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UNIFORM CONVERGENCE OF EXACT LARGE DEVIATIONS FOR
RENEWAL REWARD PROCESSES1

BY ZHIYI CHI

University of Connecticut

Let (Xn,Yn) be i.i.d. random vectors. Let W(x) be the partial sum of
Yn just before that of Xn exceeds x > 0. Motivated by stochastic models for
neural activity, uniform convergence of the form supc∈I |a(c, x)Pr{W(x) ≥
cx} − 1| = o(1), x →∞, is established for probabilities of large deviations,
with a(c, x) a deterministic function and I an open interval. To obtain this
uniform exact large deviations principle (LDP), we first establish the expo-
nentially fast uniform convergence of a family of renewal measures and then
apply it to appropriately tilted distributions of Xn and the moment generating
function of W(x). The uniform exact LDP is obtained for cases where Xn

has a subcomponent with a smooth density and Yn is not a linear transform of
Xn. An extension is also made to the partial sum at the first exceedance time.

1. Introduction.

1.1. Background. Let (Xn,Yn) be i.i.d. ∼ (X,Y ) ∈R
2. For x ≥ 0, let

N(x)=

max

{
n :

k∑
i=1

Xi ≤ x,∀k ≤ n

}
, if X1 ≤ x,

0, otherwise,

S(x)=
N(x)∑
i=1

Xi, W(x)=
N(x)∑
i=1

Yi,

where
∑n

i=1 xi := 0 if n= 0. It will hereafter be assumed that

X and Y are nondegenerate and Pr

{
sup
n≥1

n∑
i=1

Xi =∞
}
= 1.(1.1)

The process {W(x), x ≥ 0} is often called a continuous-time random walk or
renewal reward process (cf. [1] and references therein). There have been many
studies of the LDPs for N(x) and W(x) and related issues for exit points, often
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in the more general context of Markov additive or renewal processes [7, 9–11, 15,
16, 18, 19, 21–23, 26].

In this article, we consider the uniform exact LDP for the random sum W(x),
which refers to asymptotics of the form

sup
c∈I

|a(c, x)Pr {W(x)≥ cx} − 1| = o(1) as x →∞,

with I being an open interval and a(c, x) a deterministic function. Our interest
in this problem originates from research in neuroscience. In electrophysiological
studies, neuronal activity is recorded as sequences of pulses in voltage generated
by neurons and can be modeled as point processes. In some cases, the neuronal
activity can be regarded as consisting of consecutive “epochs” such that the activi-
ties therein are driven by the same underlying mechanism [4]. Each epoch yields a
measurement, such as the number of pulses during its duration, and the cumulative
measurement within a period of time is of interest. Let Xk and Yk be the duration
and measurement of the kth epoch, respectively. Then the overall measurement up
to time x is W(x). It is useful to understand the probabilistic properties of W(x),
such as the fluctuations in the number of pulses generated by a neuron over the
long term. In the simplest models, the epochs are independent of each other, which
gives rise to the problem at hand. Although Xn is positive for neural activity, in
general this is not a required assumption.

The exact LDP is known for the case where c is fixed (cf. [15, 26]) and for other
related cases, such as the degenerate case Y ≡ 1 [8]. However, the available results
are not sufficient in some applications. For instance, when dealing with the number
of pulses in neural activity, Xn may vary continuously while Yn are integers. Since
W(x)≥ cx is equivalent to W(x)≥ 	cx
 = c∗x, with c∗ varying according to x, it
is necessary to consider the convergence for c∗ in a neighborhood of c instead of
for c alone.

1.2. Overview. Our “plan of attack” is as follows. We choose the uniform ex-
act LDP of [3] as the basic tool, which requires some careful analysis of the mo-
ment generating function of W(x). Henceforth, denote

Mx(z)=E
[
ezW(x)], gx(z)= g(z, x)=E[ezY |X = x], z ∈C.(1.2)

It is seen that for t ∈ R, Mx(t) = Pr {X > x} + ∫ x−∞ gu(t)Mx−u(t)F (du). We
have to make sure that asymptotics of the form Mx(t) ∼ a(x, t)eb(t)x hold uni-
formly well for t ∈ I , where a(x, t) and b(t) are deterministic functions and I �=∅

is an open interval. Suppose that E[etY−h(t)X] ≡ 1 for some function h(t). Letting
φx(t)= Mx(t)

eh(t)x then yields renewal equations φx(t)=ψx(t)+ ∫ x−∞ φx−u(t)Ft (du),

where Ft(du)= gu(t)

eh(t)u F (du) is a proper probability measure. By the standard the-

ory [5, 2], for each t , φx(t) converges and so Mx(t)∼ φx(t)e
h(t)x . However, it is

necessary to show uniform convergence for φx(t). One approach is to first estab-
lish the uniform convergence of the renewal measures associated with Ft . Indeed,
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if h(t) is smooth, then the family of Ft is smooth in a certain sense, which facili-
tates the establishment of the uniform convergence of the renewal measures. Next,
provided ψx(t) are uniformly integrable, the uniform convergence of φx(t) can
be obtained. We can then check necessary conditions on Mx to obtain the desired
result for W(x). In particular, we need to establish uniform bounds on Mx(t+si)

Mx(t)
.

Suffice it to say, our derivation of the bounds critically depends on the uniform
asymptotics of Mx(t), the smoothness of Ft and the assumption that Y is not a
deterministic affine function of X.

Notation. Recall that a connected component of A⊂R is a maximal nonempty
interval in A and the interior of A is Ao = {x : (x − r, x+)⊂ A for some r > 0}.
The Lebesgue measure will be denoted by �. Define a ∨ b = max{a, b}, a ∧ b =
min{a, b}. By convention, we let inf ∅=∞ and sup ∅=−∞.

1.3. Main results. To carry out the plan outlined above, we shall first general-
ize the convergence of renewal measures associated with one measure [17, 24, 25]
to exponentially fast uniform convergence for a family of measures. This can be
done in a setting not specific to the uniform exact LDP. For a probability mea-
sure p on R, denote by µp its mean and by Np =∑∞

n=0 pn∗ the associated renewal
measure, where pn∗ is the n-fold convolution of p, with p0∗ := δ(x). Denote by
sppt(p) the support of p. If X ∼ p, also let sppt(X)= sppt(p). The next result gen-
eralizes those in [12], which are restricted to X ≥ 0, and gives no bounds on the
convergence of densities. For uniform convergence with power rates, see [13, 14].

