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Abstract. We consider complex sample covariance matrices My = %YY* where Y is a N x p random matrix with i.i.d. entries
Yij,1<i <N,1<j < p,with distribution F. Under some regularity and decay assumptions on F', we prove universality of some
local eigenvalue statistics in the bulk of the spectrum in the limit where N — oo and limy_, o, p/N = y for any real number
y € (0, 00).

Résumé. On considére des matrices de covariance empirique complexes My = % YY* ou Y est une matrice de taille N x p dont
les coefficients Y; s 1<i<N,1<j < p,sontdes variables aléatoires i.i.d. de loi F'. Sous certaines hypotheses de régularité et de
décroissance sur F', on montre I’universalité de certaines statistiques locales de valeurs propres au milieu du spectre quand N — oo
etlimy_, oo p/N =y pour tout réel y € (0, 00).
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1. Introduction
1.1. Model and result

This paper is concerned with universal properties of large complex sample covariance matrices in the bulk of the
spectrum. We consider N x p random matrices ¥ = (Y;;) where the Y;;’s are ii.d. random variables with some
probability distribution F'. Let then My be the sample covariance matrix:

M —lYY*
N=y .

In the whole paper we assume that p > N and that

dy €[1, o0) such that p/N — y as N — o0.
The case where p < N can be deduced from the above setting using the fact that YY* and Y*Y have the same non-
zero eigenvalues. In the sequel we call A1 > Ay > --- > Ay the ordered eigenvalues of My and my := % ZlNzl 8y, its

spectral measure. Assuming that F' has a finite variance o2, Maréenko and Pastur ([18], see also [20]) have shown
that 7 almost surely converges as N — oo to the so-called Maréenko—Pastur distribution ,0]1:452. This probability
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distribution depends on o' only and not on any other detail (higher moments e.g.) of F: in this sense it is universal. It
is defined by the density with respect to the Lebesgue measure:

do)eo @ Jluy — ) —u)
dx - 2nxo?

where uy =o?(1+ /y)? andu_ =o0?(1 — /7).

It has been conjectured (see [19] for instance) that, in the large- N-limit, some finer properties of the spectrum are
also universal. For instance, the spacing between nearest neighbor eigenvalues in the vicinity of a point u € (u—, u4)
is expected to be universal, under the sole assumption that the variance of F is finite. The spacing is actually believed
to be “more universal” than the limiting Mar¢enko—Pastur distribution, in the sense that it is expected to be the same
as for Hermitian Wigner matrices. To investigate such local properties of the spectrum, we introduce the so-called
local eigenvalue statistics in the bulk of the spectrum. Given a function f € L>(R™) (m fixed) with compact support,

1xe[u_,u+], (1.1)

apointu € [u_,uy], and a scaling factor py, we define the local eigenvalue statistic SI(\',”) (f,u, pn) by

SN (Fouspn)y =Y flow iy —u). ... pn (i, — W), (1.2)
i1yeeerim
where the sum is over all distinct indices from {1, ..., N}. When u is in the bulk of the spectrum, thatisu € (u_, uy),

the natural choice for the scaling factor is py = N, ,071:452 (u), which should give the scale of the spacing between nearest

neighbor eigenvalues in the vicinity of u.

We here prove universality of some local linear statistics in the bulk of the spectrum for a wide class of complex
sample covariance matrices. We follow the approach used by [14] (and a series of papers [11-13]) where universality
in the bulk of Wigner matrices is proved. We now define the class of matrices under consideration in this paper. Let
1 be the real Gaussian distribution with mean 0 and variance 1/2. Let F be a complex probability distribution whose
real and imaginary parts are of the form

v(dx) =e™" W p(d), (1.3)
for some real function V satisfying the following assumptions:

— V €% and there exists an integer k > 1 such that

6
SV =1+ (1.4)
j=1

— there exist 81, C’ > 0 such that Vx € R,
v(x) < Cle Bl (1.5)

This assumption can actually be relaxed as explained in Remark 1.2 below to consider distributions v with sub-
exponential decay only.
— F is normalized so that

/xdv(x):O and /|x2|dv(x):l/2. (1.6)

In the sequel we consider sample covariance matrices My = %Y Y* where Y = (¥};) is a N x p random matrix
such that:

Yij,1<i<N;1=<j<p, areiid. random variables with distribution F. (L.7)

One shall remark that the condition (1.6) can always be achieved by rescaling and does not impact on the generality
of our next results.
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We now give our two main results. Let € > 0 small be given.

Theorem 1.1. Assume that F satisfies (1.3)—(1.6). Let also u € (u— + €, uy — €) be a point in the bulk of the spectrum
and py = ijlxﬂl)(u). Then

. 2 _ _(sin(x —y)m 2
Jim B0 = [ rean(i- (=) avay

Remark 1.1. It is also possible to prove universality of local eigenvalue statistics for m = 3 using the approach devel-
oped hereafter. Nevertheless to consider higher integers m, one needs to increase the regularity of V (see Remark 1.1
in [14]).

We can also prove that the spacing distribution close to a point u in the interior of the support of Marcenko—
Pastur’s law is universal. Let s > 0 and (#y) be a sequence such that limy_. fy = +00 and limy_, s % =0

for some 8 > 0. Letu € (u_ + €,u — €) be given and py = Np)lylf(u). Define then the “spacing function” of the
eigenvalues by

1 y
SnGau)i=— 1< <N =1 A4 —A; < — aj—ul < 21 (1.8)
2ty ON ON

Intuitively the expectation of the spacing function is the probability, knowing that there exists an eigenvalue in the
interval [u — ty, u 4 tx], to find its nearest neighbor within a distance pLN. Finally, we define

2

sint(x —y)
p(s) = 2 det(/ — K);2(05). Where K (x,y) = ————

1.9
T(x =) (1

Theorem 1.2. Assume that F satisfies (1.3)—(1.6). Let also u € (u—_ + €, uy —€) be a point in the bulk of the spectrum.
Then,

N
lim ]ESN(s,u):/ p(w)dw. (1.10)
N—o0 0

Remark 1.2. Using truncation and centralization techniques, it is possible to prove both Theorem 1.1 and Theorem 1.2
when assumption (1.5) is replaced by the weaker assumption

3C1, C2 > 0 such that v(x) < Cre~ 2,

This extension is examined in full detail in Section 5 of [14] for Wigner random matrices and readily extends to sample
covariance matrices.

The first proofs of universality in the bulk of the spectrum of large random matrices have been obtained for the
so-called invariant ensembles [7-9]. Their proof relies on the fact that the joint eigenvalue density of such ensembles
can be computed and the asymptotic local eigenvalue statistics can then be determined. A breakthrough in the proof
of the conjecture was obtained in [17] (following the idea of [5] and [6]), proving universality in the bulk for the
so-called Dyson Brownian motion model [10]. This then allowed to extend universality results to a wide class of
non-invariant Hermitian random matrix ensembles — the so-called Gauss divisible ensembles (see Section 1.2 for
the definition). [4] have then obtained the same universality result for Gauss divisible complex sample covariance
matrices. Very recently, such universality results have been greatly improved by [22] and [14] for Hermitian Wigner
random matrices. Both the papers remove the Gauss divisible assumption and only assume sufficient decay of the
entries of Wigner random matrices. The approach of [22] is to make a Taylor expansion of local eigenvalue statistics
of Wigner matrices. The core of the proof is then to show that these statistics depend, in the large-N-limit, only on
the first four moments of the entries of the Wigner matrix. Proving that any Wigner matrix can be matched to a Gauss
divisible matrix with the same first 4 moments allows to prove a very general universality result. On the other hand,
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the approach of [14] is to show that any Wigner matrix (under suitable decay of the entries) can be sufficiently well
approximated by a Gauss divisible random matrix, so that the bulk universality follows. We also refer the reader to
[15] where the two approaches are combined.

While writing this paper, a proof of universality in the bulk of the spectrum of large sample covariance matrices
has been obtained in [23] in the sole case where p — N = O(N*3/4%), but with much milder assumptions on the decay
of the distribution v. Therein v satifies f |x|€2 dv(x) < oo for some sufficiently large C, in place of our assumptions
(1.4) and (1.5). Their approach is based on the ideas developed in [22].

Our paper closely follows the ideas developed in [14]. We give an overview of the proof in the next subsection.

