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LIMITING LAWS OF COHERENCE OF RANDOM MATRICES
WITH APPLICATIONS TO TESTING COVARIANCE STRUCTURE
AND CONSTRUCTION OF COMPRESSED SENSING MATRICES

BY T. TONY CAI1 AND TIEFENG JIANG2

University of Pennsylvania and University of Minnesota

Testing covariance structure is of significant interest in many areas of sta-
tistical analysis and construction of compressed sensing matrices is an impor-
tant problem in signal processing. Motivated by these applications, we study
in this paper the limiting laws of the coherence of an n × p random matrix
in the high-dimensional setting where p can be much larger than n. Both the
law of large numbers and the limiting distribution are derived. We then con-
sider testing the bandedness of the covariance matrix of a high-dimensional
Gaussian distribution which includes testing for independence as a special
case. The limiting laws of the coherence of the data matrix play a critical role
in the construction of the test. We also apply the asymptotic results to the
construction of compressed sensing matrices.

1. Introduction. Random matrix theory has been proved to be a powerful
tool in a wide range of fields including statistics, high-energy physics, electrical
engineering and number theory. Traditionally the primary focus is on the spec-
tral analysis of eigenvalues and eigenvectors. See, for example, Johnstone (2001,
2008), Jiang (2004b) and Bai, Miao and Pan (2007). For general background on
random matrix theory, see Bai and Silverstein (2010) and Anderson, Guionnet and
Zeitouni (2009).

In statistics, random matrix theory is particularly useful for inference of high-
dimensional data which is becoming increasingly available in many areas of sci-
entific investigations. In these applications, the dimension p can be much larger
than the sample size n. In such a setting, classical statistical methods and re-
sults based on fixed p and large n are no longer applicable. Examples include
high-dimensional regression, hypothesis testing concerning high-dimensional pa-
rameters and inference on large covariance matrices. See, for example, Bai and
Saranadasa (1996), Candes and Tao (2007), Bai et al. (2009), Cai, Wang and Xu
(2010a) and Cai, Zhang and Zhou (2010).
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In the present paper, we study the limiting laws of the coherence of an n × p

random matrix, which is defined to be the largest magnitude of the off-diagonal
entries of the sample correlation matrix generated from the n × p random matrix.
We are especially interested in the case where p � n. This is a problem of inde-
pendent interest. Moreover, we are particularly interested in the applications of the
results to testing the covariance structure of a high-dimensional Gaussian variable
and the construction of compressed sensing matrices. These three problems are
important in their respective fields, one in random matrix theory, one in statistics
and one in signal processing. The latter two problems are seemingly unrelated at
first sight, but as we shall see later they can both be attacked through the use of the
limiting laws of the coherence of random matrices.

1.1. Limiting laws of the coherence of a random matrix. Let Xn = (xij ) be an
n × p random matrix where the entries xij are i.i.d. real random variables with
mean μ and variance σ 2 > 0. Let x1, x2, . . . , xp be the p columns of Xn. The
sample correlation matrix �n is defined by �n := (ρij ) with

ρij = (xi − x̄i)
T (xj − x̄j )

‖xi − x̄i‖ · ‖xj − x̄j‖ , 1 ≤ i, j ≤ p,(1)

where x̄k = (1/n)
∑n

i=1 xik and ‖ · ‖ is the usual Euclidean norm in R
n. Here we

write xi − x̄i for xi − x̄ie, where e = (1,1, . . . ,1)T ∈ R
n. In certain applications

such as construction of compressed sensing matrices, the mean μ of the random
entries xij is known (typically μ = 0) and the sample correlation matrix is then
defined to be �̃n := (ρ̃ij ) with

ρ̃ij = (xi − μ)T (xj − μ)

‖xi − μ‖ · ‖xj − μ‖ , 1 ≤ i, j ≤ p.(2)

One of the main objects of interest in the present paper is the largest magnitude
of the off-diagonal entries of the sample correlation matrix

Ln = max
1≤i<j≤p

|ρij | and L̃n = max
1≤i<j≤p

|ρ̃ij |.(3)

In the compressed sensing literature, the quantity L̃n is called the coherence of the
matrix Xn. A matrix is incoherent when L̃n is small. See, for example, Donoho,
Elad and Temlyakov (2006). With slight abuse of terminology, in this paper we
shall call both Ln and L̃n coherence of the random matrix Xn, the former for
the case μ is unknown and the latter for the case μ is known. The first goal
of the present paper is to derive the limiting laws of the coherence in the high-
dimensional setting.

In the case where p and n are comparable, that is, n/p → γ ∈ (0,∞), asymp-
totic properties of the coherence Ln of the random matrix Xn have been considered
by Jiang (2004a), Zhou (2007), Liu, Lin and Shao (2008) and Li, Liu and Rosal-
sky (2009). In this paper, we focus on the high-dimensional case where p can
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be as large as enβ
for some 0 < β < 1. This is a case of special interest for the

applications considered later.
The results given in Section 2 show that under regularity conditions√

n

logp
Ln

P→ 2 as n → ∞,

where
P→ denotes convergence in probability. Here and throughout the paper, the

log is the natural logarithm loge. Furthermore, it is shown that nL2
n − 4 logp +

log logp converges weakly to an extreme distribution of type I with distribution
function

F(y) = e−(1/
√

8π)e−y/2
, y ∈ R.

Same results hold for L̃n. In contrast to the known results in the literature, here the
dimension p can be much larger than n. In the special cases where xij are either
bounded or normally distributed, the results hold as long as logp = o(n1/3).

In addition, motivated by application to testing covariance structure, we also
consider the case where the entries of random matrix Xn are correlated. More
specifically, let Xn = (xij )1≤i≤n,1≤j≤p , where the n rows are i.i.d. random vectors
with distribution Np(μ,�). For a given integer τ ≥ 1 (which can depend on n

or p), it is of interest in applications to test the hypothesis that the covariance
matrix � is banded, that is,

H0 :σij = 0 for all |i − j | ≥ τ.(4)

Analogous to the definition of Ln and L̃n, we define

Ln,τ = max|i−j |≥τ
|ρij |,(5)

when the mean μ is assumed to be unknown and define

L̃n,τ = max|i−j |≥τ
|ρ̃ij |,(6)

when the mean μ = (μ1,μ2, . . . ,μp) is assumed to be known. In the latter case,
ρ̃i,j is defined to be

ρ̃ij = (xi − μi)
T (xj − μj)

‖xi − μi‖ · ‖xj − μj‖ , 1 ≤ i, j ≤ p,(7)

where Xn = (x1, . . . , xp). We shall call Ln,τ and L̃n,τ the τ -coherence of the ma-
trix Xn. In Section 2, the limiting distributions of Ln,τ and L̃n,τ under the null
hypothesis H0 are derived, and their applications are discussed in Section 3. The
study for this case is considerably more difficult than that for the i.i.d. case.
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1.2. Testing covariance structure. Covariance matrices play a critical role in
many areas of statistical inference. Important examples include principal compo-
nent analysis, regression analysis, linear and quadratic discriminant analysis, and
graphical models. In the classical setting of low dimension and large sample size,
many methods have been developed for estimating covariance matrices as well
as testing specific patterns of covariance matrices. In particular, testing for in-
dependence in the Gaussian case is of special interest because many statistical
procedures are built upon the assumptions of independence and normality of the
observations.

To be more specific, suppose we observe independent and identically distributed
p-variate random variables Y1, . . . ,Yn with mean μ = μp×1, covariance matrix
� = �p×p and correlation matrix R = Rp×p . In the setting where the dimension
p and the sample size n are comparable, that is, n/p → γ ∈ (0,∞), testing of the
hypotheses H0 :� = I versus Ha :� 
= I , assuming μ = 0, has been considered
by Johnstone (2001) in the Gaussian case and by Péché (2009) in the more general
case where the distribution is assumed to be sub-Gaussian and where the ratio p/n

can converge to either a positive number γ , 0 or ∞. The test statistic is based on
the largest eigenvalue of the sample covariance matrix and relies on the important
results in their papers that the largest eigenvalue of the sample covariance matrix
follows the Tracy–Widom distribution asymptotically.

The hypothesis H0 :� = I is too restrictive for many applications. An arguably
more practically important problem is testing for independence in the Gaussian
case. That is, one wishes to test the hypothesis H0 :� is diagonal against the hy-
pothesis Ha :� is not diagonal, or equivalently in terms of the correlation ma-
trix R, one wishes to test H0 :R = I versus Ha :R 
= I . Tests based on the largest
eigenvalue of the sample covariance matrix cannot be easily modified for testing
these hypotheses.

