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MULTIPLE TESTING OF LOCAL MAXIMA FOR DETECTION OF
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A topological multiple testing scheme for one-dimensional domains is
proposed where, rather than testing every spatial or temporal location for the
presence of a signal, tests are performed only at the local maxima of the
smoothed observed sequence. Assuming unimodal true peaks with finite sup-
port and Gaussian stationary ergodic noise, it is shown that the algorithm with
Bonferroni or Benjamini–Hochberg correction provides asymptotic strong
control of the family wise error rate and false discovery rate, and is power
consistent, as the search space and the signal strength get large, where the
search space may grow exponentially faster than the signal strength. Simula-
tions show that error levels are maintained for nonasymptotic conditions, and
that power is maximized when the smoothing kernel is close in shape and
bandwidth to the signal peaks, akin to the matched filter theorem in signal
processing. The methods are illustrated in an analysis of electrical recordings
of neuronal cell activity.

1. Introduction. One of the most challenging aspects of multiple testing
problems in spatial and temporal domains is how to account for the spatial or
temporal structure in the underlying signal. The usual paradigm considers a sep-
arate test at each observed location. However, the interest is usually in detecting
signal regions that span several neighboring locations. This paper considers a new
multiple testing paradigm for spatial and temporal domains where tests are not per-
formed at every observed location, but only at the local maxima of the observed
data, seen as representatives of underlying signal peak regions. The proposed in-
ference is not pointwise but topological, based on the observed local maxima as
topological features.

In pointwise testing, the control of family-wise error rate (FWER), now com-
mon in neuroimaging, was established by Keith Worsley [Taylor and Worsley
(2007), Worsley et al. (1996b, 2004)], who exploited the Euler characteristic
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heuristic for approximating the distribution of the maximum of a random field
[Adler and Taylor (2007), Adler, Taylor and Worsley (2010)]. Methods for con-
trolling the false discovery rate (FDR) [Benjamini and Hochberg (1995)] are also
applied routinely in this setting, but the spatial structure is difficult to incorporate
and often ignored [Genovese, Lazar and Nichols (2002), Nichols and Hayasaka
(2003), Schwartzman, Dougherty and Taylor (2008)].

Despite pointwise testing being so common, the real interest is usually not in de-
tecting individual locations, but connected regions or clusters. This has prompted
the adaptation of discrete FDR methods to pre-defined clusters [Benjamini and
Heller (2007), Heller et al. (2006)], and the use of Gaussian random field theory for
computing p-values corresponding to the height, extent and mass of clusters ob-
tained by pre-thresholding the observed random field [Poline et al. (1997), Zhang,
Nichols and Johnson (2009)]. Perone Pacifico et al. (2004, 2007) proposed data-
dependent thresholds so that FDR is controlled at the cluster level, using Gaussian
random field theory to approximate the null distribution. However, the definition
of Type I error for clusters requires a tolerance parameter for the overlap between
a discovered cluster and the null region [Perone Pacifico et al. (2004)], while spa-
tial smoothing, which is often applied for improving signal-to-noise ratio (SNR),
creates the need to remove the spread of the signal over the null region to avoid
error inflation [Perone Pacifico et al. (2007)]. Chumbley and Friston (2009) have
argued that current cluster methods are unsatisfactory because, just like marginal
FDR procedures, they rely on the basic premise of having a test at each spatial
location; instead, inference should be topological.

This article proposes a different multiple testing paradigm where tests are per-
formed, not at each spatial or temporal location, but only at the local maxima of the
smoothed data, seen as topological representatives of their neighborhood region or
cluster. A similar idea was recently proposed independently by Chumbley et al.
(2010), but they did not consider whether Type I error could be controlled. Here
we extend the classical control of FWER via the global maximum to control of
both FWER and FDR via local maxima. Because the distributional theory for local
maxima of random fields is more difficult than that for global maxima, this paper
only considers one-dimensional domains (spatial or temporal), where closed-form
solutions exist, leaving the two- and three-dimensional cases for future work.

Our general proposed algorithm consists of the following steps:

(1) Kernel smoothing: to increase SNR [Smith and Nichols (2009), Worsley
et al. (1996a)].

(2) Candidate peaks: find local maxima of the smoothed sequence.
(3) p-values: computed at each local maximum under the complete null hy-

pothesis of no signal anywhere.
(4) Multiple testing: apply a multiple testing procedure and declare as detected

peaks those local maxima whose p-values are significant.
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FIG. 1. Simulated observed sequence y(t) (green) and smoothed sequence yγ (t) (blue) over five
underlying true peaks of different shapes comprising μ(t) (red). Out of 33 local maxima of yγ (t)

(yellow), the BH detection threshold at FDR level 0.2 (dashed magenta) selects five, one of which is
a false positive. At this noise level, four out of five true peaks are detected. Note that this bandwidth
is able to distinguish the overlapping peaks.

In this paper, the p-values in step (3) are computed using theory of Gaussian pro-
cesses. For step (4), we consider two standard multiple testing procedures: Bonfer-
roni to control FWER and Benjamini–Hochberg (BH) [Benjamini and Hochberg
(1995)] to control FDR. The algorithm is illustrated by a simulated example in
Figure 1.

We study the theoretical properties of the above algorithm under a specific
signal-plus-noise model and then relax these assumptions in the simulations. For
Type I errors to be well defined, the signal is modeled as if composed of uni-
modal peak regions, each considered detected if a significant local maximum oc-
curs inside its finite support. For simplicity, we concentrate on positive signals and
one-sided tests, but this is not crucial. For tractability, the theory assumes that the
observation noise follows a smooth stationary ergodic Gaussian process. This as-
sumption permits an explicit formula for computing the p-values corresponding
to local maxima of the observed process. The distribution of the height of a local
maximum of a Gaussian process is not Gaussian but has a heavier tail, and its com-
putation requires careful conditioning based on the calculus of Palm probabilities
[Adler, Taylor and Worsley (2010), Cramér and Leadbetter (1967)].

An interesting and challenging aspect of inference for local maxima is the fact
that the number of tests, equal to the number of observed local maxima, is random.
The multiple testing literature usually assumes the number of tests to be fixed. We
overcome this difficulty with an asymptotic argument for large search space, so
that by ergodicity, the error behaves approximately as it would if the number of
tests were equal to its expected value.

In order to achieve strong control of FWER and FDR, the asymptotics for large
search space are combined with asymptotics for strong signal. The strong signal
assumption asymptotically eliminates the false positives caused by the smoothed
signal spreading into the null regions, by assuring that each signal peak region
is represented by only one observed local maximum within the true domain with
probability tending to one. The strong signal assumption is not restrictive in the
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sense that the search space may grow exponentially faster. Simulations show that
error levels are maintained at finite search spaces and moderate signal strength.

Defining detection power as the expected fraction of true peaks detected, we
prove that the algorithm is consistent in the sense that its power tends to one under
the above asymptotic conditions. We find that the optimal smoothing kernel is
approximately that which is closest in shape and bandwidth to the signal peaks
to be detected, akin to the so-called matched filter theorem in signal processing
[Pratt (1991), Simon (1995)]. This optimal bandwidth is much larger than the usual
optimal bandwidth for nonparametric regression.

In one dimension, the problem of identifying significant local maxima is similar
to that of peak detection in signal processing [e.g., Arzeno, Deng and Poon (2008),
Baccus and Meister (2002), Brutti et al. (2005), Harezlak et al. (2008), Morris et al.
(2006), Yasui et al. (2003)]. In this literature, though large, the detection thresh-
old is predominantly chosen heuristically and conservatively. Our multiple test-
ing viewpoint provides a formal mechanism for choosing the detection threshold,
allowing detection under higher noise conditions. This view also eliminates the
need to estimate an unknown number of peak location parameters, encountered in
the signal estimation approach [Li and Speed (2000, 2004), O’Brien, Sinclair and
Kramer (1994), Tibshirani et al. (2005)].

We illustrate our procedure with a data set of neural electrical recordings, where
the objective is to detect action potentials representing cell activity [Baccus and
Meister (2002), Segev et al. (2004)]. The noise parameters and signal peak shape
are estimated from a training set and then applied to a test set for peak detection.

The data analysis and all simulations were implemented in Matlab.

2. Theory.

2.1. The model. Consider the signal-plus-noise model

y(t) = μ(t) + z(t), t ∈ R,(1)

where the signal μ(t) is a train of unimodal positive peaks of the form

μ(t) =
∞∑

j=−∞
ajhj (t), aj > 0,(2)

and the peak shape hj (t) ≥ 0 has compact connected support Sj = {t :hj (t) > 0}
and unit action

∫
Sj

hj (t) dt = 1 for each j . Let wγ (t) ≥ 0 with bandwidth param-
eter γ > 0 be a unimodal kernel with compact connected support and unit action.
Convolving the process (1) with the kernel wγ (t) results in the smoothed process

yγ (t) = wγ (t) ∗ y(t) =
∫ ∞
−∞

wγ (t − s)y(s) ds = μγ (t) + zγ (t),(3)
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where the smoothed signal and smoothed noise are defined as

μγ (t) = wγ (t) ∗ μ(t) =
∞∑

j=−∞
ajhj,γ (t), zγ (t) = wγ (t) ∗ z(t).(4)

For each j , the smoothed peak shape hj,γ (t) = wγ (t) ∗ hj (t) ≥ 0 is unimodal
and has compact connected support Sj,γ and unit action. For each j , we require
that hj,γ (t) is twice differentiable in the interior of Sj,γ and has no other critical
points within its support. For simplicity, the theory requires that the supports Sj,γ

do not overlap (but this is not required in practice, as shown via simulations in
Section 3). The smoothed noise zγ (t) defined by (3) and (4) is assumed to be a
zero-mean thrice differentiable stationary ergodic Gaussian process.