1.2. The idea of the proof

Following the pioneering work of [17] and [4,5] have shown universality of local eigenvalue statistics in the bulk of
the spectrum for complex sample covariance matrices when the distribution of the sample is Gauss divisible. We recall
that a complex distribution (g is Gauss divisible if there exist a complex probability distribution P and a non-trivial
complex Gaussian distribution G such that ug = P * G. Equivalently [4] consider random matrices of the form

~ 1
MN=N(W+aX)(W+aX)*, (1.11)

where W and X are independent N x p complex random matrices both with i.i.d. entries. The W;;’s are P distributed
and the X;;’s are complex standard Gaussian random variables. In the above context a is real number independent
of N. The proof of [17] and [4] relies on three main steps:

— conditionnally on H = % W W*, the eigenvalue process induced by M N defines a so-called determinantal random
point field;

— the corresponding correlation kernel can be expressed as a double integral in the complex plane depending on H
through its sole spectral measure 1 y;

— under suitable assumptions on W and thanks to concentration results for the spectral measure py established by
[2,3] and [16], the asymptotic analysis of the correlation kernel (and local statistics) can be performed.

One may also point out that the correlation kernel is expressed in terms of Bessel functions with a large parameter
and whose order may be bounded or not. The asymptotic analysis requires uniform asymptotic expansions of such
Bessel functions. In [4], the authors consider the case where y =1 and p — N = O(N 43/ 48) only, for which uniform
asymptotic expansions of Bessel functions are easier to handle. In this paper, we are able to consider the general case
with y > 1, using different uniform asymptotic expansions of Bessel functions.

The parameter a is to be seen as the “order of the Gaussian regularization” of P. In principle the above result would
yield a full proof of the universality conjecture if one could let a approach (and be smaller than) 1/+/N. Unfortunately
this idea fails whatever sharp concentration results can be established for . The asymptotic analysis is not stable in
this scale.

A breakthrough to overcome this difficulty is obtained in [14]. In [11-13] concentration results are deeply sharp-
ened so as to be able to consider a Gaussian regularization of order a > LN Given an arbitrary (non-Gauss divisible)

distribution F, the main point is however to show that one can find a Gauss divisible distribution approximating F'
sufficiently well so that one can deduce universality in the bulk for a sample covariance matrix with i.i.d. F distributed
entries. This is the main step achieved in [14], which we now briefly expose.

Consider the Ornstein—Uhlenbeck (OU) process

x 0
L=-————, oyu=Lu.
20

Given a complex probability distribution [z, let then X; be the N x p matrix process with initial distribution Z®N?
and whose entries (real and imaginary parts) evolve independently according to the OU process. Then X; evolves as

1 e (A + (¢ —1)7x),
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where H has i.i.d. entries with distribution X and X has standard complex Gaussian entries. Let e/£ := (e'L)®Np
denote the dynamics of the OU process for all the matrix elements. Here, for small 7, one should think that # ~ a?.
Erdés et al. [14] prove that there exists a Gauss divisible distribution ,u’G approximating F in the total variation

norm in a sufficiently good way. Roughly speaking, let
ph=et(1—tL+1L*/2)F°,  fi=(1—tL+t*L*/2)F°,

where F¢ is obtained from F after truncation and centralization. Intuitively, it is reasonable to expect that u; is a good
approximation of F' in the scale ¢ < 1. For sake of completeness we here recall their result (Proposition 2.1).
Let 6 be a smooth cutoff function satisfying 8(x) = 1 if |[x| < 1 and 6(x) = 0 for |x| > 2.

Proposition 1.1. Ler V satisfy (1.4), (1.5) for some k and (1.6). Let 1 > 0 be sufficiently small and t = N*~!. Let
cN,dn be real numbers so that vdu defines a centered probability density if the function v is given by:

v i=e VO V) = V)o((x — en) NV 1 dy.
Let then L:=L®N?| fy ,:=(e"V)®NP and f. n ,:= v®NP.

1. There exist constants C > 0, ¢ > 0 depending on k and ) such that [ |fen,p — fn,pldu®NP < Ce— NP2,
2. g := (1—tL+1t>L?/2)v is a probability measure with respect to dju. Setting G, = [g,1°NP, there exists a constant
C depending on A and the constants C, and 81 defined in (1.4) and (1.5) such that

tL 2
/ le~G; — fen,pl du®Nr < CNptﬁ_)‘ < CN—4+8A£'
e’ﬁGt N

The idea is then to prove Theorem 1.1 and Theorem 1.2 for the Gauss divisible ensembles with small parameter
a~ N*D/2 for some A > 0. Then, using Proposition 1.1, and following the idea of [14], Section 4, one can extend
universality of local eigenvalue statistics SI(\',”)( f,u, py) with m = 2,3 and that of the spacing function to sample
covariance matrices satisfying (1.7).

The paper is organized as follows. In Section 2 we study eigenvalue statitics in the bulk of the spectrum for Gauss
divisible sample covariance matrices. To this aim, we first recall some properties of the Deformed Wishart ensemble.
This is the conditional distribution of M ~ knowing W. Such an ensemble is in particular known to be determinantal, as
we recall. We then establish some improved convergence rates for the spectral measure of sample covariance matrices
whose entries have a sub-Gaussian tail. These concentration results then allow to compute the asymptotic correlation
functions as N — oo in the regime where a — 0, a > ﬁ We then prove Theorem 1.2 and Theorem 1.1 in Section 3.

In the whole paper, we use C and ¢ to denote constants whose value may vary from line to line.

2. The Gauss divisible ensemble

In this section we establish some universality results for the following Gauss divisible ensemble: let
~ 1 "
MNzﬁ(W+aX)(W+aX) , 2.1

be a Hermitian N x N random matrix where

e (Hyp) X and W are independent N x p random matrices where p > N and there exists y > 1 so that
limy 00 p/N =v;

o (H)a=ay= \/g where A > 0 is a (small) real number;

e (Hy) X isa N x p random matrix with complex standard Gaussian entries:

ReX;;, ImX;; ~N(0,1/2) VI<i<N,1<j<p;
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e (H3) W= (W;j),1<i<N,1<j<p,isacomplex random matrix such that ReW;;, ImW;;,1 <i <N,1 < <
p, are i.i.d. and satisfy:

80| Wij |2

(A1) There exists a constant §, > 0 such that Ee < 00,Vi, j.

Without loss of generality, we also make the assumption that
E|W;;|* = 1/4. (2.2)

Note that (2.2) can always be achieved by rescaling M . From now on, we denote by y; > y, > --- > yy the ordered
eigenvalues of H = Hy = WW*/N and let uy = ]{, ZlN 1 8y; be its spectral measure. Under assumption (2. 2) it is

known that p almost surely converges to the Marcenko—Pastur distribution with parameters y and 1/4, ,oy 1 /4 =

P whose density function is given by (1.1) with o2 = 1/4. When y = 1, we simply denote 0 MP by oMP for short.
2.1. Correlation functions

The sample covariance Gauss divisible ensemble has a nice mathematical structure that we are going to make use
of in the sequel: the conditional distribution of M n with respect to W is the so-called complex deformed Wishart
ensemble. Such an ensemble has been widely studied in random matrix theory as it induces a determinantal random
point field. We recall some results used in [4] (see references therein) that will be needed for the sequel Let then
PH (A1, A2, ..., An) be the joint eigenvalue distribution induced by the conditional distribution of M N w.r.t. H. Then

(see Section 3 in [4D), P]GI is absolutely continuous with respect to Lebesgue measure on Rﬁ . Its density fNH is given

by:

v 2 A v/2\ N

G x, . xy) = V(x)d t< {—Wf‘“f)/S}Iv( Vi ’)( ) ) : 2.3)
» S Vi ij=1

where V (x) := n15i<j5N (x; —xj),v=p—N, I, is the modified Bessel function of the first kind, and S = a’/N.The
main tools to study local eigenvalue statistics are the so-called eigenvalue correlation functions (see Section 3). They
are defined for any integer 1 <m < N by Rx")(xl,xz,...,xm; H) = (N m), fRN —m fN (X1, X2, oo s Xy At Ls - e o s
AN) ]—[f»vszrl dx;. Then, for any integer 1 <m < N, one has that

Ry (x1, 32, s H) = det(Kn (i, x5 D)oLy,

for some correlation kernel Ky (u, v; H). This gives the determinantal random point field structure. Furthermore
Kn(u,v; H) is given by

1 2 2
Ky, v: H) = 7/ dw/ dpe-P s o (ZUVVY (2
21275252 iR+A r S S

w? — Y w w—
xl—[ y’( ) < AL Z), 2.4)
22—y w—z w+z
where K, is the modified Bessel function of the second kind. I" is a contour oriented counterclockwise enclosing the

:I:yl.l/ 2, i=1,...,N,and A is large enough so that the two contours I" and 7" = iR + A do not cross each other (see

Fig. 1).
Due to the determinantal structure, correlation functions are not impacted by conjugation of the correlation kernel.
In particular, for any b € R and any integer m > 1,

=det(Ky (i, uj; H)e?Wii—vu/Sy"

det(Ky (u;,uj; H))!

i,j=1 i,j=1"

In the sequel we consider the conjugation for some b that will be defined in the asymptotic analysis. We set

K% (uiuj; H) = Ky (uj, uj; H)e®Wi—m/s, (2.5)
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1/2
y/ 1/2

. -  d o -
1/2 1/2 1/2
—Y2 *Z/N/ yN/ yl/

Fig. 1. The two contours defining the correlation kernel Ky (u, v; H).