In this paper, we consider testing more general hypotheses on the covariance
structure of a high-dimensional Gaussian distribution which includes testing for
independence as a special case. More specifically, we consider testing the hypoth-
esis that � is banded with a given bandwidth τ (which may depend on n or p), that
is, the variables have nonzero correlations only up to lag τ . In other words, for a
given integer τ ≥ 1, we wish to test the hypothesis H0 :σi,j = 0 for all |i − j | ≥ τ .
This problem arises, for example, in econometrics when testing certain economic
theories and in time series analysis. See Andrews (1991), Ligeralde and Brown
(1995) and references therein. The special case of τ = 1 corresponds to testing for
independence. We shall show that the limiting laws of the τ -coherence Ln,τ devel-
oped here can be applied to construct a convenient test for the bandedness of the
covariance matrix. In the special case of τ = 1, the limiting laws of the coherence
of the data matrix Y play a critical role in the construction of the test.

1.3. Construction of compressed sensing matrices. In addition to testing the
covariance structure, another important application of our results on the limiting
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laws of the coherence of a random matrix is to the construction of compressed
sensing matrices. Compressed sensing is a fast developing field which provides a
novel and efficient data acquisition technique that enables accurate reconstruction
of highly undersampled sparse signals. See, for example, Donoho (2006a). It has
a wide range of applications including signal processing, medical imaging, and
seismology. In addition, the development of the compressed sensing theory also
provides crucial insights into high-dimensional regression in statistics. See, for
example, Candes and Tao (2007), Bickel, Ritov and Tsybakov (2009) and Candès
and Plan (2009).

One of the main goals of compressed sensing is to construct measurement ma-
trices Xn×p, with the number of measurements n as small as possible relative to p,
such that for any k-sparse signal β ∈ R

p , one can recover β exactly from linear
measurements y = Xβ using a computationally efficient recovery algorithm. In
compressed sensing it is typical that p � n, for example, p can be of order enβ

for
some 0 < β < 1. In fact, the goal is often to make p as large as possible relative
to n. It is now well understood that the method of 
1 minimization provides an
effective way for reconstructing a sparse signal in many settings. In order for a re-
covery algorithm such as 
1 minimization to work well, the measurement matrices
Xn×p must satisfy certain conditions. Two commonly used conditions are the so-
called restricted isometry property (RIP) and mutual incoherence property (MIP).
Roughly speaking, the RIP requires subsets of certain cardinality of the columns
of X to be close to an orthonormal system and the MIP requires the pairwise cor-
relations among the column vectors of X to be small. See Candes and Tao (2005),
Donoho, Elad and Temlyakov (2006) and Cai, Wang and Xu (2010a, 2010b). It
is well known that construction of large deterministic measurement matrices that
satisfy either the RIP or MIP is difficult. Instead, random matrices are commonly
used. Matrices generated by certain random processes have been shown to satisfy
the RIP conditions with high probability. See, for example, Baraniuk et al. (2008).
A major technical tool used there is the Johnson–Lindenstrauss lemma. Here we
focus on the MIP.

The MIP condition can be easily explained. It was first shown by Donoho and
Huo (2001), in the setting where X is a concatenation of two square orthogonal
matrices, that the condition

(2k − 1)L̃n < 1(8)

ensures the exact recovery of β when β has at most k nonzero entries (such a
signal is called k-sparse). This result was then extended by Fuchs (2004) to general
matrices. Cai, Wang and Xu (2010b) showed that condition (8) is also sufficient
for stable recovery of sparse signal in the noisy case where y is measured with
error. In addition, it was shown that this condition is sharp in the sense that there
exist matrices X such that it is not possible to recover certain k-sparse signals β

based on y = Xβ when (2k − 1)L̃n = 1.
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The mutual incoherence property (8) is very desirable. When it is satisfied by the
measurement matrix X, the estimator obtained through 
1 minimization satisfies
the near-optimality properties and the oracle inequalities. In addition, the techni-
cal analysis is particularly simple. See, for example, Cai, Wang and Xu (2010b).
Except results on the magnitude and the limiting distribution of L̃n when the un-
derlying matrix is Haar-invariant and orthogonal by Jiang (2005), it is, however,
unknown in general how likely a random matrix satisfies the MIP (8) in the high-
dimensional setting where p can be as large as enβ

. We shall show in Section 4 that
the limiting laws of the coherence derived here can readily be applied to compute
the probability that random measurement matrices satisfy the MIP condition (8).

1.4. Organization of the paper. The rest of the paper is organized as follows.
We begin in Section 2 by studying the limiting laws of the coherence of a random
matrix in the high-dimensional setting. Section 3 considers the problems of testing
for independence and bandedness in the Gaussian case. The test statistic is based
on the coherence of the data matrix and the construction of the tests relies heavily
on the asymptotic results developed in Section 2. Application to the construction
of compressed sensing matrices is considered in Section 4. Section 5 discusses
connections and differences with other related work. The main results are proved
in Section 6 and the proofs of technical lemmas are given in Cai and Jiang (2010).

2. Limiting laws of coherence of random matrices. In this section, we con-
sider the limiting laws of the coherence of a random matrix with i.i.d. entries. In
addition, we also consider the case where each row of the random matrix is drawn
independently from a multivariate Gaussian distribution with banded covariance
matrix. In the latter case, the limiting distribution of Ln,τ and L̃n,τ defined in (5)
and (6) is considered. The asymptotic results are then applied to the testing of
the covariance structure in Section 3 and the construction of compressed sensing
matrices in Section 4.

2.1. The i.i.d. case. We begin by considering the case for independence where
all entries of the random matrix are independent and identically distributed. Sup-
pose {ξ, xij , i, j = 1,2, . . .} are i.i.d. real random variables with mean μ and vari-
ance σ 2 > 0. Let Xn = (xij )1≤i≤n,1≤j≤p and let x1, x2, . . . , xp be the p columns
of Xn. Then Xn = (x1, x2, . . . , xp). Let x̄k = (1/n)

∑n
i=1 xik be the sample aver-

age of xk . We write xi − x̄i for xi − x̄ie, where e = (1,1, . . . ,1)T ∈ R
n. Define the

Pearson correlation coefficient ρij between xi and xj as in (1). Then the sample
correlation matrix generated by Xn is �n := (ρij ), which is a p by p symmetric
matrix with diagonal entries ρii = 1 for all 1 ≤ i ≤ p. When the mean μ of the
random variables xij is assumed to be known, we define the sample correlation
matrix by �̃n := (ρ̃ij ) with ρ̃ij given as in (2).

In this section, we are interested in the limiting laws of the coherence Ln and
L̃n of the random matrix Xn, which are defined to be the largest magnitude of
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the off-diagonal entries of sample correlation matrices �n and �̃n, respectively;
see (3). The case of p � n is of particular interest to us. In such a setting, some
simulation studies about the distribution of Ln were made in Cai and Lv (2007),
Fan and Lv (2008, 2010). We now derive the limiting laws of Ln and L̃n. We shall
first introduce another quantity that is useful for our technical analysis. Define

Jn = max
1≤i<j≤p

|(xi − μ)T (xj − μ)|
σ 2 .(9)

We first state the law of large numbers for Ln for the case where the random
entries xij are bounded.

THEOREM 1. Assume |x11| ≤ C for a constant C > 0, p = p(n) → ∞ and
logp = o(n) as n → ∞. Then

√
n/ logpLn → 2 in probability as n → ∞.

We now consider the case where xij have finite exponential moments.

THEOREM 2. Suppose Eet0|x11|α < ∞ for some α > 0 and t0 > 0. Set
β = α/(4 + α). Assume p = p(n) → ∞ and logp = o(nβ) as n → ∞. Then√

n/ logpLn → 2 in probability as n → ∞.

Comparing Theorems 1 and 2, it can be seen that a stronger moment condition
gives a higher order of p to make the law of large numbers for Ln valid. Also,
based on Theorem 2, if Ee|x11|α < ∞ for any α > 0, then β → 1, hence the order
o(nβ) is close to o(n), which is the order in Theorem 1. We now consider the
limiting distribution of Ln after suitable normalization.

THEOREM 3. Suppose Eet0|x11|α < ∞ for some 0 < α ≤ 2 and t0 > 0. Set
β = α/(4 + α). Assume p = p(n) → ∞ and logp = o(nβ) as n → ∞. Then
nL2

n − 4 logp + log logp converges weakly to an extreme distribution of type I
with distribution function

F(y) = e−(1/
√

8π)e−y/2
, y ∈ R.

