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Inference for partially observed Markov process models has been a long-
standing methodological challenge with many scientific and engineering ap-
plications. Iterated filtering algorithms maximize the likelihood function for
partially observed Markov process models by solving a recursive sequence of
filtering problems. We present new theoretical results pertaining to the con-
vergence of iterated filtering algorithms implemented via sequential Monte
Carlo filters. This theory complements the growing body of empirical evi-
dence that iterated filtering algorithms provide an effective inference strategy
for scientific models of nonlinear dynamic systems. The first step in our the-
ory involves studying a new recursive approach for maximizing the likelihood
function of a latent variable model, when this likelihood is evaluated via im-
portance sampling. This leads to the consideration of an iterated importance
sampling algorithm which serves as a simple special case of iterated filtering,
and may have applicability in its own right.

1. Introduction. Partially observed Markov process (POMP) models are
of widespread importance throughout science and engineering. As such, they
have been studied under various names including state space models [Durbin
and Koopman (2001)], dynamic models [West and Harrison (1997)] and hidden
Markov models [Cappé, Moulines and Rydén (2005)]. Applications include ecol-
ogy [Newman et al. (2009)], economics [Fernández-Villaverde and Rubio-Ramírez
(2007)], epidemiology [King et al. (2008)], finance [Johannes, Polson and Stroud
(2009)], meteorology [Anderson and Collins (2007)], neuroscience [Ergün et al.
(2007)] and target tracking [Godsill et al. (2007)].
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This article investigates convergence of a Monte Carlo technique for estimating
unknown parameters of POMPs, called iterated filtering, which was proposed by
Ionides, Bretó and King (2006). Iterated filtering algorithms repeatedly carry out a
filtering procedure to explore the likelihood surface at increasingly local scales in
search of a maximum of the likelihood function. In several case-studies, iterated
filtering algorithms have been shown capable of addressing scientific challenges
in the study of infectious disease transmission, by making likelihood-based in-
ference computationally feasible in situations where this was previously not the
case [King et al. (2008); Bretó et al. (2009); He, Ionides and King (2010); Laneri
et al. (2010)]. The partially observed nonlinear stochastic systems arising in the
study of disease transmission and related ecological systems are a challenging
environment to test statistical methodology [Bjørnstad and Grenfell (2001)], and
many statistical methodologies have been tested on these systems in the past fifty
years [e.g., Cauchemez and Ferguson (2008); Toni et al. (2008); Keeling and Ross
(2008); Ferrari et al. (2008); Morton and Finkenstädt (2005); Grenfell, Bjornstad
and Finkenstädt (2002); Kendall et al. (1999); Bartlett (1960); Bailey (1955)].
Since iterated filtering has already demonstrated potential for generating state-of-
the-art analyses on a major class of scientific models, we are motivated to study
its theoretical justification. The previous theoretical investigation of iterated filter-
ing, presented by Ionides, Bretó and King (2006), did not engage directly in the
Monte Carlo issues relating to practical implementation of the methodology. It is
relatively easy to check numerically that a maximum has been attained, up to an
acceptable level of Monte Carlo uncertainty, and therefore one can view the theory
of Ionides, Bretó and King (2006) as motivation for an algorithm whose capabil-
ities were proven by demonstration. However, the complete framework presented
in this article gives additional insights into the potential capabilities, limitations
and generalizations of iterated filtering.

The foundation of our iterated filtering theory is a Taylor series argument which
we present first in the case of a general latent variable model in Section 2. This
leads us to propose and analyze a novel iterated importance sampling algorithm
for maximizing the likelihood function of latent variable models. Our motivation
is to demonstrate a relatively simple theoretical result which is then extended to
POMP models in Section 3. However, this result also demonstrates the broader
possibilities of the underlying methodological approach.

The iterated filtering and iterated importance sampling algorithms that we study
have an attractive practical property that the model for the unobserved process en-
ters the algorithm only through the requirement that realizations can be generated
at arbitrary parameter values. This property has been called plug-and-play [Bretó
et al. (2009); He, Ionides and King (2010)] since it permits simulation code to be
simply plugged into the inference procedure. A concept closely related to plug-
and-play is that of implicit models for which the model is specified via an algo-
rithm to generate stochastic realizations [Diggle and Gratton (1984); Bretó et al.
(2009)]. In particular, evaluation of the likelihood function for implicit models is
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considered unavailable. Implicit models arise when the model is represented by a
“black box” computer program. A scientist investigates such a model by inputting
parameter values, receiving as output from the “black box” independent draws
from a stochastic process, and comparing these draws to the data to make infer-
ences. For an implicit model, only plug-and-play statistical methodology can be
employed. Other plug-and-play methods proposed for partially observed Markov
models include approximate Bayesian computations implemented via sequential
Monte Carlo [Liu and West (2001); Toni et al. (2008)], an asymptotically ex-
act Bayesian technique combining sequential Monte Carlo with Markov chain
Monte Carlo [Andrieu, Doucet and Holenstein (2010)], simulation-based forecast-
ing [Kendall et al. (1999)], and simulation-based spectral analysis [Reuman et al.
(2006)]. Further discussion of the plug-and-play property is included in the discus-
sion of Section 4.

2. Iterated importance sampling. Let fXY (x, y; θ) be the joint density of a
pair of random variables (X,Y ) depending on a parameter θ ∈ R

p . We suppose
that (X,Y ) takes values in some measurable space X × Y, and fXY (x, y; θ) is
defined with respect to some σ -finite product measure which we denote by dx dy.
We suppose that the observed data consist of a fixed value y∗ ∈ Y, with X being
unobserved. Therefore, {fXY (x, y; θ), θ ∈ R

p} defines a general latent variable
statistical model. We write the marginal densities of X and Y as fX(x; θ) and
fY (y; θ), respectively. The measurement model is the conditional density of the
observed variable given the latent variable X, written as fY |X(y | x; θ). The log
likelihood function is defined as �(θ) = logfY (y∗; θ). We consider the problem of
calculating the maximum likelihood estimate, defined as θ̂ = arg maxθ �(θ).

We consider an iterated importance sampling algorithm which gives a plug-
and-play approach to likelihood based inference for implicit latent variable mod-
els, based on generating simulations at parameter values in a neighborhood of
the current parameter estimate to refine this estimate. This shares broadly sim-
ilar goals with other Monte Carlo methods proposed for latent variable models
[e.g., Johansen, Doucet and Davy (2008); Qian and Shapiro (2006)], and in a more
general context has similarities with evolutionary optimization strategies [Beyer
(2001)]. We emphasize that the present motivation for proposing and studying it-
erated importance sampling is to lay the groundwork for the results on iterated
filtering in Section 3. However, the successes of iterated filtering methodology on
POMP models also raise the possibility that related techniques may be useful in
other latent variable situations.

We define the stochastically perturbed model to be a triplet of random variables
(X̆, Y̆ , �̆), with perturbation parameter τ and parameter θ , having a joint density
on X × Y × R

p specified as

g
X̆,Y̆ ,�̆

(x, y, ϑ̆; θ, τ ) = fXY (x, y; ϑ̆)τ−pκτ

(
(ϑ̆ − θ)/τ

)
.(1)

Here, {κτ , τ > 0} is a collection of mean-zero densities on R
p (with respect to

Lebesgue measure) satisfying condition (A1) below:
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(A1) For each τ > 0, κτ is supported on a compact set K0 ⊂ R
p independent

of τ .

Condition (A1) can be satisfied by the arbitrary selection of κτ . At first reading, one
can imagine that κτ is fixed, independent of τ . However, the additional generality
will be required in Section 3.