The correlation kernel K 1131 (u, v; H) only depends on H through its spectral measure py. As in the case where
a is fixed (independent of N), the idea is to use the convergence of uy to the MarCenko—Pastur distribution. In
particular, one would like to make the replacement (outside a suitably negligible set) ]_[IN= 1 (w? — y;) =exp{N(l +
o(1)) [In(w? — y) dp)lylp(y)}. In Section 2.2, we prove that this replacement can be made in some sense provided
Im(w?) is not too small.

Also, the kernel K K, (u, v; H) depends on Bessel functions with large argument and whose order can be bounded
or grow unboundedly. For some technical reasons (namely uniform asymptotic expansions of Bessel functions with
bounded/unbounded order), we will separate the asymptotic analysis of the kernel depending on the case where v is
bounded (Section 2.3) or not (Section 2.4). This has no impact (up to technicalities) on the strategy of the proof.

2.2. Concentration results
This subsection is devoted to the proof of the following Proposition 2.1, which precises the rate of convergence of 1y

to pMP. Before exposing this proposition we need a few definitions and notations. Given a complex number z = u +in,
u € R, n > 0, we define the Stieltjes transform of uy by

1
my(2) = f ——du ) 2.6)

and the Stieltjes transform of the limiting Maréenko—Pastur distribution by

1
myp (2) 1= / ——dpy" (). @7
A—2Z
Let € > 0 be given (small enough).

Proposition 2.1. Let z = u + in for some u € [u— + €,uy — €] and n > 0. Then, there exist a constant c| and
Cy, C >0, ¢ > 0depending on € only such that V5§ < c€,

P( sup [ (2) — mump(2)] = (a + ol - y')) < Ce—c8VN1,

uelu_+e,uy—el

for any (In N)4/N <n < 1. Furthermore, given n > (In N)4/N, there exist constants ¢ > 0, C > 0 and K, such that
Ve > K,,

]P’( sup |mN(x+iy)| zx) < Ce~CVKNT,
|x|>(€/200)2,y>n
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Proof. To ease the reading, the proof is postponed to Appendix A. The proof is actually a modification of that of
Theorems 3.1 and 4.1 in [13], where the Stieltjes transform of Hermitian Wigner matrices is considered. We thus
simply indicate the main changes. U

2.3. Asymptotics of the correlation kernel when v = p — N is bounded

The aim of this subsection is here to prove the following proposition.
Let € > 0 be given (small) independent of N.

Proposition 2.2. Letu, € [u_ +¢€,ur —e]l=[€,1 — €] and m > 1 be given. Consider a sequence u = uy such that
NI-* lu — uy| = o(1). Then, there exist b € R, a set 2, and positive constants C, ¢ such that:

— the complement of 2 is negligible: P(£2},) < Ce*CNM,
— on §2y one has that

lim det( — L kb (4 AN
m det{ ————— u , U )
N—>00 NpMP(y) =N NoMP(y) NpMP(u) ;

i,j=1
:det<w>’"

X —xj) /=1

Remark 2.1. In Remark 2.3 we explain how to extend Proposition 2.2 to the case where [u — u,| = o(N ™) withc¢ > 0
arbitrarily small. This extension is needed for the proof of Theorem 1.2.

This subsection is devoted to the proof of Proposition 2.2. The proof is divided into two parts: first we obtain a new
expression for the correlation kernel, which then allows to derive its asymptotics by a saddle point argument.

2.3.1. Rewriting the kernel

Our strategy consists into two parts: we first replace the Bessel functions with their asymptotic expansion and then
remove the singularity 1/(w — z) in the correlation kernel as it will be proved to prevent a direct saddle point analysis.
As this part is highly technical and needs a few notations, we summarize our main result in Lemma 2.3 stated at the
end of this subsection. The reader might skip this part and is simply referred to the above cited lemma.

Our first task to replace in (2.4) Bessel functions with their asymptotic expansion given in Appendix B, formula
(B.1). This replacement can be made, up to a negligible error, provided the contour I" is cut in a small neighborhood
of the imaginary axis: see Fig. 2. In the sequel (see Fig. 2) we call xgc (resp. x]i) the endpoints of I, with Re(x,) <0
(resp. Re(x1) > 0) with positive/negative imaginary part surrounding the imaginary axis: x;* and xfE will be chosen

+ +
Zo Ty
L/ T
1/2 1/2
7y1/ 91/
- - oo
1/2 1/2 1/2 2
73/2/ *yN/ yN/ y;/
. N
< g Ty

Fig. 2. The contour I has been cut along the imaginary axis.
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in Section 2.3.2. We also call I'1 (resp. I5) the part of I, lying to the right (resp. left) of iR. Then I7 is the image of
I» by z+— —z and I, = I'7 U I'5. One obtains the following lemma.

Lemma 2.1. For any b € R, one has that

Kb, v; H) = (14 o) (Kx" (u, v; H) + K3 (u, v; H)), (2.8)
where
2b(JSo—/0)/S
KX, v; H)=7e e/ f dw/ dze(_zz+w2)/5e_2wﬁ/5e22*/E/S
N 4i2n%s iR+A i
y 1 al wz—yi<g)”w+z
Jw./z(wv)l/4 i 2—yi\z/) w—2
(2.9
2b(JSo—/0)/ S
K2P (0. v: HY = e2b(Vv—vu)/ / dw/ dze(—2HW)/Sg=20V/S o ~22/u/S
N 4i2n2s iR+A n
1 N

2 v
o WY (W) WL inping2
Vwz@o)lt s 2=y \z ) w—z

Proof. Here we will call on some arguments already used in [4], which we won’t develop entirely, yet trying to be the
most self-contained as possible. Lemma 2.1 essentially follows from the two claims exposed in the sequel and whose
proof relies on the saddle point analysis in the next subsection.

Claim 2.1. One has that

2b(/o—/1)/S
LIVEENOY / dw/ dreE S g <2wﬁ>lv (21\/ﬁ>’
iR+A I\T. S

;
N T 2127282 S

sz—yi<ﬂ>v<w+z_w—z>_o
112 _y\z w—z w4z '

i=1

(2.10)

Claim 2.1 essentially follows from the fact that |7,,(z)| < e? if Re(z) > 0 (and a similar bound for K, ) and the fact
that I" \ I, lies far away from the critical points (a full justification can be derived from the saddle point analysis
performed in Section 2.3.2, see Remark 2.2).

Claim 2.2. One has that

M (—22+w?)/S 2w/ 2eu
: dw [ dze K, L
22n28? Jrea Jrn S §

N
y w2—}’i<g)v<w+z_w—z>
izlzz—y,' z w—z w+z

2b(ST—/0)/S
Vi) / dw/ dzeEH0P)/S =20 /S22 i/ 1
42728 Jigia n W) /A Jw /z
N 2_ . v _
e <3> <w+z -z Z>(1+O(N“2)). @11
i YNz w—2z w-+z
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By a straightforward change of variables, we can reduce I to 7. Claim 2.2 then follows by uniform asymptotic
expansions of first the w-integral, using the asymptotics of the Bessel function K, given in (B.1), and then of the
z-integral. Again this follows from the saddle point analysis of Section 2.3.2. This saddle point analysis will prove
that the correlation kernel does not vanish in the large N-limit. Then splitting 7 into sufficiently many pieces lying
to the left or to the right of the critical points and moving accordingly 7" = iR + A to pass close enough to the same
critical points yields that the error term is of order N ~*/2. This yields Claim 2.2 and Lemma 2.1. We skip the detail. [J

A saddle point analysis of the correlation kernel K Ilv’b cannot be performed at that point, due to the singularity

1/(w — z). Indeed, assuming that [T, (w? — y;) = e/ Ninw?=y)doMP () (+o(1) it is not difficult to see that the z-
and w-integrands have the same critical points. Thus we first remove this singularity (see [4] for a more detailed
explanation).

