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Abstract. Whether the number of tropical cyclones (TCs) has increased in the

last 150 years has become a matter of intense debate. We investigate the effects of

beliefs about TC detection capacities in the North Atlantic on trends in TC num-

bers since the 1870s. While raw data show an increasing trend of TC counts, the

capability to detect TCs and to determine intensities and changes in intensity has

also increased dramatically over the same period. We present a model of TC activ-

ity that allows investigating the relationship between what one believes about the

increase in detection and what one believes about TC trends. Previous work has

used assumptions on TC tracks, detection capacities or the relationship between

TC activity and various climate parameters to provide estimates of year-by-year

missed TCs. These estimates and the associated conclusions about trends cover a

wide range of possibilities. We build on previous work to investigate the sensitivity

of these conclusions to the assumed priors about detection. Our analysis shows

that any inference on TC count trends is strongly sensitive to one’s specification

of prior beliefs about TC detection. Overall, we regard the evidence on the trend

in North Atlantic TC numbers to be ambiguous.

Keywords: Atlantic tropical cyclones, HURDAT, tropical cyclone data, tropical

cyclone detection.

∗Department of Statistical Science, Duke University, Durham, NC, st118@stat.duke.edu
†Climate Decision Making Center, Carnegie Mellon University, Pittsburgh, PA,

irisg@andrew.cmu.edu
‡Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, kadane@stat.cmu.edu
§Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, acharest@stat.cmu.edu
¶Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA,

ms35@andrew.cmu.edu

© 2011 International Society for Bayesian Analysis DOI:10.1214/11-BA621

mailto:st118@stat.duke.edu�
mailto:irisg@andrew.cmu.edu�
mailto:kadane@stat.cmu.edu�
mailto:acharest@stat.cmu.edu�
mailto:ms35@andrew.cmu.edu�


548 Tropical Cyclone Detection

1 Introduction

Whether anthropogenic global warming may be impacting tropical cyclones (TCs) has
become a matter of intense debate (Knutson et al. 2010; Grossmann and Morgan 2011).
Raw data from the North Atlantic show an increasing trend of annual TC counts in the
region (Vecchi and Knutson 2008; Holland and Webster 2007). A similar observation
holds for the number of high-intensity TCs (Webster et al. 2005). The difficulty of
interpretation is that the capability to detect TCs and to determine intensities and
change in intensity has also increased dramatically over the same period (e.g. Landsea
et al. 2004, 2006; Landsea 2007). Consequently there is a relationship between what
one believes about the increase in detection capability and what one believes about
trends in TC activity. This paper investigates the effects of beliefs about TC detection
capacities in the North Atlantic on trends in Atlantic TC numbers.

The inference on the trend of tropical cyclone counts shares common elements with
other statistical problems in trend analysis with missing observations, particularly where
there is systematic bias in observations over a portion of the temporal or spatial domain
(Coles and Sparks 2006; Cornulier et al. 2011; Kéry and Royle 2010). An effective
approach for dealing with nonrandom missing data is to include a representation for the
observation process (or the missing data mechanism) as part of the overall statistical
model (Little 1995; Zeger and Liang 1996; Ibrahim et al. 2001; Tingley and Huybers
2010). Missing data are then imputed as part of the parameter estimation process,
resulting in a joint distribution for the model parameters and the missing observations
(Rubin 1996; Allison 2001; Honaker and King 2010).

The dataset used for studies on North Atlantic TC trends is the “best track” dataset
of the National Hurricane Center (HURDAT) (Jarvinen et al. 1984). HURDAT includes
observed positions, maximum wind speeds, and some central pressure measurements
for TCs dating back to 1851. The North Atlantic is widely regarded as having the
most reliable TC data and the longest TC time series. Trend detection in all basins,
in particular the North Atlantic, is complicated by natural variability on several time
scales, including the multidecadal (Klotzbach and Gray 2008; Vecchi and Knutson 2008).
Consequently, long historical coverage is essential for trend analysis. However, Atlantic
TC records from the earlier period prior to the availability of reconnaissance aircraft
and satellites rely on sparsely populated coasts and limited ship tracks (Landsea et al.
2004, 2006), with the consequence that some TCs likely did not get recorded. Thus, an
increasing trend of the observed counts might be attributed entirely to improvements
in detection technology (Landsea 2007).
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The extent of data quality issues in HURDAT has been the subject of intense dis-
cussions (Landsea 2007; Holland and Webster 2007; Vecchi and Knutson 2008; Chang
and Guo 2007; Mann et al. 2007; Bengtsson and Hodges 2008; Landsea et al. 2010),
with some studies suggesting that the Atlantic TC record can be regarded as reason-
ably reliable back into the late 19th century because ships could not be warned off from
approaching TCs (Mann and Emanuel 2006; Holland and Webster 2007). A number
of recent studies aim at interpreting the HURDAT records by augmenting it with esti-
mates of year-by-year missed TC counts. These studies can be categorized into three
groups based on the principles they employ to estimate missed TCs. One group matches
satellite-era TC tracks with earlier ship tracks and land points (Chang and Guo 2007;
Vecchi and Knutson 2008). A second group analyzes time trends of the proportion of
TCs possessing certain characteristics, such as TCs making landfall, which can be ar-
gued to have had enjoyed good detection even in the earlier times (Solow and Moore
2000, 2002; Landsea 2007; Nyberg et al. 2007; Elsner and Bossak 2006). A third group
predicts TC counts by modeling their relationship to other climate variables with more
accurate historical records (Mann et al. 2007; Solow and Beet 2008).

