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ENCODING AND DECODING V1 FMRI RESPONSES TO NATURAL
IMAGES WITH SPARSE NONPARAMETRIC MODELS
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Functional MRI (fMRI) has become the most common method for in-
vestigating the human brain. However, fMRI data present some complica-
tions for statistical analysis and modeling. One recently developed approach
to these data focuses on estimation of computational encoding models that
describe how stimuli are transformed into brain activity measured in indi-
vidual voxels. Here we aim at building encoding models for fMRI signals
recorded in the primary visual cortex of the human brain. We use residual
analyses to reveal systematic nonlinearity across voxels not taken into ac-
count by previous models. We then show how a sparse nonparametric method
[J. Roy. Statist. Soc. Ser. B 71 (2009b) 1009–1030] can be used together with
correlation screening to estimate nonlinear encoding models effectively. Our
approach produces encoding models that predict about 25% more accurately
than models estimated using other methods [Nature 452 (2008a) 352–355].
The estimated nonlinearity impacts the inferred properties of individual vox-
els, and it has a plausible biological interpretation. One benefit of quantitative
encoding models is that estimated models can be used to decode brain activ-
ity, in order to identify which specific image was seen by an observer. Encod-
ing models estimated by our approach also improve such image identification
by about 12% when the correct image is one of 11,500 possible images.

1. Introduction. One of the main differences between human brains and
those of other animals is the size of the neocortex [Frahm, Stephan and Stephan
(1982); Hofman (1989); Radic (1995); Van Essen (1997)]. Humans have one of
the largest neocortical sheets, relative to their body weight, in the entire animal
kingdom. The human neocortex is not a single undifferentiated functional unit,
but consists of several hundred individual processing modules called areas. These
areas are arranged in a highly interconnected, hierarchically organized network.
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The visual system alone consists of several dozen different visual areas, each of
which plays a distinct functional role in vision. The largest visual area (indeed,
the largest area in the entire neocortex) is the primary visual cortex, area V1. Be-
cause of its central importance in vision, area V1 has long been a primary target
for computational modeling.

The most powerful tool available for measuring human brain activity is func-
tional MRI (fMRI). However, fMRI data provide a rather complicated window on
neural function. First, fMRI does not measure neuronal activity directly, but rather
measures changes in blood oxygenation caused by metabolic processes in neurons.
Thus, fMRI provides an indirect and nonlinear measure of neuronal activity. Sec-
ond, fMRI has a fairly low temporal and spatial resolution. The temporal resolution
is determined by physical changes in blood oxygenation, which are two orders of
magnitude slower than changes in neural activity. The spatial resolution is deter-
mined by the physical constraints of the fMRI scanner (i.e, limits on the strength
of the magnetic fields that can be produced, and limits on the power of the ra-
dio frequency energy that can be deposited safely in the tissue). In practice, fMRI
signals usually have a temporal resolution of 1–2 seconds, and a spatial resolu-
tion of 2–4 millimeters. Thus, a typical fMRI experiment might produce data from
30,000–60,000 individual voxels (i.e., volumetric pixels) every 1–2 seconds. These
data must first be filtered to remove nonstationary noise due to subject movement
and random changes in blood pressure. Then they can be modeled and analyzed in
order to address specific hypotheses of interest.

One recent approach for modeling fMRI data is to use a training data set to esti-
mate a separate model for each recorded voxel, and to test predictions on a separate
validation data set. In computational neuroscience these models are called encod-
ing models, because they describe how information about the sensory stimulus is
encoded in measured brain activity. Alternative hypotheses about visual function
can be tested by comparing prediction accuracy of multiple encoding models that
embody each hypothesis [Naselaris et al. (2011)]. Furthermore, estimated encod-
ing models can be converted directly into decoding models, which can in turn be
used to classify, identify or reconstruct the visual stimulus from brain activity mea-
surements alone [Naselaris et al. (2011)]. These decoding models can be used to
measure how much information about specific stimulus features can be extracted
from brain activity measurements, and to relate these measurement directly to be-
havior [Raizada et al. (2010); Walther et al. (2009); Williams, Dang and Kanwisher
(2007)].

Most encoding and decoding models rely on parametric regression methods that
assume the response is linearly related with stimulus features after fixed parametric
nonlinear transformation(s). These transformations may be necessitated by non-
linearities in neural processes [e.g., Carandini, Heeger and Movshon (1997)], and
other potential sources inherent to fMRI such as dynamics of blood flow and oxy-
genation in the brain [Buxton, Wong and Frank (1998); Buxton et al. (2004)] and
other biological factors [Lauritzen (2005)]. However, it can be difficult to guess
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the most appropriate form of the transformation(s), especially when there are thou-
sands of voxels and thousands of features, and when there may be different trans-
formations for different features and different voxels. Inappropriate transforma-
tions will most likely adversely affect prediction accuracy and might also result in
incorrect inferences and interpretations of the fitted models.

