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In this paper we study the consistency of different bootstrap procedures
for constructing confidence intervals (ClIs) for the unique jump discontinu-
ity (change-point) in an otherwise smooth regression function in a stochastic
design setting. This problem exhibits nonstandard asymptotics, and we ar-
gue that the standard bootstrap procedures in regression fail to provide valid
confidence intervals for the change-point. We propose a version of smoothed
bootstrap, illustrate its remarkable finite sample performance in our simula-
tion study and prove the consistency of the procedure. The m out of n boot-
strap procedure is also considered and shown to be consistent. We also pro-
vide sufficient conditions for any bootstrap procedure to be consistent in this
scenario.

1. Introduction. Change-point models may arise when a stochastic system
is subject to sudden external influences and are encountered in almost every field
of science. In the simplest form the model considers a random vector X = (Y, Z)
satisfying the following relation:

() Y =aolz<g, + Polzsg, +e,

where Z is a continuous random variable, o9 £ Bp € R, ¢o € [a,b] C R and ¢ is
a continuous random variable, independent of Z with zero expectation and finite
variance o> > 0. The parameter of interest is ¢y, the change-point.

Despite its simplicity, model (1) captures the inherent “nonstandard” nature of
the problem: the least squares estimator of the change-point ¢y converges at a rate
of n~! to a minimizer of a two-sided, compound Poisson process that depends
crucially on the entire error distribution, the marginal density of Z, among other
nuisance parameters (see [15], Section 14.5.1, pages 271-277, [17] or [23]). There-
fore, it is not practical to use this limiting distribution to build CIs for £y. Bootstrap
methods bypass the estimation of nuisance parameters and are generally reliable
in /n-convergence problems. In this paper we investigate the performance (both
theoretically and through simulation) of different bootstrap schemes in building
CIs for ¢y. We hope that the analysis of the bootstrap procedures employed in this
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paper will help illustrate the issues that arise when the bootstrap is applied in such
nonstandard problems.

The problem of estimating a jump-discontinuity (change-point) in an otherwise
smooth curve has been under study for at least the last forty years. More recently, it
has been extensively studied in the nonparametric regression and survival analysis
literature (see, e.g., [5, 11, 16, 18, 23] and the references therein). Bootstrap tech-
niques have also been applied in many instances in change-point models. Diimb-
gen [7] proposed asymptotically valid confidence regions for the change-point by
inverting bootstrap tests in a one-sample problem. Hiuskové and Kirch [13] con-
sidered bootstrap Cls for the change-point of the mean in a time series context.
A form of parametric bootstrap was used in [16] to estimate the distribution of the
estimated change-point in a stochastic design regression model that arises in sur-
vival analysis. In a slightly different setting Gijbels, Hall and Kneip [12] suggested
a bootstrap procedure for the model (1), but did not give a complete proof of its
validity.

Our work goes beyond those cited above as follows: we present strong theo-
retical and empirical evidence to suggest the inconsistency of the two most nat-
ural bootstrap procedures in a regression setup—the usual nonparametric boot-
strap [i.e., sampling from the empirical cumulative distribution function (ECDF)
of (Y, Z), often also called as bootstrapping “pairs”] and the “residual” bootstrap.
The bootstrap estimators constructed by these two methods are the smallest maxi-
mizers of certain stochastic processes. We show that, conditional on the data, these
processes do not have any weak limit in probability. This fact strongly suggests not
only inconsistency but also the absence of any weak limit for the bootstrap estima-
tors. In the case of the ECDF bootstrap, we also provide an alternative argument
for inconsistency via a careful analysis of the unconditional behavior of the boot-
strap estimator. In addition, we prove that independent sampling from a smooth
approximation to the marginal of Z and the centered ECDF of the residuals, and
the m out of n bootstrap from the ECDF of (Y, Z) yield asymptotically valid CIs
for ¢p. The finite sample performance of the different bootstrap methods shows
the superiority of the proposed smoothed bootstrap procedure. We also develop a
series of convergence results which generalize those obtained in [15] to triangular
arrays of random vectors and can be used to validate the consistency of any boot-
strap scheme in this setup. Moreover, in the process of achieving this we develop
convergence results for stochastic processes with a three-dimensional parameter
which are continuous on the first two arguments and cddl4g on the third.

Although we develop our results in the setting of (1), our conclusions have
broader implications. They extend immediately to regression functions with para-
metrically specified models on either side of the change-point (as discussed in
Section 7). The smoothed bootstrap procedure can also be modified to work in
more general nonparametric settings. Gijbels et al. [11], in the second stage of
their two-stage procedure to build CI for the change-point in the more general
setup of nonparametric regression, localize to a neighborhood of the change-point
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and reduce the problem to exactly that of (1). Lan et al. [18] consider a two-stage
adaptive sampling procedure to estimate the jump discontinuity. The second stage
of their method relies on an approximate CI for the change-point, and the bootstrap
methods developed in this paper can be immediately used in their context.

The paper is organized in the following manner: in Section 2 we describe the
problem in greater detail, introduce the bootstrap schemes and describe the appro-
priate notion of consistency. In Section 3, we state a series of convergence results
that generalize those obtained in [15]. We study the inconsistency of the standard
bootstrap methods, including the ECDF and residual bootstraps in Section 4. In
Section 5 we prove the consistency of the smoothed and the m out of n bootstrap
procedures. We compare the finite sample performance of the different bootstrap
methods through a simulation study in Section 6. In Section 7 we discuss the con-
sequences of our analysis to more general change-point regression models. For the
sake of brevity we have relegated some technical results to Appendix and to the
supplementary paper [25].

2. The problem and the bootstrap schemes. Assume that we are given an
i.i.d. sequence of random vectors {X, = (¥}, Zn)},‘ii1 defined on a probability
space (€2, A, P) having a common distribution P satisfying (1) for some param-
eter 8y := (ag, Po, (o) € O := R2 x [a, b]. This is a semi-parametric model with
an Euclidean parameter 6y and two infinite-dimensional parameters—the distribu-
tions of Z and . We are interested in estimating ¢p, the change-point. For technical
reasons, we will also assume that P(|e|?) < co. Here, and in the remainder of the
paper, we take the convention that for any probability distribution p, we will de-
note the expectation operator by w(-). In addition, we suppose that Z ~ F with a
uniformly bounded density f on [a, b] such that inf|,_;,|<; f(z) > « > 0 for some
n >0 and that P(Z < a) AP(Z > b) > 0.For 6 = (a, 8, ¢) € O, x = (v, z) € R?
write

) mg(x) i=—(y —al<p — Bleng)?,
P, for the empirical measure defined by X1, ..., X,

n
My (0) :=Pp(mo) = —% Y (Y —alz<p + Blzso)?
i=1

and M (0) := P(mg). The function M,, is strictly concave in its first two coordinates
but cadlag (right continuous with left limits) in the third; in fact, piecewise constant
with 7 jumps (w.p. 1). Thus, M,, has unique maximizing values of « and 8, but
an entire interval of maximizers for ¢. Note that («, 8, ¢) is a maximizer of M,, if
M, (o, B,2)V My, (o, B, ™) =sup{M, (0):0 € ®}. For this reason, we define the
least squares estimator of 6y to be the maximizer of M,, over ® with the smallest ¢,
and denote it by

én = (Qy, 5,1, 2‘,,) = sargmax{M, ()},
)
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where sargmax stands for the smallest argmax. Although our results would have
been equally true had we chosen the greatest maximizer (or the mid-point of the
interval of maximizers), we use the smallest argmax as most authors use this con-
vention (see, e.g., [15, 18, 23]).

The asymptotic properties of this least squares estimator are well known. It is
shown in [15], pages 271-277, that the asymptotic distribution of n(fn — o) is
that of the smallest argmax of a two-sided compound Poisson process. However,
the limiting process depends on the distribution of ¢ and the value of the density
of Z at . Thus there is no straightforward way to build CIs for ¢y using this lim-
iting distribution. In this connection we investigate the performance of bootstrap
procedures for constructing CIs for ¢p.