Building on these studies, our analysis investigates the sensitivity of conclusions
about trends in TC numbers to the assumed priors about detection. Our goal is to
encourage climate researchers to use the platform we develop, possibly in conjunction
with other trend models, and to draw their attention to the extremely important issue of
carefully quantifying one’s beliefs about detection probabilities. To illustrate this latter
point, we first develop a belief quantification that produces estimates of missed TC
counts that match the numbers reported in Vecchi and Knutson (2008), thus recapturing
their conclusion of an increasing trend of yearly TC counts since the 1870s. We then
show that seemingly minor changes to this belief quantification result in either roughly
constant or negative trends. This sensitivity of the inference to the prior input is not
a negative feature of our approach, rather a simple reminder of the inherent ambiguity
of the HURDAT records caused by missing observations. Our analysis shows that any
inference on TC count trend is strongly sensitive to one’s specification of prior beliefs
about TC detection.

In Section 2, we begin by reviewing changes in TC detection methods and tech-
nologies over time. We then briefly discuss the assumptions that had to be made by
different previously published approaches for the estimation of missed Atlantic TCs.
Section 3 explains the data and methods. Our results in Sections 4 and 5 show the
strong sensitivity to the assumptions made on TC detection capacities and highlight
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the resulting ambiguity in the trend of TC numbers. In Section 6 we present possible
ways to resolve this ambiguity.

2 TC detection and recording over the years

Tropical cyclones are warm-core low pressure systems with a closed circulation over
tropical or subtropical oceans. The weakest form of a TC is called tropical depression.
TCs with wind speeds of 35 knots or more are called tropical storms, TCs with speeds of
65 knots or more are called hurricanes; the latter range from the less intense category 1
to the very intense category 5 (Simpson 1974). Trend analysis of TC numbers considers
“named storms”, that is, TCs of tropical storm strength or greater. Two criteria deter-
mine whether wind speed observations of tropical storm strength or greater are recorded
as tropical cyclones within HURDAT (Landsea et al. 2008). First, evidence of a closed
circulation and the non-frontal character of the system are required to distinguish the
cyclone from an extratropical or subtropical cyclone. Second, at least two wind speed
measurements or estimates by independent observers are required (Landsea et al. 2008).
Thus, the reasons leading to a TC not being recorded in HURDAT are twofold: first,
an actual lack of observations of the TC in question, and second, a lack of information
to classify the observed wind anomaly as a tropical cyclone. Figure 1 gives a timeline of
how TC observation technology has changed over the years, along with the occurrences
of the major events that may have impacted our ability to record TCs.

The US Signal Service has been observing Atlantic TCs since approximately 1873
(Sheets 1990; Fernández-Partagás and Diaz 1996). Several forecast offices were estab-
lished in the 1930s, followed by the designation of the Miami forecast office as National
Hurricane Center in 1955 (Sheets 1990). Satellite observations have been available since
1967, aircraft reconnaissance since 1945. Prior to 1945, TC records relied entirely on
ship and coastal observations. In parts of the US, insufficient coastal density and limited
reporting in the early part of the century may have led to a failure to detect landfalling
TCs that had not been reported by ships (Landsea 2007; Landsea et al. 2008; Sheets
1990, Figure 1). This is illustrated by the recent addition of four new landfalling storms
to the 10-year period from 1911-20 in the course of the ongoing reanalysis of the HUR-
DAT records (Landsea et al. 2008).