In this paper we use a new, sparse and flexible nonparametric approach to more
adequately model the nonlinearity in encoding models for fMRI voxels in human
area V1. The data were collected in an earlier study [Kay et al. (2008a)]. The stim-
uli were grayscale natural images (see Figure 1). The original analysis focused
on a class of models that included a fixed parametric nonlinear transformation
of the stimuli, followed by linear weighting. Here we show by residual analy-
sis that this model does not account for a substantial nonlinear response compo-
nent (Section 4). We therefore model these data by a sparse nonparametric method
[Ravikumar et al. (2009b)] after preselection of features by marginal correlation.
The resulting model qualitatively affects inferred tuning properties of V1 voxels
(Section 6), and it substantially improves response prediction (Section 4.2). The
sparse nonparametric model also improves decoding accuracy (Section 5). We con-
clude that the nonlinearities found in the responses of voxels measured using fMRI
impact both model performance and model interpretation. Although our paper fo-
cuses entirely on area V1, our approach can be extended easily to voxels recorded
in other areas of the brain.

2. Background on V1. Brain area V1 is located in the occipital cortex and
is an early processing area of the visual pathway. It receives much of its input
from the lateral geniculate nucleus—a small cluster of cells in the thalamus that
is the brain’s primary relay center for visual information from the eye. Many of
the properties of V1 neurons have been described by visual neuroscientists [see
De Valois and De Valois (1990) for a summary]. In most cases these neurons are
described as spatio-temporal filters that respond whenever the stimulus matches
the tuning properties of the filter. The important spatial tuning properties for V1
neurons are related to spatial position, orientation and spatial frequency. Thus,
each V1 neuron responds maximally to stimuli that appear at a particular spatial
location within the visual field, with a particular orientation and spatial frequency.
Stimuli at different spatial positions, orientations and frequencies will elicit lower
responses from the neuron. Because V1 neurons are tuned for spatial position,
orientation and spatial frequency they are often modeled as Gabor filters (whose
impulse response is the product of a harmonic function and a Gaussian kernel) [De
Valois and De Valois (1990)].

Although tuning for orientation and spatial frequency can be described using a
linear filter model, it is well established that individual V1 neurons do not behave
exactly like linear filters. Studies using white noise stimuli have reported a nonlin-
ear relationship between linear filter outputs and measured neural responses [e.g.,
Sharpee, Miller and Stryker (2008); Touryan, Lau and Dan (2002)]. Furthermore,
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FIG. 1. Examples of natural image stimuli. The natural images used in the experiment were sam-
pled from a large database of images obtained from a commercial digital library (Corel Stock Photo
Libraries from Corel Corporation). The images covered 20×20 degrees of the field of view, and were
cropped to a circular aperture and blended into the background to reduce edge effects.

it is known that the responses of V1 neurons saturate (like
√

x or logx) with in-
creasing contrast [e.g., Albrecht and Hamilton (1982); Sclar, Maunsell and Lennie
(1990)]. Finally, there is evidence that the responses of V1 neurons are normal-
ized by the activity of other neurons in their spatial or functional neighborhood.
This phenomenon—known as divisive normalization—can account for a variety
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of nonlinear behaviors exhibited by V1 neurons [Carandini, Heeger and Movshon
(1997); Heeger (1992)]. It is reasonable to expect that the nonlinearities at the
neural level will affect voxel responses evoked by natural images, so a statistical
model should describe adequately these nonlinearities.

3. The fMRI data. The data consist of fMRI measurements of blood oxy-
gen level-dependent activity (or BOLD response) at m = 1,331 voxels in area
V1 of a single human subject [see Kay et al. (2008a)]. The voxels, measuring
2 × 2 × 2.5 millimeters, were acquired in coronal slices using a 4T INOVA MR
(Varian, Inc., Palo Alto, CA) scanner, at a rate of 1Hz, over multiple sessions.
Two sets of data were collected during the experiment: training and validation.
During the training stage the subject viewed n = 1,750 grayscale natural images
randomly selected from an image database, each presented twice (but not consec-
utively) in a pseudorandom sequence; see Figure 1. Each image was presented in
an ON-OFF-ON-OFF-ON pattern for 1 second with an additional 3 seconds OFF
between presentations. For the validation data the subject viewed 120 novel natu-
ral images presented in the same way as in the training stage, but with a total of
13 presentations of each image. Data collection required approximately 10 hours
in the scanner, distributed across 5 two hour sessions.

Data preprocessing is necessary to correct several sampling artifacts that are in-
trinsic to fMRI. First, volumes were manually co-registered (in-house software) to
correct for differences in head positioning across sessions. Slice-timing and auto-
mated motion corrections (SPM99, http://www.fil.ion.ucl.ac.uk/spm) were applied
to volumes acquired within the same session. These corrections are standard and
their details are explained in the supplementary information of Kay et al. (2008a).

Our encoding and decoding analyses depend upon defining a single scalar fMRI
voxel response to each image. The procedures used to extract this scalar response
from the BOLD time series measurements acquired during the fMRI experiment
are described in the Appendix. In short, we assume that each distinct image evokes
a fixed timecourse response, and that the response timecourses evoked by differ-
ent images differ by only a scale factor. We use a model in which the response
timecourses and scale factors are treated as separable parameters, and then use
these scale factors as the scalar voxel responses to each image. By extracting a sin-
gle scalar response from the entire timecourse, we effectively separate the salient
image-evoked attributes of the BOLD measurements from those attributes due to
the BOLD effect itself [Kay et al. (2008b)].