REMARK 2.1. Propositions 6.1, 6.2 and 6.3 show that the above three theo-
rems are still valid if Ln is replaced by either L̃n or Jn/n, where L̃n is as in (3)
and Jn is as in (9).

In the case where n and p are comparable, that is, n/p → γ ∈ (0,∞), Jiang
(2004a) obtained the strong laws and asymptotic distributions of the coherence
Ln of random matrices. Several authors improved the results by sharpening the
moment assumptions; see, for example, Li and Rosalsky (2006), Zhou (2007) and
Li, Liu and Rosalsky (2009) where the same condition n/p → γ ∈ (0,∞) was
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imposed. Liu, Lin and Shao (2008) showed that the same results hold for p → ∞
and p = O(nα) where α is a constant.

In this paper, motivated by the applications mentioned earlier, we are particu-
larly interested in the case where both n and p are large and p = o(enβ

) while
the entries of Xn are i.i.d. with a certain moment condition. We also consider the
case where the n rows of Xn form a random sample from Np(μ,�) with � being
a banded matrix. In particular, the entries of Xn are not necessarily independent.
As shown in the above theorems and in Section 2.2 later, when p ≤ enβ

for a cer-
tain β > 0, we obtain the strong laws and limiting distributions of the coherence
of the random matrix Xn. Presumably the results on high order p = o(enβ

) need
stronger moment conditions than those for the case p = O(nα). Ignoring the mo-
ment conditions, our results cover those in Liu, Lin and Shao (2008) as well as
others aforementioned.

Theorem 1.2 in Jiang (2004a) states that if n/p → γ ∈ (0,∞) and E|ξ |30+ε <

∞ for some ε > 0, then for any y ∈ R,

P(nL2
n − 4 logn + log logn ≤ y) → e−Ke−y/2

,(10)

where K = (γ 2
√

8π)−1, as n → ∞. It is not difficult to see that Theorem 3 implies
Theorem 1.2 in Jiang (2004a) under condition that n/p → γ and Eet0|x11|α < ∞
for some 0 < α ≤ 2 and t0 > 0. In fact, write

nL2
n − 4 logn + log logn

= (nL2
n − 4 logp + log logp) + 4 log

p

n
+ (log logn − log logp).

Theorem 3 yields that nL2
n − 4 logp + log logp converges weakly to F(y) =

e−(1/
√

8π)e−y/2
. Note that since n/p → γ ,

4 log
p

n
→ −4 logγ and log logn − log logp → 0.

Now it follows from Slutsky’s theorem that nL2
n − 4 logn + log logn converges

weakly to F(y+4 logγ ), which is exactly (10) from Theorem 1.2 in Jiang (2004a).

2.2. The dependent case. We now consider the case where the rows of the
random matrix Xn are drawn independently from a multivariate Gaussian distribu-
tion. Let Xn = (xij )1≤i≤n,1≤j≤p , where the n rows are i.i.d. random vectors with
distribution Np(μ,�), where μ ∈ R

p is arbitrary and � does not have to be non-
singular in this section unless otherwise specified. Let (rij )p×p be the correlation
matrix obtained from � = (σij )p×p . As mentioned in the Introduction, it is of
interest to test the hypothesis that the covariance matrix � is banded, that is,

H0 :σij = 0 for all |i − j | ≥ τ(11)
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for a given integer τ ≥ 1. In order to construct a test, we study in this section the
asymptotic distributions of the τ -coherence Ln,τ and L̃n,τ defined in (5) and (6),
respectively, assuming the covariance matrix � has desired banded structure under
the null hypothesis. This case is much harder than the i.i.d. case considered in
Section 2.1 because of the dependence.

For any given 0 < δ < 1, set

�p,δ = {1 ≤ i ≤ p; |rij | > 1 − δ for some 1 ≤ j ≤ p with j 
= i}.(12)

THEOREM 4. Suppose, as n → ∞:

(i) p = pn → ∞ with logp = o(n1/3);
(ii) τ = o(pt ) for any t > 0;

(iii) for some δ ∈ (0,1), |�p,δ| = o(p), which is particularly true if
max1≤i<j≤p<∞ |rij | ≤ 1 − δ.

Then, under H0, nL2
n,τ − 4 logp + log logp converges weakly to an extreme dis-

tribution of type I with distribution function

F(y) = e−(1/
√

8π)e−y/2
, y ∈ R.

Similar to Jn in (9), we define

Un,τ = max
1≤i<j≤p,|i−j |≥τ

|(xi − μi)
T (xj − μj)|

σiσj

,(13)

where we write xi − μi for xi − μie with e = (1,1, . . . ,1)T ∈ R
n, μ = (μ1,

. . . ,μp)T and σ 2
i ’s are diagonal entries of �.

REMARK 2.2. From Proposition 6.4, we know Theorem 4 still holds if Ln,τ

is replaced with Un,τ defined in (13). In fact, by the first paragraph in the proof of
Theorem 4, to see if Theorem 4 holds for Un,τ , we only need to consider the prob-
lem by assuming, w.l.o.g., μ = 0 and σi’s, the diagonal entries of �, are all equal
to 1. Thus, by Proposition 6.4, Theorem 4 holds when Ln,τ is replaced by Un,τ .

Theorem 4 implies immediately the following result.

COROLLARY 2.1. Suppose the conditions in Theorem 4 hold, then√
n

logp
Ln,τ

P→ 2 as n → ∞.

The assumptions (ii) and (iii) in Theorem 4 are both essential. If one of them is
violated, the conclusion may fail. The following two examples illustrate this point.
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REMARK 2.3. Consider � = Ip with p = 2n and τ = n. So conditions (i) and
(iii) in Theorem 4 hold, but (ii) does not. By following the proof of Theorem 3, we
have

(nL2
n,τ − 4 logp + log logp) + log 16 converges weakly to F(14)

as n → ∞. The difference between (14) and Theorem 4 is evident.

The details of this and the next remark are given in Cai and Jiang (2010).

REMARK 2.4. Let p = mn with integer m ≥ 2. We consider the p ×p matrix
� = diag(Hn, . . . ,Hn) where there are m Hn’s in the diagonal of � and all of the
entries of the n × n matrix Hn are equal to 1. Take τ = n and m = [en1/4]. Notice
�p,δ = p for any δ > 0. Since p = mn, both (i) and (ii) in Theorem 4 are satisfied,
but (iii) does not. It is not very hard to see that

(nL2
n,τ − 4 logp + log logp) + 16 log logp converges weakly to F(15)

as n → ∞. This is different from the conclusion of Theorem 4.

3. Testing the covariance structure. The limiting laws derived in the last
section have immediate statistical applications. Testing the covariance structure of
a high-dimensional random variable is an important problem in statistical infer-
ence. In particular, as aforementioned, in econometrics when testing certain eco-
nomic theories and in time series analysis in general it is of significant interest to
test the hypothesis that the covariance matrix � is banded. That is, the variables
have nonzero correlations only up to a certain lag τ . The limiting distribution of
Ln,τ obtained in Section 2 can be readily used to construct a test for the bandedness
of the covariance matrix in the Gaussian case.

Suppose we observe independent and identically distributed p-variate Gaussian
variables Y1, . . . ,Yn with mean μp×1, covariance matrix �p×p = (σij ) and corre-
lation matrix Rp×p = (rij ). For a given integer τ ≥ 1 and a given significant level
0 < α < 1, we wish to test the hypotheses

H0 :σi,j = 0 for all |i − j | ≥ τ vs.
(16)

Ha :σi,j 
= 0 for some |i − j | ≥ τ .

A case of special interest is τ = 1, which corresponds to testing independence
of the Gaussian random variables. The asymptotic distribution of Ln,τ derived
in Section 2.2 can be used to construct a convenient test statistic for testing the
hypotheses in (16).

Based on the asymptotic result given in Theorem 4 that

P(nL2
n,τ − 4 logp + log logp ≤ y) → e−(1/

√
8π)e−y/2

,(17)
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we define a test for testing the hypotheses in (16) by

T = I
(
L2

n,τ ≥ n−1(4 logp − log logp − log(8π) − 2 log log(1 − α)−1)).(18)

That is, we reject the null hypothesis H0 whenever

L2
n,τ ≥ n−1(4 logp − log logp − log(8π) − 2 log log(1 − α)−1).

Note that for τ = 1, Ln,τ reduces to Ln and the test is then based on the coher-
ence Ln.

THEOREM 5. Under the conditions of Theorem 4, the test T defined in (18)
has size α asymptotically.