Ships may not have sighted and reported all TCs that occurred due to insufficient
coverage with regular ship routes, insufficient observation equipment, and possibly con-
scious avoidance of an approaching storm. Until radio became available in 1905, TC
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Satellite improvements: resolution,
coverage, number of channels

1873 1906 1915 1936 1945 1966/67 1974 1984 2000−2003

Ship and coastal observations

US Signal service begins TC observations (succeeded by National Hurricane Center in 1955)

Radio−transmitted ship observations

Panama canal opens

Radiosondes

Aircraft reconnaissance
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IR Satellites
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WWI WWII

Figure 1: A timeline of Atlantic TC observation cataloging main changes in observation
technology along with other major events that may have impacted TC recording.
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observations relied on ship reports after the ship returned to port. TC observations were
evaluated with the Beaufort scale, which specifies differences in waves and the ocean
state up to category 1 hurricanes, and with marine barometers if available (Landsea
et al. 2004). In 1900, approximately one quarter of ships were equipped with marine
barometers; by 1930, most had barometers (C. W. Landsea, personal communication,
2007). Prior to the opening of the Panama Canal in 1915, ship routes were concen-
trated in the northern and eastern parts of the basin and near the US East coast. The
opening of the Panama Canal significantly increased the likelihood of observation of
TCs south of 32◦N (Vecchi and Knutson 2008). Methods to detect approaching TCs
prior to recording gale force winds were available although it is unclear to what extent
mariners made use of these methods to avoid contact with approaching TCs (Bowditch
1841; Piddington 1860; Bowditch 1995).

Both limited coverage by ship tracks and the possible conscious avoidance of TCs
may have resulted in missed TCs. Evidence of a closed circulation usually relied on
weather maps or multiple observations of the same TC. With the limited coverage and
limited quality of observations, such evidence was not always available, likely resulting in
the omission of several TCs from HURDAT during this era. Aircraft reconnaissance has
been used sporadically since 1944, and more regularly since 1956 after the devastation
caused by several New England hurricanes (Dorst 2007). Until the 1960s, reconnaissance
flights were typically dispatched to investigate TCs that had already been detected; in
addition, regular patrols covered the route from Bermuda to east of St. Croix, St.
Croix to Miami and back to Bermuda (Dunn and Miller 1960). Flights generally did
not travel beyond 55◦W. Dunn and Miller (1960, page 155), report that about half of
all TCs were initially detected by ships until the 1960s. While some TCs were probably
first detected by aircraft, this leaves a large number of TCs to be initially detected by
islands or coastal areas, implying that at least some of those TCs that remained at a
reasonable distance from islands and coasts were likely missed altogether.

During the early satellite era beginning in 1967, TC observations relied on a com-
bination of visible satellite imagery and aircraft reconnaissance (Neumann et al. 1999).
Nighttime observations became possible only with the launch of infrared (IR) satellites
in 1974 and the adoption of a Dvorak-scheme for the interpretation of IR imagery in
1984 (Dvorak 1984). Further significant changes were gradual improvements in cov-
erage and resolution (Sheets 1990; Landsea et al. 2006), and the addition of the Ad-
vanced Microwave Sounding unit (Brueske and Velden 2003), the Quick Scatterometer,
or “QuikSCAT” (Atlas et al. 2001) and the Cyclone Phase Space analysis tool (Harper
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and Callaghan 2006), during the years 2000 to 2003 (Landsea 2007).

Two types of systems might be underrepresented to some extent prior to these more
recent improvements. First, TCs with very short lifetimes could have been missed
(Landsea et al. 2010), in particular due to a lack of nighttime IR imagery and due to
viewing gaps. Knapp and Kossin (2007) find that in the 1980s, satellite observations
were not available during 5.5% of all 6-hour periods during which a TC was present
in the North Atlantic; during the 1990s and 2000s this was reduced to 1.6% and 0.5%,
respectively. Second, storms may have been detected but not classified as TCs as they
exhibited tropical characteristics or tropical storm strength for only a short period of
time. The capacity to classify storms that were tropical only for short time periods has
also improved dramatically over time; in fact Landsea (2007) suggests that capacities
may have become adequate only in recent years with the help of new tools. The original
Dvorak developmental sample (Velden et al. 2006) did not include subtropical systems
– storms that exhibit both tropical and extratropical characteristics and that might or
might not become fully tropical at some stage of their lives.

Approaches that estimate missed TCs necessarily rely on assumptions about detec-
tion capacities, and in some cases, aspects of TC activity and the presence or absence
of changes in TC activity over time. Matching ship tracks with satellite era TC tracks
requires the assumption that the spatial distribution of satellite era TC tracks is similar
to the distribution during earlier time periods (Vecchi and Knutson 2008). However,
tracks may not be static in time if they respond to shifts in atmosphere-ocean conditions
such as the recent warming of the eastern Atlantic (Holland 2007).