We start by showing a relationship between conditional moments of �̆ and
the derivative of the log likelihood function, in Theorem 1. We write Ĕθ,τ [·]
to denote expectation with respect to the stochastically perturbed model. We
write u ∈ R

p to specify a column vector, with u′ being the transpose of u.
For a function f = (f1, . . . , fm)′ : Rp → R

m, we write
∫

f (u)du for the vec-
tor (

∫
f1(u) du, . . . ,

∫
fm(u)du)′ ∈ R

m; For any function f : Rp → R, we write
∇f (u) to denote the column vector gradient of f , with ∇2f (u) being the second
derivative matrix. We write | · | for the absolute value of a vector or the largest
absolute eigenvalue of a square matrix. We write B(r) = {u ∈ R

p : |u| ≤ r} for the
ball of radius r in R

p . We assume the following regularity condition:

(A2) �(θ) is twice differentiable. For any compact set K1 ⊂ R
p ,

sup
θ∈K1

|∇�(θ)| < ∞ and sup
θ∈K1

|∇2�(θ)| < ∞.

THEOREM 1. Assume conditions (A1), (A2). Let h : Rp → R
m be a measur-

able function possessing constants α ≥ 0, c > 0 and ε > 0 such that, whenever
u ∈ B(ε),

|h(u)| ≤ c|u|α.(2)

Define τ0 = sup{τ :K0 ⊂ B(ε/τ)}. For any compact set K2 ⊂ R
p there exists C1 <

∞ and a positive constant τ1 ≤ τ0 such that, for all 0 < τ ≤ τ1,

sup
θ∈K2

∣∣∣∣Ĕθ,τ [h(�̆ − θ) | Y̆ = y∗] −
∫

h(τu)κτ (u) du

− τ

{∫
h(τu)u′κτ (u) du

}
∇�(θ)

∣∣∣∣(3)

≤ C1τ
2+α.

PROOF. Let g
Y̆ |�̆(y | ϑ̆; θ, τ ) denote the conditional density of Y̆ given �̆. We

note that g
Y̆ |�̆ does not depend on either τ or θ , and so we omit these dependencies

below. Then, g
Y̆ |�̆(y∗ | ϑ̆) = ∫

fXY (x, y∗; ϑ̆) dx = exp(�(ϑ̆)). Changing variable

to u = (ϑ̆ − θ)/τ , we calculate

Ĕθ,τ [h(�̆ − θ) | Y̆ = y∗] =
∫

h(ϑ̆ − θ)g
Y̆ |�̆(y∗ | ϑ̆)τ−pκτ ((ϑ̆ − θ)

/
τ) dϑ̆∫

g
Y̆ |�̆(y∗ | ϑ̆)τ−pκτ ((ϑ̆ − θ)

/
τ) dϑ̆

(4)

=
∫

h(τu) exp{�(θ + τu) − �(θ)}κτ (u) du∫
exp{�(θ + τu) − �(θ)}κτ (u) du

.
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Applying the Taylor expansion ex = 1 + x + (
∫ 1

0 (1 − t)etx dt)x2 to the numerator
of (4) gives∫

exp{�(θ + τu) − �(θ)}h(τu)κτ (u) du

=
∫

h(τu)κτ (u) du +
∫

{�(θ + τu) − �(θ)}h(τu)κτ (u) du(5)

+
∫ (∫ 1

0
(1 − t)et (�(θ+τu)−�(θ)) dt

)
{�(θ + τu) − �(θ)}2h(τu)κτ (u) du.

We now expand the second term on the right-hand side of (5) by making use of the
Taylor expansion

�(θ + τu) − �(θ) = τu′
∫ 1

0
∇�(θ + tτu) dt

(6)

= τu′∇�(θ) + τu′
∫ 1

0
{∇�(θ + tτu) − ∇�(θ)}dt

and defining ψτ,h(θ) = ∫
h(τu)κτ (u) du + τ {∫ h(τu)u′κτ (u) du}∇�(θ). This al-

lows us to rewrite (5) as∫
exp{�(θ + τu) − �(θ)}h(τu)κτ (u) du = ψτ,h(θ) + R1(θ, τ ),(7)

where

R1(θ, τ )

= τ

∫
h(τu)u′

(∫ 1

0
{∇�(θ + tτu) − ∇�(θ)}dt

)
κτ (u) du

+
∫ (∫ 1

0
(1 − t)et (�(θ+τu)−�(θ)) dt

)
{�(θ + τu) − �(θ)}2h(τu)κτ (u) du.

As a consequence of (A2), we have

sup
θ∈K2

sup
u∈K0

sup
t∈[0,τ0]

(|∇�(θ + tu)| + |∇2�(θ + tu)|) < ∞.(8)

Combining (8) with the assumption that K0 ⊂ B(ε/τ), we deduce the existence of
a finite constant C2 such that

sup
θ∈K2

|R1(θ, τ )| ≤ C2τ
2+α.(9)

We bound the denominator of (4) by considering the special case of (7) in which
h is taken to be the unit function, h(u) = 1. Noting that

∫
uκτ (u) du = 0, we see

that ψτ,1(θ) = 1 and so (7) yields∫
exp{�(θ + τu) − �(θ)}κτ (u) du = 1 + R2(θ, τ )
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with R2(θ, τ ) having a bound

sup
θ∈K2

|R2(θ, τ )| ≤ C3τ
2(10)

for some finite constant C3. We now note the existence of a finite constant C4 such
that

sup
θ∈K2

|ψτ,h(θ)| ≤ C4τ
α(11)

implied by (2), (A1) and (A2). Combining (9), (10) and (11) with the identity

Ĕθ,τ

(
h(�̆ − θ) | Y̆ = y∗) − ψτ,h(θ) = R1(θ, τ ) − R2(θ, τ )ψτ,h(θ)

1 + R2(θ, τ )
,

and requiring τ1 < (2C3)
−1/2, we obtain that

sup
θ∈K2

∣∣Ĕθ,τ

(
h(�̆ − θ) | Y̆ = y∗) − ψτ,h(θ)

∣∣ ≤ C5τ
2+α(12)

for some finite constant C5. Substituting the definition of ψτ,h(θ) into (12) gives
(3) and hence completes the proof. �

One natural choice is to take h(u) = u in Theorem 1. Supposing that κτ has
associated positive definite covariance matrix �̆, independent of τ , this leads to an
approximation to the derivative of the log likelihood given by∣∣∇�(θ) − {(τ 2�̆)−1(Ĕθ,τ [�̆ | Y̆ = y∗] − θ)}∣∣ ≤ C6τ(13)

for some finite constant C6, with the bound being uniform over θ in any compact
subset of R

p . The quantity Ĕθ,τ [�̆ | Y̆ = y∗] does not usually have a closed form,
but a plug-and-play Monte Carlo estimate of it is available by importance sam-
pling, supposing that one can draw from fX(x; θ) and evaluate fY |X(y∗ | x; θ).
Numerical approximation of moments is generally more convenient than approxi-
mating derivatives, and this is the reason that the relationship in (13) may be useful
in practice. However, one might suspect that there is no “free lunch” and therefore
the numerical calculation of the left-hand side of (13) should become fragile as τ

becomes small. We will see that this is indeed the case, but that iterated importance
sampling methods mitigate the difficulty to some extent by averaging numerical
error over subsequent iterations.

A trade-off between bias and variance is to be expected in any Monte Carlo
numerical derivative, a classic example being the Kiefer–Wolfowitz algorithm
[Kiefer and Wolfowitz (1952); Spall (2003)]. Algorithms which are designed to
balance such trade-offs have been extensively studied under the label of stochas-
tic approximation [Kushner and Yin (2003); Spall (2003); Andrieu, Moulines and
Priouret (2005)]. Algorithm 1 is an example of a basic stochastic approximation
algorithm taking advantage of (13). As an alternative, the derivative approxima-
tion in (13) could be combined with a stochastic line search algorithm. In order
to obtain the plug-and-play property, we consider an algorithm that draws from
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Algorithm 1 A basic iterated importance sampling procedure. The Monte Carlo
random variables required at each iteration are presumed to be drawn indepen-
dently. Theorem 2 gives sufficient conditions for θ̂M to converge to the maximum
likelihood estimate as M → ∞.
Input:

• Latent variable model described by a latent variable density fX(x; θ), measure-
ment model fY |X(y | x; θ), and data y∗.