This result is a direct consequence of (17).

REMARK 3.1. For testing independence, another natural approach is to build
a test based on the largest eigenvalue λmax of the sample correlation matrix. How-
ever, the limiting distribution of the largest eigenvalue λmax is unknown even for
the case p/n → c, a positive constant. For τ ≥ 2, the eigenvalues are not useful
for testing bandedness of the covariance matrix.

4. Construction of compressed sensing matrices. As mentioned in the In-
troduction, an important problem in compressed sensing is the construction of
measurement matrices Xn×p which enables the precise recovery of a sparse signal
β from linear measurements y = Xβ using an efficient recovery algorithm. Such a
measurement matrix X is difficult to construct deterministically. It has been shown
that randomly generated matrix X can satisfy the so called RIP condition with high
probability.

The best known example is perhaps the n × p random matrix X whose entries
xi,j are i.i.d. normal variables

xi,j
i.i.d.∼ N(0, n−1).(19)

Other examples include generating X = (xi,j ) by Bernoulli random variables

xi,j =
{

1/
√

n, with probability 1
2 ;

−1/
√

n, with probability 1
2 ,

(20)

or more sparsely by

xi,j =
⎧⎪⎨
⎪⎩

√
3/n, with probability 1/6;

0, with probability 2/3;
−√

3/n, with probability 1/6.

(21)

These random matrices are shown to satisfy the RIP conditions with high proba-
bility. See Achlioptas (2003) and Baraniuk et al. (2008).
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In addition to RIP, another commonly used condition is the mutual incoherence
property (MIP) which requires the pairwise correlations among the column vectors
of X to be small. In compressed sensing, L̃n (instead of Ln) is commonly used. It
has been shown that the condition

(2k − 1)L̃n < 1(22)

ensures the exact recovery of k-sparse signal β in the noiseless case where y = Xβ ,
and stable recovery of sparse signal in the noisy case where

y = Xβ + z.

Here z is an error vector, not necessarily random. The MIP (22) is a very desir-
able property. When the measurement matrix X satisfies (22), the constrained 
1

minimizer can be shown to be exact in the noiseless case and near-optimal in the
noisy case. Under the MIP condition, the analysis of 
1 minimization methods is
also particularly simple. See, for example, Cai, Wang and Xu (2010b).

The results given in Theorems 1 and 2 can be used to show how likely a random
matrix satisfies the MIP condition (22). Under the conditions of either Theorems 1
or 2,

L̃n ∼ 2

√
logp

n
.

So in order for the MIP condition (22) to hold, roughly the sparsity k should satisfy

k <
1

4

√
n

logp
.

In fact, we have the following more precise result which is proved in Cai and Jiang
(2010).

PROPOSITION 4.1. Let Xn = (xij )n×p where xij ’s are i.i.d. random variables

with mean μ, variance σ 2 > 0 and Eet0|x11|2 < ∞ for some t0 > 0. Let L̃n be as
in (3). Then P(L̃n ≥ t) ≤ 3p2e−ng(t) where g(t) = min{I1(

t
2), I2(

1
2)} > 0 for any

t > 0 and

I1(x) = sup
θ∈R

{θx − logEeθξη} and I2(x) = sup
θ∈R

{θx − logEeθξ2},

and ξ, η, (x11 − μ)/σ are i.i.d.

We now consider the three particular random matrices mentioned at the begin-
ning of this section.
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EXAMPLE 1. Let x11 ∼ N(0, n−1) as in (19). In this case, according to the
above proposition, we have

P
(
(2k − 1)L̃n < 1

) ≥ 1 − 3p2 exp
{
− n

12(2k − 1)2

}
(23)

for all n ≥ 2 and k ≥ 1. The verification of this example together with the next two
are given in Cai and Jiang (2010).

EXAMPLE 2. Let x11 be such that P(x11 = ±1/
√

n) = 1/2 as in (20). In this
case, (23) holds for all n ≥ 2 and k ≥ 1.

EXAMPLE 3. Let x11 be such that P(x11 = ±√
3/n) = 1/6 and P(x11 = 0) =

2/3 as in (21). Then (23) holds for all n ≥ 2 and k ≥ 2.

REMARK 4.1. One can see from the above that (23) is true for all of the three
examples with different restrictions on k. In fact this is always the case as long as
Eet0|x11|2 < ∞ for some t0 > 0, which can be seen from Lemma 0.1 in Cai and
Jiang (2010).

REMARK 4.2. Here we would like to point out an error on page 801 of
Donoho (2006b) and page 2147 of Candès and Plan (2009) that the coherence

of a random matrix with i.i.d. Gaussian entries is about 2
√

logp
n

, not
√

2 logp
n

.

5. Discussion and comparison with related results. This paper studies the
limiting laws of the largest magnitude of the off-diagonal entries of the sample cor-
relation matrix in the high-dimensional setting. Entries of other types of random
matrices have been studied in the literature; see, for example, Diaconis, Eaton and
Lauritzen (1992) and Jiang (2004a, 2005, 2006, 2009). Asymptotic properties of
the eigenvalues of the sample correlation matrix have also been studied when both
p and n are large and proportional to each other. For instance, it is proved in Jiang
(2004b) that the empirical distributions of the eigenvalues of the sample corre-
lation matrices converge to the Marchenko–Pastur law; the largest and smallest
eigenvalues satisfy certain law of large numbers. However, the high-dimensional
case of p � n remains an open problem.

The motivations of our current work consist of the applications to testing co-
variance structure and construction of compressed sensing matrices in the ultra-
high-dimensional setting where the dimension p can be as large as enβ

for some
0 < β < 1. The setting is different from those considered in the earlier literature
such as Jiang (2010a, 2010b), Zhou (2007), Liu, Lin and Shao (2008) and Li, Liu
and Rosalsky (2009). Our main theorems and techniques are different from those
mentioned above in the following two aspects:



LAWS OF COHERENCE OF RANDOM MATRICES 1509

(a) Given n → ∞, we push the size of p as large as we can to make the law of
large numbers and limiting results on Ln and L̃n valid. Our current theorems say
that, under some moment conditions, these results hold as long as logp = o(nβ)

for a certain β > 0.
(b) We study Ln and L̃n when the p coordinates of the underlying multivariate

distribution are not i.i.d. Instead, the p coordinates follow a multivariate normal
distribution Np(μ,�) with � being banded and μ arbitrary. Obviously, the p co-
ordinates are dependent in this case. The proofs of our theorems are more subtle
and involved than those in the earlier papers. In fact, we have to consider the de-
pendence structure of � in detail, which is more complicated than the independent
case. See Lemmas 6.9, 6.10 and 6.11.

Liu, Lin and Shao (2008) introduced a statistic for testing independence that is
different from Ln and L̃n to improve the convergence speed of the two statistics
under the constraint c1n

α ≤ p ≤ c2n
α for some constants c1, c2, α > 0. In this pa-

per, while pushing the order of p as large as possible to have the limit theorems,
we focus on the behavior of Ln and L̃n only. This is because Ln and L̃n are specifi-
cally used in some applications such as compressed sensing. On the other hand, we
also consider a more general testing problem where one wishes to test the banded-
ness of the covariance matrix � in Np(μ,�) while allowing μ to be arbitrary. We
propose the statistic Ln,τ in (5) and derive its law of large numbers and its limit-
ing distribution. To our knowledge, this is new in the literature. It is interesting to
explore the possibility of improving the convergence speed by modifying Ln,τ as
that of Ln in Liu, Lin and Shao (2008). We leave this as future work.

6. Proofs. In this section we prove Theorems 1–4. The letter C stands for a
constant that may vary from place to place throughout this section. Also, we some-
times write p for pn if there is no confusion. For any square matrix A = (ai,j ),
define |||A||| = max1≤i 
=j≤n|ai,j |; that is, the maximum of the absolute values of
the off-diagonal entries of A.

We begin by collecting a few essential technical lemmas in Section 6.1 without
proof. Other technical lemmas used in the proofs of the main results are proved in
Cai and Jiang (2010).

6.1. Technical tools.

LEMMA 6.1 [Lemma 2.2 from Jiang (2004a)]. Recall xi and �n in (1). Let
hi = ‖xi − x̄i‖/√n for each i. Then

|||n�n − XT
n Xn||| ≤ (b2

n,1 + 2bn,1)Wnb
−2
n,3 + nb−2

n,3b
2
n,4,

where

bn,1 = max
1≤i≤p

|hi − 1|, Wn = max
1≤i<j≤p

|xT
i xj |,

bn,3 = min
1≤i≤p

hi, bn,4 = max
1≤i≤p

|x̄i |.
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The following Poisson approximation result is essentially a special case of The-
orem 1 from Arratia, Goldstein and Gordon (1989).