A second type of assumption made by approaches using ship tracks is that the num-
ber of recorded TCs during the satellite era matches the number of TCs that actually
occurred. This assumption is problematic given the insufficiency of observational ca-
pacities for the correct classification of short-lived or weak tropical storms until very
recently (Landsea 2007; Landsea et al. 2010). Models using climate variables are affected
by a similar problem, as the assumed relationship between TCs and climatic variables
has to rely on data over a certain time period (or time periods) to estimate the pa-
rameters in the model. However, available observation technologies and interpretation
schemes continued to undergo significant changes and improvements during the satellite
era, with likely effects on the completeness of TC records (Landsea 2007; Landsea et al.
2010). Hence even the satellite era records are likely not to be complete.

A third type of assumption made by approaches that consider ship tracks concerns
observation and detection capacities and practices. Available studies assume land points
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to be perfect storm detectors. This means, first, that coasts were populated at sufficient
density to detect TCs, which may not have been the case in the first two or three decades
of the century (Sheets 1990; Landsea et al. 2006). Second, it is assumed that land points
everywhere were sufficiently equipped to observe and correctly classify TCs (Vecchi and
Knutson 2008; Chang and Guo 2007). It is further assumed that ships did not alter their
course to avoid encounters with TCs before tropical storm force winds and in particular
evidence for a closed circulation could be reported (Vecchi and Knutson 2008). If TCs
were avoided, this should have caused the record of observed TCs to be even more
incomplete. It is also assumed that observation by one (Chang and Guo 2007) or
two (Vecchi and Knutson 2008) observers always led to a storm being recorded. The
additional requirement that evidence of the storms’ tropical characteristics be available
has not been incorporated into available studies (Vecchi and Knutson 2008).

3 Combining detection probability with raw counts

Let ni denote the raw TC counts in the HURDAT records corresponding to calendar
year yi, i = 1, 2, · · · , N . We cover the period from y1 = 1871 through yN = 2008 with
N = 138. Let mi denote the missed TC counts for these years, and ti = ni + mi the
actual total TC counts. Our aim is to infer about the trend of ti’s. We achieve this
within a Poisson trend model (Solow 1989; Elsner and Kara 1999):

ti ∼ Po(λi), ti’s are independent across i, (1)

logλi = η1 + η2
yi − ȳ

N − 1
+ φ1 cos

(
π

{
φ2 + φ3

yi − y1

yN − y1

})
(2)

where ȳ = 1
N

∑
i yi = 1939.5 denotes the “central year” for the period under study.

In (2), η1 + η2
yi−ȳ
N−1 reflects a linear trend (in log scale) of the total TC counts: eη1

gives the mean TC count in the central year and eη2 − 1 gives the relative change in
mean counts over the N years with respect to year 1. The important parameter here
is the slope η2. A positive, zero or negative value of η2 indicates an increasing, flat or
decreasing trend of the total TC counts. The cosine term in (2) is introduced to allow
for multidecadal oscillation in TC frequency (Klotzbach and Gray 2008; Elsner and
Jagger 2006; Goldenberg et al. 2001; Vecchi and Knutson 2008; Knutson et al. 2007).
Here, φ1 encodes the amplitude of this oscillation; φ2 encodes a phase shift, φ2 = 0
makes year 1 coincide with a peak (positive or negative depending on the sign of φ1) of
this oscillation; φ3 encodes the number of oscillation cycles within the period of study.

For the j-th TC in the i-th year, let the detection probability be πij , j = 1, 2, · · · , ti,
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i = 1, 2, · · · , N . We let πij depend both on the detection technology available in year
i and a scalar zij denoting some measure of strength of the TC being detected. The
latter is included to reflect the notion that for any given detection method, a stronger
TC was more likely to be detected than a weaker one. This measure of strength can be
defined in various ways and a vector of multiple measures could also be considered. For
our illustration, we consider a simple measure where zij denotes the time (in hours) the
corresponding TC had wind speed in category 1 or higher. We specify

πij = Φ(γi + βzij) (3)

where the scalar parameter γi gives the contribution of the i-th year’s detection technol-
ogy, and the scalar parameter β gives the influence of TC strength on its detectability;
Φ(x) =

∫ x

−∞(
√

2π)−1 exp(−z2/2)dz denotes the cumulative distribution function of the
standard normal distribution. In principle, one can replace β with a year dependent βi,
but we shall stick to a constant β to maintain simplicity.