Define

N
@@= =2Vuz+SYy (2 —y),  fn@ =)@ +26Vu,

i=1

N
M@= =2/vz+58) In(Z-y),  fn@=1fN@)+2bv,

i=1

(VY w) = (M) (@)
gnuw, 2) = (w — by L w_zf“ + (") @, (2.12)
| vbS  Shb w—z - Q2w=b)(u—)/S _ |
i Yy S vy iy
1 e—2G-D)(u+V)/S _
0 (z,b) = .
() 2(z — b)(Vu + /v)
Lemma 2.2. One has that
K,l\;b(u,v; H)
1 .
— d dze(WW)=fn(@)/S
(wv) 41772 /I-RH w/n “
w4z w”
X fw—ﬁ(gN,L,(w,z)+g,1v’u(w,z))<;) 0(w, b) (2.13)

- - , )
_ 4;"12 )1/4f dw 2T (“i) U= INGTN/S (. p)
i“1=(uv) BHA fw [xr N\

+ _ + v
;xlz b)]/4 / dp 2T (%) U= InGIN/S 0. p). (2.14)
4i?212(uv) R+A [y /xl+ X

Se[ting g]%]’b(u’ v; H) = e—vin—iTr/ZK]z\;b(u’ v; H), we have that

K5, v; H)
e—4b/u/S

=55 d dz , L (w, 2))e v —Tv@)/s
42728 /1R+A w/ﬂ 2(gnv(w, 2) + gy, (w, 2))

w+z w\"
< ot (F) e
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— @b /S~ _ " Gew-Ti
e WIS (x —b) w—i—xl w e(fN(w)—fN(xf))/Sel(x_ b)
@) Jia f [x7 B

X
e_‘”’*/’;/s(xfr —b) w + xl

4i2n2(uv)l/4
(uv) R+A f [xit

vV
TN F oot w
o Fortw)— T ))/S<X_+> 6'(xF,b). (2.15)

Proof. We only consider K ]{,’b (the arguments are similar for K 12\]’17). To this aim we make the change of variables
w=>b+ B(w' —b),z=>b+ B(z — b) for some B real close to 1 and get the following: set

N N
E(w) = W =2/ow)/$ l_I(w2 — y,-); G(z) = (@ -2Vu2)/S l_[(z2 — yi). (2.16)
i=1 i=1

Then one has that

K v H — 2o f>/S[ d/ 1 E(w)( >w+z
N (uv)/44i2128 Jigia v n o G(2) w—z

e2b(Vv—vu)/S Bdwdz
412752S(uv)1/4 /IR+A /n V(& + Bw —b))(b+ Bz — b))

<b+,8(w —b)) 2b+ B(w' + 7 —2b) E(b+ B(w' — b))
b+ Bz —Db) w —7 Gb+ B —D))

e2b(Wv=v)/§ b+BOT=b) quy dz w +z E(w)
4228 (uv)l/A /RJrA/ ( ) w—2z G(2)

2= f)/sf fb+ﬂ<xl _b)dwdz( >w+zE(w)
R+A

. 2.17
41 n2S(uv)l/4 w—2z G(2) @17
Differentiating with respect to 8 (close to 1), we find that (see [17] Section 2 for the detail)
(uv)]/4K1b+(f \/—) ((uv)1/4K11V’b)
dyv
e2b(Vv—u)/S w+z E(w)
= T 42q2qz / / dz <_>
4i°meS R+A n w—z G(2)
2yi(w+2) —bQwz + yi)
2w+z=b)+2Vu+S (2.18)
([ Z (w2 — yi) (2% = yi)
vbS Sbw—z
wz 2wzw+z
(x}F = bye? W=/ / ) (w )”w+x1+ E(w)
- w -
4i2n2S iR4A /wx1+ xf“ w —xf“ G(xf”)
— b)e2b(Wv—Vu)/S 1 v - B
o ),62 ~ f dw (@) wtxy Ew) (2.19)
4im~S iR+A wx; X w—x; G(x|)
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By the definition of fuN , the term in the bracket (2.18) can also be written

Cw=b) () W) = = b)) @)

(2.18) =
w—2z
Ny’ _ Ny/
w—z
Integrating by parts yields Lemma 2.2. (]

To summarize this highly technical subsection, we have proved that
Lemma 2.3. Assume that v is a bounded integer. Then
b . 1,b ) 2,b )
K3 (u,v; Hy = (1+ o) (Ky"(u, v; H) + Ky (u, v; H)),
where the kernels K 1lv’b and K/2V’b are defined in Lemma 2.2.

2.3.2. Saddle point analysis of the correlation kernel
We are now in position to perform the saddle point analysis of the correlation kernel K f,(u, v; H) and prove Proposi-
tion 2.2. Let t be a given real number independent of N and assume that v —u =7/ (NoMP(1)). We mainly focus on
the asymptotics of the first term (2.13) in K /{,’h. The asymptotic expansion of the two other terms (2.14) in K }{,’b and
of K Iz\;b will be an easy corrollary of the arguments used hereafter.

We first examine the saddle point analysis for the approximate exponential term:

fw) = fu(w) :=w? = 2w — b)V/u +a* / In(w?® = y) dp™* (y). 2.21)

Note that f is the almost sure limit of the exponential term arising in the definition of (2.13) and should thus (approx-
imately) lead its asymptotic analysis. Then using the fact that, when y = 1, a Mar¢enko—Pastur random variable has
the same law as a squared semi-circle random variable, one gets that

2
fl(w) :==2w—2Ju + a2/ - Y aMP(y) = 2w — 2 + 4a®(w — Vw2 —1). (2.22)
w:—y
Given a point u € [e, 1 — €], € > 0, it is easy to see that f admits two conjugate critical points:

L (I +2aHJut2a%V1+4a2 —u
w =
¢ 1 +4a?

=Ju+ azinﬁpMP(u) + O(az).

More precisely, one has that Im(wci) = :taznﬁ oMP (1) + O(a*), where the O is uniform in the bulk (depending on
€ only). One can also check that

4a’wE

Vw2 -1

where the O(-) is uniform as long as u € [¢, ] — €], € > 0, and depends on € only.

We now give the relevant contours for a saddle point analysis of the approximate exponential terms. Let 1~ =
Re(w)+ir,t €R,and It = I U with ITF = {wf @), r €[S, 1-§U{wl (1 — $)+x,x > 0} U{iIm(wS () +
x,€/180 <x < Re(wj(%))}. Then it is easy to check that Re f achieves its maximum (resp. minimum) at wf on?
(resp. I').

f”(wci) =2(1+2a2)+ =2+O(a2),
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We now turn to the saddle point analysis for the true exponential term:
a? g
v i=w? = 2w —b)u+ — > In(w? — y;). (2.23)
N i=1

One has that f /V(w) =2(w — \/u) — 2wamy(w?). Using the concentration results of Proposition 2.1, we now show
that the first derivatives of fy and f are close (on a suitable set). Let £ > 0 be a very small number and set

Sw:{zzx—i—iy,xeI:u_+lfﬁ,u+—§],§a2§y§1}, (2.24)

with u_ =0and u; =1 here as y = 1. Define for H = Hy = WZ‘\},V*,

Qn = {\nw(z) —m()| = N <Re(@) = 1 - 2. ¢ae <Im() < I

supy;(H) < K; sup Imn(x +iy)| < K} (2.25)
x> (e/200)2, y>¢a?

Using Proposition 2.1 and Lemma 7.3 in [12], we can deduce that there exist K large enough and constants ¢, C > 0
such that

P(25) < Cem N,
From now on we assume that Hy € §2y. As a consequence, there exists C > 0 such that for any w € Sc ¢,

, , Ca?
| fyw) = f'(w)| < A (2.26)
By Cauchy’s formula, one can then deduce that for any integer / > 1

c
] _ D
[ @) = FOw)| < (2.27)

Here the value of the constant C varies from line to line.
Let us now show that f admits two conjugate critical points w;t » Which are very close to wf. The proof directly

follows the arguments of [14], Section 3. The critical points of f are the solutions of the fixed point equation:

w

2 N
a

=F = - ]

w=Fy(w)=+u N ; DR

This equation clearly admits 2N — 1 real solutions which are interlaced with —/y . ..., = /Y1, /Y| -5 /I N+

It admits also two non real solutions wciN. We now show that w:N are very close to wr. Set F(w) = /u —

a [ wzw—_} dpMP(y). Define © = {z € C, |Re(z) — /u| < Coa?, ¢a®> < Im(z) < Coa?}, for some large constant Cy.