LEMMA 6.2. Let I be an index set and {Bα,α ∈ I } be a set of subsets of I ,
that is, Bα ⊂ I for each α ∈ I . Let also {ηα,α ∈ I } be random variables. For a
given t ∈ R, set λ = ∑

α∈I P (ηα > t). Then∣∣∣P (
max
α∈I

ηα ≤ t
)

− e−λ
∣∣∣ ≤ (1 ∧ λ−1)(b1 + b2 + b3),

where

b1 = ∑
α∈I

∑
β∈Bα

P (ηα > t)P (ηβ > t), b2 = ∑
α∈I

∑
α 
=β∈Bα

P (ηα > t, ηβ > t),

b3 = ∑
α∈I

E
∣∣P (

ηα > t |σ(ηβ,β /∈ Bα)
) − P(ηα > t)

∣∣,
and σ(ηβ,β /∈ Bα) is the σ -algebra generated by {ηβ,β /∈ Bα}. In particular, if ηα

is independent of {ηβ,β /∈ Bα} for each α, then b3 = 0.

The following conclusion is Example 1 from Sakhanenko (1991). See also
Lemma 6.2 from Liu, Lin and Shao (2008).

LEMMA 6.3. Let ξi,1 ≤ i ≤ n, be independent random variables with Eξi =
0. Set

s2
n =

n∑
i=1

Eξ2
i , �n =

n∑
i=1

E|ξi |3, Sn =
n∑

i=1

ξi .

Assume max1≤i≤n |ξi | ≤ cnsn for some 0 < cn ≤ 1. Then

P(Sn ≥ xsn) = eγ (x/sn)(1 − �(x)
)(

1 + θn,x(1 + x)s−3
n �n

)
for 0 < x ≤ 1/(18cn), where |γ (x)| ≤ 2x3�n and |θn,x | ≤ 36.

The following are moderate deviation results from Chen (1990); see also Chen
(1991), Dembo and Zeitouni (1998) and Ledoux (1992). They are a special type
of large deviations.

LEMMA 6.4. Suppose ξ1, ξ2, . . . are i.i.d. r.v.’s with Eξ1 = 0 and Eξ2
1 = 1. Set

Sn = ∑n
i=1 ξi .

(i) Let 0 < α ≤ 1 and {an;n ≥ 1} satisfy that an → +∞ and an =
o(nα/(2(2−α))). If Eet0|ξ1|α < ∞ for some t0 > 0, then

lim
n→∞

1

a2
n

logP

(
Sn√
nan

≥ u

)
= −u2

2
(24)

for any u > 0.
(ii) Let 0 < α < 1 and {an;n ≥ 1} satisfy that an → +∞ and an =

O(nα/(2(2−α))). If Eet |ξ1|α < ∞ for all t > 0, then (24) also holds.
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6.2. Proofs of Theorems 1 and 2. The following is known:

if {Xn} are tight, then for any sequence of constants {εn} with
limn→∞ εn = 0, we have εnXn → 0 in probability as n → ∞.

(25)

Reviewing the notation bn,i ’s defined in Lemma 6.1, we have the following
properties.

LEMMA 6.5. Let {xij ; i ≥ 1, j ≥ 1} be i.i.d. random variables with Ex11 = 0
and Ex2

11 = 1. Then, bn,3 → 1 in probability as n → ∞, and {√n/ logpbn,1} and
{√n/ logpbn,4} are tight provided one of the following conditions holds:

(i) |x11| ≤ C for some constant C > 0, pn → ∞ and logpn = o(n) as n →
∞;

(ii) Eet0|x11|α < ∞ for some α > 0 and t0 > 0 and pn → ∞ with logpn =
o(nβ) as n → ∞, where β = α/(4 + α).

LEMMA 6.6. Let {xij ; i ≥ 1, j ≥ 1} be i.i.d. random variables with |x11| ≤ C

for a finite constant C > 0, Ex11 = 0 and E(x2
11) = 1. Assume p = p(n) → ∞ and

logp = o(n) as n → ∞. Then, for any ε > 0 and a sequence of positive numbers
{tn} with limit t > 0,

�n := E

{
P 1

(∣∣∣∣∣
n∑

k=1

xk1xk2

∣∣∣∣∣ > tn

√
n logp

)2}
= O

(
1

pt2−ε

)

as n → ∞, where P 1 stands for the conditional probability given {xk1,1 ≤ k ≤ n}.
LEMMA 6.7. Suppose {xij ; i ≥ 1, j ≥ 1} are i.i.d. random variables with

Ex11 = 0,E(x2
11) = 1 and Eet0|x11|α < ∞ for some t0 > 0 and α > 0. Assume

p = p(n) → ∞ and logp = o(nβ) as n → ∞, where β = α/(4 + α). Then, for
any ε > 0 and a sequence of positive numbers {tn} with limit t > 0,

�n := E

{
P 1

(∣∣∣∣∣
n∑

k=1

xk1xk2

∣∣∣∣∣ > tn

√
n logp

)2}
= O

(
1

pt2−ε

)

as n → ∞, where P 1 stands for the conditional probability given {xk1,1 ≤ k ≤ n}.
Lemmas 6.5, 6.6 and 6.7 are proved in Cai and Jiang (2010).

PROPOSITION 6.1. Suppose the conditions in Lemma 6.6 hold with Xn =
(xij )n×p = (x1, . . . , xp). Define Wn = max1≤i<j≤p|xT

i xj |. Then

Wn√
n logp

→ 2

in probability as n → ∞.
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PROOF. We first prove

lim
n→∞P

(
Wn√
n logp

≥ 2 + 2ε

)
= 0(26)

for any ε > 0. First, since {xij ; i ≥ 1, j ≥ 1} are i.i.d., we have

P
(
Wn ≥ (2 + 2ε)

√
n logp

) ≤
(

p

2

)
· P

(∣∣∣∣∣
n∑

k=1

xk1xk2

∣∣∣∣∣ ≥ (2 + 2ε)
√

n logp

)
(27)

for any ε > 0. Notice E(|x11x12|2) = E(|x11|2) · E(|x12|2) = 1. It follows from
Lemma 6.4(i) and the conditions Ee|x11x12| < ∞ and logp = o(n) that

P

(∣∣∣∣∣
n∑

k=1

xk1xk2

∣∣∣∣∣ ≥ (2 + 2ε)
√

n logp

)
≤ e−((2+ε)2/2) logp ≤ 1

p2+ε
(28)

for sufficiently large n. The above two assertions conclude

P
(
Wn ≥ (2 + 2ε)

√
n logp

) ≤ 1

pε
→ 0(29)

as n → ∞. Thus, (26) holds. Now, to finish the proof, we only need to show

lim
n→∞P

(
Wn√
n logp

≤ 2 − ε

)
= 0(30)

for any ε > 0 small enough.
Set an = (2 − ε)

√
n logp for 0 < ε < 2 and

y
(n)
ij =

n∑
k=1

xkixkj

for 1 ≤ i, j ≤ n. Then Wn = max1≤i<j≤p|y(n)
ij | for all n ≥ 1.

Take I = {(i, j);1 ≤ i < j ≤ p}. For u = (i, j) ∈ I , set Bu = {(k, l) ∈ I ; one of
k and l = i or j , but (k, l) 
= u}, ηu = |y(n)

ij |, t = an and Au = Aij = {|y(n)
ij | > an}.

By the i.i.d. assumption on {xij } and Lemma 6.2,

P(Wn ≤ an) ≤ e−λn + b1,n + b2,n,(31)

where

λn = p(p − 1)

2
P(A12), b1,n ≤ 2p3P(A12)

2 and
(32)

b2,n ≤ 2p3P(A12A13).