THEOREM 1.1 (Uniform convergence of renewal measures). Let M be a fam-
ily of probability measures on R such that

inf
p∈M

µp > 0,(1.3)

Mτ := sup
p∈M

Ep

[
eτ |X|]<∞ for some τ > 0.(1.4)

Suppose that each p ∈M is a mixture of two probability measures �p and �p ,
where

p = (1− λp)�p + λp�p, 0≤ λp < 1,(1.5)

such that �p has a density φp and

γ := sup
p∈M

λp < 1.(1.6)

Furthermore, suppose that there exists T ∈ (0,∞) such that

φp ∈ C2
0((−T ,T )) ∀p ∈M(1.7)
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sup
p∈M

∫ T

−T
|φ′′p(x)|dx <∞.(1.8)

Then Np =Qp + N̄p such that Qp has a density qp , supp∈M N̄p(R) <∞ and for
all 0 < r � 1,

A1 := sup
x>0,p∈M

{erx |qp(x)−µ−1
p |} + sup

x>0,p∈M
{erxqp(−x)}<∞,(1.9)

A2 := sup
x>0,p∈M

{
erxN̄p

(
(−∞,−x] ∪ [x,∞)

)}
<∞.(1.10)

We will need two corollaries of Theorem 1.1. Corollary 1.2 is based on Corol-
lary 1.1 and is the one which will be used directly in obtaining the uniform exact
LDP.

COROLLARY 1.1. Let zp(x) be functions on R. Suppose that there exists
η > 0 such that L := supx∈R,p∈M{eη|x||zp(x)|}<∞. Then for each p, there exits
a unique solution Zp to

Zp(x)= zp(x)+
∫ ∞
−∞

Zp(x − y)p(dy)

(1.11)
such that sup

x∈R

{e−εxZp(x)}<∞,∀ε > 0.

Let up = µ−1
p

∫
zp(x) dx. Let r,A1,A2 be the same as in Theorem 1.1 and let

α = 1
2 min(η, r). Then there exists a continuous function C(·) such that

sup
x>0,p∈M

(
eαx |Zp(x)− up|)+ sup

x<0,p∈M

(
eα|x||Zp(x)|)

(1.12)
≤ C(A1,A2,L,η, r).

COROLLARY 1.2. Let zp(x) be defined on x ≥ 0 and η ∈ (0, τ ) such that
L1 := supx≥0,p∈M{eηx |zp(x)|}<∞, where τ is as in (1.4). Then

Zp(x)= zp(x)+
∫ x

−∞
Zp(x − y)p(dy) ∀x ≥ 0, p ∈M,(1.13)

has at most one solution satisfying L2(ε) := supx≥0,p∈M{e−εxZp(x)}<∞, ∀ε >

0. If the solution exists, then as x →∞,

Zp(x)→ up := 1

µp

[∫ ∞
0

zp(x) dx −
∫ 0

−∞

(∫ |y|
0

Zp(x) dx

)
p(dy)

]
(1.14)

and for α = 1
2 min(η, r), L= L1 ∨ (L2(η)Mτ ) and C(·) as in Corollary 1.1,

sup
x>0,p∈M

(
eαx |Zp(x)− up|)≤ C(A1,A2,L,η, r).(1.15)
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Conditions (1.6) and (1.7) in Theorem 1.1 imply that Stone’s decomposition
can apply uniformly well for p ∈M [25]. Conditions (1.7) and (1.8) imply that φp

have bounded oscillations, so they cannot cluster around a lattice distribution. The
conditions also imply that the characteristic functions of φp are uniformly inte-
grable and can hence be inverted, which facilitates the analysis of the tail of φp .
As indicated earlier, the condition (1.4) can be met by tilting a measure with a
smoothly parameterized family of functions.

Returning to the LDP for W(x), define

Dt = {s ∈R :E[etY−sX] ≤ 1} ∀t ∈R,

h(t)= infDt , h∗(ν)= sup
t
{νt − h(t)},

βX = lim sup
x→∞

(1/x) log Pr {X > x} ≤ 0.

For what values of c can a nontrivial LDP be expected for PrW(x)≥ cx? If X >

0 and Y are independent, then the LLN implies that c > c0 := EY
EX

, due to N(x)≈
x

EX
and W(x)≈N(x)EY ≈ c0x. In general, the answer depends on the properties

of h(t). In the following theorems, τ0 > 0 is a basic assumption in order for a
nontrivial LDP to arise for c= h′(t) when t takes values across a neighborhood of
τ0. Note that by the assumptions of the theorems, Y is not a deterministic linear
function of X. Therefore, the case Y ≡ 1 studied in [8] is not covered here.

THEOREM 1.2 (Uniform exact LDP, nonlattice case). Let τ0 > 0 and

h(τ0) ∈ (βX,∞), inf
s∈R

E[eτ0Y+sX]< 1.(1.16)

Suppose the following conditions (1)–(4) are satisfied.

(1) The law of X can be decomposed into the sum of two nonnegative measures
� and � such that �(R) > 0 with a density φ ∈C2(R).

(2) There exists k ∈N and η0 > 0 such that

E
∣∣E[eis(Y1+···+Yk)|X1 + · · · +Xk

]∣∣< 1 ∀s ∈R \ {0},(1.17)

E
[
e−h(τ0)X+τ0Y+η0(|X|+|Y |)]<∞.(1.18)

(3) With the same η0 as in (2),

g(t, x),
∂g(t, x)

∂x
,
∂2g(t, x)

∂x2 ∈ C
(
(τ0 − η, τ0 + η)× sppt(�)o

)
.