2.1. Bootstrap. We start with a brief review of the bootstrap. Our approach is
similar to those described in page 72 of [27], pages 3—11 of [22] and [26]. Given

asample W, = {W, W5, ..., W, } - L (unknown), suppose that the distribution
function H, of some random variable R, = R, (W, L) is of interest. The boot-
strap method can be broken into three simple steps:

(i) Construct an estimator L, of L from W,,.
(ii) Generate Wy ={W[,..., W, } L Ly given W,,, where the (m,)7 | is a
sequence of natural numbers set to satisfy suitable regularity conditions.
(iii) Estimate H, by H,, the conditional CDF of R, (W}, L,) given W,,.

Let d denote the Prokhorov metric (as defined in (1.1) and (1.2), page 96 in [9])
or any other metric metrizing weak convergence of probability measures (for dis-
tributions L defined on R one could choose, for instance, the Lévy metric as de-
fined in problem 14.5, page 198 of [3]). We say that H, is weakly consistent if
d(H,, PAI,,) —P> 0; if H, has a weak limit H, this is equivalent to I:In converging
weakly to H in probability. Similarly, Hy, is strongly consistent if d(Hp, H,) % o0.

The choice of L, mostly considered in the literature is the ECDF. Intuitively,
an L, that mimics the essential properties (e.g., smoothness) of the underlying
distribution L can be expected to perform well. Despite being a good estimator
in most situations, the ECDF can fail to capture some properties of L that may be
crucial for the problem under consideration. This is especially true for nonstandard
problems. In Section 4 we illustrate this phenomenon (the inconsistency of the
ECDF bootstrap) when n(é‘n — {p) is the random variable of interest.

In our context, a consistent bootstrap procedure must approximate the CDF of
A, = n(Z, — ¢o) with the conditional CDF of A* = m,,(¢* — Z,) given the data,
where ¢, is the least squares estimator of £y obtained from the bootstrap sample.
In the following we introduce four bootstrap schemes that arise naturally in this
problem.
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Scheme 1 (ECDF bootstrap). Draw a bootstrap sample (Y * feT :,1), ceey
Yy, Zy ) from the ECDF of (Y1, Z1), ..., (Yy, Zy); probably the most widely

used bootstrap scheme.

Scheme 2 (Bootstrapping residuals). This is another widely used bootstrap
procedure in regression models. We first obtain the residuals

Enji=Yj—anly o —Paly ; forj=1,....n

from the fitted model. Note that these residuals are not guaranteed to have mean 0,
so we work with the centered residuals, &, 1 — &, ..., &0 — &, Where &, =
’]’ 1 €n,j/n. Letting Py, denote the empirical measure of the centered residuals,

we obtain the bootstrap sample (Y* T Z1),...,(Y* wns Zn) as:

(1) Sample ¢, |, ..., ¢, , independently from F;.
(2) Fix the predictors Z;, j =1, ...,n, and define the bootstrapped responses

at Z; as Y:’j = &"lzjgf,, + /§nlzj>2,, + 8;].. Compute ¢, from (Y 1 Z1), -

( n,n’ n)-

Scheme 3 (Smoothed bootstrap). Notice that in (1), Z is assumed to have a
density and it also arises in the limiting distribution of A,,. A successful bootstrap
scheme must mimic this underlying assumption, and we accomplish this in the
following:

(1) Choose an appropriate nonparametric smoothing procedure (e.g., kernel
density estimation) to build a distribution F, with a density f,, such that ||F —
Flloo—0 a.s. and fn — f uniformly on some open interval around ¢y w.p. 1,
where f is the density of Z.

(2) Get i.i.d. replicates Z;l, ...,Z;f’n from I:“n and sample, independently,
Ep1s--sEpp romPh.
(3) Define Y:’j =a lZ;;]<§n —i—,Bn zt =6, ez’j forall j=1,...,n

Scheme 4 (m out of n bootstrap). A natural alternative to the usual nonpara-
metric bootstrap (i.e., generating bootstrap samples from the ECDF) considered
widely in nonregular problems is to use the m out of n bootstrap. We choose a
nondecreasing sequence of natural numbers {m,,}"o:1 such that m,, = o(n) and
my, — 0o and generate the bootstrap sample (Y, |, Z; (), .. Zy ) from
the ECDF of (Y1, Z1), ..., Ya, Zy).

We will use the framework established by our convergence theorems in Sec-
tion 3 to prove that schemes 3 and 4 above yield consistent bootstrap procedures
for building CIs for ¢p. We will also give strong empirical and theoretical evi-
dence for the inconsistency of schemes 1 and 2. Note that schemes 1 and 2 are the
two most widely used resampling techniques in regression models (see pages 35

o Yy Z
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and 36 of [8]; also see [10] and [29]). Thus in this change-point scenario, a typical
nonstandard problem, we see that the two standard bootstrap approaches fail. The
failure of the usual bootstrap methods in nonstandard situations is not new and has
been investigated in the context of M-estimation problems in [4] and in situations
giving rise to n'/3 asymptotics in [1] and [26]. But the change-point problem ad-
dressed in this paper is indeed quite different from the nonstandard problems con-
sidered by the above authors—one key distinction being that compound Poisson
processes, as opposed to Gaussian processes, form the backbone of the asymptotic
distributions of the estimators and thus demand an independent investigation.

We will also see later that the performance of scheme 3 clearly dominates that
of the m out of n bootstrap procedure (scheme 4), the general recipe proposed in
situations where the usual bootstrap does not work (see [19] for applications of
the m out of n bootstrap procedure in some nonstandard problems). Also note that
the performance of the m out of n bootstrap scheme crucially depends on m (see,
e.g., [2]) and the choice of this tuning parameter is tricky in applications.

3. A uniform convergence result. In this section we generalize the results
obtained in [15], pages 271-277, to a triangular array of random variables. This
generalization will help us analyze the asymptotic properties of the bootstrap esti-
mators (to be introduced in Section 4). Conditioned on the data, bootstrap samples
can be embedded in a triangular array of random variables, with the nth row being
generated from a distribution (built from the first n data points) that approximates
the data-generating mechanism. With this in mind, we derive asymptotic results for
a general triangular array whose row-distributions satisfy certain regularity condi-
tions. Due to space constraints, we only state the main results; complete proofs can

be found in Seijo and Sen [25], the longer version of this paper.

Consider the triangular array {X, x = (Yn4, Zn’k)}’l’g;gmn defined on a prob-

ability space (2,.4,P), where (m;);2, is a nondecreasing sequence of natu-
ral numbers such that m, — oco. Throughout the paper we denote by E the ex-
pectation operator with respect to P. Furthermore, assume that for each n € N,
(Xn.1,..., Xn.m,) constitutes a random sample from an arbitrary bivariate distri-
bution @, with Qn(Ynzl) < oo and let M, (0) := Q,(my) for all 6 € ®, where
myg 1s defined in (2). Let P be a bivariate distribution satisfying (1). Recall that
M (0) :=P(mp) and 6y := sargmax M (6). Let 8, = (o, Bn, &n) be given by 0, :=
sargmaxycq{Q,(mg)}. Note that Q, need not satisfy model (1) with (ay, By, ¢n).
The existence of 6, is guaranteed as QQ,(myg) is a quadratic function in « and B
(for a fixed ¢) and bounded and cddldg as a function in ¢. For each n, let IP; be
the empirical measure generated by the random sample (X, 1, ..., Xj.m,), and de-
fine the least squares estimator 6 = («;;, By, ;) € © to be the smallest argmax
of M;(0) :=1P}(mg). If Q is a signed Borel measure on R? and .Z is a class of
complex-valued functions defined on R?, write || Q|l.# := sup{|Q(f)|: f € .F}.
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Ifg:K C R3 — R is a bounded function, write lgllk :=sup,cxlg(x)|. Also, for
(z,y) € R? and n € N we write
Eni=8&n(z,y) =y — “nlzfin - ﬂnlz>§n-

Let M > 0 be such that |« | < M for all n. We define the following three classes
of functions from R? into R:

F :={1;(z): I C Ris an interval};
G =f@: feFtU{lytalf@:feF, |al <M}
H:={(y"f(2): f € F}.