4. Encoding the V1 voxel response. An encoding model that predicts brain
activity in response to stimuli is important for neuroscientists who can use the
model predictions to investigate and test hypotheses about the transformation from
stimulus to response. In the context of fMRI, the voxel response is a proxy for brain
activity, and so an fMRI encoding model predicts voxel responses. Let Yv be the

http://www.fil.ion.ucl.ac.uk/spm
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response of voxel v to an image stimulus S. We follow the approach of Kay et al.
(2008a) and model the conditional mean response,

μv(s) := E(Yv|S = s),

as a function of local contrast energy features derived from projecting the im-
age onto a 2D Gabor wavelet basis. These features are inspired by the known
properties of neurons in V1, and are well established in visual neuroscience [see,
e.g., Adelson and Bergen (1985); Jones and Palmer (1987); Olshausen and Field
(1996)]. A 2D Gabor wavelet g is the pointwise product of a complex 2D Fourier
basis function and a Gaussian kernel:

g(a, b) ∝ exp(2πiωã) × exp
(
− ã2

2σ 2
1

− b̃2

2σ 2
2

)
,

where

ã = (a − a0) cos θ + (a − a0) sin θ,

b̃ = (b − b0) cos θ − (b − b0) sin θ.

The basis we use is organized into 6 spatial scales/frequencies (ω,σ1, σ2),
where wavelets tile spatial locations (a0, b0) and 8 possible orientations θ , for
a total of p = (12 + 22 + 42 + 82 + 162 + 322) × 8 = 10,920 wavelets. Figure 2
shows all of the possible scale and orientation pairs.

FIG. 2. Examples of Gabor wavelets. The basis used by the encoding model is organized into 6
spatial scales (rows) and 8 orientations (columns). The imaginary part of the wavelets is not shown.
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Let gj denote a wavelet in the basis. The local contrast energy feature is defined
as

Xj(s) :=
[∑

a,b

Regj (a, b)s(a, b)

]2

+
[∑

a,b

Imgj (a, b)s(a, b)

]2

for j = 1, . . . , p = 10,920. The feature set is essentially a localized version of
the (estimated) Fourier power spectrum of the image. Each feature measures the
amount of contrast energy in the image at a particular frequency, orientation and
location.

4.1. Sparse linear models. The model proposed in Kay et al. (2008a) assumes
that μv(s) is a weighted sum of a fixed transformation of the local contrast energy
features. They applied a square root transformation to Xj to make the relation-
ship between μv(s) and the transformed features more linear. Thus, their model
is

μv(s) = βv0 +
p∑

j=1

βvj

√
Xj(s).(4.1)

We refer to (4.1) as the sqrt(X) model. Kay et al. (2008a) fit this model sep-
arately for each of the 1,331 voxels, using gradient descent on the squared
error loss with early stopping [see, e.g., Friedman and Popescu (2004)], and
demonstrated that the fitted models could be used to identify, from a large
set of novel images, which specific image had been viewed by the subject.
They used a simple decoding method that selects, from a set of candidates,
the image s whose predicted voxel response pattern (μ̂v(s) :v = 1,2, . . .) is
most correlated with the observed voxel response pattern (Yv :v = 1,2, . . .). Al-
though Kay et al. (2008a) focused on decoding, the encoding model is clearly
an integral part of their approach. We found a substantial nonlinear aspect of
the voxel response that their encoding sqrt(X) model does not take into ac-
count.

Since the gradient descent method with early stopping is closely related to the
Lasso method [Friedman and Popescu (2004)], we fit the model (4.1) separately to
each voxel [as in Kay et al. (2008a)] using Lasso [Tibshirani (1996)], and selected
the regularization parameters with BIC (using the number of nonzero coefficients
in a Lasso model as the degrees of freedom). Figure 3 shows plots of the residu-
als and fitted values for four different voxels. With the aid of a LOESS smoother
[Cleveland and Devlin (1988)], we see a nonlinear relationship between the resid-
ual and the fitted values. This pattern is not unique to these four voxels. We ex-
tended this analysis to all 1,331 voxels. By standardizing the fitted values, we can
overlay the smoothers for all 1,331 voxels and inspect for systematic deviations
from the sqrt(X) model across all voxels. Figure 4 shows the result. Nonlinear-
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FIG. 3. Residual and fitted values of model (4.1) for four different voxels (labeled above). The solid
curves show a LOESS fit of the residual on the fitted values.

ity beyond the sqrt(X) model is present in almost all voxels, and, moreover, the
residuals appear to be heteroskedastic.