Note that zij is unobserved for every TC that went undetected. This requires a
probability distribution to describe what these missing measurements could have been,
with parameters underlying the distribution that can be learned from the zij that were
actually recorded. Toward this, we define zij = max(0, vij) with vij ∼ N(µi, σ

2
i ) inde-

pendently of each other. This definition reflects that each zij is non-negative and can
equal zero with probability 1− Φ(µi/σi). The year specific means µi and variances σ2

i

allow year to year variation in the overall strength of the North Atlantic TC season. Al-
though other models for zij could be considered, we prefer the truncated normal model
because it leads to simple computations for learning its parameters within a Bayesian
setting with a conjugate prior specification.

The unknown parameters in our model are η1, η2, φ1, φ2, φ3, {µi}N
i=1, {σ2

i }N
i=1,

{γi}N
i=1 and β. For our illustrations, we fix the detection parameters β and {γi}N

i=1,
partly to emphasize that the inference on the other parameters, particularly η2, is
quite sensitive to the choice of these parameters. Specific choices are given in the next
section. Prior beliefs about each of the remaining parameters are specified by choosing
an appropriate probability distribution as described in Table 1. These parameters are
taken to be a priori independent of each other, i.e., the joint prior distribution on all
these parameters is simply the product of the marginal prior distributions that appear
in Table 1. The entries in Table 1 are chosen as follows. For each parameter, we look
at model features (usually one) that are directly influenced by the parameter. Then
a prior distribution is chosen to provide reasonable values for the a priori mid-point
and range for each of these model features. All prior distributions are chosen from
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Parameter Prior
Related TC

characteristic
TC characteristic
median (95% CI)

η1
N(2, 1) Mean TC count in cen-

tral year: eη1

7 (1, 52)

η2 N(0, 0.72)

Percentage change over
N years in mean TC
count relative to year 1:
eη2 − 1

0% (-75%, 294%)

φ1
Discrete uniform on
{−.5,−.475, · · · , .5}

Percentage change
from minimum to max-
imum mean TC count
due to oscillation:
e2|φ1| − 1

65% (3%, 165%)

φ2
Discrete uniform on
{−.5,−.4, · · · , .5}

Oscillation phase shift:
πφ2

0 (−π/2, π/2)

φ3
Discrete uniform on
{2, 2.2, · · · , 8}

Number of oscillation
cycles: φ3/2

2.5 (1, 4)

(µi, σ
2
i )N

i=1

µi|σ2
i ∼ N(25,

σ2
i

100 ),
σ−2

i ∼ Ga(50, 50·104),
independent over i

A. Fraction of years
with 40% or more
non-hurricane TCs:
#{i: Φ(−µi

σi
)≥.4}

N

51% (43%, 60%)

B. Fraction of years
with 1/6-th or more
TCs staying cat-
egory 1 or higher
for 5 or more days:
#{i: Φ(

120−µi
σi

)≥1/6}
N

57% (49%, 64%)

Table 1: Prior distributions on model parameters (except for detection probability
parameters).
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simple exponential family distributions or discrete distributions. A normal-inverse-
gamma prior for the (µi, σ

2
i )’s is chosen because of its conjugacy properties.

4 Illustration

To specify the detection probability parameters β and {γi}N
i=1, we first split the study pe-

riod into 10 sub-periods. The separation points are chosen to reflect significant changes
in detection technology over the years as well as some other global events that are likely
to have affected TC recording. These ten sub-periods are shown on the first column
of Table 2, with the events determining the onset of these sub-periods described in the
second column. The γi values for all years within a sub-period are taken to be identical.

E1 E2 E3

yi Comments γi γi γi

1871-1872 Beginning of study -3.5 -3.5 -3.5

1873-1905 US Signal Service -2.75 -3.25 -3.25

1906-1916 Ships with radio -0.75 -1.5 -1.5

1917-1920 US in WWI & after-effects of WWI -1.5 -2.25 -2.25

1921-1940 Post WWI 0.5 -1.25 -1.25

1941-1945 US in WWII -2.5 -2.5 -2.5

1946-1966 Post WWII & aircraft 0.5 0.5 0.5

1967-1973 Early satellite era 1.5 1.5 1.5

1974-2001
Infrared satellites; better resolution &
coverage

2 2 2

2003-2008
New tools (QuikSCAT, Microwave Sound-
ing Unit, Cyclone Phase Space Analysis)

2.5 2.5 2.5

β β β

0.02 0.02 0.01

Table 2: Choice of detection probability parameters γi and β for experiments E1, E2
and E3.

