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A METHOD FOR VISUAL IDENTIFICATION OF SMALL SAMPLE
SUBGROUPS AND POTENTIAL BIOMARKERS

BY CHARLOTTE SONESON AND MAGNUS FONTES

Lund University

In order to find previously unknown subgroups in biomedical data and
generate testable hypotheses, visually guided exploratory analysis can be of
tremendous importance. In this paper we propose a new dissimilarity measure
that can be used within the Multidimensional Scaling framework to obtain a
joint low-dimensional representation of both the samples and variables of a
multivariate data set, thereby providing an alternative to conventional biplots.
In comparison with biplots, the representations obtained by our approach are
particularly useful for exploratory analysis of data sets where there are small
groups of variables sharing unusually high or low values for a small group of
samples.

1. Introduction. As the amount and variety of biomedical data increase, so
does the hope of finding biomarkers, that is, substances that can be used as indica-
tors of specific medical conditions. It can also be possible to detect new, subtle dis-
ease subtypes and monitor disease progression. In these latter cases an exploratory
approach may be beneficial in order to detect previously unknown patterns. Ex-
ploratory analysis methods providing a visually representable result are particu-
larly appealing since they allow the unparalleled power of the human brain to be
used to find potentially interesting structures and patterns in the data. The inability
to interpret objects in more than three dimensions has motivated the development
of methods that create a low-dimensional representation summarizing the main
features of the observed data. Probably the most well-known such method is Prin-
cipal Components Analysis (PCA) [Pearson (1901); Hotelling (1933a, 1933b)]
which provides the best approximation (measured by the Frobenius norm) of a
given rank to a data matrix, and which is used extensively [see, e.g., Alter, Brown
and Botstein (2000); Ross et al. (2003) for applications to gene expression data].
One particularly appealing aspect of PCA is that its formulation in terms of the sin-
gular value decomposition (SVD) provides also a low-dimensional representation
of the variables, which is directly synchronized with the sample representation.
This allows for a visually guided interpretation of the impact of each variable on
the patterns seen among the samples. The joint visualization obtained by depicting
both the sample and variable representations in the same plot is commonly referred
to as a biplot [Gabriel (1971); Gower and Hand (1996)]. Biplots have been used
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for visualization and interpretation of many different types of data [e.g., Phillips
and McNicol (1986); De Crespin de Billy, Dolédec and Chessel (2000); Chapman
et al. (2001); Wouters et al. (2003); Park et al. (2008)].

The usefulness of PCA is dependent upon the assumption that the Euclidean
distance between the variable profiles of a pair of samples provides a good mea-
sure of the dissimilarity between the samples. It is easy to imagine situations where
this is not true, for example, if two samples should be considered similar if they
show similar, unusually high or low values on only a small subset of the variables
irrespective of the values of the rest of the variables, or if the samples are dis-
tributed along a nonlinear manifold. Furthermore, to be extracted by the first few
principal components, which are usually used for visualization and interpretation,
a pattern must encode a substantial part of the variance in the data set. This means
that small groups of samples may be difficult to extract visually, even if they share
a characteristic variable profile.

To address the shortcomings of PCA and allow accurate visualization of more
complex sample configurations, a variety of generalizations and alternatives to
PCA have been proposed, such as projection pursuit [Friedman and Tukey (1974);
Huber (1985)], kernel PCA [Schölkopf, Smola and Müller (1998)] and other mani-
fold learning methods such as Isomap [Tenenbaum, de Silva and Langford (2000)],
Locally Linear Embedding [Roweis and Saul (2000)] and Laplacian Eigenmaps
[Belkin and Niyogi (2003)]. Most of these methods do not automatically provide a
related variable representation, which makes it more difficult to formulate hypothe-
ses concerning the relationship between the variables and the patterns seen among
the samples. In particular, this is true for methods based on Multidimensional Scal-
ing (MDS), which create a low-dimensional sample representation based only on
a given matrix of dissimilarities between the samples.