(4) In the case where Pr {X ≥ 0}< 1,

E
[
eq(τ0Y−(0∧h(τ0))X)|X > 0

]
<∞ ∀q > 0.(1.19)
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Then there exists I = (τ0 − ε, τ0+ ε) �=∅ such that h ∈C∞(I ), E[etY−h(t)X] ≡ 1
and h′′(t) > 0 for t ∈ I and

sup
t∈I

∣∣∣∣ t

φ(t)

√
2πxh′′(t)exh∗(h′(t)) Pr {W(x)≥ xh′(t)} − 1

∣∣∣∣= o(1)(1.20)

as x →∞, where

0 < φ(t) := B(X, t)

E[XetY−h(t)X] <∞,(1.21)

with 0 < B(X, t) <∞ given by

B(X, t)=
∫ ∞

0

Pr {X > x}
eh(t)x

dx −
∫ 0

−∞

∫ |x|
0

gx(t)Mu(t)

eh(t)(x+u)
duF(dx).

In particular, if X ≥ 0 a.s., then

B(X, t)=
{

h(t)−1(1−E[e−h(t)X]), if h(t) �= 0,
E[X], if h(t)= 0.

COROLLARY 1.3. Under the assumptions of Theorem 1.2, given a, b ∈R,

Pr {W(x + a)≥ xh′(τ0)+ b} ∼ φ(τ0)e
−xh∗(h′(τ0))+ah(τ0)−bτ0

τ0
√

2πxh′′(τ0)
.(1.22)

If Y has a finite moment generating function, then the results generalize to the
sums at the first passage time without much extra effort. Let

T (x)=min

{
n :

n∑
i=1

Xi > x

}
, W̄ (x)=

T (x)∑
i=1

Yi.

COROLLARY 1.4. Suppose that (1.16) and conditions (1)–(3) of Theorem 1.2
hold and that E[etY ]<∞ for all t . Additionally, if Pr {X ≥ 0}< 1, then instead of
(1.19), suppose that

E
[
e−q min(0,h(τ0))X1{X > 0}]<∞ ∀q > 0.(1.23)

Then with W(x) being replaced by W̄ (x) and φ(t) replaced by

0 < φ̄(t)= B̄(X, t)

E[XetY−h(t)X] <∞,

(1.22) still holds. The function B̄(X, t) is defined as

B̄(X, t)=
∫ ∞

0

∫ ∞
u

gx(t)

eh(t)(x+u)
F (dx) du−

∫ 0

−∞

∫ |x|
0

gx(t)E[etW̄ (u)]
eh(t)(x+u)

duF(dx).

In particular, if X ≥ 0 a.s., then

B̄(X, t)=
{

h(t)−1E
[
etY
(
1− e−h(t)X

)]
, if h(t) �= 0,

E[XetY ], if h(t)= 0.
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Now consider the case where Y is lattice-valued. Recall that a random variable ξ

is said to have span d > 0 if d =max{t > 0 : Pr{ξ ∈ tZ} = 1}.

THEOREM 1.3 (Uniform exact LDP, lattice case). Let Y be lattice-valued with
span d . Suppose that all of the conditions of Theorem 1.2 are satisfied except for
(1.17). Instead, assume that there exists k ∈N such that

E
∣∣E[eis(Y1+···+Yk)|X1 + · · · +Xk

]∣∣< 1 ∀s ∈ (0, π/d].(1.24)

Then with τ0 > 0 and φ as in Theorem 1.2 and {a} := 	a
 − a, as x →∞,

Pr {W(x)≥ xh′(τ0)} ∼ φ(τ0)d√
2πxh′′(τ0)

e−xh∗(h′(τ0))−dτ0{xh′(τ0)/d}

1− e−τ0d
.(1.25)

To see the relevance of the condition τ0 > 0, consider again the case where X

and Y are independent, with EX > 0. Then by E[etY ]E[e−h(t)X] = 1, h′(0)= EY
EX

.
By the strict convexity of h, h′(τ0) > EY

EX
. As mentioned just before Theorem 1.2,

this gives rise to a nontrivial LDP.
Some comments on (1.17) are in order. One of its implications is that for any

a, b ∈ R and d > 0, Pr {Y ∈ aX+ b+ dZ}< 1. Apparently, if E|E[eisY |X]|< 1,
∀s �= 0, then (1.17) is satisfied with k = 1. Another condition that implies (1.17) is
as follows.

PROPOSITION 1.1. Suppose that X has a continuous density and that there
exists a piecewise continuous function f on sppt(X) such that Y − f (X) is con-
stant or lattice valued. Suppose that the graph of f is not a set of parallel straight
line segments, that is, for any c ∈ R, f (x) − cx is not piecewise constant. Then
(X,Y ) satisfies condition (1.17).

Finally, in order to attain the uniform exact LDP, we need φ(t) > 0. If X ≥
0, then it is easy to see that φ(t) > 0. The case where Pr {X ≥ 0} < 1 is more
involved. The condition (1.19) is imposed to ensure that in order for φ(τ0) > 0.

In what follows, Section 2 gives examples of application of the uniform exact
LDP of W(x). In Section 3, Theorem 1.1 and its corollaries are proved. In Sec-
tion 4, the main theorems concerning the uniform exact LDP are proved. Section 5
proves corollaries and related results for the uniform exact LDP. Section 6 collects
auxiliary technical details for the main results.

2. Examples.

EXAMPLE 2.1. Consider the example on neural activity in Section 1. As-
sume that the duration X of an epoch has density e−x1{x > 0} and that within
each epoch, the neural activity has the same dynamics. Specifically, let f ≥ 0 be
a piecewise C1 function on (0,∞) with

∫
f > 0. Given an epoch of the form



1026 Z. CHI

[η,η + X], the point process ξ therein is such that ξ − η is a Poisson process
with density f (t)1{t ∈ [0,X]}. Let Y be the number of points in the epoch. Then
Y |X ∼ Poisson(F (X)), with F(x) = ∫ x0 f . Suppose that limx→∞ F(x)

x
= ν ≥ 0.

Let ψ(z) = ∫∞0 ez(F (x)−νx) dx. For any x > 0, W(x) is lattice-valued with span
d = 1. Define a =−∞ if ψ(z) > 1 ∀z ∈R, otherwise a = sup{z ∈R :ψ(z)≤ 1}.