2.2. The STEM algorithm. Suppose we observe y(t) defined by (1) in the
segment [−L/2,L/2], which contains J peaks. We call the following procedure
STEM (Smoothing and TEsting of Maxima).

ALGORITHM 1 (STEM algorithm).
(1) Kernel smoothing: construct the process (3), ignoring the boundary effects

at ±L/2.
(2) Candidate peaks: find the set of local maxima of yγ (t) in [−L/2,L/2]

T̃ =
{
t ∈

[
−L

2
,
L

2

]
: ẏγ (t) = dyγ (t)

dt
= 0, ÿγ (t) = d2yγ (t)

dt2 < 0
}
.(5)

(3) p-values: for each t ∈ T̃ compute the p-value pγ (t) for testing the (condi-
tional) hypothesis

H0(t) :μ(t) = 0 vs. HA(t) :μ(t) > 0, t ∈ T̃ .

(4) Multiple testing: let m̃ be the number of tested hypotheses, equal to the
number of local maxima in T̃ . Apply a multiple testing procedure on the set of
m̃ p-values {pγ (t), t ∈ T̃ }, and declare significant all peaks whose p-values are
smaller than the significance threshold.

Steps (1) and (2) above are well defined under the model assumptions (for data
on a grid, local maxima are defined as points higher than their neighbors). Step
(3) is detailed in Section 2.3 below. For step (4), we use the Bonferroni procedure
to control FWER and the BH procedure to control FDR. To apply Bonferroni at
level α, declare significant all peaks whose p-values are smaller than α/m̃. To ap-
ply BH at level α, find the largest index k for which the ith smallest p-value is
smaller than iα/m̃, and declare as significant the k peaks with smallest p-values.
Notice that, in contrast to the usual application of the Bonferroni and BH proce-
dures, the number of tests m̃ is random.
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2.3. p-values. Given the observed heights yγ (t) at the local maxima t ∈ T̃ ,
the p-values in step (3) of Algorithm 1 are computed as

pγ (t) = Fγ [yγ (t)], t ∈ T̃ ,(6)

where

Fγ (u) = P{zγ (t) > u|t ∈ T̃ }(7)

denotes the right cumulative distribution function (cdf) of zγ (t) at the local max-
ima t ∈ T̃ , evaluated under the complete null hypothesis μ(t) = 0,∀t .

The conditional distribution (7) is called a Palm distribution [Adler, Taylor
and Worsley (2010), Chapter 6]. Unlike the marginal distribution of zγ (t), it is
not Gaussian but stochastically greater. This is because the point of evaluation
t ∈ T̃ is not a fixed point t ∈ R, but the random location of a local maximum of
zγ (t). Moreover, the conditioning event has probability zero. The Palm distribu-
tion (7) has a closed-form expression, originally obtained by Cramér and Lead-
better [(1967), Chapter 11] (equation 11.6.14), using the well-known Kac–Rice
formula [Rice (1945), Adler and Taylor (2007), Chapter 11]. A direct application,
borrowing notation from those sources, gives the following.

PROPOSITION 2. Suppose the assumptions of Section 2.1 hold and that
μ(t) = 0,∀t . Define the moments

σ 2
γ = var[zγ (t)], λ2,γ = var[żγ (t)], λ4,γ = var[z̈γ (t)].(8)

Then the distribution (7) is given by

Fγ (u) = 1 − �

(
u

√
λ4,γ

�

)
+

√√√√2πλ2
2,γ

λ4,γ σ 2
γ

φ

(
u

σγ

)
�

(
u

√√√√ λ2
2,γ

�σ 2
γ

)
,(9)

where � = σ 2
γ λ4,γ − λ2

2,γ , and φ(x), �(x) are the standard normal density and
cdf, respectively.

The quantities σ 2
γ , λ2,γ and λ4,γ in Proposition 2 depend on the kernel wγ (t)

and the autocorrelation function of the original noise process z(t). Explicit expres-
sions may be obtained, for instance, for the following Gaussian autocorrelation
model, which we use later in the simulations.

EXAMPLE 3 (Gaussian autocorrelation model). Let the noise z(t) in (1) be
constructed as

z(t) = σ

∫ ∞
−∞

1

ν
φ

(
t − s

ν

)
dB(s), σ, ν > 0,
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where B(s) is standard Brownian motion and ν > 0. Convolving with a Gaussian
kernel wγ (t) = (1/γ )φ(t/γ ) with γ > 0 as in (4) produces a zero-mean infinitely
differentiable stationary ergodic Gaussian process

zγ (t) = wγ (t) ∗ z(t) = σ

∫ ∞
−∞

1

ξ
φ

(
t − s

ξ

)
dB(s), ξ =

√
γ 2 + ν2,

with moments (8) given by σ 2
γ = σ 2/(2

√
πξ), λ2,γ = σ 2/(4

√
πξ3), λ4,γ =

3σ 2/(8
√

πξ5). The above expressions may be used as approximations if the ker-
nel, required to have finite support, is truncated at t = ±γ d for moderately large d ,
say d = 3.

2.4. Error definitions. Because truly detected peaks may be shifted with re-
spect to the true peaks as a result of noise, we define a significant local maximum
to be a true positive if it falls anywhere inside the support of a true peak. Con-
versely, we define it to be a false positive if it falls outside the support of any true
peak. Assuming the model of Section 2.1, define the signal region S1 and null
region S0, respectively, by

S1 =
J⋃

j=1

Sj and S0 =
[
−L

2
,
L

2

] ∖ (
J⋃

j=1

Sj

)
.(10)

For a significance threshold u, the total number of detected peaks and the number
of falsely detected peaks are

R(u) = #{t ∈ T̃ :yγ (t) > u} and V (u) = #{t ∈ T̃ ∩ S0 :yγ (t) > u},
respectively. Both are defined as zero if T̃ is empty. The FWER is defined as the
probability of obtaining at least one falsely detected peak

FWER(u) = P{V (u) ≥ 1} = P
{
T̃ ∩ S0 	= ∅ and max

t∈T̃ ∩S0

yγ (t) > u
}
.(11)

The FDR is defined as the expected proportion of falsely detected peaks

FDR(u) = E
{

V (u)

R(u) ∨ 1

}
.(12)

Note that the above definitions are with respect to the original signal support S1,
while the inference is carried out using the smoothed observed process yγ (t). Ker-
nel smoothing enlarges the signal support and increases the probability of obtain-
ing false positives in the null regions neighboring the signal [Perone Pacifico et al.
(2007)]. In contrast to (10), the smoothed signal region S1,γ ⊃ S1 and smoothed
null region S0,γ ⊂ S0 are

S1,γ =
J⋃

j=1

Sj,γ and S0,γ =
[
−L

2
,
L

2

] ∖ (
J⋃

j=1

Sj,γ

)
,(13)
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FIG. 2. Schematic signal and null regions, before and after smoothing, in the vicinity of one signal
peak.

respectively (Figure 2). We call the difference between the expanded signal support
and the true signal support the transition region

Tγ = S1,γ \ S1 = S0 \ S0,γ =
J⋃

j=1

Tj,γ ,(14)

where Tj,γ = Sj,γ \ Sj is the transition region corresponding to each peak j .
In general, a true peak may produce more than one significant local maximum,

affecting the interpretation of definition (12) and the nonasymptotic validity of
the FDR controlling procedure. However, as explained below, this multiplicity is
unlikely to occur for strong signals, assuring validity at least asymptotically un-
der that regime. The simulations of Section 3.1 show it not to be problematic in
nonasymptotic situations for moderate signals and appropriate smoothing.

2.5. Strong control of FWER. In Algorithm 1, step (3) produces a list of m̃

p-values. If the Bonferroni correction is applied in step (4) with level α ∈ (0,1),
then the null hypothesis H0(t) at t ∈ T̃ is rejected if

pγ (t) <
α

m̃
⇐⇒ yγ (t) > ũBon = F−1

γ

(
α

m̃

)
,(15)

where α/m̃ is defined as 1 if m̃ = 0. Recall that, in contrast to the usual Bonferroni
algorithm, the number of p-values m̃ is random.

Define the conditions:

(C1) The assumptions of Section 2.1 hold.
(C2) L → ∞ and a = infj aj → ∞, such that (logL)/a2 → 0 and J/L → A1

with 0 < A1 < 1.

THEOREM 4. Suppose that Algorithm 1 is applied with the Bonferroni thresh-
old ũBon (15). Then, under conditions (C1) and (C2),

lim sup FWER(ũBon) ≤ α.
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The proof of Theorem 4 is given in Section 6.2. The large search space assump-
tion in (C2) solves the problem of m̃ being random, implying that by the weak law
of large numbers, the ratio m̃/L is close to its expectation E[m̃/L] for large L.
Thus the Bonferroni procedure with random threshold (15) has asymptotically the
same error control properties as if the threshold were deterministic and equal to

u∗
Bon = F−1

γ

(
α

E[m̃]
)

≈ F−1
γ

(
α/L

A1 + E[m̃0,γ (0,1)]
)
,(16)

where

E[m̃0,γ (0,1)] = 1

2π

√
λ4,γ

λ2,γ

(17)

is the expected number of local maxima of zγ (t) in the unit interval (0,1) [Cramér
and Leadbetter (1967), Chapter 10].