In this paper we present CUMBIA (Computational Unsupervised Method for
BIvisualization Analysis), an exploratory MDS-based method for creating a com-
mon low-dimensional representation of both the samples and the variables of a data
set. We use the term “bivisualization” to denote both the process of creating low-
dimensional sample and variable visualizations and the resulting joint represen-
tations. When using CUMBIA, we define a measure of the dissimilarity between
a sample and a variable, and use this to calculate sample–sample and variable–
variable dissimilarities. All dissimilarities are put into a common dissimilarity ma-
trix. Finally, we apply classical MDS to obtain a joint low-dimensional sample and
variable representation. In this way, we obtain a biplot-like result where the rela-
tions between samples and variables can be readily explored. We apply CUMBIA
to a synthetic data set as well as real-world data sets, and show that it provides use-
ful bivisualizations which are often more informative than the biplots obtained by
conventional methods for data sets containing small sample clusters sharing excep-
tional values for relatively few variables. In many cases, PCA will fail to find these
groups because they do not encode enough of the variance in the data. We there-
fore believe that the proposed method may be a valuable complement to existing



BIVISUALIZATION WITH CUMBIA 2133

methods for hypothesis generation and visual exploratory analysis of multivariate
data sets.

2. Related work. The approach described in this paper provides a joint visu-
alization of both samples and variables, which is particularly useful for data sets
containing small groups of samples sharing extreme values of few variables. To
our knowledge, this problem has not been specifically addressed by previously pro-
posed methods. In this section we compare our approach to some existing methods
for finding and visualizing “interesting” variable combinations and corresponding
sample groups.

Constructing a biplot when the sample representation is obtained by PCA is
straightforward, as will be shown in Section 3.1. The nonlinear biplot was in-
troduced by Gower and Harding (1988) to generalize this result to more general
sample representations. For a sample representation obtained by a given ordina-
tion method, such as PCA or MDS (based on a specific dissimilarity measure),
Gower and Harding construct the variable representation by letting one variable at
a time vary in a “pseudo-sample,” while keeping the values of the other variables
fixed at their mean values across the original samples. Then, the (usually nonlin-
ear) trajectory of the pseudo-sample in the original sample representation is taken
as a representation of the variable. These trajectories can often be interpreted in
much the same way as ordinary coordinate axes. The approach described in our
paper is different from that in Gower and Harding (1988), since both samples and
variables are treated on an equal footing in the MDS and, hence, all dissimilarities
are used to obtain the low-dimensional representations. Moreover, the nonlinear
biplots may be hard to interpret when the number of variables is large.

CUMBIA provides a joint low-dimensional representation of samples and vari-
ables which highlights other patterns than conventional multivariate visualization
methods and where small groups of related objects are often readily visible. Biclus-
tering methods [e.g., Cheng and Church (2000); Getz, Levine and Domany (2000);
Dhillon (2001); Tanay, Sharan and Shamir (2002); Wang et al. (2002); Ben-Dor
et al. (2003); Bergmann, Ihmels and Barkai (2003); Madeira and Oliveira (2004);
Bisson and Hussain (2008); Rege, Dong and Fotouhi (2008); Lee et al. (2010)]
have been proposed in different applications with the explicit aim of extracting
subsets of samples (documents) and genes (words), so-called biclusters, such that
the variables in a subset are strongly related across the corresponding sample sub-
set. Some of the biclustering methods adopt a weighted bipartite graph approach
[Dhillon (2001); Tanay, Sharan and Shamir (2002)]. Such an approach lies as the
foundation also for CUMBIA. There are, however, important differences between
biclustering methods and CUMBIA. The genes in a bicluster are extracted to ex-
hibit similar profiles across the samples in the bicluster, while the variable clusters
found by CUMBIA are highly expressed in the closely related samples compared
to the rest. Furthermore, biclustering algorithms aim to provide an exhaustive col-
lection of significant biclusters, while visualization methods like the one we pro-
pose provide a visual representation of the most important features of the entire
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data set. This representation immediately allows the researcher to find clusters, de-
tect outliers and obtain insights into the structure of the data which can be used to
generate hypotheses. A further potential advantage of visualization methods com-
pared to clustering is the ability to put objects “in between” two clusters, and to
visualize the relationship between different clusters. In summary, although they are
somewhat similar, biclustering and CUMBIA have different objectives and there-
fore are not likely to give the same results.

Projection pursuit methods [Friedman and Tukey (1974); Huber (1985)] are de-
signed to search for particularly “interesting” directions in a multivariate data set,
where “interestingness” can be defined, for example, as multimodality or devia-
tion from Gaussianity. PCA is one example of a projection pursuit method, where
the interesting directions are those with maximal variance. In this special case,
the optimal directions can be obtained by solving an eigenvalue problem but, in
general, projection pursuit methods are iterative and the result may depend on the
initialization. If the projections onto the extracted directions and the contributions
of the variables to these are visualized simultaneously, the result can be interpreted
to some extent like a biplot.