In what follows, we will derive conditions on the distributions Q,, that will guar-
antee consistency and weak convergence of 6,

3.1. Consistency and the rate of convergence. We provide first a consistency
result for the least squares estimator, whose proof can be found in Section A.2.1
of [25]. To this end, we consider the following set of assumptions:

D 1Qn = Pllr = 0;
(D 1Qu = Pllg — 0;
(D) 1Qn — Pl — 0;
V) 6, — 6.

PROPOSITION 3.1.  Assume that (I)-(IV) hold. Then, 0 —P> 6p.
To guarantee the right rate of convergence, we need to assume stronger regular-
ity conditions. In addition to (I)—(IV), we require the following:

(V) There are n, p, L > 0 with the property that for any § € (0, n), there is
N > 0 such that the following inequalities hold for any n > N:

1
3) inf {—@ (Uepg, <7 ,,)}>p,
1 Jimzle—tal<e2 L |E = gu| o= esee

4 sup {|Qu(En1 P
u Enlengn<zZ<tviy, — ’

1 —n <82 o A/ M

L
5) sup  {1QuGulzeene)| + 1QnEnlzs v} < ——.
1&—En] <82 ~/Mn

We would like to point out some facts about (V). It must be noted that (4) and
(5) automatically hold in the case where Z and &, are independent under QQ,, with
Qn(gn) =0. Also, (3) is easily seen to hold when the Z’s, under QQ,,, have densities
Jfn converging uniformly to f in some neighborhood of ¢y, where f is the density
of Z under PP, a consequence of the classical mean value theorem of calculus.
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PROPOSITION 3.2.  Assume that (I)~(V) hold. Then \/m,(ca; — ap) = Op(1),
Vmn(By — Bn) = Op(1) and my (g, — £n) = Op(1).

The proof of the above proposition can be found in Section A.2.2 of [25].
3.2. Weak convergence and asymptotic distribution. We start with some addi-

tional sets of assumptions:

(VI) For any function ¢ : R — C which is either of the form ¢ (x) = e'$¥ for
some & € R or defined by ¥ (x) = |x|? for p =1, 2, we have

mn@n(w(gn)lgn—é/mn<Z§{n+n/mn) - f(é_O)((S + U)P(W(S)) for all n, 5> 0.

(VID) /m,Q,(éxlz<;,) — 0 and /m,Q,(&x17>¢,) — 0.
(VID) Tim,— 00Qn (|8,]%) < o0.

For h = (h1, ha, h3) € R3, let O := 6, + (jann, j—nﬁ_ %) and

E,(h) := m, Py [my, , —mg,].

We derive the asymptotic distribution of the process E, and then apply continuous
mapping techniques to obtain the limiting distribution of

h: = Sargrr;in En (h) = («/m_n(a:; —ay), \/m_n(ﬂ: — B, mn(f;;k - Cn))
heR

For any given compact rectangle K C R® we will consider these stochastic pro-
cesses as random elements in the space Dk of all functions W : K — R having
“quadrant limits” (as defined in [21]), being continuous from above (again, in the
terminology of [21]) and such that W (., -, ¢) is continuous for all ¢ and W (e, 8, -)
is cadlag (right continuous having left limits) for all («, 8). For any compact inter-
val I C R let Ay = {A:I — I|X is strictly increasing, surjective and continuous}
and write ||A| := SUP;£req |log%|. Then, for any set of the form K = A x [
with A C R? define the Skorohod topology as the topology given by the metric

dg(W.T):= inf | sup {|W(a B, &) = Dl B AN + 12
AL @ p.o)ek
for I', W € Dg. Endowed with this metric, Dx becomes a Polish space (it is a
closed subspace of the Polish spaces Dy defined in [21]) and thus the existence
of conditional probability distributions for its random elements is ensured (see
Theorem 10.2.2 in page 345 of [6]).

Before stating the convergence result, we need to make the following defi-
nitions: let Z; ~ N(0, 02P(Z < &) and Z, ~ N(0, 02P(Z > &) be two in-
dependent normal random variables; v; and v, be, respectively, left-continuous
and right-continuous, homogeneous Poisson processes with rate f(¢p) > 0; u =
(up),2; and v = (v,);2 ; two sequences of i.i.d. random variables having the same
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distribution as & under P. Assume, in addition, that Z;, Z», v{, v2, v and u are all
mutually independent. Then, define the process & = (21, ..., 2©)) as

7,

Y/
vi (=01 <0
(6) 2= | 2 Uil

0<j<vi(—1)
2 (t)1;>0

Z Mjl[z()

0<j=<va(t)

and let E* be given by
E*(h) :=2h1 BV (h3) — hiP(Z < ¢o) + 202 B@ (h3) — h3P(Z > &)
(7 +2(B0 — 20) EW (h3) — (a0 — B0)* E (h3)
+ 2o — Bo) B® (h3) — (g — B0)*E® (h3)

for h = (hy, ha, h3) € R3.
The next lemma describes the distribution of the smallest argmax of E*. A proof
can be found in Section A.2.6 of [25].

LEMMA 3.1. Consider the process E* defined in (7). Then, for almost every
sample path of E*, ¢* = (¢7, ¢35, ¢3) = sargmax, 3 {E*(h)} is well defined.
Moreover, ¢7, ¢35 and ¢3 are independent, and ¢pT and ¢35 are distributed as normal
random variables with mean O and variances o /P(Z < &) and o2 /P(Z > &),
respectively.

We are now in a position to state the main convergence result of this section.
Its proof is slightly long and involved, so due to space constraints we only give
a sketch of the main argument in Section A.1. A complete proof can be found in
Section 3.2 of [25].

PROPOSITION 3.3. If conditions (I)~(VIII) hold, then:

(i) For any compact rectangle K C R3, E, ~ E* on Dk, where ~ denotes
weak convergence.
(i)
hﬁ = (\/ My (O(:; —ap), \/mn(ﬂ: — Bn)s mn@_: - Cn))/

~ sargmax{E*(h)}.
heR3

If we take Q, =P and m,, = n for all n € N, it is easily seen that 6,, = 6y, and
conditions (I)~(VIII) hold. Hence, we immediately get the following corollary.
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COROLLARY 3.1. For the least squares estimators (Qy, ;én, 2‘,,) based on an
i.i.d. sequence (X,)52 | satisfying (1) we have

(V11(@n — @0), 1By — Bo), n(Zn — o)) ~ sargmax{E*(h)}.

heR3

4. Inconsistency of the bootstrap. In this section we argue the inconsis-
tency of the two most common bootstrap procedures in regression: the ECDF
bootstrap (scheme 1) and the residual bootstrap (scheme 2). In fact, we provide
two arguments to suggest that the standard ECDF bootstrap is inconsistent, and
one argument to indicate that is the same for the standard residual based boot-
strap. We will show that the bootstrap estimators from both of these schemes
are the smallest maximizers of stochastic processes that, conditional on the data,
have no weak limit in probability. This suggests not only that the schemes pro-
duce inconsistent inference, but also that the estimators have no weak limit in
probability. In the case of the ECDF bootstrap, we will also support our claim
of inconsistency with a careful analysis of the unconditional behavior of A} :=
(Vn(e — ap), /n(BE — Bo),n(¢;F — o). Based on the approach used in [14],
if consistency holds for the ECDF bootstrap, theAn the unconditional asymptotic
variance of n({,j‘ — o) must be twice that of n(&, — o). We derive the asymp-
totic unconditional distributions of n (¢, — o) and n(g:n — o) and compute their
variances via simulation, as analytic expressions are not available, to show that the
former is not twice the latter.

Recall the notation and definitions in the beginning of Section 2. In particular,
note that we have i.i.d. random vectors {X,, = (¥, Z,)};2, from (1) with param-
eter 6y defined on a probability space (2, A, P), and let P, be the empirical dis-
tribution of the first n data points. We denote by X = o ((X,)52 ) the o-algebra
generated by the sequence (X,);> | and write Px(-) = P(-|X) and Ex(-) = E(:|X).
Let (X, d) be a metric space, and consider the X-valued random elements V and
(V)2 defined on (2, A, P). We say that V,, converges conditionally in proba-

bility to V, almost surely, and write V,, % V,if
(8) Px(d(V,,V)>¢e) =50  Ve>0.