We show the exact LDP (1.25) holds for τ0 > 0 with eτ0 − 1 > a. We need to
check conditions (1) and (3) of Theorem 1.2, (1.16), (1.18), and (1.24). Condition
(1) is clear. Given X = x > 0, E[etY |X = x] = exp{F(x)(et − 1)}. Let {xn} be
the set of points where f fails to be C1. Let � be the density of X restricted
to the exterior of a neighborhood of {xn}. Then condition (3) is satisfied. Now
∀s ∈ (0, π], E|E[eisY |X]| = E|eF(X)(eis−1)| = E[eF(X)(cos s−1)] < 1. Therefore,
(1.24) holds.

For any s, E[eτ0Y−sX] = b(s) := ∫∞0 eF(x)(eτ0−1)−(s+1)x dx. Observe that b(s)

is continuous and strictly decreasing on {b(s) <∞}. Since F(x)
x

→ ν as x →∞,
for s > s0 := ν(eτ0 − 1)− 1≥ 1, b(s) <∞, and b(s)→ 0 as s →∞. On the other
hand, as s ↓ s0, b(s) ↑ψ(eτ0 −1) and by eτ0 −1 > a, lims↓s0 b(s) > 1. As a result,
there exists a unique s = h(τ0) > s0 with E[eτ0Y−sX] = 1. It is then easy to see
that there exists η > 0 such that E[e(τ0+η)Y−sX+ηX]<∞. Both (1.16) and (1.18)
therefore hold.

By (1.21), φ(t) = [(1 + h(t))
∫∞

0 xeF(x)(et−1)−(h(t)+1)x dx]−1 for t > 0 with
et − 1 > a. Now suppose that f (x) ≡ 1. In this case, a = −∞ and W(x) is the
number of points in [0, (x −X)∨ 0] from a Poisson process V (x) with density 1.
We obtain h(t)= et − 1, φ(t)= e−t and h∗(ν)= ν lnν − ν + 1 for t > 0, ν > 1.
For any T > 0, letting τ0 = lnT > 0 in (1.25) yields

Pr {W(x)≥ T x} ∼ e−x(T lnT−T+1)−lnT {T x}
√

2πT x(T − 1)
= T −	T x
e(T−1)x

√
2πT x(T − 1)

.

It is worth comparing the exact LDP of W(x) with that of V (x). For x � 0,
the “cut-off” interval [(x −X) ∨ 0, x] is a very small fraction of [0, x]. Does the
random cut-off have any effect? By Theorem 3.5 of [3], we have

Pr {V (x)≥ T x} = Pr {N(x)≥ 	T x
} ∼ e−x(�∗
x)′(	T x
/x)√

2πx�′′
x(τx)

1

1− e−τx
, T > 1,

where �x(t)= 1
x

logE[etN(x)] = et − 1, �∗
x(ν)= ν lnν − ν + 1 for ν > 1 and τx

is the unique solution to �′
x(τx)= 	T x


x
. It follows that the effect can be quantified

as Pr {V (x)≥ T x} ∼ T Pr {W(x)≥ T x}.
Now let Y = 1{X > M}, where M > 0 is a constant. Then W(x) is the num-

ber of epochs in [0, x] with duration longer than M . Conditioning on X1 +
X2 = u ∈ (0,2M), ζ = Y1 + Y2 is binary with Pr {ζ = 0} ∈ (0,1). Therefore,
|E[eis(Y1+Y2)|X1 +X2 = u]|< 1, ∀s ∈ (0, π] and condition (1.24) is satisfied. For
t > 0, s = h(t) is the solution to seMs = e−M(et − 1). It follows that for any
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c ∈ (e−M, 1
M

), there exists a unique τ0 > 0 with h′(τ0) = c. The exact LDP for
Pr {W(x)≥ cx} can then be obtained.

EXAMPLE 2.2. Fix a > 0. Let X ∼ N(0,1) and Y = 1{X ≥ a} − 1{X < a}.
Regard Sn = X1 + · · · +Xn as a random walk. Given x > 0, N(x) <∞ a.s. and
W(x) is the difference between the number of steps with size greater than a and
the number with size less than a before the random walk crosses x for the first
time. Note that EN(x) =∞ and hence that W(x) is not integrable. Let �(x) =
Pr {X ≤ x}. For t > 0 and s ∈R,

E[etY−sX] = es2/2 [et (1−�(s + a))+ e−t�(s + a)]︸ ︷︷ ︸
A(t)

.

Then h(t) = −
√

2 ln 1
A(t)

< 0 is well defined only for t ∈ (0, ln �(a)
1−�(a)

). Now

h(t) > βX = limx→∞ 1
x

Pr {X ≥ x} = −∞ and condition (1.19) is satisfied. As in
Example 2.1, W(x) satisfies the exact LDP in (1.25) with d = 1.

EXAMPLE 2.3. Suppose that X and Y are independent, each has a C2 density
such that EX ≥EY = 1, ess infX = ess infY = 0 and

t0 = sup{t :E[etY ]<∞}> 0, lim
t→t0−

E[YetY ] =∞,

where ess infX := sup{x : Pr {X > x} = 1}. Let ξ0 = (0,0) and for n≥ 1, let ξn =
(ξn,1, ξn,2) := (

∑n
i=1 Xi,

∑k
i=1 Yi).

Given x > 0, let Ix = [0, x] × [0, x]. Consider the probability that the first ξn

outside Ix is a certain distance from the upper-right corner (x, x). Let T (x) =
min{n : ξn /∈ I o

x }. Given λ ∈ (0,1) and M ∈ R, let Aλ,x,M = {ξT (x),1 ≤ λx +M}.
Observe that, for 0 < y < x, ξT (x),1 ≤ y ⇐⇒ “for some k ≥ 1,

∑k
i=1 Xi ≤ y and∑k

i=1 Yi > x” ⇐⇒ W(y) > x.
As X ≥ 0 is nondegenerate, for t > 0, there exists a unique h(t) with

E[etY−h(t)X] = E[etY ]E[e−h(t)X] = 1. Then h′(t) = at

bt
, where at = E[YetY ]