Then, on O, |Fy — F| < Ca’?N~*/*. As on ©, Re(F (2)) = +/u + O(a?) and Im(F (z)) = a?>n/up™M® () + o(a?)

we deduce that Fy(®) C ®. Now it is an easy consequence of (2.27) that Fy is a contraction: one has that

|Fy(w) — F'(w)] < CN~/* Thus Fy admits a unique fixed point with Im(w:fN) > ¢a?. Furthermore, it is an
easy fact that

Ca?
NA4T

|w:N_wj|5
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We now slightly modify the contours /" and 7" for the saddle point analysis of fy.Set Yy = {Re(w:,f n) it t € R}
Then Yy lies within a C!-distance of at most Ca>N ~*/* from 7. Furthermore, setting w = Re(w;f N) +it,

Re(if (w))——t 1—£XN:( ! + ! )
ar’N - N =Nw= 32w+ 2

1
TRV AR
precisely, using that Ref/(;(w) > 1 forany w € 7 N {Im(w) > za?}, one has that, if ¢ stands for Im(w),

By the monotonicity of 7 > "~ (

‘2) we conclude that Re( f) is maximum on Ty at w N More

t—Im(w} ) 1
Re(fyv(w) — fv(wfy)) = —R€</ ' sds/ frwhy +ius)du>
: o 0 :

-1 + 2
B U 228)

This implies in particular that
Re(fiv (Re(wy) +i¢a®) = fi(w]y)) < (¢ —a*Im(w] y))"a*/4.

Let then w € Y N {z,0 < Im(z) < ¢a?}.Then, with a slight abuse of notation when Im(w) = 0,
lexp{ fx (w) — fv (Re(w} ) +i¢a®)}| < e,

If one chooses ¢ in (2.24) small enough so that for any v € [, 1 — €], ¢a® < Im(w:N)/S, one can then deduce that

the contribution of the contour 7" N {z,Im(z) < ¢ az} is negligible. Thus, using (2.28), the main contribution to the
w-integral comes from a neighborhood of width /S of the critical point.
We now turn to the z-contour. Let

ry ={wiy®,e/2<t<1-¢/2} U{wy(1—€/2) +x,x >0}

U {ilm(w; y (€/2)) +x,€/180 < x < Re(w/ \ (¢/2))}. (2.29)

We can now define xljE =€ / 180 £ Im(wj ~(€/2)). The choice of 180 here is arbitrary: we only need a sufficiently

large constant. We also set x = —fo
By construction, forany 7, § <t <1 -5,

Re(— /i (wix () + fiv(wiy)) < —e(Vu = V)"

for some constant ¢ > 0 small enough. This follows from the fact that for any ¢, E <t<1-5% Im(w N(t)) > g“a

and Re( ”N(t)) = 1+2O\;? ) Moreover Re(fN(wc)N(l -5 — fN(wc,N(l -5 +x) =< —sz, for some constant

¢ > 0 small enough. This follows from the fact that on 2y a’zmy (z>) — 0 uniformly along I'y as my is bounded.
Thus the contribution of {w:fN(l —5) +x,x > 0} is negligible as N — oo. For the same reason, the contribution

of {iIm(w:N(g)) +x,¢e/180 <x < Re(w;fN(g))} is negligible in the large N limit. As for the w-integral, the main
contribution to the z-integral comes from a neighborhood of width +/S of the critical point.

Remark 2.2. This analysis justifies Claim 2.1 as Re(fN (ij) IN (x+)) < —c for some ¢ > 0. One can choose
'\ I;as {x1++ia2t 0<t< A—Im(x1 VU {xf +ia%t,0 <1t < A —Im(x, U {x +ia2A, Re(xf) <x <Re()c1 )}
plus its conjugate, for some large enough constant A. There exists C > 0 such that Re(fn (x1 )— fn(2) < Ca? Vz e
I’ \ I, thus yielding a negligible contribution.
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We can now conclude to the asymptotic expansion of the correlation kernel and prove Proposition 2.2. Let u,. be
as in Proposition 2.2.
We first consider the asymptotics for the first term (2.13) in K }V’b. We now fix b as follows:

b= Re(waN(u*)).

Thanks to this choice, |Re( w;f N)—bl=0(N »=1)_ Therefore the function 6 has no impact on the saddle point argument
exposed in the above, neither do the functions gy , and g,l\,’ .- At the critical points, one deduces from (2.12) that:

8N.u (sz,N’ sz,N) = (wa - b)f/v/(wa) = iIm(wcij)fI(;(wij);
EN.u (wij, wc:'fN) =0;
gll\/,u (sz,N’ sz,N) = gb,u(wfzv, wfzv) =0(S) = O(Im(wa)/N);

. 2= Im(w; )/ _
e(wc,N’ b) = N, £+
2ilm(we ™) (Vu — /v)

Let us now consider the 4 combined contributions of the different critical points. The contribution to (2.13) from
I=w= wf ~ gives (at the leading order)

(1+o(D).

+i 7S \* 1 L Ay (VRS
(2.30)

TS\ ) @ ) T

The contribution to (2.13) from z = w = wf N 18 O(N 1=4/2) due to the fact that gn .« anneals at that point. Combining
the above yields that:

(2.30) = sin(mr).
nT

1
lim ———(2.13) = lim ————
N NPy G 13) = ImS NR

The contributions of the two other terms in (2.14) is exponentially small since there exists a constant ¢ > 0 depend-
ing on € such that:

Re( s (wy(5) )) - Relwui ) = .

This finishes the asymptotic expansion of K Il\;b.

Let us now turn to the asymptotics for K fjb. The function 8! is not bounded. Nevertheless there exists x > 0
depending on € such that |e_4b\/’7/591(z, b)| < e‘XS*l. This follows from the fact that Re(b — z) < b along the
contour /. One can now use the same saddle point arguments as for the study of K Il\;b to show that

1

2.b —xS5~!
—— K%(u,v; H)=0(e X .
NpMP (1) v (v ) (e )

This is enough to ensure Proposition 2.2.
Remark 2.3. In the case where |u—u| = o(N ) for some ¢ < 1— A, we choose a sequence i(N) such that N'=*|u —

u(N)| =0, lux —u(N)|=0o(N~) and t(N) € [u— + ¢, uy — €] for all N. We can then replace u, — u(N) in all the
asymptotic analysis (in particular b =b(N) = Re(w:fN ((N)))). This has no impact on the validity of the arguments.
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2.4. The case where v — 00

We now turn to the case where v is unbounded (that is either y = 1 and v — oo or y # 1) and study the asymptotics of
the correlation kernel (2.4). The aim of this section is to prove the following Proposition. Let € > 0 be given (small).

Proposition 2.3. Assume thaty > 1 and A < 1/2. Let uy € [u_ 4+ €,uy — €] and u = u(N) be a sequence such that
limy_ 00 N'™*(u — uy) = 0. Then there exists b € R such that outside a set of negligible probability,

i Kb n T sin(7tt)
im ———— u,u+ ——s—; = .
N—oo Np]I)AP(u) N N,o%)’“’(u) T

Remark 2.4. Proposition 2.3 extends to the case where [u — u,| = o(N ) for some ¢ < 1 — \ by the same arguments
as in Remark 2.3.

The whole subsection is devoted to the proof of Proposition 2.3. The proof follows the same steps as in Section 2.3.2
and we explain the main changes only.

2.4.1. Rewriting the kernel
Again the basic argument is to replace Bessel functions with their asymptotic expansion (large order large argument)
and then derive the asymptotics of the correlation kernel by a saddle point argument.

We again cut the contour 1" 1n a small neighborhood of the imaginary axis as on Fig. 2. We also call I, this cut
contour and the endpoints x1 ,x will be defined in the sequel. Let us denote again I the part of I lying to the
right of the imaginary axis, so that I, := I'1 U (—I"1). We now consider the uniform asymptotic expansion (B.2) of
Appendix B. We assume for a while that we can replace the modified Bessel functions with their asymptotic expansion
in the correlation kernel (this will be proved in Lemma 2.4 below). Thus, setting v = u + MP ) we consider the

kernel:
~ 1 (W =242z —b)/u—2(w—b)/v)/S
Kyw,v;H) i= —————— dw d
n( ) 4i2m2 S (uv)l/4 /1R+A /;~1 ¢ Vw7
_ v +
w o((P=D2N* /() (1 /w— 1/z>1—[w i (_> wrz (2.31)
i=1 22 =i W=z
1 e(w —2242(z—b)Ju—2(w—b)/v)/S
- / dw / a
42128 (uv)'/* Jfigya n Jwyz
%
 e((P=D2N*/(u.)) (1w~ 1/z>1—[w — X (_> e (232)
i 72 — Vi w—+z

We call again K}\,’b (resp. K]%,’b) the kernel given by (2.31) (resp. (2.32)). Set
(y — )>N*

T, 1/w —l/z)}.