Remember that y
(n)
12 is a sum of i.i.d. bounded random variables with mean 0 and

variance 1. By (i) of Lemma 6.4, using conditions Eet |x11x12| < ∞ for any t > 0
and logp = o(n) as n → ∞, we know

lim
n→∞

1

logp
logP(A12) = −(2 − ε)2

2
(33)
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for any ε ∈ (0,2). Noticing 2 − 2ε < (2 − ε)2/2 < 2 − ε for ε ∈ (0,1), we have

1

p2−ε
≤ P(A12) ≤ 1

p2−2ε
(34)

as n is sufficiently large. This implies

e−λn ≤ e−pε/3 and b1,n ≤ 2

p1−4ε
(35)

for ε ∈ (0,1/4) as n is large enough. On the other hand, by independence

P(A12A13) = P
(∣∣y(n)

12

∣∣ > an,
∣∣y(n)

13

∣∣ > an

)
(36)

= E

{
P 1

(∣∣∣∣∣
n∑

k=1

xk1xk2

∣∣∣∣∣ > an

)2}
,

where P 1 stands for the conditional probability given {xk1,1 ≤ k ≤ n}. By Lem-
ma 6.6,

P(A12A13) ≤ 1

p4−4ε
(37)

for any ε > 0 as n is sufficiently large. Therefore, taking ε ∈ (0,1/4), we have

b2,n ≤ 2p3P(A12A13) ≤ 2

p1−4ε
→ 0(38)

as n → ∞. This together with (31) and (35) concludes (30). �

PROPOSITION 6.2. Suppose the conditions in Lemma 6.7 hold. Let Wn be as
in Lemma 6.1. Then

Wn√
n logp

→ 2

in probability as n → ∞.

The proof of Proposition 6.2 is similar to that of Proposition 6.1. Details are
given in Cai and Jiang (2010).

PROOF OF THEOREM 1. First, for constants μi ∈ R and σi > 0, i = 1,2, . . . ,

p, it is easy to see that matrix Xn = (xij )n×p = (x1, x2, . . . , xp) and (σ1x1 +
μ1e, σ2x2 + μ2e, . . . , σpxp + μpe) generate the same sample correlation matrix
�n = (ρij ), where ρij is as in (1) and e = (1, . . . ,1)′ ∈ R

n. Thus, w.l.o.g., we prove
the theorem next by assuming that {xij ;1 ≤ i ≤ n,1 ≤ j ≤ p} are i.i.d. random
variables with mean zero and variance 1.
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By Proposition 6.1, under condition logp = o(n),

Wn√
n logp

→ 2(39)

in probability as n → ∞. Thus, to prove the theorem, it is enough to show

nLn − Wn√
n logp

→ 0(40)

in probability as n → ∞. From Lemma 6.1,

|nLn − Wn| ≤ |||n�n − XT
n Xn||| ≤ (b2

n,1 + 2bn,1)Wnb
−2
n,3 + nb−2

n,3b
2
n,4.

By (i) of Lemma 6.5, bn,3 → 1 in probability as n → ∞, {√n/ logpbn,1} and
{√n/ logpbn,4} are all tight. Set b′

n,1 = √
n/ logpbn,1 and b′

n,4 = √
n/ logpbn,4

for all n ≥ 1. Then {b′
n,1} and {b′

n,4} are both tight. It follows that

|nLn − Wn|√
n logp

≤
√

logp

n

(√
logp

n
b′2
n,1 + 2b′

n,1

)
· Wn√

n logp
· b−2

n,3 +
√

logp

n
b−2
n,3b

′2
n,4,

which concludes (40) by (25). �

PROOF OF THEOREM 2. In the proof of Theorem 1, replace “Proposition 6.1”
with “Proposition 6.2” and “(i) of Lemma 6.5” with “(ii) of Lemma 6.5,” keep all
other statements the same, we then get the desired result. �

6.3. Proof of Theorem 3.

LEMMA 6.8. Let ξ1, . . . , ξn be i.i.d. random variables with Eξ1 = 0,Eξ2
1 = 1

and Eet0|ξ1|α < ∞ for some t0 > 0 and 0 < α ≤ 1. Put Sn = ∑n
i=1 ξi and β =

α/(2 + α). Then, for any {pn;n ≥ 1} with 0 < pn → ∞ and logpn = o(nβ) and
{yn;n ≥ 1} with yn → y > 0,

P

(
Sn√

n logpn

≥ yn

)
∼ p

−y2
n/2

n (logpn)
−1/2

√
2πy

as n → ∞.

The proof of this lemma is given at Cai and Jiang (2010).

PROPOSITION 6.3. Let {xij ; i ≥ 1, j ≥ 1} be i.i.d. random variables with
Ex11 = 0, E(x2

11) = 1 and Eet0|x11|α < ∞ for some 0 < α ≤ 2 and t0 > 0. Set
β = α/(4 + α). Assume p = p(n) → ∞ and logp = o(nβ) as n → ∞. Then

P

(
W 2

n − αn

n
≤ z

)
→ e−Ke−z/2

as n → ∞ for any z ∈ R, where αn = 4n logp − n log(logp) and K = (
√

8π)−1.
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PROOF. It suffices to show that

P
(

max
1≤i<j≤p

|yij | ≤ √
αn + nz

)
→ e−Ke−z/2

,(41)

where yij = ∑n
k=1 xkixkj . We now apply Lemma 6.2 to prove (41). Take I =

{(i, j);1 ≤ i < j ≤ p}. For u = (i, j) ∈ I , set Xu = |yij | and Bu = {(k, l) ∈ I ;
one of k and l = i or j , but (k, l) 
= u}. Let an = √

αn + nz and Aij = {|yij | > an}.
Since {yij ; (i, j) ∈ I } are identically distributed, by Lemma 6.2,

|P(Wn ≤ an) − e−λn | ≤ b1,n + b2,n,(42)

where

λn = p(p − 1)

2
P(A12), b1,n ≤ 2p3P(A12)

2 and
(43)

b2,n ≤ 2p3P(A12A13).

We first calculate λn. Write

λn = p2 − p

2
P

( |y12|√
n

>

√
αn

n
+ z

)
(44)

and y12 = ∑n
i=1 ξi , where {ξi;1 ≤ i ≤ n} are i.i.d. random variables with the same

distribution as that of x11x12. In particular, Eξ1 = 0 and Eξ2
1 = 1. Note α1 :=

α/2 ≤ 1. We then have

|x11x12|α1 ≤
(

x2
11 + x2

12

2

)α1

≤ 1

2α1
(|x11|α + |x12|α).

Hence, by independence,

Eet0|ξ1|α1 = Eet0|x11x12|α1
< ∞.

Let yn =
√

(αn

n
+ z)/ logp. Then yn → 2 as n → ∞. By Lemma 6.8,

P

(
y12√

n
>

√
αn

n
+ z

)
= P

( ∑n
i=1 ξi√
n logp

> yn

)
∼ p−y2

n/2(logp)−1/2

2
√

2π

∼ e−z/2
√

8π
· 1

p2

as n → ∞. Considering Exij = 0, it is easy to see that the above also holds if y12
is replaced by −y12. These and (44) imply that

λn ∼ p2 − p

2
· 2 · e−z/2

√
8π

· 1

p2 ∼ e−z/2
√

8π
(45)

as n → ∞.
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Recall (42) and (43), to complete the proof, we have to verify that b1,n → 0 and
b2,n → 0 as n → ∞. By (43), (44) and (45),

b1,n ≤ 2p3P(A12)
2 = 8p3λ2

n

(p2 − p)2 = O

(
1

p

)

as n → ∞. Also, by (43),

b2,n ≤ 2p3P
(|y12| > √

αn + nz, |y13| > √
αn + nz

)

= 2p3E

{
P 1

(∣∣∣∣∣
n∑

k=1

xk1xk2

∣∣∣∣∣ > tn

√
n logp

)2}
,

where P 1 stands for the conditional probability given {xk,1;1 ≤ k ≤ n} and
tn := √

αn + nz/
√

n logp → 2. By Lemma 6.7, the above expectation is equal to
O(pε−4) as n → ∞ for any ε > 0. Now choose ε ∈ (0,1), then b2,n = O(pε−1) →
0 as n → ∞. The proof is then completed. �

PROOF OF THEOREM 3. By the first paragraph in the proof of Theorem 1,
w.l.o.g., assume μ = 0 and σ = 1. From Proposition 6.3 and the Slusky lemma, it
suffices to show

n2L2
n − W 2

n

n
→ 0(46)

in probability as n → ∞. Let �n = |nLn − Wn| for n ≥ 1. Observe that

|n2L2
n − W 2

n | = |nLn − Wn| · |nLn + Wn| ≤ �n · (�n + 2Wn).(47)

It is easy to see from Proposition 6.3 that

Wn√
n logp

→ 2(48)

in probability as n → ∞. By Lemma 6.1,

�n ≤ |||n�n − XT
n Xn||| ≤ (b2

n,1 + 2bn,1)Wnb
−2
n,3 + nb−2

n,3b
2
n,4.