E[etY ] is

strictly increasing and bt = E[Xe−h(t)X]
E[e−h(t)X] strictly decreasing. If h(t0−)=∞, then as

t ↑ t0, bt → ess infX = 0 and hence h′(t)≥ a0
bt
→∞. On the other hand, if h(t0−)

is finite, then as t ↑ t0, E[etY ] = 1
E[e−h(t)X] is bounded and hence, by E[YetY ] →

∞, h′(t)≥ at

b0
→∞. In either case, h′(t)→∞. Since h′(0)= EY

EX
≤ 1, there is a

unique τλ with h′(τλ)= 1
λ

. So by Corollary 1.3,

Pr {Aλ,x,M} = Pr {W(λx +M)≥ x}

= Pr {W(λx +M)≥ λxh′(τλ)} ∼ φ(τλ)e
Mh(τλ)

τλ

√
2πλxh′′(τλ)

e−λxh∗(λ−1),

where φ(τλ)= 1−E[e−h(τλ)X]
h(τλ)E[Xe−h(τλ)X]E[etY ] .
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3. Exponentially fast uniform convergence of renewal measures. This sec-
tion proves Theorem 1.1. For any σ -finite measure p, let p̂ denote its characteristic
function.

PROOF OF THEOREM 1.1. Since N̂p = 1 + p̂N̂p and p̂ = (1 − λp)�̂p +
λp�̂p , following [25], N̂p = (1− λp�̂p)−1[1+ (1− λp)�̂pN̂p] and

Np = (1− λp)�p ∗ N̄p ∗Np +
∞∑

n=0

λn
p�n∗

p =Qp + N̄p.(3.1)

Because �p has a density φp ∈ C2
0((−T ,T )) with T > 0 independent of p and

because1− λp > 0, Qp has a density qp ∈C. Also, note that N̄p(R)= 1
1−λp

.
We first show that (1.10) holds for 0 < r � 1. By λp�p ≤ p and γ =

supp∈M λp < 1, for any ε > 0, x > 0 and p ∈M, we have

N̄p

(
(−∞,−x] ∪ [x,∞)

)≤ Sp +
∑
n≥εx

λn
p ≤ Sp + γ εx

1− γ

where Sp =∑n<εx Pr {|∑n
i=1 Xi | ≥ x} with Xi i.i.d. ∼ p. By (1.4), there exists

τ > 0, such that Mτ = supp∈M Ep[eτ |X|]<∞. Then by Chernoff’s inequality,

Sp ≤
∑
n≤εx

Ep

[
eτ(nX−x) + e−τ(nX+x)]≤ 2εxex(ε logMτ−τ).

Thus, given ε ∈ (0, τ
logMτ

), (1.10) holds for 0 < r < min(ε log 1
γ
, τ − ε logMτ).

The rest of the proof is devoted to (1.9). We need a suitable spectral representa-
tion of qp(x). By N̄p(R)= 1

1−λp
, χp = (1−λp)�p ∗ N̄p is a probability measure.

Then, as in [25],

qp(x)= 1

2µp

+ 1

2π

∫ ∞
−∞

�
(
e−ixθ χ̂p(θ)

1− p̂(θ)

)
dθ,(3.2)

1

2π

∫ ∞
−∞

�
(
e−ixθ χ̂p(θ)

−iθ

)
dθ = 1

2
− χp([x,∞)).(3.3)

For completeness, proofs for (3.2) and (3.3) are given in the Appendix.
Because sppt(�p) ⊂ [−T ,T ], the tail probability of χp is the same as that of

N̄p up to a shift bounded by T and a multiplicative factor bounded by 1− γ . Then
by (1.10),

sup
x>0,p∈M

{
erxχp

(
(−∞,−x] ∪ [x,∞)

)}
<∞ ∀0 < r � 1.(3.4)

By condition (1.3), (3.2)–(3.4) and the self-conjugacy of χ̂p(θ) and p̂(θ),

qp(x)=




1

µp

+ 1

2π
Ip(x)+Rp(x), if x > 0,

1

2π
Ip(x)+Rp(x), if x < 0,

(3.5)
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with supx>0,p∈M |eδxRp(x)|<∞, where

Ip(x)=
∫ ∞
−∞

e−ixθ χ̂p(θ)Kp(θ) dθ, Kp(z) := 1

1− p̂(z)
− 1

−iµpz
.(3.6)

To continue, we need the next lemma, which will be proven in Section 6.1.

LEMMA 3.1. There exists η > 0 such that for all p ∈ M, p̂(z) := Ep[eizX]
is analytic on Dη = {z : |�(z)| ≤ η} and p̂(z) �= 1 for z �= 0. Furthermore, Lη :=
supz∈Dη,p∈M |Kp(z)|<∞.

Let Ap(s) = λp

∫
esx�p(dx). By (3.1), | ˆ̄Np(θ − is)| ≤∑∞

n=0 Ap(s)n, s ∈ R.

Given s ∈ (−τ, τ ), since 0 < e|sx| − 1≤ |sx|e|sx| ≤ |s|eτ |x|
τ−|s| ,

0≤ λp

∫
e|sx|�p(dx)− λp ≤

∫ (
e|sx| − 1

)
p(dx)≤ |s|Mτ

τ − |s| ,

yielding 0≤Ap(s)≤ λp+ |s|Mτ

τ−|s| . Thus one can choose 0 < η� 1 as in Lemma 3.1

such that supp∈M,|s|≤η Ap(s) < 1. As a result, ˆ̄Np(z) are analytic and uniformly
bounded in Dη. By means of some computation,

|�̂p(θ − is)| ≤ e|sT |min(1,Cθ−2) ∀θ, s ∈R,p ∈M,(3.7)

where C = supp∈M

∫ |φ′′p|. It follows that χ̂p = (1− λp)�̂p
ˆ̄Np is analytic in Dη

and (1+ θ2) supp∈M,|s|≤η |χ̂p(θ − is)|<∞. Thus there exists a constant C1 > 0
such that

∫∞
−∞ |χ̂p(θ − is)|dθ < C1 for s ∈ [−η,η] and p ∈M.