¥(w, z) =exp {
We can now slightly modify the arguments of Section 2.3.1 to deduce that:

KNP, v; H)

d dz e(INW)=fN @)/ Sy
(uv)1/4412n25 /R+A w/ﬂ z (w, z)

w4z

RTNE

(gn.u(w. 2) + g% , (. z))(z) 6(w,b) (2.33)
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- _ N )
_ '2(x12 b)1/4 / dw WX (i_) (/N w)—fy(x; ))/SG(w,b)lP(w,xf)
4i“mt*(uv) REA S [xT X

+ + v
Rl I <—ui> eI S0, by (w, x7) (2.34)
422 (uv ; T ’ ’ ’ '

( ) iR+A w ‘xl 'xl

where

SN*(y =12 (1 w+z
glzv,u(wvz):g/lvyu(U)yZ)‘Fi(__b )

4y, wz 22w?
We leave K ]2\;}’ unchanged since the singularity 1/(w + z) will not prevent its direct saddle point analysis.
2.4.2. Saddle point analysis

We shall now perform the saddle point analysis of the correlation kernels hereabove. The arguments follow closely
those of Section 2.3. The approximate exponential term to be considered here is given by

hy(z) :=2> — 2/u(z — b) —Fczz/‘ln(z2 —y)dp)*(y) +a*(y — Dnz.

We are indeed going to show that the perturbative term coming from ¥ does not play a role in the asymptotics. Let
my, (z) be the Stieltjes transform of the MarCenko—Pastur distribution pyl’. One can check that

y—1 +2\/(z — (4 2D — A = y7)2/4)

my(z) = -2+
y(2) 2% ;

The function 4, admits two non-real critical points which are conjugate:
wE =ww) = Vu(l - 2a%) £ia®n/up)™® ) + O(a*). (2.35)

We now define the contours relevant for the saddle point analysis of the approximate exponential term. Let 7" =
Re(wj) +it,t € R, be oriented positively from bottom to top. The contour 7 is defined as in Section 2.3.2: we set

I=r, 1+ U F1+ where I is oriented counterclockwise and

I ={w}l@.telu_+¢/90,uy —e/21} U {w (us —€/2) +x,x > 0}

U {iIm(wf(u + 96—())) +x,6/180 <x < Re(wj'(u + 96—()))}

We first consider the z-contour. There exists c(€) > 0 depending on € only such that for all points ¢ € [u_+€/90, uy —
€/2] in the bulk of the Mar¢enko-Pastur distribution Re(h]/(w} (¢))) > c(e). Using the fact that

1

d
gRelu(wE 0) = (Vi = ViRe—r s

" (2.36)

—Re(h,) achieves its maximum at 7 = wci along the first part of Fl+. There now remains to show that —Re(h,,) also
decreases along {w/ (uy —€/2) +x,x > 0} and {w} (u_+55) —x,0 < x <Re(w; (u_ + g5)) — 155} This assertion
follows from the fact that m,, is bounded along this curve. Using the same arguments as in Section 2.3.2, it is easily
seen that Re(%,,) admits its maximum on 7" at wf. All the above reasoning holds unchanged if y is replaced by p/N.
Thus, without loss of generality, we assume in the rest of this section that p/N = y.

We now consider the true exponential term. We set

2 N
I (@) = hy(2) =2 =2V = b) + T Y In(z = i) +a’(y = Dlnz,
i=1
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Again we can show that, provided H belongs to a suitable set, the derivatives of &, and hy_, are very close and that

hpy , admits two non-real critical points wf n very close to wci. Let ¢ > 0 be given (small) and S¢ ; be given by
(2.24). Define for H = Hy = Y3~

‘QN»VZ{Supyi(H)fK§ sup ’mN(x-i-iy)‘fK;
[x|>(€/200)2,y>¢a?

|mN(z) - m(z)| < N~** vz with ;aze <Im(z)<landu_ + 1% <Re(z) <uy — %} (2.37)

Using Proposition 2.1 and Lemma 7.3 in [11], we can deduce that there exist K large enough and constants ¢, C > 0
such that

P(2§,,) < Ce~ V",

From now on we assume that Hy € §2y ,,. Mutatis mutandis, all the arguments used to consider the true exponential
term when v is bounded (starting with (2.26)) can be copied to consider the true exponential term when v is not
bounded. In particular, one has that

C

0] 1
|y, (w) = kP (w)| < NI

|wa_wci|§ Vi>1,Yw e Se ;.

N4

We now consider the subsequent modified contours. We set 'y = FAT U FAJ,r with

+ + € € + €
Iy = {wC’N(t),u_—}—% <t<uy— 5} U {wC’N<u+— 5) +x,x >O}

U {ilm(w:N (u + %)) +x,e/180 <x < Re(waN (u + 96—0)) }; (2.38)

Ty = Re(wIN) +it, reR.

Accordingly, we now choose xli = :i:ilm(w:fN(u, + 59)) + 150 and xoi =—xj.

Then the main contribution to the exponential term of (2.33) comes from a neighborhood of width /S of wif N
for both the w- and z-integral. Thus one is left with showing that the function ¥ does not impact on the saddle
point analysis. Let O, = {w’ € C, |[w’' — w| < N¢ V/S} for some « that we determine hereafter. In order to ensure
that ¥ has no impact on the saddle point analysis outside Ow.iN, it is enough that ¢ > A /2. Now one can check

that

Yw,z€ Oy . |[W(w,2) — 1| < CNHPHerl <,

if ¢ and A are small enough (in particular A < 1/2). This finishes the proof that the main contribution to (2.33) comes
from a neighborhood of width +/S of wf  for both the w- and z-integral.

We now set b = Re(w;f N (@), so that [b — w: yl=o0oW *=1y "which implies in particular that the function 6 does

not impact the saddle point argument. Let us now consider the contribution of the functions gy ,(w, z) + glzV LW, 2)
and 0 (w, z) close to the critical points. One has that

gN’“(wci,N’ wc:t,N) +8y (wci,N’ w;t,N) = (w:N —b)hY (wic,N) +0(9)
SN*(y — )2 wry —2b

4u, (wij)3

+

= (wiN - b)h}(, (wic,N) + O(SNA);
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+ 2 + AN.
gvau(Wiy wiy) +en(wiy, wiy) = O(SN*);
2= OImW /S _ 4
n
2wy — b)(Vu — /v)

0(wry.b) = (1+o()).

We can copy the end of the proof of Proposition 2.2 to show that on 2y,

) b sin(mtt)
Iim —————K (u,v; H) = .
N—oo NpMP (u) N ) T

To study the asymptotics of K Iz\;b, we use the same saddle point analysis argument. Note that this is possible since
Tn N (—Iy) =. We consider as leading exponential term for both the w- and z-integrals the function Ay, as above.
Note that the w-integrand has then a “perturbative term” e2W=b)Vu=V0)/S which does not play a role in the saddle
point analysis. It is easy to deduce that

lim ————Ky"(u, v; H) =0.
Newoo NpMP(u) N (v H)

This follows from the fact that the contribution from equal critical points is negligible (due to the (w — z) factor), while
—1 +

that of conjugate critical points is of order 1/N due to the rescaling and the fact that [e5 /¥ Gen @) =hy w0 ly W) <

C for some C > 0 independent of N.

Thus we are now left with showing the following lemma.
Lemma 2.4. One has that

lim ——— | Ky, v: H) — K2 (u, v; H)| =0.
Nfloozvpyp(u)| NG v H) = Ky (. v; H)|

Proof. Note that it is enough to show that |I?7v(u, v, H) — Kﬁ,(u, v; H)| = o(N). First Claim 2.1 can be translated
with no modification to the case where v is unbounded. Also we can reduce I, to I'] in K Ili, using the change of
variables z > —z. There remains to prove the counterpart of Claim 2.2. Set

7 2/uz  2Juz W 2/vw 2w
~ (y —Da?’ " (y—Da¥’ ~ (y —Da?’ " (y —Da¥’
/ V(Z-1/(2) V(Z=1/(2Z.)
AV(2) = ——r—, A1) = —————,
1) V2TvZ 1(2) V2TMvZ
, \/_C—U(W—l/@W)) fe—V(W—l/(ZW*))
A (W) =/n—m—-——, AAW)=yn———
2 Ve oW

In I?TV we have replaced the Bessel functions 7, and K,, with the “approximations” A; and A». It is an easy compu-
tation that, along 7n and Iy, one has:

L,(vZ)
AY(2)

K,(vW)

-1 vl
A (W)

<0(S), ’ 1‘ < O(S). (2.39)