3. The CUMBIA algorithm. In the following, we let X ∈ R
N×p denote a

data matrix, containing the measured values of p random variables in N samples.
We denote the element in the ith row and j th column of a matrix A by Aij . Fur-
thermore, the Frobenius norm of an m × n matrix A is defined by

‖A‖2
F =

m∑
i=1

n∑
j=1

|Aij |2.

3.1. Biplots and the duality of the singular value decomposition. In this sec-
tion we will recapitulate how the singular value decomposition allows us to repre-
sent both the samples and the variables of a data set in lower-dimensional spaces.
On a pair of such low-dimensional spaces we can define a bilinear real-valued
function, which when applied to a sample and a variable immediately approxi-
mates the value for the variable in that sample. This bilinear function will then be
used to create a dissimilarity measure relating samples and variables.

The singular value decomposition (SVD) of a matrix X ∈ R
N×p with rank r is

given by

X = U�V T ,

where U = [u1, . . . , ur ] ∈ R
N×r , V = [v1, . . . , vr ] ∈ R

p×r and � ∈ R
r×r . The

columns of U and V are pairwise orthogonal and of unit length (so UT U =
V T V = Ir ), and � = diag(λ1, . . . , λr) is a diagonal matrix containing the posi-
tive singular values of X in decreasing order along the diagonal. We will denote
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Us = [u1, . . . , us], Vs = [v1, . . . , vs], �s = diag(λ1, . . . , λs) for s ≤ r . The SVD
can be used to create a rank-s approximation of X by

Xs = Us�sV
T
s .

We note that Xr = X. The Eckart–Young theorem [Eckart and Young (1936)]
states that this approximation is optimal in the sense that

‖X − Xs‖2
F = inf

Y∈RN×p| rank(Y )=s
‖X − Y‖2

F .

The error in the approximation is given by

‖X − Xs‖2
F =

r∑
k=s+1

λ2
k

[Eckart and Young (1936)]. Given a rank-s approximation Xs of a data matrix X,
we want to visualize its rows and columns in s-dimensional spaces (typically s = 2
or 3). For a fixed α ∈ [0,1], we define s-dimensional spaces Vs and Us as the span
of the orthogonal columns of Vs�

1−α
s and Us�

α
s , respectively. Next, we rewrite

Xs as

Xs = (Us�
α
s )(Vs�

1−α
s )T .

This shows that the rows of Us�
α
s can be seen as the coordinates for the approxi-

mated samples (the rows of Xs ) in the space Vs . Similarly, the rows of Vs�
1−α
s can

be seen as the coordinates for the approximated variables in the space Us . Hence,
we take the N rows of Us�

α
s as the s-dimensional representations of the samples,

and the p rows of Vs�
1−α
s as the s-dimensional representations of the variables.

Choosing α = 1 corresponds to conventional PCA where the low-dimensional
sample representation is given by the rows of Us�s and the principal compo-
nents (PCs) are the columns of Vs [Cox and Cox (2001); Jolliffe (2002)]. With this
choice of α, the PCA representation provides an approximation of the Euclidean
distances between the samples of the data set [Jolliffe (2002)]. Choosing instead
α = 0 would approximate the Euclidean distances between the variables.

We next define bilinear functions (·, ·)s : Vs × Us → R, by

(a,b)s :=
s∑

k=1

akbk,(1)

where {ak}sk=1 and {bk}sk=1 are the coordinate sequences of a and b in Vs and Us ,
respectively. We note that the value for variable wj in sample si can be computed
as

Xij =
r∑

k=1

(U�α)ik(V �1−α)jk = (si ,wj )r(2)
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and approximated by

(Xs)ij =
s∑

k=1

(Us�
α
s )ik(Vs�

1−α
s )jk = (si ,wj )s(3)

for s ≤ r .
In classical biplots, the samples are represented by the rows of Us�

α
s and the

variables are represented by the rows of Vs�
1−α
s in the same low-dimensional

plot [Cox and Cox (2001)]. Then it follows from (1) and (3) that the value of the
variable wj in the sample si can be approximated by taking the usual scalar product
between the coordinate sequences for si and wj [Gabriel (1971)]. This makes it
possible to use the low-dimensional biplots to visually draw conclusions about the
relationships between groups of samples and variables.