• Perturbation density κ having compact support, zero mean and positive definite
covariance matrix �̆.

• Positive sequences {τm} and {am}
• Integer sequence of Monte Carlo sample sizes, {Jm}
• Initial parameter estimate, θ̂1
• Number of iterations, M

Procedure:

1 for m in 1 :M
2 for j in 1 :Jm

3 draw Zj,m ∼ κ(·) and set �̆j,m = θ̂m + τmZj,m

4 draw X̆j,m ∼ fX(·; �̆j,m)

5 set wj = fY |X(y∗ | X̆j,m; �̆j,m)

6 end for
7 calculate Dm = τ−2

m �̆−1{(∑Jm

j=1 wj)
−1(

∑Jm

j=1 wj�̆j,m) − θ̂m}
8 update estimate: θ̂m+1 = θ̂m + amDm

9 end for

Output:

• parameter estimate θ̂M+1

fX(x; θ) for iteratively selected values of θ . This differs from other proposed it-
erative importance sampling algorithms which aim to construct improved impor-
tance sampling distributions [e.g., Celeux, Marin and Robert (2006)]. In principle,
a procedure similar to Algorithm 1 could take advantage of alternative choices
of importance sampling distribution: the fundamental relationship in Theorem 1
is separate from the numerical issues of computing the required conditional ex-
pectation by importance sampling. Theorem 2 gives sufficient conditions for the
convergence of Algorithm 1 to the maximum likelihood estimate. To control the
variance of the importance sampling weights, we suppose:

(A3) For any compact set K3 ⊂ R
p ,

sup
θ∈K3,x∈X

fY |X(y∗ | x; θ) < ∞.
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We also adopt standard sufficient conditions for stochastic approximation meth-
ods:

(B1) Define ζ(t) to be a solution to dζ/dt = ∇�(ζ(t)). Suppose that θ̂ is an
asymptotically stable equilibrium point, meaning that (i) for every η > 0 there
exists a δ(η) such that |ζ(t) − θ̂ | ≤ η for all t > 0 whenever |ζ(0) − θ̂ | ≤ δ, and
(ii) there exists a δ0 such that ζ(t) → θ̂ as t → ∞ whenever |ζ(0) − θ̂ | ≤ δ0.

(B2) With probability one, supm |θ̂m| < ∞. Further, θ̂m falls infinitely often into
a compact subset of {ζ(0) : limt→∞ ζ(t) = θ̂}.
Conditions (B1) and (B2) are the basis of the classic results of Kushner and Clark
(1978). Although research into stochastic approximation theory has continued
[e.g., Kushner and Yin (2003); Andrieu, Moulines and Priouret (2005); Maryak
and Chin (2008)], (B1) and (B2) remain a textbook approach [Spall (2003)]. The
relative simplicity and elegance of Kushner and Clark (1978) makes an appro-
priate foundation for investigating the links between iterated filtering, sequential
Monte Carlo and stochastic approximation theory. There is, of course, scope for
variations on our results based on the diversity of available stochastic approxima-
tion theorems. Although neither (B1) and (B2) nor alternative sufficient conditions
are easy to verify, stochastic approximation methods have nevertheless been found
effective in many situations. Condition (B2) is most readily satisfied if θ̂m is con-
strained to a neighborhood in which θ̂ is a unique local maximum, which gives a
guarantee of local rather than global convergence. Global convergence results have
been obtained for related stochastic approximation procedures [Maryak and Chin
(2008)] but are beyond the scope of this current paper. The rate assumptions in
Theorem 2 are satisfied, for example, by am = m−1, τ 2

m = m−1 and Jm = m(δ+1/2)

for δ > 0.

THEOREM 2. Let {am}, {τm} and {Jm} be positive sequences with τm → 0,
Jmτm → ∞, am → 0,

∑
m am = ∞ and

∑
m a2

mJ−1
m τ−2

m < ∞. Let θ̂m be defined
via Algorithm 1. Assuming (A1)–(A3) and (B1) and (B2), limm→∞ θ̂m = θ̂ with
probability one.

PROOF. The quantity Dm in line 7 of Algorithm 1 is a self-normalized Monte
Carlo importance sampling estimate of

(τ 2
m�̆)−1{E

θ̂m,τm
[�̆ | Y̆ = y∗] − θ̂m}.

We can therefore apply Corollary 8 from Section A.2, writing EMC and VarMC for
the Monte Carlo expectation and variance resulting from carrying out Algorithm 1
conditional on the data y∗. This gives∣∣EMC

[
Dm − (τ 2

m�̆)−1{E
θ̂m,τm

[�̆ | Y̆ = y∗] − θ̂m}]∣∣
(14)

≤ C7(supx∈X fY |X(y∗ | x; θ̂m))2

τmJm(fY (y∗; θ̂m))2
,
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|VarMC(Dm)| ≤ C8(supx∈X fY |X(y∗ | x; θ̂m))2

τ 2
mJm(fY (y∗; θ̂m))2

(15)

for finite constants C7 and C8 which do not depend on J , θ̂m or τm. Having as-
sumed the conditions for Theorem 1, we see from (13) and (14) that Dm provides
an asymptotically unbiased Monte Carlo estimate of ∇�(θ̂m) in the sense of (B5)
of Theorem 6 in Section A.1. In addition, (15) justifies (B4) of Theorem 6. The
remaining conditions of Theorem 6 hold by hypothesis. �

3. Iterated filtering for POMP models. Let {X(t), t ∈ T } be a Markov
process [Rogers and Williams (1994)] with X(t) taking values in a measur-
able space X. The time index set T ⊂ R may be an interval or a discrete set,
but we are primarily concerned with a finite subset of times t1 < t2 < · · · < tN
at which X(t) is observed, together with some initial time t0 < t1. We write
X0 : N = (X0, . . . ,XN) = (X(t0), . . . ,X(tN)). We write Y1 : N = (Y1, . . . , YN) for
a sequence of random variables taking values in a measurable space YN . We
assume that X0 : N and Y1 : N have a joint density fX0 : N ,Y1 : N

(x0 : n, y1 : n; θ) on
XN+1 × YN , with θ being an unknown parameter in R

p . A POMP model may
then be specified by an initial density fX0(x0; θ), conditional transition densi-
ties fXn|Xn−1(xn | xn−1; θ) for 1 ≤ n ≤ N , and the conditional densities of the
observation process which are assumed to have the form fYn|Y1 : n−1,X0 : n

(yn |
y1 : n−1, x0 : n; θ) = fYn|Xn(yn | xn; θ). We use subscripts of f to denote the re-
quired joint and conditional densities. We write f without subscripts to denote
the full collection of densities and conditional densities, and we call such an f

the generic density of a POMP model. The data are a sequence of observations
by y∗

1 : N = (y∗
1 , . . . , y∗

N) ∈ YN , considered as fixed. We write the log likelihood
function of the data for the POMP model as �N(θ) where

�n(θ) = log
∫

fX0(x0; θ)

n∏
k=1

fXk,Yk |Xk−1(xk, y
∗
k | xk−1; θ) dx0 : n

for 1 ≤ n ≤ N . Our goal is to find the maximum likelihood estimate, θ̂ =
arg maxϑ �N(θ).

