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I would like to start by congratulating the authors on a stimulating paper. The focus
of the paper is on computationally efficient methods for analysing multiple changepoint
models. They build on existing methods (Yao 1984; Barry and Hartigan 1992; Liu
and Lawrence 1999; Fearnhead 2006) that allow for iid sampling from the posterior
distribution for certain changepoint models. These existing methods require the ability
to analytically calculate the marginal likelihood associated with any segment within
the data. For analysing a data set with n data points, under the assumption of K

changepoints, the CPU cost of these methods is O(Kn2).

There are two key ideas within this paper. The first is to use ideas from the integrated
nested Laplace approximation (INLA) to approximate the segment marginal likelihoods.
This enables you to apply these recursive methods to a much wider range of changepoint
models, that is to models which include dependence of data within a segment when it
is modelled through a Gaussian Markov random field. The second is to implement the
recursions on a reduced set of possible changepoint times. This can be thought of as
grouping each g consecutive data points into a single observation, and then running
the recursions on this reduced set of observations. The motivation for this is purely
computational – as it reduces the CPU cost of the recursions by a factor of g2. In
many applications this approximation has a natural interpretation. For example, for
the coal-mining disaster data (Section 4 of the paper), different choices of g would
relate to analysing data at different levels of aggregation: such as corresponding to
data on the number of deaths each day, week, or year. Providing the distance between
successive changepoints is larger relative the level of aggregation, we would expect any
approximation error to be small.

The key feature of both ideas is to introduce some approximation, but with the gain
of being able to analyse a much wider class of models and a much bigger size of data set.
I would like to first discuss, via asymptotic arguments, in what sort of situations these
approximations are likely to be small; and secondly to look at the idea and approach of
summarising the inferences via a MAP estimate of changepoint positions.
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1 Asymptotics

It is natural to consider what happens to the approximations as we analyse increasingly
larger data sets. As we let the number of observations, n →∞, there are two extreme
scenarios we could consider in terms of whether the number of changepoints, K, is fixed
or whether on average it increases linearly with n. The former case is often called in-
fill asymptotics, and corresponds to taking observations at higher frequency across a
fixed region of interest. For example, if you are interested in a region of the genome
and are making inferences based on single-nucleotide polymorphism (SNP) data, this
regime would relate to having data from an increasing density of SNPs. The latter
case corresponds to a fixed frequency of observations, but analysing an ever-increasing
region. For the genetics example, this would correspond to SNP data at a fixed density,
but analysing an increasing amount of a chromosome.

It seems that the methods in this paper are designed for the in-fill asymptotics
(which in practice corresponds to n >> K). If we consider a fixed g, then in this
limit the segment length will be much larger than g, and hence the error in using the
reduced set of possible changepoint positions will be small. Furthermore, under in-fill
asymptotics we may expect the error of INLA’s approximation of the segment marginal
likelihoods would be negligible. In fact, I wonder if there may be some theoretical
results available to show that under these asymptotics, the proposed method would
give consistent estimates of the changepoint positions. Such results may also allow g to
increase with n, providing the rate is less than linear.

By comparison, the methods in the paper seem less suited to the other regime (which
in practice corresponds to both n and K being large). However, there are alternative
approaches that work well in this case. Firstly, for this sort of regime it feels natural
to have a prior which models the segment lengths as being iid. This would naturally
result in a model where the number of changepoints increases on average linearly as
you analyse more data. One computational advantage of such a prior is that there are
recursions for analysing changepoint models which are O(n2) rather than O(Kn2). This
is already an important saving if K = O(n).

Secondly, there are ways of approximating the recursions based on pruning possible
values of the most recent changepoint prior to each time-point t (for such an approach,
using ideas from particle filtering see Fearnhead and Liu 2007). Essentially these remove
the computations that are related to certain large segments. In many applications the
probability of these large segments is negligible, and these approximations can lead to
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an O(n) algorithm that has small approximation error.

Obviously there will be applications where both K and n/K are large. In these
situations using a combination of this pruning idea, together with the use of a reduced
set of possible changepoint location, would be sensible.

2 MAP estimation

Whilst it is useful to be able to summarise data through a point estimate of the number
and position of changepoints, much information is lost if this is the sole output. For
example consider inferences about the underlying latent field (e.g. as in Figure 8 for
the well-log data). These inferences are now conditional on a specific estimate of the
changepoint positions, and do not allow for any uncertainty in the inferences about the
number and positions of the changepoints. In regions where the changepoints are clear,
and there is little uncertainty about changepoint positions, this may not matter, but
for applications where the changepoints are hard to detect this could have a sizeable
impact on future inferences.

The other issue with using a MAP estimate to summarise inference about the change-
points is that the MAP estimate is not well-defined. For example whether you first
choose the MAP estimate of the number of changepoints, and then the MAP estimate
of their positions conditional on this number, or you use the joint MAP estimate of
the number and position of changepoints, can lead to different estimates (Fearnhead
2005). Similarly, the suggested approach in the paper is to recursively choose the MAP
estimate of the position of the first changepoint then the MAP estimate of the position
of the second given the position of the first, until you calculate the MAP position of
the final changepoint given the positions of the earlier ones. I believe this will give a
different answer to calculating the joint MAP estimate of all changepoint positions. (It
is possible to calculate the joint MAP estimate using a Viterbi algorithm, see Viterbi
1967; Fearnhead 2005).

One advantage of MAP estimation, rather than aiming to simulate from the pos-
terior, is that there can be ways of substantially reducing the computational cost (as
discussed in Section 2), but without introducing any error (see Killick et al. 2011, for
an algorithm with complexity that can be O(n)).
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