Let r ∈ (0, η). By Lemma 3.1, Kp(z) is analytic on Dr . For x > 0, apply Lemma
3.1 and Cauchy’s contour integral to e−izxχ̂p(z)Kp(z) along the path �(z)= 0 and
�(z)=−r . Then by (3.6),

Ip(x)=
∫ ∞
−∞

e−x(r+iθ)χ̂p(θ − ir)Kp(θ − ir) dθ

and hence |Ip(x)| ≤ Lre
−xr
∫∞
−∞ |χ̂p(θ − ir)|dθ ≤ C1Lre

−xr . Similarly, for
x < 0, |Ip(x)| ≤ C1Lre

xr . So by (3.5), (1.9) holds. �

PROOF OF COROLLARY 1.1. For p ∈M, Zp(x)= ∫∞−∞ zp(x − y)Np(dy) is
a solution to (1.11). For x > 0,

Zp(x)− up =
∫ ∞
−∞

zp(x − y)N̄p(dy)+
∫ ∞
−∞

zp(x − y)qp(y) dy

− 1

µp

∫ ∞
−∞

zp(x − y)dy
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and hence

|Zp(x)− up| ≤
∫ ∞
x/2

|zp(x − y)|N̄p(dy)+
∫ x/2

−∞
|zp(x − y)|N̄p(dy)

+
∫ ∞
x/2

∣∣zp(x − y)(qp(y)−µ−1
p )
∣∣dy

+
∫ x/2

−∞
|zp(x − y)|(qp(y)+µ−1

p

)
dy.

The integrals on the right-hand side are bounded by LA2e
−rx/2, LA2e

−ηx/2,
LA1e

−rx/2 and 1
η
L(A1 + 2

µp
)e−ηx/2, respectively. A similar bound for x < 0 can

be obtained. Therefore, Zp satisfies (1.12).
It remains to show that the solution is unique for each p. If sppt(p) ∈

[0,∞), this follows from [5], Lemma 4.1.I. In general, let D(x) be the differ-
ence between two such solutions. Then D(x) = ∫∞−∞D(x − y)pn∗(dy). Given
ε > 0, there exists C > 0 such that D(x − y) ≤ Ceε(x−y) and hence |D(x)| ≤∫∞
−∞Ceε(x−y)pn∗(dy) = Ceεx(Ep[e−εX])n. By (1.3) and (1.4), Ep[e−εX] < 1 if

ε� 1. Letting n→∞ yields D(x)= 0. The uniqueness is thus proved. �

PROOF OF COROLLARY 1.2. The uniqueness of the solution to (1.13) can
be shown by following the proof of Corollary 1.1. Let Zp(x), x ≥ 0, be the so-
lution. Extend Zp(x) and zp(x) to R so that for x < 0, Zp(x) = 0 and zp(x) =
− ∫ x−∞Zp(x − y)p(dy). Then the renewal equation

Zp(x)= zp(x)+
∫ ∞
−∞

Zp(x − y)p(dy)

holds. By (1.4), for x ≤ 0, |zp(x)| ≤ ∫ x−∞L2(η)eη(x−y)p(dy) ≤ L2(η)eηxMτ .
Thus supx∈R,p∈M{eη|x||zp(x)|} ≤ L. By Corollary 1.1, (1.15) holds. �

4. Uniform exact LDP. This section proves Theorems 1.2 and 1.3. We start
with some basic results.

4.1. Preparations. By condition (1.18),

ϕ(t, s) :=E[etY+sX] ∈ C∞((t, s) : |t − τ0|< η0, |s + h(τ0)|< η0
)
.

Then f (s) := ϕ(τ0, s) ∈ C∞, f (−h(τ0)) = 1. By condition (1.16), inff < 1. As
h(τ0)=− sup{s :f (s)≤ 1} and f is convex, f ′(−h(τ0)) > 0. Therefore,

∂ϕ(τ0,−h(τ0))

∂s
=E
[
Xeτ0Y−h(τ0)X

]
> 0.

Fix τ0 and η0 as in Theorem 1.2. By the implicit function theorem (cf. [20]),
there exist 0 < ε0 < τ0∧η0 and 0 < η < (h(τ0)−βX)∧η0 such that h is a smooth
mapping from I0 = [τ0 − ε0, τ0 + ε0] into [h(τ0)− η,h(τ0)+ η],

E
[
etY−h(t)X]≡ 1(4.1)
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and

E[XetY+sX] = ∂ϕ(t, s)

∂s
> 0 on I0 × [−h(τ0)− η,−h(τ0)+ η].(4.2)

Differentiate E[etY−h(t)X] ≡ 1 twice to obtain h′′(t) = E[(Y−h′(t)X)2etY−h(t)X]
E[XetY−h(t)X] . By

condition (1.17), h′′(t) > 0 and hence h(t) is strictly convex on I0.
By (4.1), for any t ∈ I0, define the following probability measure:

Pt(dx, dy)= ety−h(t)xP (dx, dy).

Denote by Et the expectation under Pt and by E that under P . Then Et [X] =
E[XetY−h(t)X] and supt∈I0

Et [X]<∞. Under Pt , the marginal of X and the con-
ditional measure of Y given X are, respectively,

Ft(dx) = gx(t)e
−h(t)xF (dx),

(4.3)

Pt(dy|x) := Pt(dy|X = x)= ety

gx(t)
P (dy|x).

Note that for any function f , Et [f (X)] =E[etY−h(t)Xf (X)]. Define

ψx(t)= Pr {X > x}
eh(t)x

, φx(t)= Mx(t)

eh(t)x
, kx(t)= gx(t)

eh(t)x
.(4.4)

Then Ft(dx)= kx(t)F (dx). To apply Corollary 1.2 to the proof of Theorem 1.2,
the following lemmas are needed.

LEMMA 4.1. The family of probability measures {Ft(dx), t ∈ I0} satisfies
conditions (1.3)–(1.8).