It will be helpful to construct a POMP model f̄ which expands the model f

by allowing the parameter values to change deterministically at each time point.
Specifically, we define a sequence ϑ0 : N = (ϑ0, . . . , ϑN) ∈ {Rp}N+1. We then
write (X0 : N,Y 1 : N) ∈ XN+1 × YN for a POMP with generic density f specified
by the joint density

f̄X0 : N,Y 1 : N
(x0 : N,y1 : N ;ϑ0 : n)

(16)

= fX0(x0;ϑ0)

N∏
k=1

fYk,Xk |Xk−1(yk, xk | xk−1;ϑk).
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We write the log likelihood of y∗
1 : n for the model f as �n(ϑ0 : n) = log f̄Y 1 : n

(y∗
1 : n;

ϑ0 : n). We write θ [k] to denote k copies of θ ∈ R
p , concatenated in a column vector,

so that �n(θ) = �n(θ
[n+1]). We write ∇i�n(ϑ0 : n) for the partial derivative of �n

with respect to ϑi , for i = 0, . . . , n. An application of the chain rule gives the
identity

∇�n(θ) =
n∑

i=0

∇i�n

(
θ [n+1]).(17)

The regularity condition employed for Theorem 3 below is written in terms of this
deterministically perturbed model:

(A4) For each 1 ≤ n ≤ N , �n(θ0 : n) is twice differentiable. For any compact
subset K of {Rp}n+1 and each 0 ≤ i ≤ n,

sup
θ0 : n∈K

|∇i�n(θ0 : n)| < ∞ and sup
θ0 : n∈K

|∇2
i �n(θ0 : n)| < ∞.(18)

Condition (A4) is a nonrestrictive smoothness assumption. However, the rela-
tionship between smoothness of the likelihood function, the transition density
fXk |Xk−1(xk | xk−1; θ), and the observation density fYk |Xk

(yk | xk; θ) is simple to
establish only under the restrictive condition that X is a compact set. Therefore, we
note an alternative to (A4) which is more restrictive but more readily checkable:

(A4′) X is compact. Both fXk |Xk−1(xk | xk−1; θ) and fYk |Xk
(yk | xk; θ) are twice

differentiable with respect to θ . These derivatives are continuous with respect to
xk−1 and xk .

Iterated filtering involves introducing an auxiliary POMP model in which a
time-varying parameter process {�̆n,0 ≤ n ≤ N} is introduced. Let κ be a prob-
ability density function on R

p having compact support, zero mean and covari-
ance matrix �. Let Z0, . . . ,ZN be N independent draws from κ . We introduce
two perturbation parameters, σ and τ , and construct a process �̆0 : N by setting
�̆0 = ϑ0 + τZ0 and �̆k = ϑk + τZ0 + σ

∑k
j=1 Zj for 1 ≤ k ≤ N . The joint den-

sity of �̆0 : N is written as g�̆0 : N
(ϑ̆0 : N ;ϑ0 : N,σ, τ ). We define the stochastically

perturbed POMP model g with a Markov process {(X̆n, �̆n),0≤n≤N}, observa-
tion process Y̆1 : N and parameter (ϑ0 : N,σ, τ ) by the joint density

g
X̆0 : N ,�̆0 : N,Y̆1 : N

(x0 : N, ϑ̆0 : N,y1 : N ;ϑ0 : N,σ, τ )

= g�̆0 : N
(ϑ̆0 : N ;ϑ0 : N,σ, τ )f̄X0 : N,Y 1 : N

(x0 : N,y1 : N ; ϑ̆0 : N).

We seek a result analogous to Theorem 1 which takes into account the specific
structure of a POMP. Theorem 3 below gives a way to approximate ∇�N(θ)

in terms of moments of the filtering distributions for g. We write Ĕϑ0 : n,σ,τ and
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V̆arϑ0 : n,σ,τ for the expectation and variance, respectively, for the model g. We will
be especially interested in the situation where ϑ0 : n = θ [n+1], which leads us to
define the following filtering means and prediction variances:

θ̆F
n = θ̆F

n (θ, σ, τ ) = Ĕθ [n+1],σ,τ [�̆n | Y̆1 : n = y∗
1 : n]

=
∫

ϑ̆ng�̆n|Y̆1 : n

(
ϑ̆n | y∗

1 : n; θ [n+1], σ, τ
)
dϑ̆n,(19)

V̆ P
n = V̆ P

n (θ, σ, τ ) = V̆arθ [n+1],σ,τ (�̆n | Y̆1 : n−1 = y∗
1 : n−1)

for n = 1, . . . ,N , with θ̆F
0 = θ .

THEOREM 3. Suppose condition (A4). Let σ be a function of τ with
limτ→0 σ(τ)/τ = 0. For any compact set K4 ⊂ R

p , there exists a finite constant
C9 such that for all τ small enough,

sup
θ∈K4

|τ−2�−1(θ̆F
N − θ) − ∇�N(θ)| ≤ C9(τ + σ 2/τ 2)(20)

and

sup
θ∈K4

∣∣∣∣∣
N∑

n=1

(V̆ P
n )−1(θ̆F

n − θ̆F
n−1) − ∇�N(θ)

∣∣∣∣∣ ≤ C9(τ + σ 2/τ 2).(21)

PROOF. For each n ∈ {1, . . . ,N}, we map onto the notation of Section 2 by
setting X = X0 : n, Y = Y 1 : n, θ = ϑ0 : n, �̆ = �̆0 : n, y∗ = y∗

1 : n and h(ϑ0 : n) = ϑn.
We note that, by construction, this implies X̆ = X̆0 : n, Y̆ = Y̆1 : n, and κτ (ϑ0 : n) =
κ(ϑ0)

∏n
i=1(σ/τ)−pκ((ϑi − ϑi−1)/(σ/τ)). For this choice of h, the integral

τ
∫

h(τu)u′κτ (u) du is a p × p(n + 1) matrix for which the ith p × p sub-matrix
is Ĕϑ0 : n,σ,τ [(�̆n − ϑn)(�̆i−1 − ϑi−1)

′] = {τ 2 + (i − 1)σ 2}�. Thus,(
τ

∫
h(τu)u′κτ (u) du

)
∇ �̄n(ϑ0 : n)

=
n∑

i=0

Ĕϑ0 : n,σ,τ [(�̆n − ϑn)(�̆i − ϑi)
′]∇i �̄n(ϑ0 : n)(22)

=
n∑

i=0

(τ 2� + iσ 2�)∇i �̄n(ϑ0 : n).

Applying Theorem 1 in this context, the second term in (3) is zero and the third
term is given by (22). We obtain that for any compact K5 ⊂ R

p(n+1) there is a
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C10 < ∞ such that

sup
ϑ0 : n∈K5

∣∣∣∣∣τ−2�−1(Ĕϑ0 : n,σ,τ [�̆n | Y1 : n = y∗
1 : n] − ϑn)

−
n∑

i=0

(1 + σ 2τ−2i)∇i �̄n(ϑ0 : n)

∣∣∣∣∣(23)

≤ C10τ.

Applying (23) to the special case of ϑ0 : n = θ [n+1], making use of (17) and (19),
we infer the existence of finite constants C11 and C12 such that

sup
θ∈K4

|τ−2�−1(θ̆F
n − θ) − ∇�n(θ)| ≤ C11τ + sup

θ∈K4

σ 2τ−2
n∑

i=1

i
∣∣∇i�n

(
θ [n+1])∣∣

(24)
≤ C12(τ + σ 2τ−2),

which establishes (20). To show (21), we write
n∑

k=1

{V̆ P
k }−1(θ̆F

k − θ̆F
k−1)

=
n∑

k=1

τ−2�−1(θ̆F
k − θ̆F

k−1) + τ−2
n∑

k=1

({τ−2V̆ P
k }−1 − �−1)(θ̆F

k − θ̆F
k−1)(25)

= τ−2�−1(θ̆F
n − θ) + τ−2

n∑
k=1

({τ−2V̆ P
k }−1 − �−1)(θ̆F

k − θ̆F
k−1).