3.2. Creating a joint dissimilarity matrix for samples and variables. Using the
value of (si ,wj )s as a measure of the similarity between sample si and variable
wj , we define the squared dissimilarity between si and wj as

d2
s (si ,wj ) = λ1 − (si ,wj )s,(4)

where λ1 is the largest singular value of X (this is a natural choice, making all
dissimilarities nonnegative). We note that this is just one way of transforming a
measure of similarity to a dissimilarity, and that there could be other possible
transformations. To define the dissimilarities between two objects of the same
type (i.e., two samples or two variables), we create a weighted bipartite graph.
In this graph, each sample is connected to all variables, and each variable to all
samples. The weight of an edge is taken as the dissimilarity between the corre-
sponding nodes, calculated by (4). The dissimilarity ds(si , sj ) between two sam-
ples [or ds(wi ,wj ) between two variables] is then defined as the shortest distance
between the corresponding nodes in the weighted graph. Together with (4), this
yields a joint (N + p) × (N + p) dissimilarity matrix containing the dissimilar-
ities between all pairs of objects. In this work, we restrict our attention to paths
consisting of only two edges (i.e., going from one sample to another via only one
variable, and vice versa), which will allow us to compute the sample–sample and
variable–variable dissimilarities without actually creating the graph. By allowing
more complex paths, two samples could be considered similar if they are both sim-
ilar to a third sample, even if these similarities are due to completely different sets
of variables. However, this may not be desirable in an application where the goal
is to find biomarkers, since these should ideally be expressed very strongly in all
samples in the corresponding group.1

1It could be useful, for example, in a document classification application, where documents dis-
cussing the same topic with different words may be considered similar since both share words with
a third document on the same topic [Bisson and Hussain (2008)].
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From (2), we note that if we choose s = r , the dissimilarity between a sample
and a variable depends only on λ1 and the expression value of the variable in
that sample. If we choose s < r , (3) implies that the dissimilarity ds(si ,wj ) is
calculated from the approximated value of Xij obtained by SVD. Using s < r may
be an advantage from a noise reduction point of view, since we in this case discard
the smallest singular values and represent the data matrix only by its dominant
features. It is important to note that by using a very small value of s, we may
discard a large part of the true signal as well.

3.3. Creating a low-dimensional representation of samples and variables. To
obtain a low-dimensional representation of the samples and variables from the dis-
similarity matrix D, we apply classical MDS [Torgerson (1952)]. Classical MDS
finds a low-dimensional projection with interpoint Euclidean distances collected
in the matrix D̃, such that

‖C(D) − C(D̃)‖F

is minimized [Mardia (1978); Cox and Cox (2001)]. Here,

C(D) = −1
2JD2J,

where (D2)ij = (Dij )
2, J = In − 1

n
11T with 1 denoting the column vector with

all entries equal to one, and n is the number of objects. The optimal representa-
tion is obtained by the top eigenvectors of C(D), scaled by the square root of the
corresponding eigenvalues. If D is a Euclidean distance matrix, C(D) is a corre-
sponding inner product matrix and classical MDS returns the projections onto the
principal components [Gower (1966)]. If D does not correspond to distances in a
Euclidean space, then C(D) is not positive semidefinite and, hence, some eigen-
values of C(D) are negative [Cox and Cox (2001)]. In this case it is common either
to add a suitable constant to all off-diagonal entries of D, thereby making it cor-
respond to a distance matrix in a Euclidean space [Cailliez (1983)], or to simply
ignore the negative eigenvalues and compute the representation from the eigenvec-
tors corresponding to the largest positive eigenvalues. In this paper we apply the
latter approach.

Algorithm 1 summarizes the main steps of CUMBIA and a small schematic
example is provided in the Supplementary Material.

4. Practical considerations.

4.1. When will a pair of objects be considered similar? From the construc-
tion of the dissimilarity (4) between samples and variables and the computation
of sample–sample dissimilarities as graph distances it follows that two samples
are considered similar if they share a high value for a single variable. This means
that the proposed dissimilarity measure emphasizes mainly the large values in the
data matrix X. Hence, as for PCA and many other multivariate techniques, the



2138 C. SONESON AND M. FONTES

Algorithm 1 CUMBIA

Input: Data matrix X ∈ R
N×p , number of paths to average over (K).

1. Compute the dissimilarities for all sample–variable pairs using (4).
2. Create a weighted bipartite graph, where the weight of an edge between a sam-

ple and a variable is equal to the dissimilarity computed in step 1.
3. Compute the dissimilarities for all sample–sample and variable–variable pairs

as distances in the graph. Average over the K shortest paths.
4. Collect all dissimilarities in a common dissimilarity matrix and perform classi-

cal MDS.
5. Visualize the result in a few dimensions.

scale of the variables will influence the results. The data can be normalized to the
same scale before these methods are applied, for example, by subtracting the mean
value and dividing by the standard deviation of each variable to obtain a matrix of
z-scores.