The strong signal assumption in (C2) implies (Lemma 10 in Section 6.1) that,
with probability tending to 1, no local maxima are obtained in the transition region
Tγ (14), and exactly one local maxima is obtained for each signal peak in S1. This
avoids the error inflation due to smoothing and provides the approximation in (16).
The proof of Lemma 10 shows that the asymptotic rates are exponential and con-
trolled partially by the smallest absolute derivative of the smoothed peak shape in
the transition region and the curvature of the smoothed peak shape at the mode.

2.6. Control of FDR. Suppose the BH procedure is applied in step (4) of Algo-
rithm 1. For a fixed α ∈ (0,1), let k be the largest index for which the ith smallest
p-value is less than iα/m̃. Then the null hypothesis H0(t) at t ∈ T̃ is rejected if

pγ (t) <
kα

m̃
⇐⇒ yγ (t) > ũBH = F−1

γ

(
kα

m̃

)
,(18)

where kα/m̃ is defined as 1 if m̃ = 0.

THEOREM 5. Suppose that Algorithm 1 is applied with the BH threshold
ũBH (18). Then, under conditions (C1) and (C2),

lim sup FDR(ũBH) ≤ α.

The proof of Theorem 5 is given in Section 6.3. The asymptotic assump-
tions (C2), imply that the BH procedure with random threshold (18) has asymptot-
ically the same error control properties as if the threshold were deterministic and
equal to

u∗
BH = F−1

γ

(
αA1

A1 + E[m̃0,γ (0,1)](1 − α)

)
,(19)

where E[m̃0,γ (0,1)] is given by (17). The threshold (18) can be viewed as the
largest solution of the equation αG(u) = Fγ (u), where G(u) is the empirical right
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cumulative distribution function of yγ (t), t ∈ T̃ [Genovese, Lazar and Nichols
(2002)]. Taking the limit of that equation as L gets large yields the solution (19).

As before, the strong signal assumption in (C2) implies that there exists ex-
actly one significant local maximum at each true peak with probability tending
to 1 (Lemma 10 in Section 6.1), avoiding error inflation in the transition region
and justifying the interpretation of definition (12) as the expected proportion of
falsely discovered peaks. Again, the asymptotic rates are exponential and con-
trolled partially by the smallest absolute derivative of the smoothed peak shape in
the transition region and the curvature of the smoothed peak shape at the mode.

Notice that, in contrast to the asymptotic Bonferroni threshold u∗
Bon (16) which

grows unbounded with increasing L, the asymptotic BH threshold u∗
BH (19) is

finite.

2.7. Power. Recall from Section 2.4 that a significant local maximum is con-
sidered a true positive if it falls in the true signal region S1. We define the power
of Algorithm 1 as the expected fraction of true discovered peaks

Power(u) = E

[
1

J

J∑
j=1

1
(
T̃ ∩ Sj 	= ∅ and max

t̃∈T̃ ∩Sj

yγ (t̃) > u
)]

(20)

= 1

J

J∑
j=1

Powerj (u),

where Powerj (u) is the probability of detecting peak j

Powerj (u) = P
{
T̃ ∩ Sj 	= ∅ and max

t∈T̃ ∩Sj

yγ (t) > u
}
.(21)

The maximum operator above indicates that if more than one significant local max-
imum fall within the same peak support, only one is counted, so power is not
inflated. However, this has no effect asymptotically because each true peak is rep-
resented by exactly one local maximum of the smoothed observed process with
probability tending to 1 (Lemma 10 in Section 6.1). The next result indicates that
both the Bonferroni and BH procedures are asymptotically consistent. The proof
is given in Section 6.4.

THEOREM 6. Let the power be defined by (20), and let ũBon and ũBH be the
Bonferroni and BH thresholds (15) and (18), respectively. Under conditions (C1)
and (C2),

Power(ũBon) → 1, Power(ũBH) → 1.

For pointwise tests, if there exists a signal anywhere, the BH procedure is more
powerful than the Bonferroni procedure [Benjamini and Hochberg (1995)]. This
is also true in our case. Comparing (16) and (19), if J ≥ 1, the threshold u∗

Bon is
higher than the threshold u∗

BH, promising a larger power for the BH procedure.
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2.8. Optimal smoothing kernel. The best smoothing kernel wγ (t) is that
which maximizes the power (20) under the true model. Because this maximiza-
tion is analytically difficult, we resort to a less formal argument here. Lemma 10
in Section 6.1 shows that, under conditions (C1) and (C2), every true peak j is
represented by exactly one significant local maximum located in a small neigh-
borhood containing the true peak mode τj with probability tending to 1. Thus the
power for peak j (21) may be approximated as

Powerj (u) ≈ P{yγ (τj ) > u} = �

[
ajhj,γ (τj ) − u

σγ

]
,(22)

because yγ (τj ) ∼ N(ajhj,γ (τj ), σ
2
γ ). By Lemma 13 in Section 6.4, the asymptot-

ically equivalent thresholds (16) and (19) for the Bonferroni and BH procedures
satisfy u∗

Bon/aj → 0 and u∗
BH/aj → 0 for any j . Thus, for large aj , the power (22)

is maximized approximately by maximizing the SNR

SNRγ = ajhj,γ (τj )

σγ

= aj

∫ ∞
−∞ wγ (s)hj (s) ds

σ
√∫ ∞

−∞ w2
γ (s) ds

,(23)

where σ is the standard deviation of the observed process y(t). The optimal
smoothing kernel wγ (t) is that which is closest to hj (t) in an L2 sense. This result
is similar to the matched filter theorem for detecting a single signal peak of known
shape at a fixed time location t [Pratt (1991), Simon (1995)]. The result only holds
approximately in our case because the peak locations are unknown.

EXAMPLE 7 (Gaussian autocorrelation model). Suppose the signal peak j is
a truncated Gaussian density hj (t) = (1/bj )φ[(t − τj )/bj ]1[−cj , cj ], bj , cj > 0,
and let the noise be generated as in Example 3. Ignoring the truncation, hj,γ (t) =
wγ (t) ∗ hj (t) in (23) is the convolution of two Gaussian densities with variances
γ 2 and b2

j , which is another Gaussian density with variance γ 2 + b2
j . Using the

moments from Example 3, we have that

SNRγ = ajhj,γ (τj )

σγ

= aj

σπ1/4

[
γ 2 + ν2

(γ 2 + b2
j )

2

]1/4

.(24)

As a function of γ , the SNR is maximized at

arg max
γ

SNRγ =
{√

b2
j − 2ν2, ν < bj/

√
2,

0, ν > bj/
√

2.
(25)

In particular, when ν = 0, we have that the optimal bandwidth for peak j is γ = bj ,
the same as the signal bandwidth. We show in the simulations below that the opti-
mal γ is indeed close to (25).
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3. Simulation studies.

3.1. Nonasymptotic performance. Simulations were used to evaluate the per-
formance and limitations of the STEM algorithm for finite range L and moder-
ate signal strength a. In a segment of length L = 1000, J = 10 equal truncated
Gaussian peaks ajhj (t) = a/bφ[(t − τj )/b]1[−cb, cb], j = 1, . . . , J , as in Ex-
ample 7 with b = 3, c = 3 and varying a, were placed at uniformly spaced lo-
cations τj = (j − 1/2)L/J , j = 1, . . . , J , and sampled at integer values of t .
The noise z(t) was constructed as in Example 3 with σ = 1 and varying ν. Al-
gorithm 1 was carried out using as smoothing kernel a truncated Gaussian den-
sity wγ (t) = (1/γ )φ(t/γ )1[−cγ, cγ ] as in Example 3 with c = 3 and varying γ .
The noise parameters (8) were estimated independently as the empirical moments
of smoothed sequences i.i.d. Gaussian noise of length 1000 and their first and
second-order differences, using the same smoothing kernel. The Bonferroni and
BH procedures were applied at level α = 0.05.

Figure 3 shows the realized FWER and FDR levels of the Bonferroni and BH
procedures, evaluated according to (11) and (12) with the expectations replaced
by ensemble averages over 10,000 replications. Error rates are maintained below
the nominal level α = 0.05 for all bandwidths and large enough signal strength a.
The convergence is slower, however, when the bandwidth γ is much larger than
the signal peak bandwidth b = 3. The increased error rates are the result of true

FIG. 3. FWER of the Bonferroni procedure (top row) and FDR of the BH procedure (bottom row)
for a = 15 (solid), a = 12 (dashed) and a = 9 (dotted). Nominal error level is 0.05.
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FIG. 4. Average number of local maxima for each true peak for a = 15 (solid), a = 12 (dashed)
and a = 9 (dotted).

peak maxima being shifted from the original signal region S1 into the transition
region Tγ , where they are counted as false positives. This phenomenon disappears
with increasing signal strength a because the probability of obtaining any local
maxima in the transition region goes to zero asymptotically (Lemma 10 in Sec-
tion 6.1).

As noted in Section 2.4, each true peak may contain more than one local max-
imum of the smoothed data yγ (t). Figure 4 shows that the expected number of
local maxima per true peak decreases with increasing bandwidth, and is essen-
tially equal to 1 for bandwidths equal to or greater than the optimal bandwidth. It
also gets closer to 1 with increasing signal strength, consistent with the result of
Lemma 10.