We note that (24) implies the existence of a bound

|θ̆F
n − θ | ≤ C13τ

2.(26)

Combining (25), (24) and (26), we deduce

sup
θ∈K4

∣∣∣∣∣
n∑

k=1

{V̆ P
k }−1(θ̆F

k − θ̆F
k−1) − ∇�n(θ)

∣∣∣∣∣
≤ C14(τ + σ 2τ−2) + C15

n∑
k=1

sup
θ∈K4

|{τ−2V̆ P
k }−1 − �−1|

for finite constants C14 and C15. For invertible matrices A and B , we have the
bound

|A−1 − B−1| ≤ |B−1|2(
1 − |(B − A)B−1|)−1|B − A|(27)

provided that |(B − A)B−1| < 1. Applying (27) with A = {τ−2V̆ P
k } and B = �,

we see that the theorem will be proved once it is shown that

sup
θ∈K4

|τ−2V̆ P
k − �| ≤ C0(τ + σ 2τ−2).
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Now, it is easy to check that

τ−2V̆ P
n − � = τ−2

Ĕθ [n+1],σ,τ [(�̆n−1 − θ)(�̆n−1 − θ)′ | Y̆1 : n−1 = y∗
1 : n−1] − �

− τ−2(θ̆F
n−1 − θ)(θ̆F

n−1 − θ)′ + σ 2τ−2�.

Applying Theorem 1 again with h(ϑ0 : n) = (ϑn − θ)(ϑn − θ)′, and making use of
(26), we obtain

sup
θ∈K4

∣∣τ−2
Ĕθ [n+1],σ,τ [(�̆n − θ)(�̆n − θ)′ | Y̆1 : n = y∗

1 : n] − �
∣∣

(28)
≤ C16(τ + σ 2τ−2),

which completes the proof. �

The two approximations to the derivative of the log likelihood in (20) and (21)
are asymptotically equivalent in the theoretical framework of this paper. However,
numerical considerations may explain why (21) has been preferred in practical
applications. To be concrete, we suppose henceforth that numerical filtering will
be carried out using the basic sequential Monte Carlo method presented as Al-
gorithm 2. Sequential Monte Carlo provides a flexible and widely used class of
filtering algorithms, with many variants designed to improve numerical efficiency
[Cappé, Godsill and Moulines (2007)]. The relatively simple sequential Monte
Carlo method in Algorithm 2 has, however, been found adequate for previous
data analyses using iterated filtering [Ionides, Bretó and King (2006); King et al.
(2008); Bretó et al. (2009); He, Ionides and King (2010); Laneri et al. (2010)].

When carrying out filtering via sequential Monte Carlo, the resampling involved
has a consequence that all surviving particles can descend from only few recent
ancestors. This phenomenon, together with the resulting shortage of diversity in
the Monte Carlo sample, is called particle depletion and can be a major obstacle
for the implementation of sequential Monte Carlo techniques [Arulampalam et al.
(2002); Andrieu, Doucet and Holenstein (2010)]. The role of the added variation
on the scale of σm in the iterated filtering algorithm is to rediversify the particles
and hence to combat particle depletion. Mixing considerations suggest that the new
information about θ in the nth observation may depend only weakly on y∗

1 : n−k for
sufficiently large k [Jensen and Petersen (1999)]. The actual Monte Carlo particle
diversity of the filtering distribution, based on (21), may therefore be the best guide
when sequentially estimating the derivative of the log likelihood. Future theoretical
work on iterated filtering algorithms should study formally the role of mixing, to
investigate this heuristic argument. However, the theory presented in Theorems 3,
4 and 5 does formally support using a limit random walk perturbations without
any mixing conditions. Two influential previous proposals to use stochastic per-
turbations to reduce numerical instabilities arising in plug-and-play inference for
POMPS via sequential Monte Carlo [Kitagawa (1998); Liu and West (2001)] lack
even this level of theoretical support.
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Algorithm 2 A basic sequential Monte Carlo procedure for a discrete-time Markov
process. For the unperturbed model, set X̃n = Xn, Ỹn = Yn,f̃ = f and θ̃ = θ .
For the stochastically perturbed model, set X̃n = (X̆n, �̆n), Ỹn = Yn, f̃ = g and
θ̃ = (θ [N+1], σ, τ ). It is neither necessary nor computationally optimal to draw
from the density f̃

X̃n|X̃n−1
in step 3 [e.g., Arulampalam et al. (2002)] however only

this choice leads to the plug-and-play property. The resampling in step 5 is taken
to follow a multinomial distribution to build on previous theoretical results making
this assumption [Del Moral and Jacod (2001); Crisan and Doucet (2002)]. An al-
ternative is the systematic procedure in Arulampalam et al. [(2002), Algorithm 2]
which has less Monte Carlo variability. We support the use of systematic sampling
in practice, and we suppose that all our results would continue to hold in such
situations.
Input:

• POMP model described by a generic density f̃ having parameter vector θ̃ and
corresponding to a Markov process X̃0 : N , observation process Ỹ1 : N , and data
y∗

1 : N• Number of particles, J

Procedure:

1 initialize filter particles X̃F
0,j ∼ f̃

X̃0
(x̃0; θ̃ ) for j in 1 :J

2 for n in 1 :N
3 for j in 1 :J draw prediction particles X̃P

n,j ∼ f̃
X̃n|X̃n−1

(x̃n | X̃F
n−1,j ; θ̃ )

4 set w(n, j) = f̃
Ỹn|X̃n

(y∗
n | X̃P

n,j ; θ̃ )

5 draw k1, . . . , kJ such that P{kj=i} = w(n, i)/
∑

� w(n, �)

6 set X̃F
n,j = X̃P

n,kj

7 end for

To calculate Monte Carlo estimates of the quantities in (19), we apply Algo-
rithm 2 with f̃ = g, X̃n = (X̆n, �̆n), θ̃ = (θ [N+1], σ, τ ) and J particles. We write
X̃P

n,j = (XP
n,j ,�

P
n,j ) and X̃F

n,j = (XF
n,j ,�

F
n,j ) for the Monte Carlo samples from

the prediction and filtering and calculations in steps 3 and 6 of Algorithm 2. Then
we define

θ̃F
n = θ̃F

n (θ, σ, τ, J ) = 1

J

J∑
j=1

�F
n,j ,

(29)

Ṽ P
n = Ṽ P

n (θ, σ, τ, J ) = 1

J − 1

J∑
j=1

(�P
n,j − θ̃F

n−1)(�
P
n,j − θ̃F

n−1)
′.

In practice, a reduction in Monte Carlo variability is possible by modifying (29) to
estimate θF

n and V P
n from weighted particles prior to resampling [Chopin (2004)].
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We now present, as Theorem 4, an analogue to Theorem 3 in which the filtering
means and prediction variances are replaced by their Monte Carlo counterparts.
The stochasticity in Theorem 4 is due to Monte Carlo variability, conditional on
the data y∗

1 : N , and we write EMC and VarMC to denote Monte Carlo means and
variances. The Monte Carlo random variables required to implement Algorithm 2
are presumed to be drawn independently each time the algorithm is evaluated. To
control the Monte Carlo bias and variance, we assume:

(A5) For each n and any compact set K6 ⊂ R
p ,

sup
θ∈K6,x∈X

fYn|Xn(y
∗
n | xn; θ) < ∞.

THEOREM 4. Let {σm}, {τm} and {Jm} be positive sequences with τm → 0,
σmτ−1

m → 0 and τmJm → ∞. Define θ̃F
n,m = θ̃F

n (θ, σm, τm,Jm) and Ṽ P
n,m =

Ṽ P
n (θ, σm, τm,Jm) via (29). Suppose conditions (A4) and (A5) and let K7 be an

arbitrary compact subset of R
p . Then,

lim
m→∞ sup

θ∈K7

∣∣∣∣∣EMC

[
N∑

n=1

(Ṽ P
n,m)−1(θ̃F

n,m − θ̃F
n−1,m)

]
− ∇�N(θ)

∣∣∣∣∣ = 0,(30)

lim
m→∞ sup

θ∈K7

∣∣∣∣∣τ 2
mJm VarMC

(
N∑

n=1

(Ṽ P
n,m)−1(θ̃F

n,m − θ̃F
n−1,m)

)∣∣∣∣∣ < ∞.(31)

PROOF. Let K8 be a compact subset of R
2 containing {(σm, τm),m =

1,2, . . .}. Set θ ∈ K7 and (σ, τ ) ∈ K8. Making use of the definitions in (19) and
(29), we construct un = (θ̆F

n − θ̆F
n−1)/τ and vn = V̆ P

n /τ 2, with corresponding
Monte Carlo estimates ũn = (θ̃F

n − θ̃F
n−1)/τ and ṽn = Ṽ P

n /τ 2. We look to ap-
ply Theorem 7 (presented in Section A.2) with f̃ = g, X̃n = (X̆n, �̆n), Ỹn = Y̆n,
θ̃ = (θ [n+1], σ, τ ), J particles, and

φ(X̆n, �̆n) = (�̆n − θ)/τ.