Composing the square root transformation with an additional nonlinear trans-
formation could absorb some of the residual nonlinearity in the sqrt(X) model.
Instead of the square root, log(1 + √

x) was used by Naselaris et al. (2009) to an-
alyze the same data set as we do in this paper and it has also been used in other
applications [see Kafadar and Wegman (2006) for an example in the analysis of

FIG. 4. Residual and standardized fitted values of model (4.1) blended across all 1,331 voxels. The
solid curves show the LOESS fits of the residuals on the fitted values for each voxel.
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FIG. 5. Comparison of voxel-wise predictive R2 (based on the validation data) of the log(1 +
sqrt(X)) model (4.2) and the sqrt(X) model (4.1). The vertical axis shows the difference R2 of (4.2)
−R2 of (4.1). The median improvement of model (4.2) is 5.5% for voxels where both models have a
predictive R2 > 0.1.

internet traffic data]. The resulting model is

μv(s) = βv0 +
p∑

j=1

βvj log
(
1 +

√
Xj(s)

)
,(4.2)

and we refer to it as the log(1 + sqrt(X)) model.
We fit model (4.2) using Lasso with BIC, and compared its prediction perfor-

mance with model (4.1) by evaluating the squared correlation (predictive R2) be-
tween the predicted and actual response across all 120 images in the validation set.
Figure 5 shows the difference in predictive R2 values of the two models for each
voxel. There is an improvement in prediction performance (median 5.5% for vox-
els where both models have an R2 > 0.1) with model (4.2). However, examination
of residual plots (not shown) reveals that there is still residual nonlinearity.

4.2. Sparse additive (nonparametric) models. The
√

x and log(1+√
x) trans-

formations were used in previous work to approximate the contrast saturation of
the BOLD response. Rather than trying other fixed transformations to account for
the nonlinearities in the voxel response, we employed a sparse nonparametric ap-
proach that is based on the additive model. The additive model [cf. Hastie and
Tibshirani (1990)] is a useful generalization of the linear model that allows the
feature transformations to be estimated from the data. Rather than assuming that
the conditional mean μ is a linear function (of fixed transformations) of the fea-
tures, the additive (nonparametric) model assumes that

μ = β0 +
p∑

j=1

fj (Xj ),(4.3)
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where fj ∈ Hj are unknown, mean 0 predictor functions in some Hilbert spaces
Hj . The linear model is a special case where the predictor functions are assumed
to be of the form fj (x) = βjx. The monograph of Hastie and Tibshirani describes
methods of estimation and algorithms for fitting (4.3), however, the setting there
is more classical in that the methods are most appropriate for low-dimensional
problems (small p, large n).

Ravikumar et al. (2009b) extended the additive model methodology to the high-
dimensional setting by incorporating ideas from the Lasso. Their sparse additive
model (SPAM) adds a sparsity assumption to (4.3) by assuming that the set of ac-
tive predictors {j :fj �= 0} is sparse. They propose fitting (4.3) under this sparsity
assumption by minimization of the penalized squared error loss

min
fj∈Ĥj ,β0

∥∥∥∥∥Y − β01 −
p∑

j=1

fj (Xj )

∥∥∥∥∥
2

+ λ

p∑
j=1

‖fj (Xj )‖,(4.4)

where ‖ · ‖ is the Euclidean norm in R
n, Y is the n-vector of sample responses, 1 is

the vector of 1’s, fj (Xj ) is the vector obtained by applying fj to each sample of
Xj , and λ ≥ 0. The penalty term, λ

∑p
j=1 ‖fj (Xj )‖, is the functional equivalent of

the Lasso penalty. It simultaneously encourages sparsity (setting many fj to zero)
and shrinkage of the estimated predictor functions by acting as an L1 penalty on
the empirical L2 function norms ‖fj (Xj )‖, j = 1, . . . , p. The algorithm proposed
by Ravikumar et al. (2009b) for solving the sample version of the SPAM opti-
mization problem (4.4) is shown in Figure 6. It generalizes the well-known back-
fitting algorithm [Friedman and Stuetzle (1981)] by incorporating an additional
soft-thresholding step. The main bottleneck of the algorithm is the complexity of
the smoothing step.

Input: Sample vectors (Y, X1, . . . ,Xp), smoothers (smooth1, . . . , smoothp), and regularization pa-
rameter (λ ≥ 0)
β̂0 ← Ȳ
f̂j ← 0 for j = 1, . . . , p

repeat
for j = 1 to p do

Rj ← Y − β̂01 − ∑
k �=j f̂k(Xk)—compute the partial residual

sj ← smoothj (Rj )

f̂j ← sj (1 − λ/‖sj‖)+—soft-threshold
end for

until RSS = ‖Y − β̂01 − ∑
j f̂j (Xj )‖2 converges

return estimated intercept β̂0 and predictor functions f̂1, f̂2, . . . , f̂p

FIG. 6. The SPAM backfitting algorithm.
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We did not apply SPAM directly to the feature Xj(s), but instead applied it to

the transformed feature, log(1 +
√

Xj(s)). We refer to the model

μv(s) = βv0 +
p∑

j=1

fvj

(
log

(
1 +

√
Xj(s)

))
(4.5)

as V-SPAM—“V” for visual cortex and V1 neuron-inspired features. There is no
loss in generality of this model when compared with (4.3), but there is a practical
benefit because the log(1 +

√
Xj(s)) feature tends to be better spread out than the

Xj(s) feature. This has a direct effect on the smoothness of fvj . Although we did
not try other transformations, we found that applying the SPAM model directly to
the Xj(s) features rather than log(1 +

√
Xj(s)) resulted in poorer fitting models.