With the proposed dissimilarity measure, two identical samples will almost cer-
tainly have a positive dissimilarity with each other, which is somewhat counterin-
tuitive. In this paper we put the dissimilarity between identical samples or variables
to zero but other solutions are possible, such as multiplying the dissimilarity values
with function values which are zero for identical objects and rise steeply toward
one as the objects become more dissimilar. The function can be, for example, a sig-
moidal function of the Euclidean distance between the objects. In many practical
applications, identical or near-identical objects are very uncommon and, therefore,
this is not likely to have a major impact on the results from real data sets.

It is important to note that from the construction of the bivisualization, it follows
that it should be interpreted in terms of the relative distances between objects and
not, as in conventional principal components biplots, in terms of the inner products
between samples and variables.

4.2. Computational considerations. Creating a graph with edges connecting
every sample–variable pair and computing the distances in the graph can be a
time-consuming task if the number of variables or samples is large. However, by
the construction of the dissimilarity measure (4), the dissimilarity matrix can be
computed directly from the matrix Xs and the largest singular value of X by

ds(si , sj ) = min
1≤k≤p

(√
λ1 − (XT

s )ki +
√

λ1 − (XT
s )kj

)
,

1 ≤ i, j ≤ N, si �= sj ,

ds(wi ,wj ) = min
1≤k≤N

(√
λ1 − (Xs)ki +

√
λ1 − (Xs)kj

)
,

(5) 1 ≤ i, j ≤ p, wi �= wj ,
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ds(si ,wj ) =
√

λ1 − (Xs)ij , 1 ≤ i ≤ N, 1 ≤ j ≤ p,

where we let (Xs)ki denote the element in the kth row and ith column of Xs , and
similarly for XT

s . The self-dissimilarities are always put to zero. However, also the
classical MDS has a high computational complexity, which implies that the num-
ber of samples and variables should not be too large. Hence, in large data sets such
as genome-wide expression data sets a variable selection should be performed be-
fore applying CUMBIA. The variable selection can be guided by expert knowledge
in the field. Alternatively, the algorithm can initially be applied, for example, to the
probes from each chromosome individually or to random subsets of the variables.

4.3. Stability to outliers. Since the visualization algorithm as described above
depends only on the shortest path between two objects in the graph, it is sensitive
to outliers, for example, large measurement errors for single variables. The stabil-
ity can be increased by averaging over the K shortest paths between any pair of
samples (or variables), but it should be noted that choosing a large K decreases the
ability to detect very small sample and variable groups. Such a stabilization also
permits a computationally efficient implementation, by replacing the min value in
(5) by the average of the K smallest values. It is possible to choose different values
of K for sample pairs and variable pairs.

4.4. Emphasizing both over- and underexpressed variables. As described
above, CUMBIA emphasizes the variables which are overexpressed in a group
of samples, and these variables and samples are placed close to each other in the
low-dimensional joint visualization. However, the dissimilarities between jointly
underexpressed variables are also calculated based on their highest expression val-
ues. Since these may be very low, a group of variables which are jointly under-
expressed may obtain large dissimilarities with each other. This means that these
variables may not form a tight cluster located far from the corresponding samples,
as in PCA. The method can be adjusted to emphasize also this type of relationship,
by changing the calculation of the sample–sample and variable–variable dissimi-
larities (see the Supplementary Material for details).

5. Applications. In order to illustrate and visually evaluate the characteristics
of CUMBIA, we apply it to synthetic data as well as real-world data sets and com-
pare the results to other methods. The first two examples illustrate the benefits of
using CUMBIA for visualization of data sets where the nonrandom variation is
attributable to a small group of variables being overexpressed in few samples, and
the third example shows that CUMBIA performs well also in an example where
the informative features encode a large part of the variance in the data set, which
is the situation where PCA is most useful. Taken together, these examples sug-
gest that CUMBIA can provide useful visualizations in many different situations
and since the feature extraction is not guided by variance content, we can obtain
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other insights into the data structure than with, for example, PCA. In all examples,
we compute the dissimilarity between pairs of samples (or pairs of variables) by
averaging over the K = 3 shortest paths in the graph. We use the original formu-
lation of the algorithm, which means that we will focus on finding overexpressed
variables. Furthermore, we use s = r = rank(X) to calculate the CUMBIA dissim-
ilarity matrix (5), that is, we apply the method to the values in the original data
matrix.