Similarly, we write V,, TB% V and say that V,, converges conditionally in probabil-

ity to V, in probability, if the left-hand side of (8) converges in probability to 0.

4.1. Scheme 1 (bootstrapping from the ECDF). Consider the notation and def-
initions of Section 2.1. To translate this scheme into the framework of Proposi-
tions 3.1, 3.2 and 3.3, we set m, = n, Q, = P, and consider the triangular ar-

ray {X:’k = (Y:’k, Z;"k)}’fg;in. Moreover, from Lemma 4.1 in [25] we know that

6, = 6y, so we can also take 6, = 6,. We first prove that the bootstrapped esti-
mators converge conditionally in probability to the true value of the parameters,
almost surely.
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P
PROPOSITION 4.1.  For the ECDF bootstrap, we have 0, a—f) 6o.

PROOF. Since Y has a second moment under P, it is straightforward to see
that F, G and H are VC-subgraph classes with integrable envelopes 1, |Y| + M
and Y2, respectively. It follows that all these classes are Glivenko—Cantelli, and
therefore conditions (I)—(III) hold w.p. 1. Also, note that 6, BN 6p implies that
condition (IV) holds a.s. The result then follows from Proposition 3.1. [

It is evident that condition (VI) does not hold in this situation as we know that

)
©) nP, (co -1 z<p+ ;) < Poisson(f (£0)(5 + ).

Hence, we cannot use Proposition 3.3 to derive the limit behavior of /.

We will now argue that, conditional on the data, En does not have any weak
limit in probability. This statement should be thought in terms of the Prokhorov
metric (or any other metric metrizing weak convergence on Dg). If we denote
by pk the Prokhorov metric on the space of probability measures on Dg and by
Iy, the conditional distribution of E, given X, to say that (E )no | has no weak
limit in probability means that there is no probability measure u deﬁned on Dk

such that pg (s, 1) —P> 0. There is also the apparent possibility that p, could
converge to a random limit, but as the ECDF is invariant under permutations, an
application of the Hewitt—Savage zero—one law (see page 496 of [3]) would rule
out this possibility (see page 1961 of [26]).

The following lemma (proved in Section A.2) will help us show that the (con-
ditional) characteristic functions corresponding to the finite-dimensional distribu-
tions of E,, fail to have a limit in probability, which would, in particular, imply that
E, does not have a weak limit in probability.

LEMMA 4.1. The following statements hold:

(i) For any two real numbers s < t, {nP, (o +; <Z < ¢o+ %)}flozl does not
converge in probability.

(11) There is hy > 0 such that for any h > hy, the sequences {nlP, (g:,, <Z<
{n + )}OO | and {nlP, (;,, —1<Z< C,,)} -, do not converge in probability.

(111) For any two real numbers s <t and any measurable function ¢ :R — R,
(nPp(d (V) gy rs/n<z<cott/n) e does not converge in probability.

(iv) Let ¢ be a measurable function which is either nonnegative or nonposi-
tive and such that ¢ (e + o) and ¢ (e + Bo) are nonconstant random variables
with finite second moment. Then, there is hy, > 0 such that for any h > h,,
{”Pn(¢(Y)12n<252n+h/n)}30:1 and {”Pﬂ(¢(Y)12,,—h/n<252n)}:o=1 do not converge
in probability.
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With the aid of Lemma 4.1 we are now able to state our main result.

LEMMA 4.2. There is a compact rectangle K C R> such that the conditional
distribution of E, given X does not have a weak limit in probability in Dk .

PROOF. It is enough to show that there is some /3 such that En (0,0, h3) does
not converge in distribution, conditional on the data, in probability. For h3 > 0,
a simplification [using (15)] yields

En(0,0,h3) = @n — Bu) (MBI Q280 — &n + B, <t 1naym))-

Since &, — ,én 25 oo — Po # 0 we see that En(O, 0, h3) will converge weakly
in probability iff A, :=nP}[(28, — &, + B”)12n<253n+h3/n] converges weakly in
probability.

The conditional characteristic function of A, is given by

. 1 e 0E 1 "
Any 2en+PBn—ay
(10)  Ex(e* )—(H;nﬂ"n((e’f(”ﬂ “)—1)1zn<z$s,,+h3/n>>,

which converges in probability iff so does nlP, ((e'5@En +Pn—tn) _ N1
But note that

By<Z<tuths/n)"

nlPy ((eié(Zén-i-ﬂn—an) - 1)12n<Z§En+h3/n)

— nPn ((eif(zY—ﬂn_&n) _ 1)15n<252n+h3/n).
It is easily seen that (9) and the fact that n(Z‘n — ¢o) = Op(1) imply that
”Pn(12n<252n+h3/n) = Op(1). Notice that

|”]P)n ((eiE(ZY—ﬂn—an) - 1)15,, <Z§En+h3/n)

B N )

A 5 P
<nPu(lz _yz ) (80 — a0l + 1By — fol)IE] = .

Thus (10) has a limit in probability iff nP, (/5 ~o=«0 — 1)1, _, . ., ) has
a limit in probability. But a necessary condition for the latter to happen is that
its real part? nlP, (Re(e's Y —Po—0) _ 1)1 £, <Z<brths/ ,)> converges in probability.
Since Re(e6Y—Fo=0) _ 1) < 0 we can conclude from (iv) of Lemma 4.1 that
nP, (Re(eé@Y—Fo—e0) _ 1)1 £ <Z<biths /n) does not converge in probability for all
h3 > h, for some h, > 0 large enough. This in turn implies that, for all i3 > h,,
the conditional characteristic function in (10) does not converge in probability, and
hence E, (0, 0, #3) has no weak limit in probability. [
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Note that (7 () — @), vn(B} — Bu). n(g} — £n)) = sargmax,,cgs {En ().
Thus, the fact that the sequence (E n)y— does not have a weak limit in probability
makes the existence of a weak limit in probability for n(¢,; — ) very unlikely.
A complete proof this statement may be complicated because the smallest argmax
functional is nonlinear, and En depends on A3 through indicator functions that do
not converge in the limit (see Lemma 4.1). Due to these difficulties we take an
alternative approach to argue the inconsistency of the ECDF bootstrap.

REMARK. It must be noted in this connection that the bootstrap scheme es-
timates the distribution of (Vn(a) — &), V/n(B, — Bn)) correctly, and in fact,
valid bootstrap based inference can be conducted to obtain CIs for «g and Sg. This
follows from the fact that, asymptotically, the maximizers of En(-, -, h3) do not
depend on h3.

Our next approach to arguing the inconsistency is similar to that of [14] and

relies on the asymptotic unconditional behavior of

Ay = (Vn(ay — @), V/n(By — Bo). n(&; — o))
For h € R3, we write ﬂnh —90+([ j’/z— 2) and E, (h) =nPy[m;
This corresponds to centering the objective function around 6. _

In what follows we will describe the limiting distribution of E,. We start by in-
troducing some notation. Recall the definitions of the random elements Z;, Z,,
vi, v2, u and v as in the discussion preceding (6). Also, let T = (z,);2, and
k = (kn)52 | be two sequences of i.i.d. Poisson(1) random variables. Assume, in
addition, that Z;, Z2, V1, V2, v, u, T and « are all mutually independent. Then

- — mg,].

define the process & = (21, ..., E©) as
EM) = (71,20, 1 <o, vjKjli<o,
J ik
0<j=vi(=1) 0<j=vi(-1)
/
> Tilizo. )0 Mjfjlzzo>
O0<j=wn() O0<j=na(1)

for t € R, and let E* be given by
E*(h) =2 ED (h3) — h{P(Z < 20) + 212 EP (h3) — K5P(Z > ¢0)
+2(Bo — a9) EW (h3) — (g — P0)*EP (13)
+2(ao — Po) E® (h3) — (a0 — P0)*E (r3)

for h = (hy, ha, h3) € R3.
Lemma 4.3 (proved in Section A.2.11 of [25]) now states the asymptotic distri-
bution of E, and that of n(g,; — ¢o).
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TABLE 1
The (unconditional) asymptotic variance of n(;‘;,k — o)
is not twice that ofn(fn —£0)

Random variable Asymptotic variance
n(&n — 4o) 7.62
n(¢y —¢o) 63.98

LEMMA 4.3. Unconditionally:

@) E” ~ E* in Dg for any compact rectangle K C R3;
(ii) Ay =sargmax, gp3{E,(h)} ~ sargmax, p3{E*(h)}.