By (ii) of Lemma 6.5, bn,3 → 1 in probability as n → ∞, {√n/ logpbn,1} and
{√n/ logpbn,4} are tight. Set b′

n,1 = √
n/ logpbn,1 and b′

n,4 = √
n/ logpbn,4 for

all n ≥ 1. Then {b′
n,1} and {b′

n,4} are tight. It follows that

�n

logp
≤

(√
logp

n
b′2
n,1 + 2b′

n,1

)
· Wn√

n logp
· b−2

n,3 + b−2
n,3b

′2
n,4,

which combining with (48) yields that{
�n

logp

}
is tight.(49)
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This and (48) imply that {�′
n} and {W ′

n} are tight, where �′
n := �n/ logp and

W ′
n := Wn/

√
n logp. From (47) and then (25),

|n2L2
n − W 2

n |
n

≤ (logp)�′
n{(logp)�′

n + 2
√

n logpW ′
n}

n
(50)

≤ 2

√
(logp)3

n

(√
logp

n
�′

n + W ′
n

)
→ 0

in probability as n → ∞ since logp = o(n1/3). This gives (46). �

6.4. Proof of Theorem 4. We begin to prove Theorem 4 by stating three tech-
nical lemmas which are proved in Cai and Jiang (2010).

LEMMA 6.9. Let {(uk1, uk2, uk3, uk4)
T ;1 ≤ i ≤ n} be a sequence of i.i.d. ran-

dom vectors with distribution N4(0,�4) where

�4 =

⎛
⎜⎜⎝

1 0 r 0
0 1 0 0
r 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , |r| ≤ 1.

Set an = (4n logp − n log(logp) + ny)1/2 for n ≥ ee and y ∈ R. Suppose n →
∞,p → ∞ with logp = o(n1/3). Then

sup
|r|≤1

P

(∣∣∣∣∣
n∑

k=1

uk1uk2

∣∣∣∣∣ > an,

∣∣∣∣∣
n∑

k=1

uk3uk4

∣∣∣∣∣ > an

)
= O

(
1

p4−ε

)
(51)

for any ε > 0.

LEMMA 6.10. Let {(uk1, uk2, uk3, uk4)
T ;1 ≤ i ≤ n} be a sequence of i.i.d.

random vectors with distribution N4(0,�4) where

�4 =

⎛
⎜⎜⎝

1 0 r1 0
0 1 r2 0
r1 r2 1 0
0 0 0 1

⎞
⎟⎟⎠ , |r1| ≤ 1, |r2| ≤ 1.

Set an = (4n logp − n log(logp) + ny)1/2 for n ≥ ee and y ∈ R. Suppose n →
∞,p → ∞ with logp = o(n1/3). Then, as n → ∞,

sup
|r1|,|r2|≤1

P

(∣∣∣∣∣
n∑

k=1

uk1uk2

∣∣∣∣∣ > an,

∣∣∣∣∣
n∑

k=1

uk3uk4

∣∣∣∣∣ > an

)
= O(p−8/3+ε)

for any ε > 0.
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LEMMA 6.11. Let {(uk1, uk2, uk3, uk4)
T ;1 ≤ i ≤ n} be a sequence of i.i.d.

random vectors with distribution N4(0,�4) where

�4 =

⎛
⎜⎜⎝

1 0 r1 0
0 1 0 r2
r1 0 1 0
0 r2 0 1

⎞
⎟⎟⎠ , |r1| ≤ 1, |r2| ≤ 1.

Set an = (4n logp − n log(logp) + ny)1/2 for n ≥ ee and y ∈ R. Suppose n →
∞,p → ∞ with logp = o(n1/3). Then, for any δ ∈ (0,1), there exists ε0 = ε(δ) >

0 such that

sup
|r1|,|r2|≤1−δ

P

(∣∣∣∣∣
n∑

k=1

uk1uk2

∣∣∣∣∣ > an,

∣∣∣∣∣
n∑

k=1

uk3uk4

∣∣∣∣∣ > an

)
= O(p−2−ε0).(52)

Recall the paragraph above (11) on notation τ , � = (σij )p×p and the assump-
tion that the n rows of Xn = (xij )n×p are i.i.d. with distribution Np(μ,�).

PROPOSITION 6.4. Assume μ = 0 and σii = 1 for all 1 ≤ i ≤ p. Define

Vn = Vn,τ = max
1≤i<j≤p,|j−i|≥τ

|xT
i xj |.(53)

Suppose n → ∞,p = pn → ∞ with logp = o(n1/3), τ = o(pt ) for any t > 0, and
for some δ ∈ (0,1), |�p,δ| = o(p) as n → ∞. Then, under H0 in (11),

P

(
V 2

n − αn

n
≤ y

)
→ e−Ke−y/2

as n → ∞ for any y ∈ R, where αn = 4n logp − n log(logp) and K = (
√

8π)−1.

PROOF. Set an = (4n logp − n log(logp) + ny)1/2,

�p =
{
(i, j) : 1 ≤ i < j ≤ p, j − i ≥ τ, max

1≤k 
=i,k 
=j≤p
{|rik|, |rjk|} ≤ 1 − δ

}
,

(54)

V ′
n = max

(i,j)∈�p

∣∣∣∣∣
n∑

k=1

xkixkj

∣∣∣∣∣.
Step 1. We claim that, to prove the proposition, it suffices to show

lim
n→∞P(V ′

n ≤ an) = e−Ke−y/2
(55)

for any y ∈ R.
In fact, to prove the theorem, we need to show that

lim
n→∞P(Vn > an) = 1 − e−Ke−y/2

(56)
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for every y ∈ R. Notice {xki, xkj ;1 ≤ k ≤ n} are 2n i.i.d. standard normals if |j −
i| ≥ τ . Then

P(Vn > an) ≤ P(V ′
n > an) + ∑

P

(∣∣∣∣∣
n∑

k=1

xk1xkτ+1

∣∣∣∣∣ > an

)
,

where the sum runs over all pair (i, j) such that 1 ≤ i < j ≤ p and one of i and j is
in �p,δ . Note that |x11x1τ+1| ≤ (x2

11 + x2
1τ+1)/2, it follows that Ee|x11x1τ+1|/2 < ∞

by independence and E exp(N(0,1)2/4) < ∞. Since {xk1, xkτ+1;1 ≤ k ≤ n} are
i.i.d. with mean zero and variance one, and yn := an/

√
n logp → 2 as n → ∞,

taking α = 1 in Lemma 6.8, we get

P

(
1√

n logp

∣∣∣∣∣
n∑

k=1

xk1xkτ+1

∣∣∣∣∣ > an√
n logp

)

(57)

∼ 2 · p−y2
n/2(logp)−1/2

2
√

2π
∼ e−y/2

√
2π

· 1

p2

as n → ∞. Moreover, note that the total number of such pairs is no more than
2p|�p,δ|. Therefore, P(V ′

n > an) ≤ P(Vn > an) and

P(Vn > an) ≤ P(V ′
n > an) + 2p|�p,δ| · P

(∣∣∣∣∣
n∑

k=1

xk1xkτ+1

∣∣∣∣∣ > an

)

(58)

≤ P(V ′
n > an) + o(p2) · O

(
1

p2

)

by the assumption on �p,δ and (57). Thus, this joint with (56) gives (55).
Step 2. We now apply Lemma 6.2 to prove (55). Take I = �p . For (i, j) ∈ I ,

set Zij = |∑n
k=1xkixkj |,

Bi,j = {
(k, l) ∈ �p; |s − t | < τ for some s ∈ {k, l} and some t ∈ {i, j},

but (k, l) 
= (i, j)
}
,

an = √
αn + ny and Aij = {|Zij | > an}.

It is easy to see that |Bi,j | ≤ 2 · (2τ + 2τ)p = 8τp and that Zij are independent of
{Zkl; (k, l) ∈ �p \ Bi,j } for any (i, j) ∈ �p . By Lemma 6.2,

|P(Vn ≤ an) − e−λn | ≤ b1,n + b2,n,(59)

where

λn = |�p| · P(A1τ+1), b1,n ≤ ∑
d∈�p

∑
d ′∈Ba

P (A12)
2 = 8τp3P(A1τ+1)

2(60)

and

b2,n ≤ ∑
d∈�p

∑
d 
=d ′∈Ba

P (Zd > t,Zd ′ > t)(61)
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from the fact that {Zij ; (i, j) ∈ �p} are identically distributed. We first calcu-
late λn. By definition

p2

2
> |�p| ≥ |{(i, j);1 ≤ i < j ≤ p, j − i ≥ τ }| − 2p · |�p,δ|

=
p−τ∑
i=1

(p − τ − i + 1) − 2p · |�p,δ|.