We compare the visualizations obtained by CUMBIA to the biplots obtained
from PCA as well as results from a projection pursuit algorithm and the SAMBA
biclustering method [Tanay, Sharan and Shamir (2002)]. We applied the projection
pursuit method implemented in the FastICA package (version 1.1-11) [Hyvärinen
and Oja (2000)] for R. This method searches for directions where the data show
the largest deviation from Gaussianity. First, the data are whitened by projecting
onto the leading d principal components, and then the projection pursuit direc-
tions are sequentially extracted from the whitened data. Since these directions are
not naturally ordered, we show all d projection pursuit components and the cor-
responding sample representations in the Supplementary Figures. SAMBA was
applied through the EXPANDER software (version 5.09) [Shamir et al. (2005)].
As noted in Section 2, the aim of the biclustering methods is slightly different than
that of CUMBIA, and the comparison mainly serves as an illustration of the dif-
ferent knowledge that can be visually extracted using CUMBIA compared to these
methods. More examples showing the effect of choosing different parameter val-
ues in CUMBIA are available in the Supplementary Material [Soneson and Fontes
(2010)].

5.1. Synthetic data set. We simulate a data matrix X consisting of 60 samples
and 1,500 variables by letting

xij ∈
{ N (2,1), 1 ≤ i ≤ 6, 1 ≤ j ≤ 25,

N (0,1), otherwise.

Hence, there is a small group of 25 variables characterizing a group of six sam-
ples. Each variable is mean-centered and scaled to unit variance across all samples.
Figure 1 shows the low-dimensional representations of samples and variables ob-
tained by CUMBIA and PCA. We note that the small size of the related sample
and variable group makes it impossible to extract clearly with PCA in the first
three components. Even if more components are included, the two groups do not
separate (data not shown). We use d = 10 principal components to whiten the data
before applying the projection pursuit algorithm. The small group of six samples is
not visible in any of the projection pursuit components either (see the Supplemen-
tary Figures). In contrast, the first CUMBIA component discriminates the small
sample group and the related variables from the rest. Scree plots for CUMBIA
and PCA are available in the Supplementary Material. Applying SAMBA to the
synthetic data set does not return any biclusters.
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FIG. 1. Low-dimensional representation of samples and variables from the synthetic data set, ob-
tained by CUMBIA (panel A) and PCA (panel B). Sample representations are shown in the top row,
and corresponding variable representations are shown below. Each subfigure shows the representa-
tion with respect to two of the three first components. Red markers represent the six samples and 25
variables which are simulated to be closely related. Black markers represent the other 54 samples
and 1,475 variables in the data set (PC—principal component).

5.2. Microarray data set—human cell cultures. Next, we consider a real mi-
croarray data set, from a study of gene expression profiles from 61 normal hu-
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man cell cultures. The cell cultures are taken from five cell types in 23 differ-
ent tissues or organs, in total 31 different tissue/cell type combinations. The data
set was downloaded from the National Center for Biotechnology Informations
(NCBI) Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/, data
set GDS1402). The original data set consists of 19,664 variables. We remove the
variables containing missing values (2,741 variables) or negative expression values
(another 517 variables), and the remaining values are log2-transformed.

To illustrate the ability of CUMBIA to detect small sample and variable clus-
ters, we create a new data set from a subset of the variables in the microarray
data set. We select two of the nontrivial sample subgroups, cardiac stromal cells
(N1 = 3) and umbilical artery endothelial cells (N2 = 6). For each of these sample
subgroups and for each variable, we perform a t-test contrasting the selected sub-
group against all other samples. For each of the two subgroups, we include the 50
variables having the highest positive value of the t-statistic. We further extend the
new data set with the 1,500 variables showing the least discriminative power (the
lowest value of the F -statistic) in an F -test contrasting all 31 subgroups. Finally,
all variables are mean centered and scaled to unit variance across the samples. The
final data set now consists of p = 1,600 variables and N = 61 samples. This data
set contains two relatively small sample groups, each of which is characterized
by high values for a small subset of the variables. Furthermore, the vast major-
ity (93.75%) of the variables are not related to any of the predefined subgroups.
Figure 2 shows the low-dimensional representations of the samples and variables
obtained by CUMBIA (panel A) and PCA (panel B). The first two CUMBIA com-
ponents successfully pick up the two small sample subgroups as well as the vari-
ables which are responsible for their close relation. These patterns do not encode
enough variance to be seen in any of the three first principal components (panel B).
In the projection onto the fourth and fifth principal components, the three cardiac
stromal cell samples are visible as well as four of the six umbilical artery endothe-
lial cells (data not shown). Clearly, by considering not only the variance of the
extracted components as a measure of informativeness, CUMBIA highlights other
features than PCA. Scree plots are available as the Supplementary Material. We
used d = 10 principal components for the whitening preceding the projection pur-
suit algorithm, which is able to detect the group of cardiac stromal cells, but the
umbilical artery cells are considerably harder to extract (see the Supplementary
Figures). The projection pursuit algorithm further finds one single umbilical artery
cell occupying one component together with a group of underexpressed variables.
By modifying the CUMBIA algorithm to search for both over- and underexpressed
variables, we also find this pattern (see the Supplementary Material, Figure S2).
For this data set, SAMBA returns 26 biclusters with significant overlaps. Eleven of
these contain two of the cardiac stromal cells (but none of them contain all three).
Eight biclusters contain at least two umbilical artery endothelial cell samples (one
contains all six). Again, we note that the purpose of biclustering is not quite the
same as the purpose of visualization which can also be seen in this example.