Figure 5 shows the realized power of the Bonferroni and BH procedures, eval-
uated according to (20) with the expectations replaced by ensemble averages over
the same 10,000 replications. In all cases, the power increases asymptotically to 1
with the signal strength for every fixed bandwidth, and is always larger for BH
than it is for Bonferroni. The convergence is slower, however, when the bandwidth
γ is far from the optimal value. To understand the dependence on bandwidth, su-
perimposed is the theoretical approximate power (22) evaluated at the asymptotic
thresholds u∗

Bon (16) and u∗
BH (19) and plugging in the SNR (24). The “theoretical”

power curves largely capture the shape of the realized ones, but are lower because
the asymptotic thresholds are more conservative. The curve shape is mostly de-
termined by the SNR (24) as a function of γ . The bandwidth γ producing the
largest power is always larger than the theoretical optimal bandwidth (25), but it
approaches it from the right as a increases.

3.2. Unequal peaks. By assumption (Section 2.1), the signal peaks need not
be equal. As in Figure 1, J = 5 unequal peaks (Epanechnikov, triangular and
truncated Gaussian, Laplace and Cauchy, with average half-support 24) were cor-
rupted with white standard normal noise. Algorithm 1 was applied using a quartic
smoothing kernel wγ (t) = 15/(16γ )[1 − (t/γ )2]21[−γ, γ ] with varying γ , the
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FIG. 5. Realized (black) and “theoretical” (blue) power of the Bonferroni (top row) and BH (bot-
tom row) procedures for a = 15 (solid), a = 12 (dashed) and a = 9 (dotted). The maxima of the
curves (solid circles) approach the asymptotic optimal bandwidth (vertical dashed).

noise parameters estimated independently as in Section 3.1. For this configuration
and 10,000 repetitions, the error was controlled below the nominal level 0.05 for
values of γ up to 40, obtaining a maximum power of 0.81 and 0.88 for the Bon-
ferroni and BH procedures at γ = 18. The maximizing bandwidth represents the
average best match between the quartic smoothing kernel and the peaks present in
the data.

3.3. Overlapping peaks. The theory of Section 2 assumed that the signal
peaks had nonoverlapping supports. Simulations similar to those of Section 3.1
with J = 10 partially overlapping peaks showed that the error rates were below
the nominal level regardless of the amount of overlap between peaks. The detec-
tion power, however, deceptively increased with increasing overlap. This is be-
cause definition (20) counts two overlapping peaks as detected even if only one
significant local maximum is found in the overlapping region between them, as it
belongs to both. Definition (20) does not measure the ability to distinguish between
overlapping peaks.

3.4. Comparison with pointwise testing. To see the benefits of testing lo-
cal maxima, Figure 6 compares the performance of the STEM algorithm (with
Bonferroni and BH corrections) to three other methods that test at every sin-
gle location. Simulated data sets as in Section 3.1 with b = 3 and ν = 0 were
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FIG. 6. Left panels: FWER and power of three FWER methods: STEM with Bonferroni (black),
Bonferroni on all L locations (blue) and Supremum (green). Right panels: FDR and power of three
FDR methods: STEM with BH (black), BH on all L locations (blue). Results in all panels are for
a = 15 (solid), a = 12 (dashed) and a = 9 (dotted). Nominal error level is 0.05.

smoothed with varying γ . For the pointwise Bonferroni and BH methods, p-
values for testing H0 :μ(t) = 0 at each t = 1, . . . ,L = 1000 were computed as
p(t) = 1−�[yγ (t)/σγ ] and then corrected using Bonferroni and BH, respectively.
The method “Supremum” was adapted from Worsley et al. (1996a) as follows. The
probability that the supremum of any differentiable random process f (t) in the in-
terval [0, T ] exceeds u is bounded by [Adler and Taylor (2007)]

P
(

sup
t∈[0,T ]

f (t) ≥ u
)

≤ P[f (0) ≥ u] + E[Nu],(26)

where Nu is the number of up-crossings by f (t) of the level u in [0, T ]. For the
stationary Gaussian process zγ (t), application of the Kac–Rice formula [Cramér
and Leadbetter (1967), page 194] gives that E[Nu] = L(

√
λ2,γ /σγ )φ(u/σγ ). The

significance threshold is found as the largest u such that

P
(

sup
t∈[−L/2,L/2]

zγ (t) ≥ u
)

≤ 1 − �

(
u

σγ

)
+ L

√
λ2,γ

σγ

φ

(
u

σγ

)
≤ α.(27)

Figure 6 indicates that the pointwise Bonferroni correction is too conservative.
The Supremum method, despite accounting explicitly for the noise autocorrela-
tion, performs only slightly better than pointwise Bonferroni, and not as well as
Bonferroni performed on local maxima. The pointwise BH correction is designed
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(a) (b)

FIG. 7. (a) Power (solid) and realized error rate (dashed) for Bonferroni (black) and BH (blue)
with automatic bandwidth selection as a function of signal strength a. Nominal error level is 0.05.
(b) Proportion of automatically chosen smoothing bandwidth γ̂ over 1000 simulations for Bonferroni
(black) and BH (blue); results are for a = 15 (solid), a = 12 (dashed) and a = 9 (dotted). Nominal
optimal bandwidth is γ = 3.

to control FDR at the level of individual locations, and thus produces too many
false positives when the FDR is measured in terms of detected peaks using (12).
Further simulations with ν = 1 and ν = 2 yielded similar results (not shown).

3.5. Automatic bandwidth selection. Rather than using a fixed smoothing
bandwidth γ , the bandwidth may be chosen automatically from the data as the
one that yields the largest number of discoveries for a fixed error level. For simu-
lated data sets as in Section 3.1 with b = 3 and ν = 0, the STEM algorithm was
applied with γ ranging from γ = b/2 = 1.5 to γ = 2b = 6, and results were re-
tained for the bandwidth γ̂ that yielded the largest number of discoveries in each
run. Figure 7(a) shows that this automatic criterion biases the results toward more
detected peaks and therefore results in higher error rates (and power) than those
obtained when γ is fixed (Figure 5). It also tends to select bandwidths that are
smaller than the nominal optimal value γ = b [Figure 7(b)], with averages ranging
between about 2.1 and 2.9.

4. Data example. The data consists of recordings from a single electrode in-
serted in a salamander’s retina, digitized at a sampling frequency of 10 kHz. Data
of these kind are routinely collected in large amounts in neuroscience experiments
[Baccus and Meister (2002), Segev et al. (2004)]. For the purposes of this paper,
three data sets were used:

(1) Test set: 60 seconds of recordings of live cells in the dark.
(2) Training set 1: 60 seconds of recordings of live cells in the dark.
(3) Training set 2: 60 seconds of recordings after the retina was allowed to die.

Each period of 60 seconds corresponds to L = 6 × 105 samples. The goal of the
analysis was to detect neuronal spikes in the test set (Figure 8, top left).
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FIG. 8. Top row: the neural spike data (test set); the stars in the right panel indicate peaks that
are higher than 4 standard deviations of the raw data (dashed line), as suggested by Segev et al.
(2004). Bottom row: the data smoothed using the estimated peak shape as kernel; the stars indicate
significant local maxima higher than the BH threshold (magenta dashed line) at level 0.01. The
Bonferroni threshold is indicated by the cyan dashed line.

Assuming that neuronal action potentials have similar shapes, to maximize the
SNR (23), the smoothing filter should be close in shape and bandwidth to that
of the peaks to be detected. Training set 1 was used to estimate the peak shape. In
training set 1, spikes with raw maximum exceeding 1 were selected and aligned by
their maxima [Figure 9(a)]. The peak shape template was obtained as the average
of the 23 selected major spikes and truncated to a length of 100 samples.

Training set 2, recorded under pure noise conditions, was used to estimate the
noise parameters. The noise in training set 2 can be well modeled by an AR(3)
process with autoregressive coefficients −1.13, 0.42 and −0.13, estimated by the
Yule–Walker algorithm, so that whitening with these coefficients produces a pro-
cess whose autocovariance function cannot be distinguished from that of white
noise using a Bartlett’s test. A similar analysis in segments of length L/10 showed
that the estimated AR coefficients have a coefficient of variation of no more than
1% over the 10 segments, supporting the stationarity assumption. A Jarque–Bera
test of normality for the entire sequence returned a p-value of 0.224, supporting
the Gaussianity assumption.
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(a) (b)

FIG. 9. (a) 23 strongest spikes aligned by their maximum (black); their average (red) is the esti-
mated template. (b) Empirical cdf of p-values for the test set (solid) and training set 2 (dashed).

Convolving training set 2 with the template of Figure 9(a) produced smoothed
noise with spectral moments σ̂ 2

γ = 4.22 × 10−4, λ̂2
2,γ = 1.20 × 10−4 and λ̂2

4,γ =
1.96 × 10−4, estimated respectively by the empirical variances of the observed
process, its first-order difference and its second-order difference. Given the length
of the process, the standard error of these estimates is negligible.

Algorithm 1 was applied to the test set (Figure 8, top left) by convolving it with
the template of Figure 9(a), producing the smoothed process in Figure 8 (bottom
left). In L = 6 × 105 samples, m̃ = 30,426 local maxima were found and their
p-values were computed according to (6) and (9), plugging in the estimates σ̂ 2

γ ,

λ̂2
2,γ and λ̂4,γ found above. The empirical cdf of the p-values [Figure 9(b)] shows

a large fraction of nonnull p-values near 0. For comparison, the same procedure
of smoothing, finding local maxima and computing their p-values was applied to
training set 2. The empirical cdf of those p-values is virtually uniform, empha-
sizing that formula (9) for Gaussian noise is appropriate. Also in Figure 9(b), the
excess of large p-values from the test set is due to the negative portions of the
smoothing function [Figure 9(a)]. These produce small negative anti-spikes whose
p-values are large when tested for positiveness.