We fit the V-SPAM model separately to each voxel, using cubic spline
smoothers for the fvj . We placed knots at the deciles of the log(1 + √

Xj) feature
distributions and fixed the effective degrees of freedom [trace of the corresponding
smoothing matrix; cf. Hastie and Tibshirani (1990)] to 4 for each smoother. This
choice was based on examination of a few partial residual plots from model (4.2)
and comparison of smooths for different effective degrees of freedoms. We felt
that optimizing the smoothing parameters across features and voxels (with gener-
alized cross-validation or some other criterion) would add too much complexity
and computational burden to the fitting procedure.

The amount of time required to fit the V-SPAM model for a single voxel with
10,920 features is considerably longer than for fitting a linear model, because of
the complexity of the smoothing step. So for computational reasons we reduced the
number of features to 500 by screening out those that have low marginal correlation
with the response, which reduced the time to fit one voxel to about 10 seconds.8

We selected the regularization parameter λ using BIC with the degrees of freedom
of a candidate model defined to be the sum of the effective degrees of freedom of
the active smoothers (those corresponding to nonzero estimates of fj ).

Figure 7 shows residual and fitted value plots for the four voxels that we exam-
ined in the previous section. Little residual nonlinearity remains in this aspect of
the V-SPAM fit. The residual linear trend in the LOESS curve is due to the shrink-
age effect of the SPAM penalty—the residuals of a penalized least squares fit are
necessarily correlated with the fitted values. Figure 8 shows the residuals and fitted
values of V-SPAM for all 1,331 voxels. In contrast to Figure 4, there is neither a
visible pattern of nonlinearity, nor a visible pattern of heteroskedasticity.

The V-SPAM model better addresses nonlinearities in the voxel response. To
determine if this model leads to improved prediction performance, we examined
the squared correlation (predictive R2) between the predicted and actual response

8Timing for an 8-core, 2.8 GHz Intel Xeon-based computer using a multithreaded linear algebra
library with software written in R.
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FIG. 7. Residual and fitted values of V-SPAM (4.5) for four different voxels (labeled above). The
solid curves show a LOESS fit of the residual on the fitted values. Compare with Figure 3. The linear
trend in the residuals is due to the shrinkage effect of the penalty in the SPAM criterion (4.4).

across all 120 images in the validation set. Figure 9 compares the predictive R2 of
the V-SPAM model for each voxel with those of the sqrt(X) model (4.1) and the
log(1 + sqrt(X)) model (4.2). Across most voxels, there is a substantial improve-
ment in prediction performance. The median (across voxels where both models
have a predictive R2 > 0.1) is 26.4% over the sqrt(X) model, and 19.9% over
the log(1 + sqrt(X)) model. Thus, the additional nonlinear aspects of the response
revealed in the residual plots (Figures 3 and 4) for the parametric sqrt(X) and

FIG. 8. Residual and standardized fitted values of V-SPAM (4.5) for all 1,331 voxels. The solid
curves show the LOESS fits of the residuals on the fitted values for each voxel. Compare with Figure 4.
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(a)

(b)

FIG. 9. Comparison of voxel-wise predictive R2 (based on the validation data) of the sqrt(X)

model (4.1), the log(1 + sqrt(X)) model (4.2) and V-SPAM (4.5). (a) Histograms of the predictive R2

value across voxels. They are displayed sideways to ease comparison. (b) Difference of predictive R2

values of V-SPAM (4.5): (left) sqrt(X) model (4.1); (right) log(1 + sqrt(X)) model (4.2).

log(1 + sqrt(X)) models are real and they account for a substantial part of the
prediction of the voxel response.

5. Decoding the V1 voxel response. Decoding models have received a great
deal of attention recently because of their role in potential “mind reading” de-
vices. Decoding models are also useful from a statistical point of view because
their results can be judged directly in the known and controlled stimulus space.
Here we show that accurately characterizing nonlinearities with the V-SPAM en-
coding model (presented in the preceding section) leads to substantially improved
decoding.

We used a Naive Bayes approach similar to that proposed by Naselaris et al.
(2009) to derive a decoding model from the V-SPAM encoding model. Recall that
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Yv (v = 1, . . . ,m and m = 1,331) is the response of voxel v to image S. A simple
model for Yv that is compatible with the least squares fitting in Section 4 assumes
that the conditional distribution of Yv given S is Normal with mean μv(S) and vari-
ance σ 2

v , and that Y1, . . . , Ym are conditionally independent given S. To complete
the specification of the joint distribution of the stimulus and response, we take an
empirical approach [Naselaris et al. (2009)] by considering a large collection of
images B similar to those used to acquire training and validation data. The bag of
images prior places equal probability on each image in B:

P(S = s) =
⎧⎨
⎩

1

|B| , if s ∈ B,

0, otherwise.