In our first experiment (E1 hereafter), we consider values of γi and β as given in
the E1 column of Table 2. The detection probabilities in E1 were chosen to obtain a
posterior summary of missed TC counts similar to that of Vecchi and Knutson (2008).
For this choice, detection probabilities of 7 hypothetical TCs are shown in the top-left
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panel of Figure 2. These 7 TCs correspond to 7 different levels of strength, starting
from a TC that never reached category 1 windspeed, to one that was category 1 or more
for 10 days. For each sub-period, the detection probabilities of the 7 storms are shown
by 7 dots in the middle. Detection probabilities are flat within a sub-period; the lines
joining dots from one sub-period to the next are purely for visual assistance.

Once the detection probabilities are specified, we learn about other model parameters
from data through their joint posterior distribution as determined by the likelihood
function and the prior. We use a reversible jump Markov chain Monte Carlo (Green
1995) to sample from the joint posterior of the model parameters plus the missing
observations mi and zij (for unobserved TCs). A Metropolis update with Gaussian
increment is used for each of η1 and η2, with increment size chosen to achieve an
acceptance rate close to 45%. Gibbs updates are used for φ1, φ2, φ3, and the block
{(µi, σ

2
i )}i. The conditional posterior distribution of each of these parameters assumes

a simple form thanks to either discreteness or well-known conjugacy properties of the
normal-inverse-gamma prior.

The missing observations {(mi, {zij}ni+mi
j=ni+1)}N

i=1 are updated via reversible jump
Metropolis. For a randomly chosen year, an “addition” or a “deletion” is proposed with
equal probability. In the case of addition, a missing TC, with zij generated from the
prior, is proposed to be added to that year’s TC count. For deletion, a TC from that
year’s list of missing TCs is chosen randomly and is proposed to be removed. These
proposals are complementary to each other and lead to simple calculations of acceptance
probabilities that preserve detailed balance. For a year with no missing TC currently
imputed, only the addition proposal is made. We use 50 addition-deletion moves per
iteration of the MCMC. Additionally, we update the zij values of all imputed TCs by
a Gibbs update which is available due to our formulation of zij = max(0, vij) with a
normal prior on the vij ’s.

Posterior sampling is done through two parallel runs of the Markov chain, with
starting points overdispersed with respect to the imputed TC counts. One run starts
with zero imputation (mi = 0) for all years while the other run starts with mi’s generated
from Po(λi(1 − Φ(γi))) distributions. Each run is 20,000 iterations long. Convergence
takes place within a few hundred iterations (see supplementary materials). The first
quarter of each chain is discarded, the rest is thinned and the two chains are then pooled
together to form a sample of 6000 draws from the posterior distribution.

The bottom-left panel of Figure 2 shows the posterior distribution over missed TC
counts mi under choice E1. The posterior means of mi are shown by the gray line.
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Figure 2: A visual summary of experiment E1. Top-left panel shows chosen detection
probabilities across years for a set of 7 hypothetical TCs of various strength, measured
by the hours each TC was a category 1 or higher. The vertical dotted lines mark the
end of detection sub-periods as described in Table 2. Bottom-left panel shows posterior
mean and range (95% equal-tail credible interval) for missed TC counts across years,
overlaid with missed TC counts reported in Vecchi and Knutson (2008). Posterior (solid)
and prior (broken) densities of η1 and η2 are shown on the top and middle panels on
the right. Bottom-right panel shows posterior mean and 95% credible band of annual
TC counts (observed + imputed).
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E1 E2 E3

P(η2 > 0 | data) 0.98 0.81 0.31
E (eη2 − 1 | data) 25% 11% -4%

Table 3: Posterior inference on the trend of mean TC count under experiments E1, E2
and E3.

Overlaid on this is the black line showing the missed TC counts reported by Vecchi and
Knutson (2008). The detection probabilities in E1 were chosen to obtain a posterior
summary of missed TC counts similar to that of Vecchi and Knutson (2008). The top
and middle panels on the right show posterior densities of η1 and η2. The posterior
mean total TC count in the central year is approximately 10. The posterior places
an overwhelmingly large probability (98%) on the slope η2 being positive. Thus the
assumptions of E1 strongly support the conclusion of increasing TC activity. The pos-
terior mean of eη2 − 1, the change in TC counts over the N years (relative to beginning
of the study) is 25%. On top of this linear growth, the posterior also supports additional
fluctuation in annual TC counts through multidecadal oscillation (bottom-right panel)
with a mean of 2.3 (95% interval = (2.1, 2.5)) oscillation cycles (φ3/2) over the entire
period. The oscillation alone accounts for an average 49% (95% interval = (28%, 82%))
relative change from minimum to maximum mean TC counts (e2|φ1| − 1). Posterior
summaries of several model parameters are provided in the supplementary materials.

