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SPECIAL SECTION ON STATISTICS IN NEUROSCIENCE

BY KAREN KAFADAR

Indiana University

This article provides a brief introduction to seven papers that are included
in this special section on Statistics in Neuroscience:

(1) Xiaoyan Shi, Joseph G. Ibrahim, Jeffrey Lieberman, Martin Styner,
Yimei Li and Hongtu Zhu: Two-state empirical likelihood for longitu-
dinal neuroimaging data

(2) Vincent Q. Vu, Pradeep Ravikumar, Thomas Naselaris, Kendrick N. Kay,
Jack L. Gallant and Bin Yu: Encoding and decoding V1 fMRI responses
to natural images with sparse nonparametric models

(3) Sourabh Bhattacharya and Ranjan Maitra: A nonstationary nonparamet-
ric Bayesian approach to dynamically modeling effective connectivity in
functional magnetic resonance imaging experiments

(4) Christopher J. Long, Patrick L. Purdon, Simona Temereanca, Neil U. De-
sai, Matti S. Hämäläinen and Emery Neal Brown: State-space solutions
to the dynamic magnetoencephalography inverse problem using high per-
formance computing

(5) Yuriy Mishchenko, Joshua T. Vogelstein and Liam Paninski: A Bayesian
approach for inferring neuronal connectivity from calcium fluorescent
imaging data

(6) Robert E. Kass, Ryan C. Kelly and Wei-Liem Loh: Assessment of syn-
chrony in multiple neural spike trains using loglinear point process mod-
els

(7) Sofia Olhede and Brandon Whitcher: Nonparametric tests of structure for
high angular resolution diffusion imaging in Q-space

1. Introduction. In a lecture at Indiana University in March 2008, Peter Hall
offered several valuable insights about the field of statistics, three of which are
noted below:

1. Advances in statistics have come from the need to analyze different data types
(“Statistics is ‘reactive;’ it is very responsive to new problems that arise in
chemistry, biology, physics, . . . ”).

2. Data sets continue to increase in size.
3. Computational algorithms are essential components of the analysis: “Advances

in powerful computing equipment has had a dramatic impact on statistical
methods and theory. It has changed forever the way data are analyzed.”
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The seven articles in this special section on Statistics and Neuroscience, together
with two earlier AOAS articles, vividly illustrate all three principles.

Function of the human nervous system has fascinated researchers for decades,
due to its complex network of interactions among critical parts of its components
in the central nervous system (brain, spinal cord, retina) and periphery (nerves).
The amount of data that can be collected on these individual components is truly
massive, now that instruments for measuring signals (responses to stimuli) have
been developed with increasing resolution (spatially and temporally) and sensitiv-
ity (weaker signals in the presence of high noise levels). The range of statistical
methods that are needed to understand neural and brain development, functional-
ity, and interactions is extremely broad. This special section includes seven articles
that present useful statistical methodology designed to address various aspects of
data that arise in neuroscience, specifically with brain imaging data collected via
functional magnetic resonance imaging (fMRI) or other imaging techniques, and
the analysis of neural spike train data. The articles demonstrate the wide variety
of statistical problems, the diversity of methods that can be applied, and, most im-
portantly, the valuable insights that are obtained through the application of sound
statistical methods.

Functional magnetic resonance imaging was developed in the early 1990s for
brain imaging [e.g., Ogawa et al. (1992)] and immediately presented statisticians
with a huge new area of problems to be considered: the analysis of massive data
sets. The data, changes in blood flow in response to neural activity [blood oxy-
gen level dependent (BOLD) signals], can be measured and recorded with spatial
resolution on the order of 2–4 millimeters, taken every 2–4 seconds. Noise re-
duction, image registration, outliers, image detection, spatial and time trends, and
multiplicity are only some of the problems that can arise with these data. Among
the first statisticians to attack these problems were Keith Worsley and Karl Fris-
ton [Worsley and Friston (1995); Worsley et al. (1996); Friston et al. (1995)] and
William Eddy and his colleagues [Eddy et al. (1995); Eddy, Fitzgerald and Noll
(1996)], who had sufficient computational resources at the time to handle the mas-
sive amounts of data. Since then, computational power has significantly advanced,
enabling statisticians to investigate other aspects of these types of data. In addi-
tion, other imaging methods have been developed with increased sensitivity and
resolution. The first three articles in this section develop methods for analyzing
fMRI data: Shi et al. (1), Vu et al. (2), and Bhattacharya and Maitra (3). Three arti-
cles develop methods for analyzing data using more sensitive imaging techniques:
Long et al. (4) model electromagetic source imaging data (magnetoencephologra-
phy imaging, or MEG); Mishchenko et al. (5) develop neural connectivity models
from data using calcium fluorescent imaging; and Olhede and Whitcher (7) ana-
lyze brain images from measurements obtained via a type of magnetic resonance
imaging known as high angular resolution diffusion imaging (HARDI). Neural
spike trains collected from multielectrode recordings motivate the methods in Kass
et al. (6).