This distribution only implicitly specifies the statistical structure of natural images.
With Bayes’ rule we arrive at the decoding model

p(s|y1, . . . , ys) ∝ exp

{
−

m∑
v=1

(yv − μv(s))
2

2σ 2
v

}
× P(S = s).

This model suggests that we can identify the image s that most closely matches a
given voxel response pattern (Y1, . . . , Ym) by the rule

arg max
s

p(s|y1, . . . , ys) = arg min
s∈B

m∑
v=1

1

σ 2
v

(
yv − μv(s)

)2
.(5.1)

The fitted models from Section 4 provide estimates of μv . Given μ̂v , the variance
σ 2

v can be estimated by

σ̂ 2
v = ‖Yv − μ̂v(S)‖2

n − df(μ̂v)
,

where df(μ̂v) is the degrees of freedom of the estimate μ̂v (the number of nonzero
coefficients in the case of linear models, or 4 times the number of nonzero func-
tions in the case of V-SPAM; cf. Section 4.2). Substituting these estimates into
(5.1) gives the decoding rule

arg min
s∈B

m∑
v=1

1

σ̂ 2
v

(
yv − μ̂v(s)

)2
.

Although we have estimates for every voxel, not every voxel may be useful for
decoding—μ̂v may be a poor estimate of μv or μv(s) may be close to constant for
every s. In that case, we may want to select a subset of voxels V ⊆ {1, . . . ,m} and
restrict the summation in the above display to V . Thus, we propose the decoding
rule

ŜV (y1, . . . , ym|B) = arg min
s∈B

∑
v∈V

1

σ̂ 2
v

(
yv − μ̂v(s)

)2
.(5.2)
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One strategy for voxel selection is to set a threshold α for entry to V based on the
usual R2 computed with the training data,

training R2(v) = 1 − ‖Yv − μ̂v(S)‖2

‖Yv − Ȳv‖2
,(5.3)

so that Vα = {v : training R2(v) > α}. We will examine this strategy later in the
section.

To use (5.2) as a general purpose decoder, the collection of images B should
ideally be large enough so that every natural image S is “well-approximated” by
some image in B. This requires a distance function over natural images in order to
formalize “well-approximate,” but it is not clear what the distance function should
be. We consider instead the following paradigm. Suppose that the image stimulus
S that evoked the voxel response pattern is actually contained in B. Then it may be
possible for (5.2) to recover S exactly. This is the basic premise of the identification
problem where we ask if the decoding rule can correctly identify S from a set of
candidates B ∪{S}. Within this paradigm, we assess (5.2) by its identification error
rate,

id error rate := P
(
ŜV (Y ′

1, . . . , Y
′
m|B ∪ {S′}) �= S′|ŜV (· · ·)),(5.4)

on a future stimulus and voxel response pair {S′, (Y ′
1, . . . , Y

′
m)} that is independent

of the training data.
The identification error rate should increase as |B| = b increases. However, the

rate at which it increases will depend on the model used for estimating μ̂v . We
investigated this by starting with a database D of 11,499 images (as in Figure 1)
that are similar to, but do not include, the images in the training data or validation
data, and then repeating the following experiment for different choices of b:

(1) Form B by drawing a sample of size b without replacement from D.
(2) Estimate the identification error rate (5.4) using the 120 stimulus and voxel

response pairs {S′, (Y ′
1, . . . , Y

′
m)} in the validation data.

(3) Average the estimated identification error rate over all possible B ⊆ D of
size b.

The average identification error rate can be computed without resorting to Monte
Carlo. Given {S′, (Y ′

1, . . . , Y
′
m)},

ŜV (Y ′
1, . . . , Y

′
m|B ∪ {S′}) = S′(5.5)

if and only if

∑
v∈V

1

σ̂ 2
v

(
Y ′

v − μ̂v(S)
)2

<
∑
v∈V

1

σ̂ 2
v

(
Y ′

v − μ̂v(s)
)2(5.6)

for every s ∈ B. Since B is drawn by a simple random sample, the number of times
that event (5.6) occurs follows a hypergeometric distribution. So the conditional
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FIG. 10. Estimated average identification error rate (5.4) as a function of the number of possible
images (|B| + 1). The error rates were estimated using the validation data and B randomly sampled
from a database of 11,499 images.

probability that (5.5) occurs is just the probability that a hypergeometric random
variable is equal to b. The parameters of this hypergeometric distribution are given
by the number of images in D that satisfy (5.6), the number of images in D that
do not satisfy (5.6), and b. Counting the number of images in D that satisfy/do
not satisfy (5.6) is easy and only has to be done once for each S in the validation
data, regardless of b. Thus, the computation involves evaluating (5.6) 120×11,499
times (since there are 120 images in the validation data and 11,499 images in D),
and then evaluating 120 hypergeometric probabilities for each b.