LEMMA 4.2. For all x ≥ 0 and t ∈ I0, Mx(t) <∞. Define

�x(t)= 1

x
logMx(t), �∗

x(λ)= sup
t∈R

{λt −�x(t)}(4.5)

and define φ(t) by (1.21). Then there exists I = [τ0 − ε, τ0 + ε] ⊂ I o
0 with ε ∈

(0, ε0 ∧ τ0) such that inft∈I h′′(t) > 0,

lim sup
x→∞

sup
t∈I

{
x
∣∣�(n)

x (t)− h(n)(t)
∣∣}<∞, n= 0,1,2,(4.6)

and φ(t) is continuous on I , inft∈I φ(t) > 0, and there exists α > 0 such that

lim sup
x→∞

eαx sup
t∈I

|φx(t)− φ(t)|<∞.(4.7)

In the following proofs, the uniform exact LDP in [3] is the fundamental tool.
However, it turns out that some of the conditions used in the main result of [3] are
hard to verify for W(x). We shall instead check the more basic conditions provided
in that work.
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4.2. Nonlattice case. PROOF OF THEOREM 1.2. Let I be as in Lemma 4.2.
To prove (1.20), it suffices to show that for any xn →∞ and τn ∈ (τ0 − ε/2, τ0 +
ε/2),

Pr {W(xn)≥ xnh
′(τn)} ∼ φ(τn)

τn

√
2πxnh′′(τn)

e−xnh∗(h′(τn)), n→∞.(4.8)

For brevity, define Mn(t) = Mxn(t) and φn(t) = φxn(t). Let �n(t) = 1
xn
×

logMn(t) and νn = h′(τn). Note that α := infI0 h′′(t) > 0. By (4.6),

C := 1

2α
lim sup

n

[
xn sup

t∈I

|�′
n(t)− h′(t)|

]
<∞.

Let εn = C
xn

. For n � 1, τn ± εn ∈ I and hence �′
n(τn + εn) − νn ≥ �′

n(τn +
εn)− h′(τn+ εn)+ αεn > 0. Likewise, νn−�′

n(τn− εn) > 0. Since �′
n is strictly

increasing, there exists a unique t∗n ∈ I with

�′
n(t

∗
n)= νn, |t∗n − τn| ≤ C/xn.(4.9)

Define random variables A∗
n and Un such that

Pr {A∗
n ∈ du− xnνn} = exp{t∗nu}

Mn(t∗n)
Pr {W(xn) ∈ du},

Un = A∗
n√

xn�′′
n(t

∗
n)

.

We will later show that there exist δ > 0 and N > 0, such that

f ∗(s) := sup
n≥N

{|E[eisUn]|1{|s| ≤ δ
√

xn�′′
n(t

∗
n)
}} ∈ L1,(4.10)

sup
η<|s|<λ

∣∣∣∣E[e(t∗n+is)W(xn)]
Mn(t∗n)

∣∣∣∣ = o

(
1√
xn

)
∀η,λ > 0.(4.11)

Equation (4.10) implies (2.7) in [3]. Meanwhile, it can be shown that Un
d→

N(0,1), which is the first conclusion of Lemma 3.1 of [3] (cf. [6], Theorem 3.7.4).
Thus the first claim in the proof of Lemma 3.2 of [3] holds. As 0 < lim inf t∗n <

lim sup t∗n <∞, t∗n satisfies (3.3) in [3] and (4.11) implies condition (c) of Lemma
3.2 of [3]. Thus that lemma holds for W(xn). By Theorem 3.3 of [3],

Pr {W(xn)≥ xnνn} ∼ e−xn�∗
n(νn)

t∗n
√

2πxn�′′
n(t

∗
n)

, n→∞.

By (4.6), �′′
n(t∗n )

h′′(τn)
→ 1. Note that e−xn�∗

n(νn) = e−xn(νnt∗n−h(t∗n ))φn(t
∗
n). Since φ ∈

C(I), by (4.7) and (4.9), limφn(t
∗
n)= φ(τ0). By Taylor expansion,

νnt
∗
n − h(t∗n)= νnτn − h(τn)− 1

2h′′(ξn)(t
∗
n − τn)

2

= h∗(νn)− 1
2h′′(ξn)(t

∗
n − τn)

2, some ξn ∈ [τn, t
∗
n ].
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By (4.9), νnt
∗
n − h(t∗n)= h∗(νn)+ o(x−1

n ) and hence (1.20) is proved. �

4.3. Lattice case. The proof for this case is based on the next lemma.

LEMMA 4.3. Under the assumptions of Theorem 1.3, for all x � 1, W(x) is
lattice-valued with span d .

PROOF OF THEOREM 1.3. As in the proof of Theorem 1.2, the bound in
(4.10) still holds. On the other hand, following an argument similar to that in the
proof for (4.11), it is not hard to see that for any η ∈ (0, π/d],

sup
η<|s|≤π/d

∣∣∣∣E[e(t∗x+is)W(x)]
Mx(t∗x )

∣∣∣∣= o

(
1√
x

)
.

The rest of the proof follows that of Theorem 1.2. Let ν = h′(τ0) and νx =
d
x
	xν

d

. As |νx − ν| ≤ d

x
, ∀x � 0, there exits a unique t∗x with h′(t∗x ) = νx . By

Theorem 3.5 of [3],

Pr {W(x)≥ xν} = Pr
{
W(x)≥ d

⌈
xν

d

⌉}
= Pr {W(x)≥ xνx}

∼ d√
2πx�′′

x(t
∗
x )

e−x�∗
x(νx)

1− e−t∗x d
.

By |h′(t∗x ) − h′(τ0)| = |νx − ν| ≤ d
x

, there exists C > 0 with |t∗x − τ0| ≤ C
x

.
Then �′′

x(t
∗
x ) → h′′(τ0), e−x�∗

x(νx) = e−x(νx t∗x−�x(t∗x )) = e−x(νx t∗x−h(t∗x ))φx(t
∗
x ) ∼

e−x(νx t∗x−h(t∗x ))φ(τ0) and

νxt
∗
x − h(t∗x )= (νx − ν)(t∗x − τ0)+ (νx − ν)τ0 + νt∗x − h(t∗x )

= (νx − ν)τ0 + ντ0 − h(τ0)+O(x−2).

Finally, note that x(νx − ν)τ0 = dτ0{xν/d}. This then completes the proof. �

4.4. Uniform bounds for the tilted complex moment generating functions. The
rest of the section is devoted to (4.10) and (4.11). Let σn =√�′′

n(t
∗
n). Then

E[ezUn] = exp
{
−νn

√
xnz

σn

}
1

Mn(t∗n)
Mn

(
t∗n +

z√
xnσn

)
, z ∈C.