Using the notation from (44), we have un = φF
n − φF

n−1 and ũn = φ̃F
n − φ̃F

n−1. By
assumption, κ(u) is supported on some set {u : |u| < C17} from which we derive the
bound |φ(X̌n, �̌n)| ≤ C17(1 + nσ/τ). Theorem 7 then provides for the existence
of a C18 and C19 such that

EMC[|ũn − un|2] ≤ C18/J,(32)

|EMC[ũn − un]| ≤ C19/J.(33)

The explicit bounds in (47) of Theorem 7, together with (A4) and (A5), assure
us that C18 = C18(θ, σ, τ ) and C19 = C19(θ, σ, τ ) can be chosen so that (32) and
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(33) hold uniformly over (θ, σ, τ ) ∈ K7 ×K8. The same argument applied to vn =
V P

n /τ 2 and ṽn = Ṽ P
n /τ 2 gives

|EMC[ṽn − vn]| ≤ C20/J, EMC[|ṽn − vn|2] ≤ C21/J(34)

uniformly over (θ, σ, τ ) ∈ K7 × K8. We now proceed to carry out a Taylor series
expansion:

ṽ−1
n ũn = v−1

n un + v−1
n (ũn − un)v

−1
n (ṽn − vn)v

−1
n un + R3,(35)

where |R3| < C22(|ũn −un|2 +|ṽn −vn|2) for some constant C22. The existence of
such a C22 is guaranteed since the determinant of vn is bounded away from zero.
Taking expectations of both sides of (35) and applying (32)–(34) gives

|EMC[ṽ−1
n ũn] − v−1

n un| ≤ C23/J(36)

for some constant C23 < ∞. Another Taylor series expansion,

ṽ−1
n ũn = v−1

n un + R4

with |R4| < C24(|ũn − un| + |ṽn − vn|) implies

VarMC(ṽ−1
n ũn) ≤ C25/J.(37)

Rewriting (36) and (37), defining θ̆F
n,m = θ̆F

n (θ, σm, τm) and V̆ P
n,m = V̆ P

n (θ, σm,

τm), we deduce that

τmJm|EMC[(Ṽ P
n,m)−1(θ̃F

n,m − θ̃F
n−1,m)] − (V̆ P

n,m)−1(θ̆F
n,m − θ̆F

n−1,m)| ≤ C23(38)

and

τ 2
mJm VarMC[(Ṽ P

n,m)−1(θ̃F
n,m − θ̃F

n−1,m)] ≤ C25.(39)

Combining (38) with Theorem 3, and summing over n, leads to (30). Summing
(39) over n justifies (30). �

Theorem 4 suggests that a Monte Carlo method which leans on Theorem 3 will
require a sequence of Monte Carlo sample sizes, Jm, which increases faster than
τ−1
m . Even with τmJm → ∞, we see from (31) that the estimated derivative in (30)

may have increasing Monte Carlo variability as m → ∞. Theorem 5 gives an ex-
ample of a stochastic approximation procedure, defined by the recursive sequence
θ̂m in (40), that makes use of the Monte Carlo estimates studied in Theorem 4. Be-
cause each step of this recursion involves an application of the filtering procedure
in Algorithm 2, we call (40) an iterated filtering algorithm. The rate assumptions
in Theorem 5 are satisfied, for example, by am = m−1, τ 2

m = m−1, σ 2
m = m−(1+δ)

and Jm = m(δ+1/2) for δ > 0.
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THEOREM 5. Let {am}, {σm}, {τm} and {Jm} be positive sequences with
τm → 0, σmτ−1

m → 0, Jmτm → ∞, am → 0,
∑

m am = ∞ and
∑

m a2
mJ−1

m τ−2
m <

∞. Specify a recursive sequence of parameter estimates {θ̂m} by

θ̂m+1 = θ̂m + am

N∑
n=1

(Ṽ P
n,m)−1(θ̃F

n,m − θ̃F
n−1,m),(40)

where θ̃F
n,m = θ̃F

n (θ̂m, σm, τm,Jm) and Ṽ P
n,m = Ṽ P

n,m(θ̂m, σm, τm,Jm) are defined
in (29) via an application of Algorithm 2. Assuming (A4), (B1) and (B2),
limm→∞ θ̂m = θ̂ with probability one.

PROOF. Theorem 5 follows directly from a general stochastic approximation
result, Theorem 6 of Section A.1, applied to �N(θ). Conditions (B4) and (B5) of
Theorem 6 hold from Theorem 4 and the remaining assumptions of Theorem 6
hold by hypothesis. �

4. Discussion. One alternative approach to likelihood maximization for
POMP models involves plugging the (log) likelihood estimate from a particle
filter directly into a general-purpose stochastic optimization algorithm such as
Simultaneous Perturbation Stochastic Approximation (SPSA), Kiefer–Wolfowitz
or stochastic Nelder–Mead [Spall (2003)]. An advantage of iterated filtering, and
other methods based on particle filtering with parameter perturbations [Kitagawa
(1998); Liu and West (2001)], is that the many thousands of particles are simul-
taneously exploring the parameter space and evaluating an approximation to the
likelihood. When the data are a long time series, the perturbed parameters can
make substantial progress toward plausible parameter values in the course of one
filtering operation. From the point of view of a general-purpose stochastic opti-
mization algorithm, carrying out one filtering operation (which can be a signifi-
cant computational burden in many practical situations) yields only one function
evaluation of the likelihood.

The practical applicability of particle filters may be explained by their numerical
stability on models possessing a mixing property [e.g., Crisan and Doucet (2002)].
The sequential Monte Carlo analysis in Theorem 4 did not address the convergence
of iterated filtering under mixing assumptions as the number of observations, N ,
increases. We therefore studied experimentally the numerical stability of the Monte
Carlo estimate of the derivative of the log likelihood in equation (30). The role of
mixing arises regardless of the dimension of the state space, the dimension of the
parameter space, the nonlinearity of the system, or the non-Gaussianity of the sys-
tem. This suggests that a simple linear Gaussian example may be representative
of behavior on more complex models. Specifically, we considered a POMP model
defined by a scalar Markov process Xn = θXn−1 + εn, with X0 = 0, and a scalar
observation process Yn = Xn +ηn. Here, {εn} and {ηn} were taken to be sequences
of independent Gaussian random variables having zero mean and unit variance. We
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FIG. 1. Monte Carlo variance of the derivative approximation in (30) for varying values of θ and σ .

fixed the true parameter value as θ∗ = 0.8 and we evaluated ∇�N(θ) at θ = θ∗ and
θ = 0.9 using a Kalman filter (followed by a finite difference derivative computa-
tion) and via the sequential Monte Carlo approximation in (30) using J = 1,000
particles. We investigated σ ∈ {0.002,0.005,0.02}, chosen to include a small value
where Monte Carlo variance dominates, a large value where bias dominates, and
an intermediate value; we then fixed τ = 20σ .