Figure 10 shows the results of applying the preceding analysis to the fixed trans-
formation models (4.1) and (4.2) and the V-SPAM model (4.5). Each model has its
own subset of voxels V used by the decoding rule. We set the training R2 thresh-
olds (5.3) so that the corresponding decoding rule used |V| = 400 voxels for each
model. When |B| is small, identification is easy and all three models have very low
error rates. As the number of possible images increases, the error rates of all three
models increase but at different rates. At maximum, when B = D and there are
11,499 + 1 = 11,500 candidate images (11,499 images in D plus 1 correct image
not in D) for the decoding rule to choose from, the fixed transformation models
have an error rate of about 40%, while the V-SPAM model has an error rate of
about 28%.

The ordering of and large gap between the fixed transformation models and V-
SPAM at maximum does not depend on our choice of |V| = 400 voxels. Fixing
B = D so that the number of possible images is maximal, we examined how the
identification error rate varies as the training R2 threshold is varied. Figure 11
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(a)

(b)

FIG. 11. Identification error rate (5.4) as a function of the training R2 threshold (5.3) when the
number of possible images is 11,499 + 1. (a) Estimated identification error rate. The solid circles on
each curve mark the points where the number of voxels used by the decoding rule is (from left to right)
400, 200 or 100. (b) Pointwise 95% confidence bands for the difference between the identification
error rates of (upper) sqrt(X) model (4.1) and V-SPAM; (lower) log(1 + sqrt(X)) model (4.2) and
V-SPAM. The confidence bands reflect uncertainty due to sampling variation of the validation data.

shows our results. The threshold corresponding to 400 voxels is larger for V-SPAM
than the fixed transformation models. It is about 0.1 for V-SPAM and 0.05 for the
fixed transformation models. When the threshold is below 0.05, the error rates of
the three models are indistinguishable. Above 0.05, V-SPAM generally has a much
lower error rate than the fixed transformation models. In panel (a) of Figure 11
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we also see that V-SPAM can achieve an error rate lower than the best of the
fixed transformation models with half as many voxels (≤ 200 versus ≥ 400). These
results show that the substantial improvements in voxel response prediction by V-
SPAM can lead to substantial improvements in decoding accuracy.

6. Nonlinearity and inferred tuning properties. In computational neuro-
science, the tuning function describes how the output of a neuron or voxel varies
as a function of some specific stimulus feature [Zhang and Sejnowski (1999)].
As such, the tuning function is a special case of an encoding model, and once an
encoding model has been estimated, a tuning function can be extracted from the
model by integrating out all of the stimulus features except for those of interest.
In practice, this extraction is achieved by using an encoding model to predict re-
sponses to parametrized, synthetic stimuli. One way to assess the quality of an
encoding model is to inspect the tuning functions that are derived from it [Kay
et al. (2008a)].

For vision, the most fundamental and important kind of tuning function is the
spatial receptive field. Each neuron (or voxel) in each visual area is sensitive to
stimulus energy presented in a limited region of visual space, and spatial receptive
fields describe how the response of the neuron or voxel is modulated over this
region. In the primary visual cortex, response modulation is typically strongest
at the center of the receptive field. Response modulation is much weaker at the
periphery, but has been shown to have functionally significant effects on the output
of the neuron (or voxel) [Vinje and Gallant (2000)].

The panels in Figure 12 show estimated spatial receptive fields for voxel 717
using the three different models considered here [we chose this voxel because its
predictive R2 varied greatly among the three models: 0.26 for the sqrt(X) model
(4.1), 0.42 for the log(1 + sqrt(X)) (4.2), and 0.57 for V-SPAM (4.5)]. These esti-
mated receptive fields indicate the locations within the spatial field of view that are

FIG. 12. Estimated spatial receptive field for voxel 717. The contours show the predicted response
to a point stimulus placed at various locations across the field of view. They indicate the sensitivity
of the voxel to different spatial locations.
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FIG. 13. Estimated frequency and orientation tuning for voxel 717. The contours show the pre-
dicted response to a 2D cosine stimulus (a 2D Fourier basis function) parameterized by frequency
and orientation. Darker regions correspond to greater predicted responses. The plot reveals sensitiv-
ity of the voxel to different spectral components.

predicted to modulate the response of the voxel by each model. All three models
agree that the voxel is tuned to a region in the lower-right quadrant of the field of
view; however, for V-SPAM the receptive field is more expansive, and is thus able
to capture the weak but potentially important responses at the far periphery of the
visual field.

Like spatial tuning, orientation and frequency tuning are fundamental proper-
ties of V1, so it is essential to inspect the orientation and frequency tuning func-
tions that are derived from encoding models for this area. As seen in the panels
of Figure 13, the V-SPAM model is better able to capture the weaker responses to
orientations and spatial frequencies away from the peaks of the tuning.