As a consequence, if the ECDF bootstrap is consistent, the variance of
sargmaxy g3 { E*(h)} must be twice that of sargmax;, g3 {E*(h)}.

As analytic expressions for the asymptotic variances of n(¢," — o) and n(g:n —
o) are not known, we use simulations to compute them. As an illustration, we take
e~N@O,1),Z~N(@©,1),ax0=—1, Bo=1and o =0 in (1). We approximate the
limiting variances with the sample variances computed from 20,000 observations
from each of the two asymptotic distributions. Our results are summarized in Ta-
ble 1, which immediately shows that the asymptotic variance of n(Z,” — o) is not

twice that of n(fn — ¢o). Thus the ECDF bootstrap cannot be consistent.

4.2. Scheme 2 (Bootstrapping “residuals”). Another resampling procedure
that arises naturally in a regression setup is bootstrapping “residuals.” As with
scheme 1, bootstrapping the “residuals” fixing the covariates is also inconsistent.
Heuristically speaking, the resampling distribution fails to approximate the density
of the predictor at the change-point ¢y at rate-n, and this leads to the inconsistency.

Recall the notation of Section 2. The following lemma (proved in Sec-
tion A.2.12 of [25]) will be useful in the analysis of the smoothed bootstrap pro-
cedure.

LEMMA 4.4. Let G and ¢ be, respectively, the distribution and characteristic
functions of €. Then:

(1) for any n > 0 we have that sup ¢ -, | [e$* dPE (x) — (&)} 25 0;
(ii) [P, = Gllz = 0;
(i) [x2dPe(x) =5 o2,
(v) [ lx|dPg(x) = P(le));
) ifP(le]?) < oo, then lim,_, o [ |x|? dPP% (x) < oo almost surely.
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The next result (proved in Section A.2.13 of [25]) shows that the bootstrapped
least squares estimators converge conditionally in probability with probability one.

P
PROPOSITION 4.2, For scheme 2, 0 —> 6.
a.s.

Consider the following process:

A " . hy A ho 2
En(h) = — Z{Y:J a <a” + ﬁ)lzjfg'n-l—hﬂn - <:Bn + ﬁ)lzj'>2n+h3/ﬂ}

j=1
n
+) (e )?
j=1
Then for n large enough we have that

(W (@) — ), r(BE — Bn), n (L) — £n)) = sargmax{E, (h)}.

heR3

Next we argue that the sequence (E )| does not have a weak limit in probability,
and therefore distributional convergence of their corresponding smallest minimiz-
ers seems unreasonable.

LEMMA 4.5. There is a compact rectangle K C R3 such that, conditional
on the data, the sequence of processes (Ey,);> | does not have any weak limit in
probability in Dg.

PROOF. The proof is analogous to the proof of Lemma 4.2. We again consider
the number %, > 0 defined in the statement of Lemma 4.1(ii) and take K C R> to
be any compact rectangle containing the point (0, 0, /,). To prove the theorem it
suffices to show that, conditional on the data, the sequence (E,, (0,0, h3));2 | does
not have a weak limit in probability whenever i3 > h, and (0,0, h3) € K. The
(conditional) characteristic function of En (0,0, h3) is given by

R R Py (En<Z<ly+h
(1 ( / o2~ B —iE@n—fu)? e m)" (G =E=trtia/m
; .

Now, Lemma 4.4 and the strong consistency of the least squares estimator imply
that

/ 1200 =B)Ex—i8 @GP gpe (1) 2% =iE@—0” o(2(arg — Bo)E),

where ¢ is the characteristic function of ¢. Thus, for § # 0 in a neighborhood
of the origin, (11) will converge iff nlP, (g“n <Z< g“n h3) converges. But, from
Lemma 4.1(ii), we know that this is not the case. [
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5. Consistent bootstrap procedures. Here we will prove that the “smoothed
bootstrap” (scheme 3) and the m out of n bootstrap (scheme 4) procedures yield
valid methods for constructing confidence intervals for 6y.

5.1. Scheme 3 (smoothed bootstrap). To show that scheme 3 achieves consis-
tency we appeal to Propositions 3.1, 3.2 and 3.3 by proving that the regularity con-
ditions (I)—(VIII) of Section 3 hold for this scheme. Recall the description of this
bootstrap procedure given in Section 2. Let f» and F}, be the estimated smoothed
density and distribution function of Z, respectively. For I := [c,d] C R, a com-
pact interval such that ¢y € (¢, d), we require the following two properties of fn
and F,,:

(12) IE, — Fllr =3 0;
(13) I fu — £l == 0.

We would want to highlight that these conditions are fulfilled by many density
estimation procedures. In particular, they hold when the density f is continuous,
and we let fn be the kernel density estimator constructed from a suitable choice of
kernel and bandwidth (e.g., see [28]).

Let6, = é,,, my, = n and Q, be the distribution that generates the bootstrap sam-
ple. Observe that under Q,,, &, and Z are independent and that Z is a continuous
random variable with density fn The next two results show that the bootstrapped
least squares estimator achieves the right rate of convergence and has the right
asymptotic distribution.

PROPOSITION 5.1.  If (12) and (13) hold, then w.p. 1, the sequence of condi-
tional distributions of (/n(af — @n), /n(B) — Bn), n(&F — &), given the data, is
tight.

PROOF. We will show that conditions (I)-(V) in Section 3 hold w.p. 1 for the
bootstrap measures arising in this scheme. Note that (IV) is a consequence of the

almost sure convergence of the least squares estimators. That ||Q, — P||~ 2% 0

follows immediately from the fact that || F,—F llco 2% 0. Now, for any g = yy €
g with ¥ € F, we have

Qu(@) =8 Qu(1,_; ¥) + B Qu(1,_; V),
P(g) = aoP(1z<¢0¥) + BoP(Az>g, V),

from which we see that

1Qn = Pllg < (16 — ol + 12 — Bol) + (leo] + 180D 1Qu — Pl 7

+ (ool + 1Bo) [ 11,5, = Lot fu(2) .
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Lebesgue’s dominated convergence theorem shows that the last integral goes al-
most surely to zero and the strong consistency of the least squares estimators and

property (I) now yields |Q, — P|ig 250. Finally, we can write any & € H in the
form h = y?y for some 1 € F. Using this representation we obtain

Qu(h) = a,Qu(, g V) + B Qu(L,_; ¥) + B EDQu(Y),
P(h) = adP(1z<¢,¥) + BFP(z50¥) + 0 P(Y),

and the triangle inequality then implies that

1Qn — Pl
< (182 —ad| + 18> = B3 + @ + B2+ D) Q. — Pl =

PG —PE + @G+ 8D [ 11z, — Lz o)z

a.s.
— 0.

It remains to show (V). Observe that (4) and (5) hold automatically because under
Qu, €, and Z are independent. Hence, we are only required to show that (3) holds

w.p. 1. As (13) holds, we have inf;efe.a1{fn()} —5 infee.a{f(£)} > 0. The
mean Valufz theorem implieis that for any ¢, &€ € [c, d], there is ¥ € [0, 1] such that
|Fr(Q)— Fp (&) =€ —¢| fn(¢ +9 (& —¢)). It follows that for n > 0 small enough,

1
inf { =
0<[¢—nl <82 L[ — &p

Fu@®) = Falf = inf (fu(©)  foralln N,
and consequently (V) holds w.p. 1 for all § < 7 for all large n. O

PROPOSITION 5.2.  For scheme 3, provided that (12) and (13) hold, conditions
(D—(VIIL) are satisfied with probability one, and thus

(Ve — ), /(B — Ba),n(¢) — &p)) ~ sargmax{E*(h)} almost surely.
heR3

PROOF. We already know that conditions (I)-(V) hold w.p. 1. Condition (VII)
holds automatically because Z and &, are independent under Q, and Q, (¢,) =0.
Lemma 4.4(v) implies that condition (VIII) holds a.s. It remains to prove (VI).

