also, from data analysis, we
could observe that the large valued curve is more sensitive to the data points, but less
smooth. This may lead to the poor smooth for the large valued parameter seen in
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Figure 2. Comparing to a full nonstationary model with coupled stationary GP with
tree partitioning, a new Bayesian semiparametric regression is not much less effective for
fitting arbitrary functions or surfaces and it is simpler and faster. One of the advantages
of the proposed semiparametric model is that it removes more hidden variance in the
data structure and also provides better estimates of model parameters for the smoother
curve fit by giving us a powerful implementation of a Stein-rule like estimator.

If we believe that there are not a large number of knots, in other words the distri-
bution of data is smooth and not degenerated, we consider a Dirichlet distribution with
small valued parameter for the number and positions of knots using MCMC. However,
if there exist many change points (partition points) in the data, the independent local
regression in each partition will be the best curve fit method. A semiparametric regres-
sion spline with a Dirichlet distribution with large valued parameter for the number
and positions of knots is not as effective as a semiparametric model with small valued
parameter for the smoother curves. However, if the distribution of data is skewed or
a mixture of curves with degenerated points, our proposed semiparametric regression
with a Dirichlet distribution with large valued parameter tends to fit the smooth curve
on data faster without considering all possible partitions. Also, if our intention for curve
fitting is better prediction over the sample space, our proposed semiparametric models
with a Dirichlet distribution prior will provide a more informative model with simpler
and faster implementation, even with a Dirichlet distribution with large valued param-
eter. For prediction, the choice of valued parameters (large or small) in the Dirichlet
prior should be considered differently depending on the data.

The convergence properties of the proposed Bayesian semiparametric regression are
discussed based on the Halpern’s Bayesian spline model setting with conjugate priors
(Halpern 1973). For the number and positions of knots, a discrete distribution is as-
signed as a prior and our chain is updated to a new number and position of knots with
higher posterior probability. This implies conditionally consistent multivariate proper
normal priors on coefficients γ of the basis functions; then the posterior is proper and
the set of multivariate normal posteriors on coefficients will be conditionally consistent.
Also, with this setting, the posterior mean of coefficients γ in our model is the optimal
predictor under the chosen number (K) and positions (κK) of knots.

We have provided a new semiparametric regression approach but we can extend our
method to more of a nonparametric regression strategy. We express a semiparamet-
ric model as an addition of parametric and nonparametric parts. If we consider the
parametric part as a smoother, semiparametric regression is an additive model of non-
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parametric regressions. With a linear mixed model representation, a semiparametric
regression has the same form as a nonparametric regression, but with more parameters
in the fixed effects. Thus, we can easily use the proposed sampler with fully nonpara-
metric regression.

Generalization of the proposed semiparametric regression can be considered with
regression in exponential families with multivariate nonparametric structure. However,
these are open issues within the proposed semiparametric regression and we leave these
further explorations as a part of our future research.

From synthetic data analysis, we observe that a linear mixed effects model and a
regular semiparametric model with natural cubic spline are not enough to explain effects
of treatments for the number of arrestees among black males with violence and alcohol
history under criminal justice status. However, our proposed semiparametric models
with a Dirichlet distribution prior remove the unexpected and hidden variabilities and
correlations under the data structure efficiently and provide a smoother curve fit with
small variance compared to other regular methods. Thus, with uniformly smaller 95%
highest posterior density intervals for the demographical variables than the standard
NCS semiparametric model and LMEM, our methods provide that by trying more
intensive drug abuse/dependence care, drug-involved recidivism could be reduced. By
using our described method, we could remove more variance in the data structure and
we could find a smoother model for better prediction.
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Appendix

1. Generating the Model Parameters

The joint posterior distribution can be written as

π
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)
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Then for fixed K and κK , a Gibbs sampler of (β,b, γ, σ2) is
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