Finally, we examine tuning to image contrast, which is another critical property
of V1. Image contrast strongly modulates responses in V1 and is also perceptually
salient, so contrast tuning functions are frequently used to study the relationship
between activity and perception [Olman et al. (2004)]. The contrast tuning func-
tion describes how a voxel is predicted to respond to different contrast levels. It is
constructed by computing the predicted response to a stimulus of the form t · w,
where w is standardized 2D pink noise (whose power spectral density is of the
form 1/|ω|), and t ≥ 0 is the root-mean-square (RMS) contrast. At zero contrast
the noise is invisible and only the background can be seen; as contrast increases
the noise becomes more visible and distinguishable from the background. Fig-
ure 14 shows the contrast response function for the voxel as estimated by the three
models. The first two, the sqrt(X) and log(1+ sqrt(X)), look nearly linear and rel-
atively flat over the range of contrasts present in the training images. The V-SPAM
prediction tapers off as contrast increases, and it is much more negative for low
contrasts than predicted by sqrt(X) and log(1+ sqrt(X)). The V-SPAM prediction
is closer to what is expected based on previous direct measurements [Olman et al.
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FIG. 14. Estimated contrast tuning function for voxel 717. This is the predicted response to a pink
noise stimulus at different levels of RMS contrast t . The tick marks indicate the deciles of RMS
contrast in the training images (e.g., fewer than 10% of training images have contrast between 2
and 4).

(2004)], and suggests that V-SPAM is more sensitive to responses evoked by lower
contrast stimulus energy.

The relatively more sensitive tuning functions derived from the V-SPAM model
of voxel 717 have a simple explanation. The models selected by BIC for this voxel
included different numbers of features: 7 for sqrt(X), 29 for log(1 + sqrt(X)), and
53 for V-SPAM. Since the features are localized in space, frequency, and orien-
tation, the number of features in the selected model is related to the sensitivity
of the estimated tuning functions in the periphery. BIC forces a trade-off between
the residual sum of squares (RSS) and number of features. The models with fixed
transformations have much larger RSS values than V-SPAM, and the trade-off (see
Figure 15) favors fewer features for them because the residual nonlinearity (as
shown in Figure 3) does not go away with increased numbers of features. This
suggests that the sensitivity of a voxel to weaker stimulus energy is not detected
by the sqrt(X) and log(1+ sqrt(X)) models, because it is masked by residual non-
linearity. So the tuning function of a voxel can be much broader than inferred by
the model when the model is incorrect.

7. Conclusion. Using residual analysis and a start-of-the-art sparse additive
nonparametric method (SPAM), we have derived V-SPAM encoding models for
V1 fMRI BOLD responses to natural images and demonstrated the presence of
an important nonlinearity in V1 fMRI response that has not been accounted for
by previous models based on fixed parametric nonlinear transforms. This nonlin-
earity could be caused by several different mechanisms including the dynamics of
blood flow and oxygenation in the brain and the underlying neural processes. By
comparing V-SPAM models with the previous models, we showed that V-SPAM
models can both improve substantially prediction accuracy for encoding and de-
crease substantially identification error when decoding from very large collections
of images. We also showed that the deficiency of the previous encoding models
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FIG. 15. Comparison of BIC paths for different models of voxel 717: the sqrt(X) model (4.1), the
log(1 + sqrt(X)) model (4.2), and V-SPAM (4.5).

with fixed parametric nonlinear transformations also affects tuning functions de-
rived from the fitted models.

Since encoding and decoding models are becoming more prevalent in fMRI
studies, it is important to have methods to adequately characterize the nonlinear
aspects of the response-stimulus relationship. Failure to address nonlinearity ef-
fectively can lead to suboptimal predictions and incorrect inferences. The methods
used here, combining residual analysis and sparse nonparametric modeling, can
easily be adopted by neuroscientists studying any part of the brain with encoding
and decoding models.

APPENDIX: EXTRACTING THE FMRI BOLD RESPONSE

The fMRI signal Zv(t) measured at voxel v can be modeled as a sum of three
components: the BOLD signal Bv(t), a nuisance signal Nv(t) (consisting of low
frequency fluctuations due to scanner drift, physiological noise, and other nui-
sances), and noise εv(t):

Zv(t) = Bv(t) + Nv(t) + εv(t).

The BOLD signal is a mixture of evoked responses to image stimuli. This reflects
the underlying hemodynamic response that results from neuronal and vascular
changes triggered by an image presentation. The hemodynamic response function
hv(t) characterizes the shape of the BOLD response (see Figure 16), and is related
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FIG. 16. A model hemodynamic response function.

to the BOLD signal by the linear time invariant system model [Friston, Jezzard
and Turner (1994)],

Bv(t) =
n∑

k=1

∑
τ∈Tk

Av(k)hv(t − τ),

where n is the number of images, Tk is the set of times at which image k is pre-
sented to the subject, and Av(k) is the amplitude of the voxel’s response to image k.

To extract Av(·) from the fMRI signal, it is necessary to estimate the hemody-
namic response function and the nuisance signal. We used the method described
in Kay et al. (2008b), modeling hv(t) as a linear combination of Fourier basis
functions covering a period of 16 seconds following stimulus onset, Nv(t) as a de-
gree 3 polynomial, and εv(t) as a first-order autoregressive process. The resulting
estimates Âv(·) are the voxel responses for each image.
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