Write I = [c, d], and consider the sequence of events {Ax}yeN given by

~ S ~
Ay = [g“n ——, 0+ n € I, almost always, for all §, n € (0, N)]
n n

N0 fu— flir— 0.

Fix N € N, let ¢ be the function 1 (x) = ¢'s* for some £ € R or the function
¥(x)=|x|?, p=1,2,and 5, > 0 be any positive real numbers smaller than N.
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Then
» . 2,,—{—7)/7! A
QW E) gy s/ 7<) = NP5 (W) /; .
n—0/n
Lemma 4.4 implies that IP? (/) 25 P(y(e)). And, when Ay holds, we also have

2n+77/" N En+77/n
ﬁ folr)dx — / £ dx
g Ln—08/

n—08/n §/n

<2N||fu— fll1 — 0.

n

Hence, condition (VI) holds for all 0 < §, n < N on Ay . But the strong consistency
of the least squares estimators and the conditions on fn imply that each of these
events have probability one. Therefore, P((\y<ny An) = 1. Hence, condition (VI)
holds w.p. 1, and the result follows from an application of Proposition 3.3. [l

5.2. Scheme 4 (m out of n bootstrap). For this scheme we will again use the
framework established in Section 3. We take (m,);2 | to be any sequence of natural

numbers which increases to infinity, én =6, and Q,, = IP,. The next result (proved
in Section A.2.17 of [25]) shows the weak consistency of this procedure.

PROPOSITION 5.3.  Ifm,, = o(n) and m, 1 00, then conditions (I)~(VIII) hold
(in probability), and we have

(Ve — &), (B — Bu), n(& — &)

~ sargmax{E™*(h)} in probability.
heR3

REMARK. To prove Proposition 5.3, we, in fact, show that for every subse-
quence (ng)g2 ;. there is a further subsequence (n,)52 |, such that (I)—(VIII) hold
w.p. 1 for (ny,)52 |, and the above result holds almost surely along the subsequence
(nks _so'il'

6. Simulation experiments. In this section we report the finite sample perfor-
mance of the different bootstrap schemes on simulated data. We simulated random
draws from four different models following (1). Each of these corresponded to
choosing different pairs (F, G) of distributions for Z and ¢ (having mean 0), re-
spectively. The pairs considered were (N (0, 2), N(0, 1)), (4B(4,6) —2, N(0, 1)),
(4B(4,6) — 2,Unif(—1,1)) and (4B(4,6) —2,I'(4,2) — 2), where B(-,-) and
['(-,-) denote the beta and gamma distributions, respectively. For all the simu-
lations we considered 6y = (ag, Bo, {o) = (—1, 1, 0).

For each of these models, we considered 1,000 random samples of sizes n =
50, 200, 500. For each sample, and for each of the bootstrap schemes, we took 4n
bootstrap replicates to approximate the bootstrap distribution. Table 2 provides the
estimated coverage proportions and average lengths of nominal 95% Cls obtained
using the 4 different bootstrap schemes for each of the four models.
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TABLE 2
The estimated coverage probabilities and average lengths of nominal 95% Cls for o obtained using
the four different bootstrap schemes for each of the four models

n=>50 n =200 n =500

Scheme Coverage  Avglength  Coverage  Avglength  Coverage  Avg length

Z~N(0,2),e ~N(0,1)

ECDF 0.83 1.14 0.79 0.22 0.81 0.08
Smoothed 0.94 0.94 0.95 0.19 0.95 0.07
FDR 0.83 0.76 0.86 0.16 0.90 0.06
n*>7 0.87 0.87 0.91 0.23 0.91 0.08
9107 0.85 1.02 0.87 0.21 0.87 0.079
[n14/157 0.85 1.05 0.84 0.21 0.86 0.08
Z~4B(4,6)—2,6~N(0,1)
ECDF 0.80 0.54 0.80 0.11 0.81 0.04
Smoothed 0.96 0.46 0.94 0.11 0.95 0.47
FDR 0.73 0.32 0.77 0.08 0.79 0.03
[n*/37 0.88 0.53 0.89 0.11 0.90 0.04
/107 0.85 0.54 0.86 0.11 0.88 0.04
[n14/157 0.83 0.55 0.84 0.11 0.87 0.04
Z ~4B(4,6) —2, &~ Unif(—1, 1)
ECDF 0.80 0.40 0.80 0.08 0.81 0.03
Smoothed 0.94 0.33 0.95 0.08 0.96 0.04
FDR 0.75 0.26 0.77 0.06 0.81 0.02
n*/7 0.88 0.36 0.88 0.09 0.91 0.04
[nd/10] 0.85 0.39 0.85 0.08 0.87 0.03
[n14/157 0.83 0.39 0.84 0.08 0.85 0.03
Z~4B4,6)—2,6~T(4,2) -2
ECDF 0.80 0.49 0.80 0.09 0.81 0.04
Smoothed 0.93 0.36 0.95 0.08 0.96 0.03
FDR 0.76 0.30 0.77 0.06 0.80 0.02
n#/57 0.87 0.43 0.88 0.10 0.91 0.03
n9/10] 0.85 0.46 0.84 0.09 0.88 0.03
[n14/157 0.83 0.48 0.85 0.09 0.85 0.03

At this point, we want to make some remarks about the computation of the
estimators. We used a kernel density estimator based on the Gaussian kernel and
chose the bandwidth by the so-called “normal reference rule” (see [24], page 131).
In the case of the m out of n bootstrap, we did not use any data driven choice of m,,
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but tried 3 different possibilities: [n*/°7, [n%/197 and [n'4/157. We will refer to the
fixed-design bootstrapping of residuals scheme by FDR.

We can see from the table that the smoothed bootstrap scheme outperforms all
the others in terms of coverage. It must also be noted that this is achieved with-
out a relative increase in the lengths of the intervals. The m out of n bootstrap
with [n*/37] also performs reasonably well. It clearly outperforms all other m out
of n schemes as well as ECDF and FDR bootstrap procedures (which are incon-
sistent). Table 2 clearly shows the implications of using the two most common
bootstrap procedures—the estimated coverage probabilities of the nominal 95%
CIs constructed from the ECDF and the FDR bootstrap schemes suffer from dras-
tic under-coverage (varying between 0.75 to 0.85).

Figure 1 shows the histograms of the distribution of n(fn — £o) (obtained from
1,000 random samples) and its bootstrap estimates obtained from the 4 differ-
ent bootstrap schemes (using 2,000 bootstrap samples each) from a single data
set of size n = 500 drawn randomly from model (1) with Z ~4B(4,6) —2,& ~
['(4,2) — 2. The histograms clearly show that the smoothed bootstrap (top right
panel) provides, by far, the best approximation to both, the actual (top middle
panel) and the limiting distributions (top left panel). In fact, the histograms of the
distribution of n(f,, — ¢o) and the corresponding smoothed bootstrap estimate are
almost indistinguishable. The m out of n approach, although guaranteed to con-
verge, lacks the efficiency of the smoothed bootstrap. This may be due to the fact
that we do not have an optimal way of choosing the tuning parameter m, the block
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FI1G. 1. Histograms of the distribution of n(fn — ¢o) and its bootstrap estimates: the asymptotic
distribution of n (2,, —&o) (top left); the actual distribution of n (2'! —&o) (top middle); the distribution
ofn(¢)f — E,,)for the smoothed (top right); ECDF (bottom middle) and FDR (bottom right) schemes;
the distribution of my (¢ — Tn), my = [n*7 (bottom lefy).
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size. The smoothed bootstrap, although it requires the choice of the smoothing
bandwidth, is much more robust against different choices of the tuning parameter
and has a clear advantage over the m out of n bootstrap procedure.