Now the sum above is equal to
∑p−τ

j=1 j = (p − τ)(p − τ + 1)/2 ∼ p2/2 since
τ = o(p). By assumption |�p,δ| = o(p) we conclude that

|�p| ∼ p2

2
(62)

as n → ∞. It then follows from (57) that

λn ∼ p2

2
· e−y/2

√
2π

· 1

p2 ∼ e−y/2
√

8π
as n → ∞.(63)

Recall (59) and (63), to complete the proof, we have to verify that b1,n → 0 and
b2,n → 0 as n → ∞. Clearly, by the first expression in (60), we get from (63) and
then (62) that

b1,n ≤ 8τp3P(A1τ+1)
2 = 8τp3λ2

n

|�p|2 = O

(
τ

p

)
→ 0

as n → ∞ by the assumption on τ .
Step 3. Now we consider b2,n. Write d = (d1, d2) ∈ �p and d ′ = (d3, d4) ∈ �p

with d1 < d2 and d3 < d4. It is easy to see from (61) that

b2,n ≤ 2
∑

P(Zd > an,Zd ′ > an),

where the sum runs over every pair (d, d ′) satisfying

d, d ′ ∈ �p, d 
= d ′, d1 ≤ d3 and |di − dj | < τ(64)

for some i ∈ {1,2} and some j ∈ {3,4}. Geometrically, there are three cases for
the locations of d = (d1, d2) and d ′ = (d3, d4):

(1) d2 ≤ d3; (2) d1 ≤ d3 < d4 ≤ d2; (3) d1 ≤ d3 ≤ d2 ≤ d4.(65)

Let �j be the subset of index (d, d ′) with restrictions (64) and (j) for j = 1,2,3.
Then

b2,n ≤ 2
3∑

i=1

∑
(d,d ′)∈�i

P (Zd > an,Zd ′ > an).(66)
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We next analyze each of the three sums separately. Recall all diagonal entries of
� in Np(0,�) are equal to 1. Let random vector

(w1,w2, . . . ,wp) ∼ Np(0,�).(67)

Then every wi has the distribution of N(0,1).
Case (1). Evidently, (64) and (1) of (65) imply that 0 ≤ d3 − d2 < τ . Hence,

|�1| ≤ τp3. Further, for (d, d ′) ∈ �1, the covariance matrix of (wd1,wd2,wd3 ,
wd4) is equal to ⎛

⎜⎜⎝
1 0 0 0
0 1 γ 0
0 γ 1 0
0 0 0 1

⎞
⎟⎟⎠

for some γ ∈ [−1,1]. Thus, the covariance matrix of (wd2,wd1,wd3,wd4) is equal
to ⎛

⎜⎜⎝
1 0 γ 0
0 1 0 0
γ 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

Recall Zd = Zd1,d2 = Zd2,d1 = |∑n
k=1xkd1xkd2 | defined at the beginning of Step 2.

By Lemma 6.9, for some ε > 0 small enough,∑
(d,d ′)∈�1

P(Zd > an,Zd ′ > an) = ∑
(d,d ′)∈�1

P(Zd2,d1 > an,Zd3,d4 > an)

(68)

≤ τp3 · O
(

1

p4−ε

)
= O

(
τ

p1−ε

)
→ 0

as n → ∞ since τ = o(pt ) for any t > 0.
Case (2). For any (d, d ′) ∈ �2, there are three possibilities.
(I): |d1 − d3| < τ and |d2 − d4| < τ ; (II): |d1 − d3| < τ and |d2 − d4| ≥ τ ;

(III): |d1 −d3| ≥ τ and |d2 −d4| < τ . The case that |d1 −d3| ≥ τ and |d2 −d4| ≥ τ

is excluded by (64).
Let �2,I be the subset of (d, d ′) ∈ �2 satisfying (I), and �2,II and �2,III be

defined similarly. It is easy to check that |�2,I| ≤ τ 2p2. The covariance matrix of
(wd1,wd2,wd3,wd4) is equal to⎛

⎜⎜⎝
1 0 γ1 0
0 1 0 γ2
γ1 0 1 0
0 γ2 0 1

⎞
⎟⎟⎠

for some γ1, γ2 ∈ [−1,1]. By Lemma 6.11,

∑
(d,d ′)∈�2,I

P(Zd > an,Zd ′ > an) = O

(
τ 2

pε0

)
→ 0 as n → ∞.(69)
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Easily, |�2,II| ≤ τp3. The covariance matrix of (wd1,wd2,wd3,wd4) is⎛
⎜⎜⎝

1 0 γ 0
0 1 0 0
γ 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , |γ | ≤ 1.

By Lemma 6.9, take ε > 0 small enough to get

∑
(d,d ′)∈�2,II

P(Zd > an,Zd ′ > an) = O

(
τ

p1−ε

)
→ 0(70)

as n → ∞.
The third case is similar to the second one. In fact, |�2,III| ≤ τp3. The covari-

ance matrix of (wd1,wd2,wd3,wd4) is equal to⎛
⎜⎜⎝

1 0 0 0
0 1 0 γ

0 0 1 0
0 γ 0 1

⎞
⎟⎟⎠ , |γ | ≤ 1.

Thus, the covariance matrix of (wd2,wd1,wd4,wd3) is equal to �4 in Lemma 6.9.
Then, by the same argument as that in the equality in (68) we get

∑
(d,d ′)∈�2,III

P(Zd > an,Zd ′ > an) = O

(
τ

p1−ε

)
→ 0(71)

as n → ∞ by taking ε > 0 small enough. Combining (69), (70) and (71), we
conclude ∑

(d,d ′)∈�2

P(Zd > an,Zd ′ > an) → 0

as n → ∞. This and (68) together with (66) say that, to finish the proof of this
proposition, it suffices to verify∑

(d,d ′)∈�3

P(Zd > an,Zd ′ > an) → 0(72)

as n → ∞. The next lemma confirms this and the proof is complete. �

LEMMA 6.12. Let the notation be as in the proof of Proposition 6.4, then (72)
holds.

The proof of this lemma is given at Cai and Jiang (2010).

PROOF OF THEOREM 4. By the first paragraph in the proof of Theo-
rem 1, w.l.o.g., we prove the theorem by assuming that the n rows of Xn =
(xij )1≤i≤n,1≤j≤p are i.i.d. random vectors with distribution Np(0,�) where all
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of the diagonal entries of � are equal to 1. Consequently, by the assumption
on �, for any subset E = {i1, i2, . . . , im} of {1,2, . . . , p} with |is − it | ≥ τ for
all 1 ≤ s < t ≤ m, we know that {xki;1 ≤ k ≤ n, i ∈ E} are mn i.i.d. N(0,1)-
distributed random variables.

Reviewing the proof of Lemma 6.5, the argument is only based on the dis-
tribution of each column of {xij }n×p; the joint distribution of any two different
columns are irrelevant. In current situation, the entries in each column are i.i.d.
standard normals. Thus, take α = 2 in the lemma to have

bn,3
P→ 1 as n → ∞,

(73) {√
n

logp
bn,1

}
and

{√
n

logp
bn,4

}
are tight

provided logp = o(n1/3), where bn,1, bn,3 and bn,4 are as in Lemma 6.5. Let Vn =
Vn,τ = (vij )p×p be as in (53). It is seen from Proposition 6.4 that

Vn,τ√
n logp

→ 2(74)

in probability as n → ∞, p → ∞ and logp = o(n1/3). Noticing the differences in
the indices of max1≤i<j≤p|ρij | and max1≤i<j≤p,|i−j |≥τ |ρij | = Ln,τ , checking the
proof of Lemma 2.2 from Jiang (2004a), it is easy to see that

�n := max
1≤i<j≤p,|i−j |≥τ

|nρij − vij | ≤ (b2
n,1 + 2bn,1)Vn,τ b

−2
n,3 + nb−2

n,3b
2
n,4.(75)

Now, using (73), (74) and (75), replacing Wn with Vn,τ and Ln with Ln,τ in the
proof of Theorem 3, and repeating the whole proof again, we obtain that (n2L2

n,τ −
V 2

n,τ )/n → 0 in probability as n → ∞. This joint with Proposition 6.4 and the
Slusky lemma yields the desired limiting result for Ln,τ . �
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SUPPLEMENTARY MATERIAL

Additional technical proofs (DOI: 10.1214/11-AOS879SUPP; .pdf). We give
complete proofs for some technical lemmas used in the proofs of the main results.
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