We first consider the contribution of F]{, = I'yN{Re(x;) <Re(z) < Re(w:N)} to If{Tv(u, v; H)— K]l\’, (u, v; H) where
the new contour Tlf,/ is slightly deformed around wf n sothatd(Ty, FZ{,) =¢€’+/S for some small €' (see Fig. 3). Itis
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Fig. 3. The contour 7 has been deformed around wci N

then easy to deduce from (2.39) and the previous saddle point analysis that

o2b s
Wyl / dw/ dze—2 +w2)/sl—[w — i w+z
2i2n2 52 ¢ ry 22—y w—2z

, 2z u
x <A2(W)IV(T‘/—) - A’Z(W)AQ(Z)>‘
<0(Vs). (2.40)

Indeed replacing A1 and/or A, with A} and/or A}, does not impact on the saddle point argument. Similarly

b
2 f)/sf dw/ dze(z+w2)/sl—[w —Yi(w ‘w+z

2121282 Jrg o IZ —y; w—z

2z/u 2wa/v 2z/u
(o (557) - (55 (55 ))\
<0(V5), (2.41)

by using (2.39), the fact that 1, (vZ)/A|(Z) is uniformly bounded for N large enough and the previous saddle point
analysis. Lastly

REVEENOIE

/ ,dw/l dzel /S (A (W) AL(Z) — AL (W) A (2))
Ty I,

C2i2n282
N 2 .. v
XHw2 vi (E) w+z
i=1 & T YN/ WL
Ata _ Ay —
SO(N VSlu—uy|  N*u ”*'+N“2) (2.42)
€Vs Ney/S
< O(N+P=1 4 N3M2-a 4 NM2) Z (), (2.43)

In (2.42) we have separated the cases where d(w, z) > N @ /S or not, where z € Fl andw € Te/ and used the fact that
lu—v|>~N Land |4 —uy| = o(N*~ 1. Replacing w“ Wlth u - in (2.40), (2.41) and (2.43) yields similar estimates.
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We now turn to the contribution of I'y, := I'y N {Re(z) > Re(wiN} to If(:;v(u, v; H) — Kk,(u, v; H). Note that Ty
can be moved to the left of Re(wiN) up to adding the residue at w = z. Define T, < as the contour obtained by
reflecting Tel with respect to the line Re(z) = Re(w;|r ~)- Then

d dee—Z+w)/STTY —yz< ) w+z
/A+1R w/r e HZ — i w—2z
x (KU<2w§/E)IV(2Z;/E) - A/I(Z)A/Z(W))

N 2 v
:/ dw/ dze(fzerwz)/ l_[ Wi < ) wtz
1\75/ ¥ e 72— Vi w—2z

2 2
x (KU< wf)u( Zf) Al(2) Al (W)) (2.44)
2 2 2
+2in/ dz2z(KU< Zﬁ)zv( Zﬁ) - AQ(Z)A;(ZZ—*/E». (2.45)
' S S as(y —1)
The analysis of (2.44) is similar to that of F]{, N T]f,/. We thus have to consider (2.45). One has that
2
|(2.45)| = o(s / dz2zA) (Z)A’2< (Z‘[ ))) (2.46)
Iy

As the integrand in the r.h.s. of (2.46) has no singularity, one can thus move I'y, to the line joining the two critical

points wf n- Using now that [b — Re(w;" NI =0 *=1y. one can easily see that there exists a constant C > 0 such
that

PWV=Vi/S () 46) 52

One gets similar estimates replacing - w“ - with w ThlS yields Lemma 2.4. (|

3. Proof of Theorem 1.1 and Theorem 1.2

We only give the proof of Theorem 1.1 when y =1 and v is bounded. The extension to other parameters y is
straightforward. The proof of universality for the spacing distribution can easily be deduced from [17] and [14] and
is based on the extension of Proposition 2.2 given in Remark 2.1. Let then f € L>(R?) with compact support and

SI(\?)(f, u, py) be defined by (1.2) with u € [¢, 1 — €] and py = NoMP (u). Then if E denotes the expectation w.r.t. the
distribution of My in (2.1),

ESY (f.u. oN) =/dPN<H)/RN SNt Sy (o, )] dx

where fjcl () (resp. S](\?)( f-u, pn)[-]) is the density function (2.3) (resp. local eigenvalue statistic) of the deformed
Wishart ensemble. Then, using (2.25) and setting

— 1
dPN(H) = —dPy(H)lpeqy,
ZN
where Zy is the normalizing constant, we get that 3C > 0 such that

ES\ (f.u. o) — f dPy(H) /RN ST (fou o0
+

< CN?| flooe™ N = 0(1). 3.1
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Now,

Jim [ @B [0S o ot
— 00 R_}X

— 11, I3 1
— lim /dPN(H) f(,iZZ)Rﬁ)<u+%,u+:2;H)dtldtz
N—o00 R2  ON PN PN
. 2
1 —t
=/ f(tl,tz)<1 - <w> >dt1 diy, 3.2)
R2 n(ty — 1)

where we used the definition of correlation functions, Proposition 2.2 and the fact that f has compact support.

There now remains to extend the result to non-Gauss divisible ensembles in order to prove the full Theorem 1.1.
The argument exactly follows the arguments of [14]. We recall them for seek of completeness. (3.1) and (3.2) show
that the sine kernel holds for the complex measure LG, du®Nr @ e'£ G, du®N?P if t = N~ More precisely,
let py,:(x) denote the density function of the eigenvalues x = (xy, ..., xy) w.r.t. this measure and let RZ(&?[ be its
)

,C
density and two point correlation function w.r.t. truncated complex measure Fe n,p = fe, N, p dM®N P ® fen,p d[,L®N p
(resp. w.r.t. measure Fy , = F ®NPY We also set in the following

two point correlation function. Similarly, we define py .(x) (resp. py(x)) and R/(\% (resp. Rj(\?) ) for the eigenvalue

151 B . MP
u(ty))=u+— and u(r)=u+— with py =Np;"| (u).
PN PN ’

Then
2) @ ft, 1)
[RN’F(”(II)’M(IZ))_RN,,(M(tl)vu(IZ))] 2 dtydey| < () + D),
N
where
) @ @) ft, )
()= | [Ry p (), u(r2) = Ry (u(tr), u(12))] P dr dr|,
N
— @ @ f(t, 1)
(D) = | |RY(u(t1), u(12)) = R, (u(t1), u(®))| p dt; drr.
N

It is easy to see from Proposition 1.1 that
(1) = N[ flloc2Ce™ N < Cle™N

with some C’, ¢’ > 0 as N — oo. To estimate (II), we use the fact that

RO 2
(In? < / [ ’(V2')’“" (u(t1), u(t2)) —1] Rﬁ},(u(zl),u(zz))‘f (”2’ 2D\ 41, dry (3.3)
RN,t Py
x [ / Rﬁft(u(tl),u(tz))‘f (22’ 2| 41, dt2:|. (3.4)
N

The factor (3.4) is bounded using (3.1) and (3.2). We now use the beautiful idea of [14] to bound (3.3). As f is
bounded, one has that

R(2) , 2
((3.3)"* < c[/[# - 1] RY (2, y) dzdy]
RN,I(Z’ y) '

2 1/2
sc[w [(Drefs 1) pracon]

172
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Lo 2 1/2
SC N2/ |e Gt fC,N,p' d/L®NP
e’EGt

< CN~ ¥ (3.5)

where C > 0 is a constant that varies from line to line. Here the basic argument is that the distance D(f, g) :=
J1flg— 1)?g between two probability measures f and g decreases when taking marginals as well as when passing
from the matrix ensemble to the induced joint eigenvalue density. Finally, we used the estimate of Proposition 1.1.
This completes the proof of Theorem 1.1.

Appendix A: Proof of Proposition 2.1
To ease the reading, we here recall Proposition 2.1.

Proposition A.1. Let z = u + in for some u € [u_ + €,u; — €] and n > 0. Then, there exist a constant ¢ and
Cy, C >0, c > 0depending on € only such that V6 < ci€,

P( sup  |m (@) —mwp(2)] > (a +Co| 2 - y')) < Ce=OVNT,
el

uelu_+e,uy—el

for any (In N)4/N <n < 1. Furthermore, given n > (In N)4/N, there exist constants ¢ > 0, C > 0 and K, such that
VK 2 K()’

IP’( sup ]mN(x +iy)| > K) < Ce VKN,
|x|>(€/200)2,y>n

Proof. The proof follows closely that of Theorems 3.1, 4.1 and 4.6 in [13]. We only prove here the first statement.
The second one is simple adaptation of the latter statement and ideas given in the proof of Theorem 4.6 in [13] (see
also the proof of Theorem 2.1 in [12]).