Figures 1 and 2 show how the Monte Carlo variance and the bias vary with
N for each value of σ . These quantities were evaluated from 100 realizations of
the model, with 5 replications of the filtering operation per realization, via standard
unbiased estimators. We see from Figure 1 that the Monte Carlo variance increases
approximately linearly with N . This numerical stability is a substantial improve-
ment on the exponential bound guaranteed by Theorem 7. The ordinate values in
Figure 1 show that, as anticipated from Theorem 4, the variance increases as σ

decreases. Figure 2 shows that the bias diminishes as σ decreases and is small
when θ is close to θ∗. When θ is distant from θ∗, the perturbed parameter values
migrate toward θ∗ during the course of the filtering operation, as shown in Fig-
ure 3(b). Once the perturbed parameters have arrived in the vicinity of θ∗, the sum
in (30) approximates the derivative of the log likelihood at θ∗ rather than at θ . Fig-
ure 3(a) demonstrates the resulting bias in the estimate of ∇�N(θ). However, this
bias may be helpful, rather than problematic, for the convergence of the iterated
filtering algorithm. The update in (40) is a weighted average of the filtered means
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FIG. 2. Bias of the derivative approximation in (30) for varying values of θ and σ . Dashed lines
show pointwise 95% Monte Carlo confidence intervals.

of the perturbed parameters. Heuristically, if the perturbed parameters successfully
locate a neighborhood of θ∗ then this will help to generate a good update for the
iterated filtering algorithm. The utility of perturbed parameter values to identify a
neighborhood of θ∗, in addition to estimating a derivative, does not play a role in

FIG. 3. One realization from the simulation study, with θ = 0.9 and σ = 0.005. (a) The estimate of
∇�N (θ) using (30) (solid line) and calculated directly (dashed line). (b) The filter mean θ̃F

N (solid
line) approaching the vicinity of the true parameter value θ∗ = 0.8 (dotted line).
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our asymptotic justification of iterated filtering. However, it may contribute to the
nonasymptotic properties of the method at early iterations.

APPENDIX: SOME STANDARD RESULTS ON SEQUENTIAL MONTE
CARLO AND STOCHASTIC APPROXIMATION THEORY

We state some basic theorems that we use to prove Theorems 2, 4 and 5, both
for completeness and because we require minor modifications of the standard re-
sults. Our goal is not to employ the most recent results available in these research
areas, but rather to show that some fundamental and well-known results from both
areas can be combined with our Theorems 1 and 3 to synthesize a new theoretical
understanding of iterated filtering and iterated importance sampling.

A.1. A version of a standard stochastic approximation theorem. We
present, as Theorem 6, a special case of Theorem 2.3.1 of Kushner and Clark
(1978). For variations and developments on this result, we refer the reader to
Kushner and Yin (2003), Spall (2003), Andrieu, Moulines and Priouret (2005)
and Maryak and Chin (2008). In particular, Theorem 2.3.1 of Kushner and Clark
(1978) is similar to Theorem 4.1 of Spall (2003) and to Theorem 2.1 of Kushner
and Yin (2003).

THEOREM 6. Let �(θ) be a continuously differentiable function R
p → R and

let {Dm(θ),m ≥ 1} be a sequence of independent Monte Carlo estimators of the
vector of partial derivatives ∇�(θ). Define a sequence {θ̂m} recursively by θ̂m+1 =
θ̂m + amDm(θ̂m). Assume (B1) and (B2) of Section 2 together with the following
conditions:

(B3) am > 0, am → 0,
∑

m am = ∞.
(B4)

∑
m a2

m sup|θ |<r VarMC(Dm(θ)) < ∞ for every r > 0.
(B5) limm→∞ sup|θ |<r |EMC[Dm(θ)] − ∇�(θ)| = 0 for every r > 0.

Then θ̂m converges to θ̂ = arg max�(θ) with probability one.

PROOF. The most laborious step in deducing Theorem 6 from Kushner and
Clark (1978) is to check that (B1)–(B5) imply that, for all ε > 0,

lim
n→∞ P

[
sup
j≥1

∣∣∣∣∣
n+j∑
m=n

am{Dm(θ̂m) − EMC[Dm(θ̂m) | θ̂m]}
∣∣∣∣∣ ≥ ε

]
= 0,(41)

which in turn implies condition A2.2.4′′ and hence A2.2.4 of Kushner and Clark
(1978). To show (41), we define ξm = Dm(θ̂m) − EMC[Dm(θ̂m) | θ̂m] and

ξk
m =

{
ξm, if |θ̂m| ≤ k,
0, if |θ̂m| > k.

(42)
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Define processes {Mn
j =∑n+j

m=n amξm, j ≥ 0} and {Mn,k
j =∑n+j

m=n amξk
m, j ≥ 0} for

each k and n. These processes are martingales with respect to the filtration de-
fined by the Monte Carlo stochasticity. From the Doob–Kolmogorov martingale
inequality [e.g., Grimmett and Stirzaker (1992)],

P

[
sup
j

|Mn,k
j | ≥ ε

]
≤ 1

ε2

∞∑
m=n

a2
m sup

|θ |<k

VarMC(Dm(θ)).(43)

Define events Fn = {supj |Mn
j | ≥ ε} and Fn,k = {supj |Mn,k

j | ≥ ε}. It follows from
(B4) and (43) that limn→∞ P{Fn,k} = 0 for each k. In light of the nondivergence
assumed in (B2), this implies limn→∞ P{Fn} = 0 which is exactly (41).

To expand on this final assertion, let � = {supm |θ̂m| < ∞} and �k =
{supm |θ̂m| < k}. Assumption (B2) implies that P(�) = 1. Since the sequence of
events {�k} is increasing up to �, we have limk→∞ P(�k) = P(�) = 1. Now
observe that �k ∩ Fn,j = �k ∩ Fn for all j ≥ k, as there is no truncation of the
sequence {ξj

m,m = 1,2, . . .} for outcomes in �k when j ≥ k. Then,

lim
n→∞ P[Fn] ≤ lim

n→∞P[Fn ∩ �k] + 1 − P[�k]
= lim

n→∞P[Fn,k ∩ �k] + 1 − P[�k]
≤ lim

n→∞P[Fn,k] + 1 − P[�k]
= 1 − P[�k].

Since k can be chosen to make 1 − P[�k] arbitrarily small, it follows that
limn→∞ P[Fn] = 0. �

A.2. Some standard results on sequential Monte Carlo and importance
sampling. A general convergence result on sequential Monte Carlo combining
results by Crisan and Doucet (2002) and Del Moral and Jacod (2001) is stated
in our notation as Theorem 7 below. The theorem is stated for a POMP model
with generic density f̃ , parameter vector θ̃ , Markov process X̃0 : N taking values
in X̃N+1, observation process Ỹ1 : N taking values in YN , and data y∗

1 : N . For ap-
plication to the unperturbed model one sets f̃ = f , X̃n = Xn, X̃ = X, Ỹn = Yn

and θ̃ = θ . For application to the stochastically perturbed model one sets f̃ = g,
X̃n = (X̆n, �̆n), X̃ = X × R

p , Ỹn = Y̆n and θ̃ = (θ [N+1], σ, τ ). When applying
Theorem 7 in the context of Theorem 4, the explicit expressions for the constants
C26 and C27 are required to show that the bounds in (45) and (46) apply uniformly
for a collection of models indexed by the approximation parameters {τm} and {σm}.