http://www.ncbi.nlm.nih.gov/geo/
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FIG. 2. Low-dimensional representation of samples and variables from the human cell culture
microarray data set, obtained by CUMBIA (panel A) and PCA (panel B). Red markers represent
samples from the cardiac stromal cells (N1 = 3), and the 50 variables with highest discriminative
power for this sample group, respectively. Green markers similarly represent the umbilical artery
endothelial cells (N2 = 6) and the corresponding variables. Black markers represent samples from
all other subgroups, and the 1,500 variables from the original data set which are least discriminating
in an F -test contrasting all 31 tissue/cell type combinations in the data set.
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5.3. MicroRNA data set—leukemia cell lines. In the previous examples we
have shown that for data sets where the main nonrandom variation is attributable
to small groups of samples sharing extreme values for small groups of variables,
CUMBIA can produce sample and variable visualizations that are more informa-
tive than those resulting from PCA and the applied projection pursuit algorithm.
Now, we consider a data set containing measurements of 1,145 microRNAs in 20
human leukemia cell lines (unpublished data). The cell lines correspond to three
different leukemia types; CML (chronic myeloid leukemia), AML (acute myeloid
leukemia) and B-ALL (B-cell acute lymphoblastic leukemia). Figure 3 shows the
visualizations obtained by CUMBIA and PCA. In this case, the feature distin-
guishing three of the CML samples (red markers) from the rest of the samples
contains enough variance to be picked up by PCA. The discrimination of these
samples is apparent also with CUMBIA, where furthermore the third component
effectively discriminates the AML group (blue) from the B-ALL group (green).
This effect is more readily visible than in the PCA visualization. The CML group
is biologically heterogeneous which can also be seen in the visualizations. To fa-
cilitate the interpretation of the visualizations, we have colored all variables which
are significantly higher expressed in one sample group than in the others. The het-
erogeneity of the CML group is reflected also here, in that some of the variables
which are closely related to the three deviating CML samples are not significantly
differentially expressed in the whole CML group. On the other hand, it is clear
that the variables which have the most negative values on the third CUMBIA com-
ponent are all highly expressed in the closely located AML samples (blue). Scree
plots for CUMBIA and PCA are available in the Supplementary Material. We used
d = 5 principal components in the whitening for projection pursuit, and the result-
ing components are shown in the Supplementary Figures. In this case, the sample
representations from projection pursuit results are not very different from those of
CUMBIA, but the coupling between the salient sample groups and the correspond-
ing discriminating variables is stronger with CUMBIA. In the absence of external
annotations, this possibly enables formulating sharper and more correct hypothe-
ses. Applying SAMBA to this data set returns 16 biclusters. Generally, from these
biclusters it is difficult to extract information distinguishing the three leukemia
subtypes.

Taken together, the examples indicate that CUMBIA is a useful complement to
existing visualization methods in different contexts. It can find features commonly
detected by existing methods such as PCA and projection pursuit, but also features
that are difficult to find with these methods.

6. Discussion and conclusions. We have described CUMBIA: an unsuper-
vised algorithm for exploratory analysis and simultaneous visualization of the sam-
ples and variables of a multivariate data set. The basis of the algorithm is classical
multidimensional scaling (MDS), which is applied to a joint dissimilarity matrix
and produces a common low-dimensional representation of samples and variables.
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FIG. 3. Low-dimensional representation of samples and variables from the microRNA data set, ob-
tained by CUMBIA (panel A) and PCA (panel B). Red markers represent samples from the CML
subgroup, blue markers correspond to the AML group and green markers to the B-ALL group. Vari-
ables shown in one of these colors are significantly higher expressed in the corresponding sample
group than in the other two (Student’s t-test, one-tailed p < 0.0005, note that this information was
not used to obtain the visualizations, but is merely displayed to facilitate the interpretation).