Applying the BH procedure to the m̃ = 30,426 p-values obtained from the test
set at FDR level 0.01 resulted in a p-value threshold of 2.76 × 10−4 and R = 843
significant local maxima. These are indicated in Figure 8 (bottom left), showing
three levels of spike strengths. Figure 8 (bottom right) zooms in to show a few
of the weaker spikes. Applying the Bonferroni procedure instead in Algorithm 1
resulted in a p-value threshold of 3.29 × 10−7 and only 411 detected spikes.

For comparison, Figure 8 (top right) shows the same segment of the raw data
and the spikes selected using one of the recommended methods in the neuroscience
literature, which is to threshold at 4 standard deviations of the raw data [Segev et al.
(2004)]. Our method is able to identify more spikes at a low FDR level of 0.01, but
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more importantly, it attaches to the findings a significance level, expecting about
1% of the detected spikes to be false. The conventional method does not offer this
useful statistical interpretation.

As in Section 3.4, computing p-values at each location as p(t) = 1 −
�(yγ (t)/σ̂γ ), t = 1, . . . ,L, and applying a global Bonferroni at level 0.01 was
more conservative, resulting in a height threshold of 1.235 (comparable to Figure 8
bottom right) and detecting only 393 spikes. Similarly, the “Supremum” method,
applied by replacing σ̂γ and λ̂γ in (27) at level 0.01, yielded a height threshold
1.229 and 394 detected spikes. Finally, applying the global BH procedure at level
0.01 with L p-values gave a height threshold of 0.780 detecting 1149 spikes, but
as shown in Section 3.4, this result is too optimistic because the actual error rate
for peaks is higher than 0.01.

5. Discussion. For the theoretical results, the most critical assumptions were
that the noise process is stationary ergodic Gaussian and that the signal peaks are
unimodal with compact support. The Gaussianity assumption was chosen because
it enabled a closed formula for computing the p-values associated with the heights
of local maxima. For non-Gaussian noise, p-values could be computed via Monte
Carlo simulation.

The assumption of compact support for the signal peaks was necessary for true
and false positives to be well defined. Chumbley et al. (2010) argued for testing
local maxima when the signal spreads over the entire domain, but in that case ev-
ery positive is a true positive, making the inference unclear. On the other hand,
agreeing with Chumbley and Friston (2009), applying BH globally resulted in in-
flated error rates for peaks, while applying Bonferroni or the Supremum method
globally was too conservative. The unimodality assumption made local maxima
good representatives of true peaks, being unique for medium to large bandwidths
and asymptotically for increasing signal strength.

The strong signal assumption in condition (C2) was introduced to remove the
excess error produced by the smoothed signal spreading into the neighboring null
regions, thereby enabling asymptotic error control. The assumption is not restric-
tive in the sense that the search space may grow exponentially faster. Similar con-
ditions are common for high-dimensional data. If the data are pointwise test statis-
tics based on a sample of size n, with SNR increasing as a = √

n → ∞, then the
condition (logL)/a2 → 0 becomes (logL)/n → 0. This is similar to the condi-
tion (logp)/n → 0 required for consistent model selection in high-dimensional
regression under sparsity where p is the number of features [Candes and Tao
(2007), Zhang (2010)]. Our results, however, do not require sparsity. Condition
(C2) is easy to state but stronger than needed; upon close inspection of the proof
of Lemma 10 in Section 6.1, the limit of (logL)/a2 need not be zero but need only
be bounded by a constant that depends on the signal and noise first and second
derivatives.
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While the theory was developed for continuous processes, in practice the ob-
servations are given in a discrete grid. In our simulations we found that the results
were not reliable when the smoothing bandwidth was smaller than the grid spacing,
as the theory for continuous random processes is no longer a good approximation
in that case.

The asymptotic error control and power consistency did not require the peaks
to have the same shape or width. The asymptotic results were found to hold in
practice for a wide range of bandwithds and strong enough signal. However, the
convergence rate was slower for bandwidths less than half or more than double
the optimal value. The matched filter principle suggests that the smoothing kernel
should be chosen to be as close as possible in an L2 sense to the peaks to be
detected. In the neuronal data analyzed, the peak shape and width were estimated
from the data, dictating the best smoothing kernel. If the peaks to be detected have
different widths, then the bandwidth may be adapted to the width of each peak.
We leave this possibility for future work, as well as the obliged extension of the
proposed methods to two- and three-dimensional domains.

6. Technical details.

6.1. Supporting results.

LEMMA 8. Let m̃0,γ = #{t ∈ T̃ ∩ S0,γ } be be the number of local maxima of
yγ (t) [or zγ (t)] in S0,γ . Let Vγ (u) = #{t ∈ T̃ ∩ S0,γ :yγ (t) > u} be the number of
local maxima of yγ (t) [or zγ (t)] in S0,γ whose heights are above the level u. Then

Vγ (u)

m̃0,γ

→ E[Vγ (u)]
E[m̃0,γ ] = Fγ (u)

in probability as L → ∞, where Fγ (u) is the Palm distribution (7).

PROOF. Notice that yγ (t) = zγ (t) for all t ∈ S0,γ , so the process yγ (t) has the
same properties as the stationary process zγ (t) on the set S0,γ . By ergodicity, the
weak law of large numbers applied to the numerator and denominator gives that

Vγ (u)

m̃0,γ

= #{t ∈ T̃ ∩ S0,γ : zγ (t) > u}/L
#{t ∈ T̃ ∩ S0,γ }/L(28)

converges to [Cramér and Leadbetter (1967)]

E[#{t ∈ T̃ ∩ S0,γ : zγ (t) > u}]
E[#{t ∈ T̃ ∩ S0,γ }] = E[Vγ (u)]

E[m̃0,γ ] .

But also by ergodicity, ratio (28) converges to the conditional probability P[zγ (t) >

u|t ∈ T̃ ∩ S0,γ ] = Fγ (u) by Definition (7). The two limits must be equal. �
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LEMMA 9. Assume the model of Section 2.1. Let Sj,γ = I left
j ∪ Imode

j ∪ I
right
j

be a partition, where Imode
j = [cj , dj ] ⊂ Sj is a fixed interval containing the mode

of μγ (t) = ajhj,γ (t) in Sj as an interior point, such that ḧj,γ (t) < 0 for t ∈ Imode
j ,

ḣj,γ (t) > 0 for t ∈ I left
j and ḣj,γ (t) < 0 for t ∈ I

right
j . Let:

• Mj be the largest value of |hj,γ (t)| in Sj,γ ;

• Cj be the smallest value of |ḣj,γ (t)| in I side
j = I left

j ∪ I
right
j ;

• Dj be the smallest value of |ḧj,γ (t)| in Imode
j .

For T̃ given by (5) and any threshold u,

P(#{t ∈ T̃ ∩ I side
j } = 0)

≥ 2�

(
ajCj√
λ2,γ

)
− 1 − |I side

j |
√

λ4,γ

λ2,γ

φ

(
ajCj√
λ2,γ

)
,

P(#{t ∈ T̃ ∩ Imode
j } = 1)

(29)

≥ �

(
ajDj√
λ4,γ

)
− |Imode

j |
√

λ6,γ

λ4,γ

φ

(
ajDj√
λ4,γ

)
− 2�

(−ajCj√
λ2,γ

)
,

P
(
#{t ∈ T̃ ∩ Imode

j :yγ (t) > u} = 1
)

≥ �

(
ajDj√
λ4,γ

)
− |Imode

j |
√

λ6,γ

λ4,γ

φ

(
ajDj√
λ4,γ

)
− �

(
u − ajMj

σγ

)
,

where σγ , λ2,γ and λ4,γ are given by (8) and λ6,γ = E[˙z̈γ (t)].

PROOF. (1) Consider first the compact interval I left
j . The probability that there

are no local maxima of yγ (t) in I left
j is greater than the probability that ẏγ (t) > 0

for all t in the interval. This probability is equal to

P
(

inf
I left
j

ẏγ (t) > 0
)

≥ P
(

inf
I left
j

żγ (t) > − inf
I left
j

μ̇γ (t)
)

(30)
= 1 − P

(
sup
I left
j

[−żγ (t)] > ajC
left
j

)
,

where Cleft
j > 0 is the smallest value of ḣj,γ (t) in I left

j . Inequality (26) ap-
plies above to the stationary Gaussian process −żγ (t). The Kac–Rice formula
[Cramér and Leadbetter (1967), page 194] gives in this case that E[Nu] =
|I left

j |√λ4,γ /
√

λ2,γ φ(u/
√

λ2,γ ). Thus (30) has the lower bound

P(#{t ∈ T̃ ∩ I left
j } = 0) ≥ �

(ajC
left
j√

λ2,γ

)
− |I left

j |
√

λ4,γ

λ2,γ

φ

(ajC
left
j√

λ2,γ

)
.
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A similar calculation for I
right
j gives a similar bound with the superscript “left”

replaced by “right” and C
right
j > 0 being the smallest value of |ḣj,γ (t)| in I

right
j .

Putting the two together, the required probability P(#{t ∈ T̃ ∩ I side
j }) that there are

no local maxima in I left
j nor I

right
j is bounded as in the first row of (29).