7. More general change-point regression models. In this section we men-
tion some of the broader implications of our analysis of (1) in the context of more
general change-point models in regression. We can consider a model of the form

(14) Y =ay(W, 2)1z<¢y + 86 (W, Z)1 754 + &,

where Z is a continuous random variable; W is a random vector of covariates in-
dependent of Z; ap € R” and B9 € R? are two unknown Euclidian parameters;
Vo (w, z) and £g(w, z) are known real-valued functions continuous in (w, z) and
twice continuously differentiable in « and 8, respectively; ¢g € [a, b] C supp(Z) C
R is the change-point; ¢ is a continuous random variable, independent of (W, Z),
with zero expectation and finite variance o> > 0. We also assume that W and
Z are independent. We assume that ¥, (W, Z) is identifiable from &g,(W, Z)
and that the least squares problems mingcgrr szg(Yj — Yoa(W;, Z j))2 and

mingeRy sz>;(Yj — &g(W;, Zj))2 are well posed for every possible data set
{(Y1,Z1, W), ..., Yn,Zy,, W)} and any ¢ € supp(Z)°. We also assume that

Voo (W, £0) # &g, (w, £o) for every value of w.
Like in the simple case, the method of least squares can be used to compute

estimators @;,, ,Bn and {n One simply takes the minimizer (&, ,Bn, {n) of

n
YY) = VW), Z)1z;<c + 8 (W), Z)1z,5¢)°
j=1
with the smallest ¢ -component.

Since the simple model (1) is a particular case of (14), one can immediately
conclude from our analysis that the usual ECDF and residual bootstrap procedures
will not be consistent. However, the smoothed bootstrap can be adapted to produce
valid CIs. The modified scheme can be described as follows:

(1) Choose some procedure (e.g., kernel density estimation) to build a distribu-
tion F, with density f, such that f;, — f uniformly on compact intervals w.p. 1,
where f is the density of Z. Let P and P}V be the empirical measures of the cen-

tered residuals (as in the description of scheme 2 in Section 2) and Wy, ..., W,,
respectively. A

(2) Get iid replicates Z, ... 2, , from F, and sample, independently,
8:71,...,8,1” kg "P? and W ,W:’ Lid- IP’W We could also keep the W;’s

fixed, that is, W* =W;.

(3) Define Y’;“J = w&n(W:’j, ZZ,J')IZ,,*JS& + SBn(W;J” Z;zk,j)lz,’;,j>2n + sj;’j

forall j=1,...,n
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(4) Compute the bootstrap least squares estimator (ozn, ¥, ¢r) by taking the
minimizer of ijl(Y:’j Wa(W,;k,j, n,j)lz,’f,j<§ Eg (W) j, Z* )12* >§) with
the smallest ¢-component.

(5) Approximate the distribution of n(¢, — &) with the (conditional) distribu-
tion of n(¢,\ — ¢u).

Although our analysis indicates that this smoothed bootstrap procedure will be
consistent, it is difficult to use our methods to prove consistency in such generality.
However, the proof for the simple model (1) can be adapted to cover the case of
parametric additive models, that is, when ¥ (w, z) and §g(w, z) are of the form

Wa(w Z) Zj la/gj(w Z) and%—ﬂ(w Z) ZZ:] ﬂkhk(w9 Z)’Wheregj?hk’j:
1,...,p,k=1,...,q, are known smooth functions.

APPENDIX

A.l. Proof of Proposmon 3.3. We express the process E, as the sum of the
four terms An, B,,, C and D where

An(hi, h3) =20y /mn P (End z < neuthsymn) — ML 1z <00 A0+ /)
By (ha, h3) = 2hy /P (Enl 2 g gty i) — B3P (125 6yt )

CAvn(th h3) = _2mn (an ,Bn
(15)

hy -
\/7)@* (Enle,+hs/my<z<t,)
2

— My (an - ﬂ P (1{n+h3/mn<Z<§n)

Du(hy, h3) =—2mn(ﬂn

2
P (lfn <Z<§n+h3/mn)

1 ~
) (8n1§n<Z§§n+h3/mn)

—my (ﬂn oy +
We define another process E := A’ + By + C,; + D) where
A% (hy) =20 JmaPh(Enlz<g,) — hiPE(z <),
B} (ha) :=2hyJ/m, P Enlz=g,) — 3P (175,),
C:(h3) = —2my(oy — ,Bn)IP: (§n1§,1+h3/m,,<Z§§n)
—my (o, — ﬂn)2P2(1§,1+h3/mn<Z§§n),
D;lk(h3) = =2mu(By — an)PZ(§n1§n<Z§§n+h3/mn)

—mu(Bn — an)ZPZ (l{n <Z§§,,+h3/mn)'
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We work with E¥ instead of E, as their difference approaches uniformly to O in
probability, as shown in the next lemma (proved in Section A.2.3 of [25]), and the
asymptotic distribution of E;; is easier to derive.

LEMMA A.1. Let K CR3 bea compact rectangle. If conditions (I)-(IV) and

(VD) hold, then || E;; — E, Il x LN 0. Therefore, E;; — E, LI 0 as random elements
of Dk.

As a first step to finding the asymptotic distribution of (E;)>° |, we show that
the random sequence is tight in the Skorohod space Dk for any compact rectangle
K C R3. Let Dy, I C R, denote the space of real valued cadlag functions on /.
The proof of the next result is given in Section A.2.4. of [25].

LEMMA A.2. Let I CR be a compact interval and assume that conditions
(D—(VIIL) hold. Then, the sequence of RO-valued processes

En(t) = (\/ mpy Z(gnIZSg“,,)’ anPZ(§n12>{n),
(16) mpPr (Lt fmp<2<c0) s M P En eyt fmy<z<c4)
mnP:(1§n<Z§{n+I/mn)’ mnP:(§”1§n<Z§§n+t/mn))/

is uniformly tight in R? x ﬁ‘;. Also, if K C R3 is a compact rectangle, the sequence
(ENS2., is uniformly tight in Dk .

It now suffices to show convergence of the finite-dimensional distributions of
the processes E; to the finite-dimensional distributions of E* € Dk to conclude
that E converges weakly to E* (and thus E, too). Then an application of the
continuous mapping theorem for the smallest argmax functional (see Lemma A.3
of [25]) gives the weak convergence of /) := sargmax E,(h). The application of
the lemma requires the weak convergence of processes (En)f,ozl to E* and also
the weak convergence of their associated jump processes. Let S be the class of all
piecewise constant, cadlag functions ¥ : R — R that are continuous on the integers
with ¥/ (0) = 0; ¥ has jumps of size 1, and W (—t) and ¥ () are nondecreasing on
(0, 00). For an interval I containing O in its interior, we write S; = {f|;: f € S}.
Define the S-valued (pure jump) processes Jn, J¥ and J* as

-I:(t) = jn(t) = mnPZ(1§)1+l/mn<Z§Cn) +m”PZ(1§n<ZS§n+t/mn)’
J*(@) == vi (=)L <0 + v2(1) L;>0.
LEMMA A.3. Let I CR be a compact interval and K = A x Bx I CR3 a
compact rectangle. If (I)~(VIII) hold, we have:

- = w2 L .
1. E,~ EinR*xDy;
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2. (E* J¥) ~ (E*, J*) in Dg x Sp;

n’n

3. (En, J,,) ~ (E*, J*) in Dg x Sy.
For a proof of the convergence result, see Section A.2.5 of [25].

A.2. Proof of Lemma 4.1. We state two lemmas that will be crucial in the
proof of this result. A proof of Lemma A.4 can be found in [25].

LEMMA A4, LetA,B>0,pe (0, %) and H), be the distribution function of a
Poisson random variable with mean M. For each value of ) write Lf +p=min{n €
N: Hy4+p(n) > p} and Uf =max{n € N:1 — H) (n) > p}. Then there is Ay >0
such that L§+B < U}’f)for all L > A,.

LEMMA A.5. Let A,B>0,0<p < %, W and v be two nondegenerate
Borel probability measures on R and H,,  denote the compound Poisson distribu-
tion with intensity A and compounding distribution . For each value of A write
Lﬁ’AJrB =inf{s e R: H, 34 (s) > p} and U A= sup{s e R:1—H,, ;(s) > p}. In
addition, assume that [ x*v(dx), fx ,u(dx) < 00 and that [ xv(dx) < [xu(dx).
Then there is Ay > 0 such that LU 4B < U 5 for all A > Ay. Moreover, let
O<r<1,and suppose that there is another Borel probability measure y on R,

A+(1-r)B
and define v, 1= - - B Y + =555V and the corresponding constant va ALB =

inf{s € R: HVV’)VFB(S) > p}. Then there is L, > 0 such that LC),,,A+B < U[L),k for
all A > Ay.