5 Sensitivity to prior quantification

We consider two other choices of detection probability parameters, as given in the E2
and E3 columns of Table 2, to illustrate how the posterior trend critically depends on
these choices. E2 is similar to E1, except for the years 1878 through 1940. E1 assigns
very high detection probabilities (≈ 80% or more) even to tropical storm strength TCs
in the period 1921-1940, when measurements were based on ship and land records only.
E2 (Figure 3) presents a somewhat less optimistic view, where the detection probabilities
are more than 50% only for TCs that were category 1 or stronger for at least 3 days. E2
also lowers detection probabilities for 1878-1920, to maintain the same relative patterns
in the 1878-1940 period as given by E1. E3 (Figure 4) is exactly the same as E2 except
for the value of β which is halved.

Experiments E2 and E3 lead to substantially different inferences on the TC count
trend relative to E1 (Table 3). Under E2, the posterior probability of η2 being positive
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Figure 3: Visual summary of experiment E2. Conclusion of a positive trend is much
weaker than that in E1.
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Figure 4: Visual summary of experiment E3. The posterior assigns 70% chance of a
negative trend, with a mean drop of 4% in average TC counts across the period of study.
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is less overwhelming (81%) than that under E1. The posterior mean of total percentage
increase reduces to 10%. E3 presents a different picture, where the posterior probability
of η2 > 0 drops down to 31% and the mean trend is negative, with about a 4% drop
in TC counts over the study period. Both E2 and E3 support multidecadal oscillation
similar to E1, with an average 2.3 oscillation cycles, but with reduced amplitudes.

6 Concluding remarks

6.1 Resolving ambiguity with further studies

Our three experiments point to significant ambiguity present in the historical tropical
cyclone occurrence records, with the assessment of TC counts trend clearly linked to
assumptions regarding historic detection probabilities. Can we draw any reasonable
conclusions about the trend despite this ambiguity? We feel the answer is yes, but it
would involve using beliefs about detection probabilities that are deemed reasonable by
the scientific community.

First, formal elicitation could be conducted with experts on past tropical cyclone de-
tection to derive expert-specific detection probability formulation. This can be achieved
by an extension of the statistical framework presented here. The main vehicle for this
extension is the probability detection plot that appears on the top-left panel of Figures
2, 3, and 4. This plot provides an interface between our statistical model and quantities
that can be elicited from a climate expert.

The expert would be required to generate her version of this plot by quantifying her
belief about detection probabilities of a collection of TCs of various intensities, dura-
tions, tracks, etc. across different eras starting from the mid nineteenth century. These
elicited quantities would be used to identify a suitable detection probability function (3)
with zij possibly reflecting a multitude of TC characteristics and Φ possibly replaced
with a different distribution function. It might also be necessary to use a non-trivial
prior distribution on the parameters in (3) to accommodate the expert’s uncertainty
about them. Once a suitable detection probability function is found to match the
expert’s belief, the rest of the modeling, computing and summarizing can proceed in
exactly the same manner as in the examples presented here.

Ideally, such a study would be carried out with many different experts, generating a
catalog of conclusions about TC trend based on current expert opinions. Whether any
kind of scientific consensus might result from this remains to be seen.
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6.2 Sensitivity to formulation

In incorporating an expert’s quantified belief, it is important to ascertain how sensitive
the results will be to the particular choice of the formulation of (3). In particular, if
an expert’s quantified beliefs are well represented by two different formulations of (3),
will the conclusions about trend depend on which formulation is used? While such a
question cannot be addressed in full generality, we report below additional experiments
that suggest the conclusions are indeed robust to moderate variations in the choice of
(3).

We consider three additional experiments, E1*, E2* and E3* in which (3) is specified
as

πij = F3(γ∗i + β∗i zij) (4)

where F3 denotes the cumulative distribution function of the Student-t distribution with
3 degrees of freedom. We continue with our 10 sub-periods split of the study period
(Table 2) and assign a common value to γ∗i for all years i within a sub-period. The
same is done for β∗i .