Using a discretization scheme with step 8/4n2 (see [13]), it is possible to show that it is actually enough to prove that

IED(|mN(Z) - mMP(Z)| > (8 +C, % — y’)) < Ce~ VNN

for any (InN)*/N <n <1 and for a given z = u + in where u € [u_ + €, u; — €]. Denote by C. the kth column of
W/\/N, Cr:= ﬁ(W)k, then one has that:

14
HN=ZCkC,f. (A.1)
k=1

We define also Ry (z) = (Hy — zI)~! and for any integer k =1, ..., p, RE\]]()(Z) = (Hy — CC}f — zI)~'. Then
my(z) = % TrRy (z) and one has that

S|

1 i
l4my@=2 - S — (A2)

N NZitrP o

Equation (A.2) simply follows from (A.1) and the identity Ry (z)(Hy — zI) = I. In addition we denote by

y{k) > yék) > > y}(\f) the ordered eigenvalues of Hy — C;C} and set Mgl\;) = % ZlN:l (Sy_(k). By the well-known
interlacing property of eigenvalues, for any k =1,..., p, y; > y](k) >y > yék) > o> Yy > yl(\l,c). Denote by Fy

(resp. F 1(\? )) the p.d.f. of the spectral measure uy (resp. ,ug\',()). Then one has that

INFy@) = NEP @) <1 VxeR (A.3)
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Last call vi(k), i=1,..., N,asetof orthonormal eigenvectors associated to the ordered eigenvalues yl.(k) and define

0 = [ VN
From (A.2), one gets that

1 <& 1
1+ s . A.4
@) =~ /Y, P60 (A

The latter formula (A.4) is the counterpart of formula (2.6) in [13]. The proof of [13] can be summarized into 2 basic
ideas.

First the random vectors Cy are centered with i.i.d. entries and they are independent of RX,C). It is known that the
random variables C:R%‘) (z)Cy concentrate around their means which is given by E| W |2TrR§\l,{) /N. The speed of
concentration is explicited under assumption (Aj) in Lemma 4.2 in [13] for Wigner matrices. The extension to Wishart
matrices states as follows.

)
Lemma A.1. Set X® = X = Zk | (f) where z=u+in,u € [u_ + €, uy — €. Then there exists a positive
—Z

constant c (depending on €) so that for every 8 > 0 we have

P[|X] > 8] < 5e—cmin{s/Ni/y.8>N/y}
if Nn > (InN)? and N is sufficiently large (independently of §).
The proof of Lemma A.1 is postponed to the end of Appendix A.

Remark A.1. Lemma A.1 is established under the assumption that the real and imaginary parts of the components of
Cy are i.i.d. (in addition to the gaussian decay assumption (A1)). This is the reason for our assumption (H3).

One can then use (A.3) to show that forany k =1, ..., p, |TrR§\I,‘) —TrRy| <n~!'. By Lemma A.1, |[X®| <,
Vk=1,..., p in (A.4) with high probability. A bootstrap argument exposed in [11], Section 2, yields that with high
probability, the Stieltjes transform m y (z) satisfies

r 1

1 -
+amy (@) = N T N1+oZmG)

+ A, (AS)
where |A| < C'8 for some C’ > 0 is a small error term and o= E|Wn |2 =1/4.
The second basic idea is the stability of the equation (A.5). The equation

1

p
O N TN Tr oG

p
5 (A.6)

admits a unique solution satisfying Im(m(z)) > 0 whenever Im(z) > 0. This solution is myp p/n(z), that is the
Stieltjes transform of the Mar¢enko—Pastur distribution with parameter p/N. Now, the stability of equation (A.5)
implies that there exists a constant C such that forany z € {z =u +in,u € [u_ +€,uy — €], (In N)4/N <n<1},

|mn(z) —mup,pn ()| < CA.

The constant C here depends on € only. Now, as |z — u+| > € and 1/|z| = O(1), there exists C, > 0 depending on €
only such that

myp,p/N(2) — mMP(Z)| <C|p/N —vy|.

This finishes the proof of Proposition 2.1 provided we show Lemma A.1. t
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Proof of Lemma A.1. Define for n > 1 the intervals I, = [u — 2"‘117, u+ 2”_177] and let M and Ky be sufficiently
large numbers. We have [—K(, Ko] C 1, with ng = C;1n(Ko/n) < C2In(NKj) for some constants Cy, C2 > 0.
Denote by A the event:

N
A= maxﬂ > M U{maxy; > Ko},
n=no /Np|ly|
where for a given interval I, we denote by |I| its length and set N'(I) =#{i = 1, ..., N|y; € I}. Let then P, denote
the probability w.r.t. C. One has that

P[|X®| = 8] <E(1acPi[IX] > 8]) + P(A).

The first term can be handled as in [13]. It is proved in [13], Proposition 4.5, under assumption (Ay), and if n > 1/N,
and for sufficiently large M and Ky, that there is a positive constant ¢ = ¢(M, Kp) such that for any § > 0

E(14 P (|X®| > 5)) < 4e=mintd N/ VpIN 8Nn/p)

The above estimate requires again the full assumption (H3).

We now turn to the estimate of P(A). This is the only part which has to be modified to consider sample covariance
matrices. For this result, we need that (In N )2 /N < n < 1. Then for sufficiently large M and K¢ there are positive
constants ¢, C such that for all N > 2,

P(A) < Ce~VM1/Np, (A7)

To prove (A.7), we first recall Lemma 7.3 of [12]. Let Y bea N x p, p > N, random matrix with i.i.d. centered entries
with variance 1. If the entries of Y also satisfy assumption (Ay), there exists a positive constant ¢ such that for C > 0
large enough

IED(ymax(YY*/p) = C) <e Cr,

Thus we only have to consider

N )
(e =)

To this aim we consider an interval / of length |/| = « for some « > 1 and call u its midpoint. In the following we
set z = u + io and assume that |z| > ¢ for some ¢ > 0 small. Let 0 < ¥, < 1/8 be given. Foreachk =1,2,..., N, we
define the events

B(k) = Z é,(,,k) = ﬁo(N(l) - 1)’

m,ym€el

and set B =, B® . As the eigenvalues of Hy and H I(f ) are interlaced, at least A/ (1) — 1 eigenvalues of H 1(\? ) lie in
I. It is proved in Lemma 4.7 of [13] that

dc>0, P (B(k)) < e~ cVN-T,

From this, we deduce that there exists C > 0 such that if M is large enough,
P(B N[N ()= May/Np}) < Ce=eVMav/Np,

Then on B¢ we have for some constant C, > 0

N() < CyNa Im(mN(u +ioz))

p/N=1 1 1
=C2N0¢Im(7—NZ—

z k=1 Z+ZC1*{R5]\;)C](
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1< 1
<C)NaIm| —— Z — (A.8)
N = 7+ zC5RY Cx

- 4C2Np(x2
~ e NU)

In (A.8) we used that Im(1/z) < 0 and p/N > 1. To derive (A.9), we used the fact that

(A.9)

Im<— ! % )E ! k S ! k )
24+ 2CERY G/ T 2+ CERYCrl T 1zl Im(CERY Cr)

1

with 7 < ¢~ and we estimated from below

N

b 2
> N e > 9N (1)/(4a?).

This now implies that N'(I) < a+/4C2Np/P,& on BC. This yields the desired result: one simply chooses M large
enough. (]

Appendix B: Asymptotics of Bessel functions

We use two types of asymptotics for Bessel functions.

The first one deals with is well-known asymptotics of Bessel functions with bounded order and large argument (see
[21] e.g.). They are used in Section 2.3.

Assume that v is bounded. Then, for large |z|,z € C

1 . T 37
Iv(Z) — \/Z_Tcz(ez +e—Z+(U+1/2)1H)(1 +O(1/Z)), _E <ArgZ < 7,
T 3
K,(z) = \/Lz_zez(l +0(1/2)), |Argz|< 731 (B.1)

We also make use in Section 2.4 of asymptotics of Bessel functions with large order and large argument.
Abramowitz and Stegun [1] (p. 378) give the following uniform asymptotic expansion of modified Bessel functions
of large order:

eV > ug (1)
Iv = 1 9
v «/—2nv(1+zz)1/4( +,§ vk )

—ve 00 vk
Kv(vz>=L<1+Z<1>v+®>’

V2u(1 +22)1/4 P
1 z b
t=—, ¢=v1+z2+ln<—), arg(z)| < = — ¢, (B.2)
V1422 1++/1422 | | 2

where uy () = t*vi (¢) for some polynomial vy.
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