PROOF. Denote by @ the standard normal distribution and z, the lower a-
quantile of ® [i.e., ®(zy) = a]. Also, write ¢, := [ xu(dx), d,, := [ x?uu(dx) and
define the corresponding quantities ¢, and d, for v. For any possible value of A
and p denote by T}, 5 a random variable with distribution H, ;. It is easily seen

(as, e.g., in Theorem 2.1 of [20]) that S, ; := T“’*;;C" ~» ® as L — 00. Since
mn

the standard normal distribution is continuous, the distributions of S, ; converge
uniformly on R to @ as A — oo.
Let 1 <« <1/(2p). Then, since the distributions of S, , converge uniformly

to @, there is A1 such that 1 — (L) < kp for A > Ay and Ay > O such that

L, .—(+B)c :
AB v

D (“@W) < kp for all A > Aj. These two inequalities in turn imply that

Ul s > hey =/ rdyep,
LY, i5 <G+ By +V(+ B)dyzp.

Since ¢, > ¢, we can find A3 such that

A+ B)ey + V(A + B)dyz,y < Aey, — (/Aduzep for all A > A3.
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The first part of the result now follows by taking A, := A1 V A2 V A3. To prove the
TUy,)d»B_()L‘f‘B)CvV — (I)

/G4 B)dy,

as A — oo (this is easily seen by analyzing the characteristic functions). The rest
follows from the same argument used to prove the first part of the lemma. [J

result for the measure v, it suffices to see that we also have

PROOF OF LEMMA 4.1(i). Let s <. Note that (Z,)>2, is a collection of
i.i.d. random variables and nlP, (o + % <Z <+ %) is permutation invariant,
so the Hewitt—Savage 0—1 law (see page 496 of [3]) implies that any convergent
subsequence must converge to a constant. On the other hand, using characteristic
functions it can be shown that nlP,, (¢o + % <Z<l+ %) ~~ Poisson((t —s) f (£o)).
Therefore, (nlP, (¢o + % <Z<l+ %))2021 has no almost surely convergent sub-
sequence.

PROOF OF (ii)). Now, let § € (0, %). From Proposition 3.2 we know that there
is Bs > 0 such that P(nlg:n — %ol < Bs) > 1 — 4 for any n € N. Choose & >A2B5,
and take any increasing sequence of natural numbers ny. Write Ty = ng Py, (¢n, <
Z <n ), Sk=nmilP, (G0 — 2 < Z < g0+ 1E58) and Tr = mi Py (20 + 2 <
Z < go+ "5, Then, {nl&, — ol < Bs} C {Sk = Tk = Ti} and hence P(Tj >
Ty) AP(Sg > Tp) > 1 — § for all k.

We know that Ty ~» Poisson((h — 2Bs) f(¢o)) and Sy ~~ Poisson((h 4+ 2Bs) x
f(&0)), so in view of Lemma A.4 with B =4B; f(¢o) and L = (h — 2Bs) f (o),
there is a number h, > 2B; large enough so that whenever 4 > h, we can find
two numbers Ny j, < Nz € N with the property that, lim;_, . JP(Ty > N2 ) > 26
and lim;_, . )P(Sk < Ni1,) > 28. Thus, for h > hy, P(Ty > N2 ) > 26 and P($; <
Nj ) > 26 for all but a finite number of k’s. Therefore, for any k large enough,
P(Ty > Nap) AP(Sk < N1 p) > 268. Using the fact that P(Sy > Ty > Tj) > 1 =6
we get that P(Ty > T} > N ) AP(Nyp > Sk > T) > § for all but finitely many
k’s. Thus, whenever h > h,,

P(Ty > Tjy > Nojp,i0)>8 and P(Nyj > S > Ty, i.0.) > 6.

But for every k € N, the events {f"k > Ty > Ny} and {Nyjp > Sk > f"k}
are permutation-invariant on the i.i.d. random vectors X1, ..., X,,. Hence, the
Hewitt—Savage 0-1 law implies that P(f”k > Ty > Ny p,1.0.) =1 and P(Ny, >
Sy > fk, i.o.) = 1. Since Njj, < Ny it follows that Tk = nkPnk(Enk < Z <
E”lk + h/ny) does not have an almost sure limit. But the choice of the subse-
quence ny was arbitrary and independent of /., so we can conclude that for any
h > hy, the sequence {nlP, (Gp<Z< En + %)};’Iil does not converge in probability.

Proceeding analogously, we can prove the same for {nP, (Z‘n — % <Z< Z‘n)}flil.

PROOF OF (iii). We introduce some notation, for any two Borel probability
measures w1 and v on R we write u % v for their convolution, and for A > 0 we
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write CPoisson(u, A) for the compound Poisson distribution with intensity A and
compounding distribution . Let py and g be, respectively, the distributions un-
der P of ¢ (¢ + ag) and ¢ (e + Bo).

Observe that depending on whether # <0, s <0 <t or s > 0 we have that

n]Pn(¢(Y)1§0+s/n<Z§§0+t/n) CONVverges Weakly to CPoisson(ug, (f — ) f (o)),
CPoisson(iiy, sf (o)) % CPoisson(ug, tf (o)) or CPoisson(ug, (t — s) f (o)),
respectively. This follows easily from convergence of the corresponding char-
acteristic functions. Considering that {(Y,, Z,)};2, is a collection of i.i.d. ran-
dom vectors and that nlP, (¢ (Y)1¢y45/n<z<go+1/n) 1S permutation invariant for
Y1, Zy1), ..., (Yn, Z,) the same argument as in (i) applies here as well.

PROOF OF (iv). The argument is quite similar to the one used to prove
(ii). Assume without loss of generality that ¢ < 0. Let § € (0, z]T) and N €

N. From Proposition 3.2 we know that there is Bs > 0 such that P(nlé‘n —
¢ol < Bs) > 1 — 6§ for any n € N. Choose h > 2Bs, and take any increas-

ing sequence of natural numbers ny. Write f”kdfh = ni Py, (¢(Y)12nk< z< fnk h /nk)’
S,fh = P (@ (Y)1gy—Bsny <z <0+ (h+Bs)/mi) and
qu,bh = niPn, (¢(Y)1€0+Bs/nk <Z§§0+(h—Ba)/nk)'
Then {ng|Zn, — Col < Bs} C (SP,, < T, < T,), and therefore we have P(T, <
T) AP, <10 > 18 forall k. ’
We know that T,j?h ~» CPoisson(ug, (h — 2Bs) f ({o)) and

S,‘f ~~ CPoisson(uq, 2Bs f (£0)) % CPoisson(pL,g, (h + Bs) f(¢0))

By B 2By £ ))
+238Ma h+235Mﬂ’ s).f (Co
as k — oo. An application of Lemma A.5 with u =v = ug, ¥y = g, B =

4Bs f (o), ¥ = % and L = (h — 2Bs) f (&), shows the existence of an h, > 2B;
large enough so that whenever & > h, we can find two numbers Ry, > Ry € N

A7)

= CPoi
01sson<h

with the property that limy_, . ,P(T{’, < Ra.4) > 26 and lim;_, . P(S{, = Ry) >
25. Thus, for h > hy, P(T, < Rap) > 28 and P(S,, = Ry ;) > 28 for all but a
finite number of k’s. Therefore, for any k large enough, P(qu?h <Ryp) A P(S,‘f’ n>
Ry4) > 28. Using the fact that P(S{, < 77, < T{”,) > 1 — 8 we get that P(70, <
T, < Ro) AP(R1 < 7, < T2)) > & for all but finitely many &’s. Thus, when-
ever h > hy,

P, <10, <Ropio)>8 and PRy <SP, <1, 10)>8.

The argument relying on the Hewitt—Savage 0-1 law applied in the proof of
(ii) can be used to finish this proof. A completely analogous proof applies for

(PN e N2, O
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SUPPLEMENTARY MATERIAL

Supplement to “Change-point in stochastic design regression and the boot-
strap” (DOI: 10.1214/11-AOS874SUPP; .pdf). The supplementary file contains a
longer version of this paper with all the technical details which were excluded in
the present version due to their length.
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