(2) The probability that yγ (t) has no local maxima in Imode
j is less than the

probability that ẏγ (cj ) ≤ 0 or ẏγ (dj ) ≥ 0, for a positive derivative at cj and a
negative one at dj would imply the existence of at least one local maximum in Ij .
Thus, the probability of no local maxima in Imode

j is bounded above by

P(#{t ∈ T̃ ∩ Imode
j } = 0) ≤ P[ẏγ (cj ) ≤ 0] + P[ẏγ (dj ) ≥ 0]

= �

(−aj ḣj,γ (cj )√
λ2,γ

)
+ 1 − �

(−aj ḣj,γ (dj )√
λ2,γ

)
(31)

≤ 2 − 2�

(
ajCj√
λ2,γ

)
,

because ẏγ (t) ∼ N(μ̇γ (t), λ2,γ ) and ḣγ (cj ) > Cj > 0 and −ḣγ (dj ) > Cj > 0.
On the other hand, the probability that yγ (t) has more than one local maxima

in Imode
j is less than the probability that ÿγ (t) > 0 for some t in Imode

j . This prob-
ability is

P
(

sup
Imode
j

ÿγ (t) > 0
)

≤ P
(

sup
Imode
j

z̈γ (t) > ajDj

)
,

where Dj < 0 is the largest value of μ̈γ (t) < 0 in Imode
j . Applying (26) to the

process z̈γ (t) gives the further upper bound

P(#{t ∈ T̃ ∩ Imode
j } ≥ 1) ≤ 1 − �

(
ajDj√
λ4,γ

)
+ |Imode

j |
√

λ6,γ

λ4,γ

φ

(
ajDj√
λ4,γ

)
.(32)

Putting (31) and (32) together gives the bound in the second row of (29).
(3) The probability that no local maxima of yγ (t) in Imode

j exceed the threshold

u is less than the probability that yγ (t) is below u anywhere in Imode
j , so it is

bounded above by �[(u − ajMj)/σγ ]. On the other hand, the probability that
more than one local maxima of yγ (t) in Imode

j exceed u is less than the probability
that there exist more than one local maximum, which is bounded above by (32).
Putting the two together gives the bound in the third row of (29). �

LEMMA 10. Assume the model of Section 2.1. For T̃ given by (5), let m̃1,γ =
#{T̃ ∩ S1,γ } be the number of local maxima in the set S1,γ , and recall that
Wγ (u) = #{t ∈ T̃ ∩ S1,γ :yγ (t) > u} is the number of local maxima in S1,γ above
threshold u. Under conditions (C1) and (C2):
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(1) The probability that yγ (t) has any local maxima in the transition region Tγ

tends to 0.

P(#{t ∈ T̃ ∩ Tγ } ≥ 1) → 0.

(2) The probability to get exactly J local maxima in the set S1,γ ,

P(m̃1,γ = J ) = P(#{t ∈ T̃ ∩ S1,γ } = J ) → 1.

(3) The probability to get exactly J local maxima in the set S1,γ that exceed
any fixed threshold u,

P[Wγ (u) = J ] = P[#{t ∈ T̃ ∩ S1,γ :yγ (t) > u} = J ] → 1.

(4) m̃1,γ /L → A1 in probability.
(5) Wγ (u)/m̃1,γ → 1 in probability.

PROOF. (1) Write Tγ = ⋃J
j=1 Tj,γ , where Tj,γ = Sj,γ \ Sj is the transition

region for peak j (Figure 2). Under the assumptions of Lemma 9, Tj,γ is a subset

of I side
j because I left

j or I
right
j may include points inside Sj . Using (29), the required

probability P(#{t ∈ T̃ ∩ Tγ } ≥ 1) that yγ (t) has any local maxima in the transition
region Tγ is bounded above by

J∑
j=1

[
2 − 2�

(
ajCj√
λ2,γ

)
+ |I side

j |
√

λ4,γ

λ2,γ

φ

(
ajCj√
λ2,γ

)]

≤ 2
J

L
L

[
1 − �

(
aC√
λ2,γ

)]
+ L

√
λ4,γ

λ2,γ

φ

(
aC√
λ2,γ

)
,

where a > 0 is the infimum of the aj ’s and C > 0 is the infimum of the Cj ’s, that
is, the infimum of |ḣj,γ (t)| for t ∈ ⋃J

j=1 I side
j [recall that every peak hj,γ (t) has

no critical points in the transition region for any j ]. But the expression above goes
to zero under condition (C2) because, for any K > 0,

Lφ(Ka) = 1√
2π

exp
[
a2

(
logL

a2 − K2

2

)]
→ 0

and L[1 − �(Ka)] ≤ Lφ(Ka)/(Ka) → 0.
(2) The required probability to obtain exactly J local maxima in the set S1,γ =⋃J
j=1 Sj,γ is greater than the probability of obtaining exactly one local maximum

in each interval Imode
j ⊂ Sj and none in I side

j for any j . Thus, using (29), the
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required probability is bounded below by

P

[
J⋂

j=1

(#{t ∈ T̃ ∩ Imode
j } = 1 ∩ #{t ∈ T̃ ∩ I side

j } = 0)

]

≥ 1 −
J∑

j=1

[1 − P(#{t ∈ T̃ ∩ Imode
j } = 1 ∩ #{t ∈ T̃ ∩ I side

j } = 0)]

≥ 1 −
J∑

j=1

[
5 − 4�

(
ajCj√
λ2,γ

)
− �

(
ajDj√
λ4,γ

)

+ |I side
j |

√
λ4,γ

λ2,γ

φ

(
ajCj√
λ4,γ

)
+ |Imode

j |
√

λ6,γ

λ4,γ

φ

(
ajDj√
λ4,γ

)]

≥ 1 − J

L
L

[
5 − 4�

(
aC√
λ2,γ

)
− �

(
aD√
λ4,γ

)]

− L

√
λ4,γ

λ2,γ

φ

(
aC√
λ4,γ

)
− L

√
λ6,γ

λ4,γ

φ

(
aD√
λ4,γ

)
.

But this bound goes to 1 under condition (C2) as in part (1).
(3) The required probability to obtain exactly J local maxima in the set S1,γ =⋃J
j=1 Sj,γ that exceed u is greater than the probability that exactly one local max-

imum exceeds u in each interval Imode
j . This probability is bounded below by

P

[
J⋂

j=1

(
#{t ∈ T̃ ∩ Imode

j :yγ (t) > u} = 1 ∩ #{t ∈ T̃ ∩ I side
j } = 0

)]
,

but this goes to 1 by a similar argument as the one in part (2) of this lemma.
(4) Since m̃1,γ /L = (m̃1,γ /J )(J/L), with J/L → A1, we need to show that

m̃1,γ /J → 1 in probability. For any fixed ε > 0,

0 ≤ P
(∣∣∣∣m̃1,γ

J
− 1

∣∣∣∣ ≥ ε

)
= P(|m̃1,γ −J | ≥ Jε) ≤ P(m̃1,γ 	= J ) = 1 − P(m̃1,γ = J )

since m̃1,γ and J are integers. But the probability to get exactly J local maxima
goes to 1 by part (2) of this lemma.

(5) By part (2) of this lemma, P[Wγ (u) = J ] → 1 in probability; therefore,
using the same arguments as in part (4) of this lemma, we get Wγ (u)/J → 1.
Now,

Wγ (u)

m̃1,γ

= Wγ (u)

J

J

m̃1,γ

.

But m̃1,γ /J → 1 by part (3) of this lemma. �
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6.2. Strong control of FWER.

LEMMA 11. Let m̃0,γ be the number of local maxima in S0,γ as in Lem-
ma 8. Define the thresholds ṽBon = F−1

γ (α/m̃0,γ ), random, and v∗
Bon = F−1

γ (α/

E[m̃0,γ ]), deterministic. Then |ṽBon − v∗
Bon| → 0 in probability as L → ∞.

PROOF. By ergodicity, the weak law of large numbers gives that∣∣∣∣m̃0,γ

L
− E[m̃0,γ (0,1)]

∣∣∣∣ → 0(33)

in probability as L → ∞, where E[m̃0,γ (0,1)] = E[m̃0,γ ]/L, given by (17), does
not depend on L [Cramér and Leadbetter (1967)]. Since log(·) is continuous, the
continuous mapping theorem gives that∣∣∣∣log

m̃0

L
− log

E[m̃0,γ ]
L

∣∣∣∣ =
∣∣∣∣log

m̃0

α
− log

E[m̃0,γ ]
α

∣∣∣∣ → 0,

where we have used the additive property of the logarithm.
Define now the monotone increasing function ψγ (x) = F−1

γ (1 − e−x). The
function ψγ (x) is Lipschitz continuous for all x > 1 because its derivative
dψγ (x)/dx = e−x/Ḟγ [ψγ (x)] is bounded for all x > 1. Hence, as L → ∞,∣∣∣∣ψγ

(
log

m̃0,γ

α

)
− ψγ

(
log

E[m̃0,γ ]
α

)∣∣∣∣ = |ṽBon − v∗
Bon| → 0. �

PROOF OF THEOREM 4. Let m̃0,γ ≤ m̃ be the number of local maxima
in the set S0,γ as in Lemma 11, and let ṽBon = F−1

γ (α/m̃0,γ ) ≤ ũBon. Then
FWER(ũBon) ≤ FWER(ṽBon). Further, the bound FWER(ṽBon) is the probabil-
ity of obtaining at least one local maximum greater than ṽBon in S0 = S0,γ ∪ Tγ ,
which is less than the probability of obtaining at least one local maximum greater
than ṽBon in S0,γ or at least one local maximum in Tγ .