INTRODUCTION 1129

Shi et al. (1) develop an adjusted exponentially tilted empirical likelihood
method to detect differences in the morphological changes, measured via fMRI,
in specific regions of the brain between two groups of patients on different treat-
ment protocols. Beyond the development of an appropriate model that accounts
for longitudinal measurements with time-varying covariates is the challenge of de-
veloping a computational algorithm to handle the data on 238 patients. The results
indicate regions of important differences which provide insights into the different
mechanisms of the two treatment protocols. Vu et al. (2) use exploratory data anal-
ysis and model selection procedures to improve a previously proposed model for
brain activity in encoding and decoding sensory stimuli in the form of local con-
stant energy features. Their analysis reveals nonlinearities which, when incorpo-
rated into the model, yields a 25% improvement in encoding prediction and hence
greater accuracy in image identification. Bhattacharya and Maitra (3) also analyze
fMRI signals to model dynamic, nonstationary neural connectivity via a first-order
vector autoregressive model which, when applied to fMRI data on patients per-
forming specific tasks, provides insights into those brain mechanisms involved in
distinguishing shapes.

Data from more sensitive and higher resolution imaging techniques require
more computationally intensive approaches. Long et al. (4) develop high-dimen-
sional (in the number of parameters) state-space models to identifying magnitudes
and locations of neural sources that give rise to MEG signals recorded on the sur-
face of the head. Due to the greatly increased resolution of the data and the number
of parameters to be estimated, the Kalman filter solution can be implemented only
on high-performance supercomputers. The authors’ Kalman filter approach can be
viewed as a specific implementation of a more general approach using random
field theory proposed by Taylor and Worsley (2007) and applied to MEG (and
electroencepholography, or EEG) data by Kilner and Friston (2010) that appeared
in The Annals of Applied Statistics last year.

The next two articles in this special section use different sources of data to
model neuronal connectivity. One source of data is calcium-sensitive fluorescent
imaging, which offers much finer spatial and temporal resolution than is possi-
ble with fMRI. Mishchenko et al. (5) use such imaging data to model neural cir-
cuitry with a collection of coupled Hidden Markov models (HMMs), where each
Markov chain represents the behavior of a single neuron and the coupling between
the HMMs reflects the network connectivity matrix. As is the case with the other
articles in this section, the vast amounts of data and the complexity of the coupled
models require clever computational approaches (in this case, a blockwise Gibbs
algorithm) to estimate model parameters with biologically meaningful relevance.
Kass et al. (6) consider models for data from external electrodes on the brain. In the
past, neural spike trains from external electrodes have been analyzed traditionally
as point processes [Brillinger (1988, 1992)]. Such models usually assume station-
arity and distinct events (no two events occur at the same time). Here, Kass, Kelly,
and Loh enhanced these models for neural spike trains by introducing a class of
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continuous-time-varying loglinear models which incorporates time-varying inten-
sities, autocovariation, and synchrony. For an approach to estimating the number
of neurons involved in a multi-neuronal spike train, see Li and Loh (2011) that
appeared in the most recent issue of AOAS.

Olhede and Whitcher (7) approach the analysis of brain images through the
local estimation of the two-dimensional probability density function (pdf) of
HARDI measurements (i.e., measurements of the local molecular diffusion of wa-
ter molecules, obtained via high angular resolution diffusion imaging). Rather than
assuming a Gaussian pdf, Olhede and Whitcher use the increased sampling rate of
HARDI to estimate a nonparametric pdf using local measurements of the covari-
ance matrix, enabling greater accuracy (less bias) at relatively little cost in terms of
precision (increased variance). However, because the data come from a diffusion
process, the measurements are inherently spectral in nature. The authors provide
the statistical framework for estimating pdfs in the spectral domain, incorporat-
ing known properties of the diffusion process, and then use properties of Fourier
transforms to invert the estimated pdf into the brain image domain. Nonparametric
tests for non-uniformity, asymmetry, and ellipsoidality in the pdf lead to increased
understanding of diffusion in the brain.

As Peter Hall indicated with respect to data in other fields, here the analysis of
neuroscience data led to the development of new statistical methodology. Besides
the common theme of neuroscience as the motivation for the methodology, all nine
articles (the present seven in this issue and the two articles that appeared earlier)
share two additional features: (1) the analysis of very large data sets, which thereby
require (2) the development of computational algorithms to facilitate estimation of
complex models needed to incorporate the nonstandard features of the data (e.g.,
nonlinearity, nonstationarity, etc.). Many more problems posed by these sorts of
data are in need of solutions, for example, relaxing assumptions on models, de-
signing experimental strategies to make best use of the data, developing methods to
reduce noise (increase signal-to-noise ratio), etc. Useful, practical solutions can be
obtained only through collaboration between scientists and statisticians. We hope
that these articles will stimulate statisticians and neuroscientists to collaborate on
these problems to further research in both domains.
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