The dissimilarity between a sample and a variable is based on the expression level
of the variable in the sample; a higher expression level gives a lower dissimilarity.
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The dissimilarity between two samples (or two variables) is then defined by graph
distances, influenced mainly by the variables (samples) with a high total expression
level in the two samples (variables). By applying the method to a synthetic as well
as real-world data sets, we have shown its ability to extract relevant sample and
variable groups. Compared to PCA, which is commonly used for visualization of
high-dimensional data, the proposed method is advantageous for extracting small
related variable and sample subgroups. According to the proposed dissimilarity
measure, two samples will be considered close if they share a high value of one
or a small group of variables. This is in contrast to PCA, where the entire variable
profiles are used to calculate the distance between a pair of samples. We believe
that the proposed method may be a valuable complement to existing methods for
exploratory analysis of multivariate data, to extract closely related sample clusters
and immediately find the variables which are responsible for the discrimination.
This group of variables can then be analyzed further and may constitute potential
biomarkers for the corresponding sample group. As described in this paper, the
proposed algorithm is mainly directed toward finding groups of samples sharing a
high expression value of a, possibly small, group of variables, but can be adjusted
to emphasize also jointly underexpressed variables.

By choosing different values of K (the number of paths to average over in the
calculation of the CUMBIA dissimilarities), it is possible to detect different struc-
tures. A small value of K makes it possible to find very small sample and variable
groups but makes the method sensitive to noisy data. With increasing K the method
becomes more robust, but it is also more difficult to detect the smallest groups. In
an exploratory study, CUMBIA could be applied with different values of K to find
as many potentially relevant patterns as possible.

Putting the negative eigenvalues to zero in the classical MDS as we have done in
this paper potentially discards interesting information, as discussed by Laub and
Müller (2004). Interestingly, in the examples that we have given most eigenval-
ues are positive, but there is one large negative eigenvalue which corresponds to
an eigenvector separating the sample objects from the variable objects. However,
since we are mainly interested in the interaction between samples and variables,
we focus on the largest positive eigenvalues of the inner product matrix and the
corresponding eigenvectors.

The induced dissimilarities from CUMBIA may be potentially useful for clus-
tering of samples and/or variables, for example, by hierarchical clustering [Sneath
(1957); Hastie, Tibshirani and Friedman (2009)]. One would then expect small
sample groups, characterized by few variables, to be clustered more closely than
with hierarchical clustering based on, for example, Euclidean distance. The dissim-
ilarities can potentially also be used for simultaneous feature and sample selection
from the data set by backward feature elimination, in a manner similar, for exam-
ple, to the “gene shaving” [Hastie et al. (2000)] and “recursive feature elimination”
[Guyon et al. (2002)] procedures. This could be done in the following way. First,
the joint CUMBIA dissimilarity matrix for the entire data set is calculated. Then,
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for each object (sample or variable), the mean value of the K0 smallest dissimilar-
ities between the object and all objects of the same type (i.e., samples or variables)
are calculated for a suitable choice of K0. A given fraction of the objects, con-
sisting of those with the largest value of the mean dissimilarity score, can then
be removed. This gives a new data matrix, with fewer samples and variables, to
which the process may be applied. This algorithm provides a sequence of nested
sample–variable biclusters. The optimal cluster size should be determined based
on a suitably chosen optimality criterion. Furthermore, when a bicluster has been
found, the included variables and samples may be removed from the data set and
another, disjoint bicluster may be found from the resulting matrix.

SUPPLEMENTARY MATERIAL

Supplementary material (DOI: 10.1214/11-AOAS460SUPPA; .pdf). In the
supplementary material we give a small schematic example showing the differ-
ent steps of CUMBIA. Further, we show how to emphasize both over- and un-
derexpressed variables in the visualization and how the choice of K and s affect
the resulting visualization. We also provide scree plots obtained by CUMBIA and
PCA for the three data sets studied in the paper.

Supplementary figures—Projection pursuit results (DOI: 10.1214/11-
AOAS460SUPPB; .pdf). The supplementary figures show the result of the Fas-
tICA projection pursuit algorithm applied to the three data sets considered in the
paper. Note that to facilitate the interpretation of the figures, the axes are ungraded
and only the origin is marked.
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