THEOREM 7 [Crisan and Doucet (2002); Del Moral and Jacod (2001)]. Let f̃

be a generic density for a POMP model having parameter vector θ̃ , unobserved
Markov process X̃0 : N , observation process Ỹ1 : N and data y∗

1 : N . Define X̃F
n,j via
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applying Algorithm 2 with J particles. Assume that f̃
Ỹn|X̃n

(y∗
n | x̃n; θ̃ ) is bounded

as a function of x̃n. For any φ : X̃ → R, denote the filtered mean of φ(X̃n) and its
Monte Carlo estimate by

φF
n =

∫
φ(x̃n)f̃X̃n|Ỹ1 : n

(x̃n | y∗
1 : n; θ̃ ) dx̃n, φ̃F

n = 1

J

J∑
j=1

φ(X̃F
n,j ).(44)

There are constants C26 and C27, independent of J , such that

EMC[(φ̃F
n − φF

n )2] ≤ C26 supx̃ |φ(x̃)|2
J

,(45)

|EMC[φ̃F
n − φF

n ]| ≤ C27 supx̃ |φ(x̃)|
J

.(46)

Specifically, C26 and C27 can be written as linear functions of 1 and ηn,1, . . . , ηn,n

defined as

ηn,i =
n∏

k=n−i+1

( supx̃k
f̃

Ỹk |X̃k
(y∗

k | x̃k; θ̃ )

f̃
Ỹk |Ỹ1 : k−1

(y∗
k | y∗

1 : k−1; θ̃ )

)2

.(47)

PROOF. Theorem 2 of Crisan and Doucet (2002) derived (45), and here we
start by focusing on the assertion that the constant C26 in equation (45) can be
written as a linear function of 1 and the quantities ηn,1, . . . , ηn,n defined in (47).
This was not explicitly mentioned by Crisan and Doucet (2002) but is a direct
consequence of their argument. Crisan and Doucet [(2002), Section V] constructed
the following recursion, for which cn|n is the constant C26 in equation (45). For
n = 1, . . . ,N and c0|0 = 0, define

cn|n = (√
C +

√
cn|n

)2
,(48)

cn|n = 4cn|n−1

( ‖f̃
Ỹn|X̃n

‖
f̃

Ỹn|Ỹ1 : n−1
(y∗

n | y∗
1 : n−1; θ̃ )

)2

,(49)

cn|n−1 = (
1 + √

cn−1|n−1
)2

,(50)

where ‖f̃
Ỹn|X̃n

‖ = supx̃n
f̃

Ỹn|X̃n
(y∗

n | x̃n; θ̃ ). Here, C is a constant that depends on
the resampling procedure but not on the number of particles J . Now, (48)–(50) can
be reformulated by routine algebra as

cn|n ≤ K1 + K2cn|n,(51)

cn|n ≤ K3qncn|n−1,(52)

cn|n−1 ≤ K4 + K5cn−1|n−1,(53)



1798 IONIDES, BHADRA, ATCHADÉ AND KING

where qn = ‖f̃
Ỹn|X̃n

‖2[f̃
Ỹn|Ỹ1 : n−1

(y∗
n | y∗

1 : n−1; θ̃ )]−2 and K1, . . . ,K5 are constants

which do not depend on f̃ , θ̃ , y∗
1 : N or J . Putting (52) and (53) into (51),

cn|n ≤ K1 + K2K3qncn|n−1
(54)

≤ K1 + K2K3K4qn + K2K3K5qncn−1|n−1.

Since ηn,i = qnηn−1,i for i < n, and ηn,n = qn, the required assertion follows from
(54).

To show (46), we introduce the unnormalized filtered mean φU
n and its Monte

Carlo estimate φ̃U
n , defined by

φU
n = φF

n

n∏
k=1

f̃Yk |Y1 : k−1(y
∗
k | y∗

1 : k−1; θ̃ ), φ̃U
n = φ̃F

n

n∏
k=1

1

J

J∑
j=1

w(k, j),(55)

where w(k, j) is computed in step 4 of Algorithm 2 when evaluating φ̃F
n . Then,

Del Moral and Jacod (2001) showed that

EMC[φ̃U
n ] = φU

n ,(56)

EMC[(φ̃U
n − φU

n )2] ≤ (n + 1) supx̃ |φ(x̃)|2
J

n∏
k=1

(
sup
x̃k

f̃
Ỹk |X̃k

(y∗
k | x̃k; θ̃ )

)2
.(57)

We now follow an approach of Del Moral and Jacod [(2001), equation 3.3.14], by

defining the unit function 1(x̃) = 1 and observing that φF
n = φU

n /1U
n and φ̃F

n =
φ̃U

n /̃1U
n . Then (56) implies the identity

EMC[φ̃F
n − φF

n ] = EMC

[
(φ̃F

n − φF
n )

(
1 − 1̃U

n

1U
n

)]
.(58)

Applying the Cauchy–Schwarz inequality to (58), making use of (45) and (57),
gives (46). �

We now give a corollary to Theorem 7 for a latent variable model (X̃, Ỹ ), as
defined in Section 2, having generic density f̃ , parameter vector θ̃ , unobserved
variable X̃ taking values in X̃, observed variable Ỹ taking values in Y, and data y∗.
Importance sampling for such a model is a special case of sequential Monte Carlo,
with N = 1 and no resampling step. We present and prove a separate result, which
takes advantage of the simplified situation, to make Section 2 and the proof of The-
orem 2 self-contained. In the context of Theorem 2, one sets f̃ = g, X̃ = (X̆, �̆),
X̃ = X × R

p , Ỹn = Y̆ and θ̃ = (θ, τ ).

COROLLARY 8. Let f̃ be a generic density for the latent variable model
(X̃, Ỹ ) with parameter vector θ̃ and data y∗. Let {X̃j , j = 1, . . . , J } be J inde-
pendent Monte Carlo draws from f̃

X̃
(x̃; θ̃ ) and let wj = f̃

Ỹ |X̃(y∗ | X̃j ; θ̃ ). Letting
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φ : X̃ → R be a bounded function, write the conditional expectation of φ(X̃) and
its importance sampling estimate as

φC =
∫

φ(x̃n)f̃X̃|Ỹ (x̃ | y∗; θ̃ ) dx̃, φ̃C =
∑J

j=1 wjφ(X̃j )∑J
j=1 wj

.(59)

Assume that f̃
Ỹ |X̃(y∗ | x̃; θ̃ ) is bounded as a function of x̃. Then,

VarMC(φ̃C) ≤ 4 supx̃ |φ(x̃)|2 supx̃ (f̃Ỹ |X̃(y∗ | x̃; θ̃ ))2

J (f̃
Ỹ
(y∗; θ̃ ))2

,(60)

|EMC[φ̃C] − φC | ≤ 2 supx̃ |φ(x̃)| supx̃ (f̃Ỹ |X̃(y∗ | x̃; θ̃ ))2

J (f̃
Ỹ
(y∗; θ̃ ))2

.(61)

PROOF. We introduce normalized weights ŵj = wj/f̃Ỹ
(y∗; θ̃ ) and a normal-

ized importance sampling estimator φ̂C = 1
J

∑J
j=1 ŵjφ(X̃j ) to compare to the

self-normalized estimator in (59). It is not hard to check that EMC[φ̂C] = φC

and VarMC(φ̂C) ≤ 1
J
(supx̃ |φ(x̃)| supx̃ f̃

Ỹ |X̃(y∗ | x̃; θ̃ )/f̃
Ỹ
(y∗; θ̃ ))2. Now,

VarMC(φ̃C) ≤ 2{VarMC(φ̃C − φ̂C) + VarMC(φ̂C)} and

VarMC(φ̃C − φ̂C) ≤ EMC

[(
(1/J )

∑J
j=1 ŵjφ(X̃j )

(1/J )
∑J

j=1 ŵj

− 1

J

J∑
j=1

ŵjφ(X̃j )

)2]

= EMC

[(
(1/J )

∑J
j=1 ŵjφ(X̃j )

(1/J )
∑J

j=1 ŵj

)2
(

1 − 1

J

J∑
j=1

ŵj

)2]

≤ sup
x̃

|φ(x̃)|2EMC

[
1 − 1

J

J∑
j=1

ŵj

]2

≤ supx̃ |φ(x̃)|2 supx̃ (f̃Ỹ |X̃(y∗ | x̃; θ̃ ))2

J (f̃
Ỹ
(y∗; θ̃ ))2

.

This demonstrates (60). To show (61), we write

|EMC[φ̃C] − φC | = |EMC[φ̃C − φ̂C]|

=
∣∣∣∣∣EMC

[
(φ̃C − EMC[φ̃C])

(
1 − 1

J

J∑
j=1

ŵj

)]∣∣∣∣∣
≤

√√√√√VarMC(φ̃C)VarMC

(
1 − 1

J

J∑
j=1

ŵj

)
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≤ 2 supx̃ |φ(x̃)| supx̃ (f̃Ỹ |X̃(y∗ | x̃; θ̃ ))2

J (f̃
Ỹ
(y∗; θ̃ ))2

.
�
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