FWER(ũBon) ≤ P[Vγ (ṽBon) ≥ 1] + P(#{t ∈ T̃ ∩ Tγ } ≥ 1),(34)

where Vγ (u) = #{t ∈ T̃ ∩ S0,γ :yγ (t) > u} as in Lemma 8.
The second probability in (34) goes to zero by Lemma 10, part (1). To bound

the first probability in (34), write

P[Vγ (ṽBon) ≥ 1] = P
{
T̃ ∩ S0,γ 	= ∅ and max

t∈T̃

yγ (t) > (ṽBon − v∗
Bon) + v∗

Bon

}
,

where v∗
Bon = F−1

γ (α/E[m̃0,γ ]) is deterministic. For any two random variables
X, Y and any two constants c, ε: P(X > Y + c) ≤ P(X > c − ε) + P(|Y | > ε).
Applying this inequality with X = max

t∈T̃
yγ (t), Y = ṽBon − v∗

Bon and c = v∗
Bon,

P[Vγ (ṽBon) ≥ 1] ≤ P[Vγ (v∗
Bon − ε) ≥ 1]

(35)
+ P{T̃ ∩ S0,γ 	= ∅ and |ṽBon − v∗

Bon| > ε}.
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The second summand goes to 0 in probability as L → ∞ by Lemma 11. For the
first summand, Lemma 8 with level v∗

Bon − ε gives that

P[Vγ (v∗
Bon − ε) ≥ 1] ≤ E[Vγ (v∗

Bon − ε)] = E[m̃0,γ ]Fγ (v∗
Bon − ε)

= α
Fγ (v∗

Bon − ε)

Fγ (v∗
Bon)

,

but the last fraction goes to 1 as L → ∞. Replacing in (35) and (34) gives the
result. �

6.3. Control of FDR.

LEMMA 12. For any nonnegative integer random variables V , W and fixed
positive integer J ,

E
(

V

V + W

)
≤ P(W ≤ J − 1) + E[V ]

E[V ] + J
.

PROOF.

E
(

V

V + W

)
=

∞∑
v=0

J−1∑
w=0

(
v

v + w

)
P(V = v,W = w)

+
∞∑

v=0

∞∑
w=J

(
v

v + w

)
P(V = v,W = w)

≤
J−1∑
w=0

∞∑
v=0

P(V = v,W = w)

+
∞∑

v=0

∞∑
w=J

(
v

v + J

)
P(V = v,W = w)

≤ P(W ≤ J − 1) + E
(

V

V + J

)

≤ P(W ≤ J − 1) + E(V )

E(V ) + J
.

The last inequality holds by Jensen’s inequality, since V/(V + J ) is a concave
function of V for V ≥ 0 and J ≥ 1. �

PROOF OF THEOREM 5. Let G̃(u) = #{t ∈ T̃ :yγ (t) > u}/#{t ∈ T̃ } be the
empirical marginal right cdf of yγ (t) given t ∈ T̃ . Then the BH threshold ũBH

(18) satisfies αG̃(ũBH) = kα/m̃ = Fγ (ũBH), so ũBH is the largest u that solves the
equation

αG̃(u) = Fγ (u).(36)



3316 A. SCHWARTZMAN, Y. GAVRILOV AND R. J. ADLER

The strategy is to solve equation (36) in the limit when L,a → ∞. We first find
the limit of G̃(u). Letting Vγ (u) = #{t ∈ T̃ ∩ S0,γ :yγ (t) > u} as in Lemma 8 and
Wγ (u) = #{t ∈ T̃ ∩ S1,γ :yγ (t) > u}, so that Rγ (u) = Vγ (u) + Wγ (u), write

G̃(u) = Rγ (u)

m̃
= Vγ (u)

m̃0,γ

m̃0,γ

m̃0,γ + m̃1,γ

+ Wγ (u)

m̃1,γ

m̃1,γ

m̃0,γ + m̃1,γ

.(37)

By the weak law of large numbers (33) and Lemma 10, part (3),

m̃0,γ

m̃0,γ + m̃1,γ

= m̃0,γ /L

m̃0,γ /L + m̃1,γ /L
→ E[m̃0,γ (0,1)]

E[m̃0,γ (0,1)] + A1

as L → ∞, where the expectation is given by (17). In addition we have the results
of Lemma 8 and Lemma 10, parts (4) and (5). Replacing these three limits in (37),
we obtain

G̃(u) → Fγ (u)
E[m̃0,γ (0,1)]

E[m̃0,γ (0,1)] + A1
+ A1

E[m̃0,γ (0,1)] + A1
.

Now replacing G̃(u) by its limit in (36), and solving for u gives the deterministic
solution

Fγ (u∗
BH) = αA1

A1 + E[m̃0,γ (0,1)](1 − α)
.(38)

The FDR at the threshold u∗
BH is bounded by Lemma 12 by

FDR(u∗
BH) ≤ P

(
W(u∗

BH) ≤ J − 1
) + E[V (u∗

BH)]
E[V (u∗

BH)] + J

= P
(
W(u∗

BH) ≤ J − 1
)

(39)

+ E[Vγ (u∗
BH)] + E[#{t ∈ T̃ ∩ Tγ :yγ (t) > u∗

BH}]
E[Vγ (u∗

BH)] + E[#{t ∈ T̃ ∩ Tγ :yγ (t) > u∗
BH}] + J

,

where we have split Vγ (u∗
BH) into the reduced null region S0,γ and the transition

region Tγ = S0 \ S0,γ . Under condition (C2), Lemma 10, part (1), gives

0 ≤ E[#{t ∈ T̃ ∩ Tγ :yγ (t) > u∗
BH}] ≤ E[#{t ∈ T̃ ∩ Tγ }] → 0.(40)

By Lemma 8, the remaining terms of the last fraction in (39) can be written as

E[Vγ (u∗
BH)]

E[Vγ (u∗
BH)] + J

= Fγ (u∗
BH)E[m̃0,γ (0,1)]L

Fγ (u∗
BH)E[m̃0,γ (0,1)]L + J

= Fγ (u∗
BH)E[m̃0,γ (0,1)]

Fγ (u∗
BH)E[m̃0,γ (0,1)] + J/L

.

Since u∗
BH solves (38), for L → ∞ such that J/L → A1, the above expression

tends to
αE[m̃0,γ (0,1)]

αE[m̃0,γ (0,1)] + A1 + (1 − α)E[m̃0,γ (0,1)] = α
E[m̃0,γ (0,1)]

E[m̃0,γ (0,1)] + A1
≤ α.(41)
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Combining equations (40), (41) and Lemma 10, part (3), in (39), we obtain
lim sup FDR(u∗

BH) ≤ α.
Recall that the BH threshold ũBH solves equation (36), and u∗

BH satisfies (38),
where the empirical marginal distribution, G̃(u), is replaced by its limit. Since
Fγ (t) is continuous, Fγ (ũBH) → Fγ (u∗

BH), leading to lim sup FDR(ũBH) ≤ α. �

6.4. Power.

LEMMA 13. For any j = 1, . . . , J , let t be any interior point of the support
Sj of peak j . Under conditions (C1) and (C2),

u∗
Bon/[ajhj,γ (t)] → 0, u∗

BH/[ajhj,γ (t)] → 0

in probability, where u∗
Bon and u∗

BH are given by (16) and (19), respectively.

PROOF. (1) From (9), for u > σγ , Fγ (u) is bounded above and below by

C1

2
φ

(
u

σγ

)
< Fγ (u) < (C1 + 1)φ

(
u

σγ

)
, C1 =

√√√√2πλ2
2,γ

λ4,γ σ 2
γ

,(42)

where the lower bound was obtained using �(x) > 1/2 for x > 1, and the upper
bound used the fact that

√
λ4,γ /� ≥ 1/σγ and 1 − �(x) < φ(x)/x for x > 1. Let

v = Fγ (u). Inverting the bounds in (42) we obtain

2σ 2
γ

(
log

C1

2
√

2π
− logv

)
< u2 < 2σ 2

γ

(
log

C1 + 1√
2π

− logv

)
.(43)

Applying these inequalities to v∗ = Fγ (u∗
Bon) and w = Fγ [ajhj,γ (t)] gives that

0 ≤ (u∗
Bon)

2

[ajhj,γ (t)]2 <
log[(C1 + 1)/

√
2π ] − log(v∗)

log[C1/(2
√

2π)] − log(w)
.

Applying L’Hôpital’s rule, the limit of the above fraction when v∗ and w go to
zero is the same as the limit of w/v∗. But this limit is zero because, by the upper
bound in (42) and (16),

Fγ [ajhj,γ (t)]
Fγ (u∗

Bon)
< (C1 + 1)

A1 + E[m̃0,γ (0,1)]
α

Lφ

(
ajhj,γ (t)

σγ

)
,

which goes to zero by the lemma’s conditions.
(2) The FDR threshold u∗

BH (19) is bounded, so the result is immediate. �

PROOF OF THEOREM 6. For any threshold u, the detection power Power(u)

(20) is greater than E[Wγ (u)]/J ≥ P[Wγ (u) = J ]. But this probability goes to 1
by Lemma 10, part (3), particularly for the deterministic thresholds u∗

Bon and u∗
BH.

It was shown in the proofs of Theorems 4 and 5 that the gap between the de-
terministic thresholds and the random thresholds ũBon and ũBH narrows to zero
asymptotically. Therefore the power for these thresholds goes to 1 as well. �



3318 A. SCHWARTZMAN, Y. GAVRILOV AND R. J. ADLER

Acknowledgments. The authors thank Pablo Jadzinsky for providing the neu-
ral recordings data, as well as Igor Wigman, Felix Abramovich and Yoav Ben-
jamini for helpful discussions. The authors also thank the Editor, Associate Editor
and referees for their handling of the manuscript and their useful suggestions.