In experiment E1*, we choose γ∗i ’s and β∗i ’s to match the “quantified beliefs” of E1
as displayed on the top-left panel of Figure 2. For the 7 (hypothetical) TCs displayed
on that panel, with strengths zh

1 = 0, zh
2 = 12, · · · , zh

7 = 240, we record their detection
probabilities πh

1k, πh
2k, · · · , πh

7k for all sub-periods k = 1, · · · , 10, as specified under E1.
Next we find γ̂k and β̂k for k = 1, · · · , 10, by minimizing

f(γ1, · · · , γ10, β1, · · · , β10) =
[

1
70

∑

j

∑

k

{πh
jk − F3(γk + βkzh

j )}2
]1/2

(5)

and set γ∗i = γ̂k and β∗i = β̂k for all years i within sub-period k. This minimization
is done numerically by using the optim() routine of R and the minimum value equals
0.0091, which suggests a reasonably good fit. The rest of the model is kept as before.
Posterior summaries are generated by the reversible jump Markov chain sampler as
discussed earlier with a suitable modification to reflect the change from (3) to (4).
Experiments E2* and E3* are similar in design, but with “quantified beliefs” coming
from E2 and E3, respectively. The minimum value of f(γ1, · · · , γ10, β1, · · · , β10) equals
0.0101 for E2* and 0.0102 for E3*.

Table 4 shows conclusions about trend under E1*, E2* and E3*. Full graphical
summaries, as in Figure 2 etc., are included in the supplementary materials. Despite
the differences in (3) and (4), the conclusions about trend in these new experiments are
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E1* E2* E3*

P(η2 > 0 | data) 0.98 0.83 0.34
E (eη2 − 1 | data) 24% 12% -3%

Table 4: Posterior inference on the trend of mean TC count under experiments E1*,
E2* and E3*.

virtually indistinguishable from the conclusions drawn in, respectively, E1, E2 and E3.

It is possible to obtain different conclusions than E1 etc. by replacing F3 in (4) with
a function that is more dissimilar to Φ. In fact, with F1 instead of F3, the minimum
value of f(γ1, · · · , γ10, β1, · · · , β10) undergoes about a 3-fold increase to values of 0.0247,
0.0259 and 0.0275 for E1*, E2* and E3* respectively, suggesting a less satisfactory fit.
The conclusion about η2 is different, but not by a big margin (supplementary materials).
Equation (4) with F1 instead of F3 does not provide as good a fit to the “quantified
beliefs” of E1 and so the difference in conclusion is not worrying. However, determining
lack of fit to an expert’s quantified beliefs is a nontrivial task and should be based upon
both graphical plots of detection probabilities and numerical values of f .

6.3 Toward a flexible formulation

Both (3) and (4) are limited in their ability to encode an expert’s quantified beliefs. A
slightly richer formulation, of which both (3) and (4) are special cases, can be obtained
by taking πij = Fν(γ∗i + β∗i · zij) where the degrees of freedom parameter ν is also
to be included in the minimization of f(γ1, · · · , γ10, β1, · · · , β10, ν) = [ 1

70

∑
j

∑
k{πh

jk −
Fν(γk + βkzh

j )}2]1/2. Here zij is taken to be a vector of strength measures which would
possibly include summaries of duration, size and trajectory. This vector is to be decided
upon in consultation with the expert to characterize the variation in TCs she chooses
as the examples for her belief quantification.

6.4 Incorporating climate models

The proposed analysis could be extended further by combining expert knowledge with
climate model projections of North Atlantic TC activity. Climate model studies have
investigated how TC intensity, frequency and tracks may change in a warmer climate
both globally and in individual basins such as the North Atlantic. Global climate models
that are used to project temperature increases resulting from increased CO2 levels have
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low resolution (Knutson et al. 2010) and consequently are limited in their ability to
simulate TCs. Recent approaches have combined the output from global models with
regional higher-resolution models that are able to simulate more realistic TCs (Emanuel
et al. 2008; Knutson et al. 2010, 2008).

Ideally, the results of such models would be used to specify priors for the vector zij ,
where this vector includes a multitude of TC characteristics such as intensity, duration,
seasonal variation, and geographic distribution of tracks. This would allow the experts
to focus on the detection probabilities during the elicitation process. However, despite
the improvements in model resolution, currently available models remain somewhat
limited in their capacity to simulate realistic distributions of these TC properties. In
particular, projections of TC frequencies in individual basins and changes in tracks and
duration are regarded as rather unreliable at present as is evident, for instance, in the
disagreement on the sign of changes in these parameters (Knutson et al. 2010; Gross-
mann and Morgan 2011). A recent model driven by annual observed North Atlantic
ocean temperatures and atmospheric parameters over the 27-year period 1980-2006 was
able to simulate North Atlantic TC activity that agreed remarkably well with observed
activity. However, this model first had to be calibrated to the observed basinwide TC
counts, the very dataset that is sought to be corrected. This introduces a circular prob-
lem. We also note that this kind of study cannot be extended to the period prior to
1980 because the required detailed atmospheric parameters are only available from 1980
onwards (Kalnay et al. 1996).
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