REFERENCES

ADLER, R. J. and TAYLOR, J. E. (2007). Random Fields and Geometry. Springer, New York.
MR2319516

ADLER, R. J., TAYLOR, J. E. and WORSLEY, K. J. (2010). Applications of random fields and
geometry: Foundations and case studies. Available at http://webee.technion.ac.il/people/adler/
publications.html.

ARZENO, N. M., DENG, Z.-D. and POON, C.-S. (2008). Analysis of first-derivative based QRS
detection algorithms. IEEE Trans. Biomed. Eng. 55 478–484.

BACCUS, S. A. and MEISTER, M. (2002). Fast and slow contrast adaptation in retinal circuitry.
Neuron 36 909–919.

BENJAMINI, Y. and HELLER, R. (2007). False discovery rates for spatial signals. J. Amer. Statist.
Assoc. 102 1272–1281. MR2412549

BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical and
powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289–300. MR1325392

BRUTTI, P., GENOVESE, C. R., MILLER, C. J., NICHOL, R. C. and WASSERMAN, L. (2005).
Spike hunting in galaxy spectra. Technical report, Libera Univ. Internazionale degli Studi Sociali
Guido Carli di Roma. Available at http://www.stat.cmu.edu/tr/tr828/tr828.html.

CANDES, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger
than n. Ann. Statist. 35 2313–2351. MR2382644

CHUMBLEY, J. R. and FRISTON, K. J. (2009). False discovery rate revisited: FDR and topological
inference using Gaussian random fields. Neuroimage 44 62–70.

CHUMBLEY, J. R., WORSLEY, K., FLANDIN, G. and FRISTON, K. J. (2010). Topological fdr for
neuroimaging. Neuroimage 49 3057–3064.

CRAMÉR, H. and LEADBETTER, M. R. (1967). Stationary and Related Stochastic Processes. Sam-
ple Function Properties and Their Applications. Wiley, New York. MR0217860

GENOVESE, C. R., LAZAR, N. A. and NICHOLS, T. E. (2002). Thresholding of statistical maps in
functional neuroimaging using the false discovery rate. Neuroimage 15 870–878.

HAREZLAK, J., WU, M. C., WANG, M., SCHWARTZMAN, A., CHRISTIANI, D. C. and LIN, X.
(2008). Biomarker discovery for arsenic exposure using functional data. Analysis and feature
learning of mass spectrometry proteomic data. J. Proteome Res. 7 217–224.

HELLER, R., STANLEY, D., YEKUTIELI, D., RUBIN, N. and BENJAMINI, Y. (2006). Cluster-based
analysis of FMRI data. Neuroimage 33 599–608.

LI, L. and SPEED, T. P. (2000). Parametric deconvolution of positive spike trains. Ann. Statist. 28
1279–1301. MR1805784

LI, L. M. and SPEED, T. P. (2004). Deconvolution of sparse positive spikes. J. Comput. Graph.
Statist. 13 853–870. MR2109055

MORRIS, J. S., COOMBES, K. R., KOOMEN, J., BAGGERLY, K. A. and KOBAYASHI, R. (2006).
Feature extraction and quantification for mass spectrometry in biomedical applications using the
mean spectrum. Bioinformatics 21 1764–1775.

NICHOLS, T. and HAYASAKA, S. (2003). Controlling the familywise error rate in functional neu-
roimaging: A comparative review. Stat. Methods Med. Res. 12 419–446. MR2005445

O’BRIEN, M. S., SINCLAIR, A. N. and KRAMER, S. M. (1994). Recovery of a sparse spike train
time series by l1 norm deconvolution. IEEE Trans. Signal Process. 42 3353–3365.

http://www.ams.org/mathscinet-getitem?mr=2319516
http://webee.technion.ac.il/people/adler/publications.html
http://www.ams.org/mathscinet-getitem?mr=2412549
http://www.ams.org/mathscinet-getitem?mr=1325392
http://www.stat.cmu.edu/tr/tr828/tr828.html
http://www.ams.org/mathscinet-getitem?mr=2382644
http://www.ams.org/mathscinet-getitem?mr=0217860
http://www.ams.org/mathscinet-getitem?mr=1805784
http://www.ams.org/mathscinet-getitem?mr=2109055
http://www.ams.org/mathscinet-getitem?mr=2005445
http://webee.technion.ac.il/people/adler/publications.html


MULTIPLE TESTING OF LOCAL MAXIMA IN 1D 3319

PERONE PACIFICO, M., GENOVESE, C., VERDINELLI, I. and WASSERMAN, L. (2004). False dis-
covery control for random fields. J. Amer. Statist. Assoc. 99 1002–1014. MR2109490

PERONE PACIFICO, M., GENOVESE, C., VERDINELLI, I. and WASSERMAN, L. (2007). Scan clus-
tering: A false discovery approach. J. Multivariate Anal. 98 1441–1469. MR2364129

POLINE, J. B., WORSLEY, K. J., EVANS, A. C. and FRISTON, K. J. (1997). Combining spatial
extent and peak intensity to test for activations in functional imaging. Neuroimage 5 83–96.

PRATT, W. K. (1991). Digital Image Processing. Wiley, New York.
RICE, S. O. (1945). Mathematical analysis of random noise. Bell System Tech. J. 24 46–156.

MR0011918
SCHWARTZMAN, A., DOUGHERTY, R. F. and TAYLOR, J. E. (2008). False discovery rate analysis

of brain diffusion direction maps. Ann. Appl. Stat. 2 153–175. MR2415598
SEGEV, R., GOODHOUSE, J., PUCHALLA, J. and BERRY, M. J. II (2004). Recording spikes from a

large fraction of the ganglion cells in a retinal patch. Nature Neuroscience 7 1155–1162.
SIMON, M. (1995). Digital Communication Techniques: Signal Design and Detection. Prentice Hall,

Englewood Cliffs, NJ.
SMITH, S. M. and NICHOLS, T. E. (2009). Threshold-free cluster enhancement: Addressing prob-

lems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44
83–98.

TAYLOR, J. E. and WORSLEY, K. J. (2007). Detecting sparse signals in random fields, with an
application to brain mapping. J. Amer. Statist. Assoc. 102 913–928. MR2354405

TIBSHIRANI, R., SAUNDERS, M., ROSSET, S., ZHU, J. and KNIGHT, K. (2005). Sparsity and
smoothness via the fused lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 91–108. MR2136641

WORSLEY, K. J., MARRETT, S., NEELIN, P. and EVANS, A. C. (1996a). Searching scale space for
activation in PET images. Human Brain Mapping 4 74–90.

WORSLEY, K. J., MARRETT, S., NEELIN, P., VANDAL, A. C., FRISTON, K. J. and EVANS, A. C.
(1996b). A unified statistical approach for determining significant signals in images of cerebral
activation. Human Brain Mapping 4 58–73.

WORSLEY, K. J., TAYLOR, J. E., TOMAIUOLO, F. and LERCH, J. (2004). Unified univariate and
multivariate random field theory. Neuroimage 23 S189–195.

YASUI, Y., PEPE, M., THOMPSON, M. L., BAO-LING, A., WRIGHT, J. G. L., YINSHENG, Q.,
POTTER, J. D., WINGET, M., THORNQUIST, M. and ZIDING, F. (2003). A data-analytic strat-
egy for protein biomarker discovery: Profiling of high-dimensional proteomic data for cancer
detection. Biostatistics 4 449–463.

ZHANG, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. Ann.
Statist. 38 894–942. MR2604701

ZHANG, H., NICHOLS, T. E. and JOHNSON, T. D. (2009). Cluster mass inference via random field
theory. Neuroimage 44 51–61.

A. SCHWARTZMAN

Y. GAVRILOV

DEPARTMENT OF BIOSTATISTICS

HARVARD SCHOOL OF PUBLIC HEALTH

AND

DANA-FARBER CANCER INSTITUTE

450 BROOKLINE AVE., CLS 11007
BOSTON, MASSACHUSETTS 02446
USA
E-MAIL: armins@hsph.harvard.edu

yuliagavrilov@gmail.com

R. J. ADLER

DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNION, ISRAEL INSTITUTE OF TECHNOLOGY

HAIFA 32000
ISRAEL

E-MAIL: robert@ee.technion.ac.il

http://www.ams.org/mathscinet-getitem?mr=2109490
http://www.ams.org/mathscinet-getitem?mr=2364129
http://www.ams.org/mathscinet-getitem?mr=0011918
http://www.ams.org/mathscinet-getitem?mr=2415598
http://www.ams.org/mathscinet-getitem?mr=2354405
http://www.ams.org/mathscinet-getitem?mr=2136641
http://www.ams.org/mathscinet-getitem?mr=2604701
mailto:armins@hsph.harvard.edu
mailto:yuliagavrilov@gmail.com
mailto:robert@ee.technion.ac.il

	Introduction
	Theory
	The model
	The STEM algorithm
	p-values
	Error definitions
	Strong control of FWER
	Control of FDR
	Power
	Optimal smoothing kernel

	Simulation studies
	Nonasymptotic performance
	Unequal peaks
	Overlapping peaks
	Comparison with pointwise testing
	Automatic bandwidth selection

	Data example
	Discussion
	Technical details
	Supporting results
	Strong control of FWER
	Control of FDR
	Power

	Acknowledgments
	References
	Author's Addresses