PROOF OF (4.10). The formula will follow if there exist a, δ > 0 such that

lim sup
n

sup
s∈R

{|E[eisUn]|1{|s| ≤ δ
√

xnσn

}
eas2}

<∞.
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Replacing s with
√

xnσns, the supremum becomes

sup
|s|≤δ

{ |Mn(t
∗
n + is)|

Mn(t∗n)
eaxnσ 2

n s2
}
.

As t∗n ∈ I and �′′
n(t

∗
n) is bounded away from 0 and ∞, (4.10) will follow if there

exist a > 0 and δ > 0 such that

lim sup
x→∞

sup
t∈I,|s|≤δ

{ |Mx(t + is)|
Mx(t)

eaxs2
}

<∞.

Note that Mx(t) = φx(t)e
h(t)x . Let Gx(t + is) = e−h(t)xE[e(t+is)W(x)]. By

Lemma 4.2, supI |φx(t)
φ(t)

− 1| → 0 and infI φ(t) > 0. Thus it suffices to show that

lim sup
x→∞

sup
t∈I,|s|≤δ

{|Gx(t + is)|eaxs2}<∞.(4.12)

Define wk =∑k
i=1 ui . By (4.3) and (4.4), for s, t ∈R,

Gx(t + is)= ψx(t)+
∫ x

−∞
Et [eisY |u]Gx−u(t + is)Ft (du)

=
∞∑

n=0

∫
ψx−wn(t)1{wk ≤ x,∀k ≤ n}

n∏
j=1

Et [eisY |uj ]Ft(duj )

︸ ︷︷ ︸
Jn(s,t,x)

.

Note that |Jn(s, t, x)| ≤ Jn(t, x) := Jn(0, t, x) and
∑

n≥0 Jn(t, x) = Gx(t) =
φx(t). First, we show that there exist η > 0 and M > 0 such that

lim sup
x→∞

eηx

{
sup
t∈I

∑
n≤ηx

|Jn(t, x)| + sup
t∈I

∑
n≥Mx

|Jn(t, x)|
}

<∞.(4.13)

By (1.18) and infI h(t) > βX , there exists a ∈ (0, 1
2(infI h(t)− βX)) such that

L := sup
t∈I

logEt

[
e2a|X|]<∞,

K(ψ) := sup
t∈I,x≥0

|e2axψx(t)|<∞.

Then

|Jn(t, x)| ≤K(ψ)

∫
e−2a(x−wn)

n∏
j=1

Ft(duj )

≤K(ψ)e−2ax(Et [e2aX])n.
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Fix η ∈ (0, a
L
). Then for all t ∈ I ,

∑
n≤ηx

|Jn(t, x)| ≤K(ψ)e−2ax
ηx∑

n=1

Et [e2aX]n

≤ K(ψ)e−2ax+Lηx

1− e−L
= K(ψ)e−ax

1− e−L
.

On the other hand, by the selection of I , it is seen that there is b > 0, such that
l := supt∈I logEt [e−bX]< 0. By Chernoff’s inequality, for n≥ 1,

|Jn(t, x)| ≤K(ψ)Pt

(
n∑

j=1

Xj ≤ x

)
≤K(ψ)ebxEt [e−bX]n ≤K(ψ)ebx+ln.

By choosing M � 0, (4.13) is thus proved.
Let Ax = [ηx,Mx]. We need to bound

∑
n∈Ax

Jn(s, t, x). For n≥ ηx, let

J ′n(s, t, x)=
∫

ψx−wn(t)1{wk ≤ x,∀k ∈ (ηx,n]}
n∏

j=1

Et [eisY |uj ]Ft(duj ).

With the same a > 0 and L > 0 as in the bound for
∑

n≤ηx |Jn|, for t ∈ I ,

|Jn(s, t, x)− J ′n(s, t, x)| ≤
∫

ψx−wn(x)1{wk ≥ x,∃k ≤ ηx}
n∏

j=1

Ft(duj )

≤K(ψ)

ηx∑
k=1

Pt

(
k∑

j=1

Xj ≥ x

)
(4.14)

≤K(ψ)e−2ax
ηx∑

k=1

ekL = K(ψ)e−ax

1− e−L
.

We next find an a > 0 such that supt∈I

∑
n∈Ax

J ′n(s, t, x)=O(e−axs2
) and then

use the above approximation to bound supt∈I

∑
Jn(s, t, x). Note that

J ′n(s, t, x)=
∫

Jn−�ηx�
(
s, t, x −w�ηx�

) ηx∏
j=1

Et [eisY |uj ]Ft(duj ).

Fix k as in (1.17). Let ξ = ∑k
j=1 Yj , Z = ∑k

j=1 Xj . In order to obtain the

desired bound, we express J ′n(s, t, x) in terms of Et [eisξ |Z]. By (1.17), for
each t ∈ I , Et |Et [eisξ |Z]| < 1, implying that Et [σZ(t)] > 0, where σz(t) =
Vart (ξ |Z = z). Note that if σz(t) > 0 for one t ∈ I , then by the smoothness of
Pt , v(z) := inft∈I σz(t) > 0. Therefore, Pr {v(Z) > 0} > 0. On the other hand, by
(1.18), supt∈I E[etξ+η|ξ ||Z]<∞ a.s. Thus there exist r > 0 and R > 1 such that
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p := inft∈I Pt (Z ∈ �) > 0, where � = {z : r ≤ v(z), supt∈I Et [|ξ |3|Z = z] ≤ R}.
Let m= ��ηx�

k
�, Zj =∑k

s=1 X(j−1)k+s , ξj =∑k
s=1 Y(j−1)k+s . Then

∑
n∈Ax

J ′n(s, t, x)=
∫ ( ∑

k≤(M−η)x

Jk

(
s, t, x −w�ηx�

))
︸ ︷︷ ︸

V

×
m∏

j=1

Et [eisξj |Zj = zj ]Fk∗
t (dzj )

×
�ηx�∏

j=mk+1

Et [eisYl |Xj = uj ]Ft(duj ).

Since |V | ≤∑Jk(t, x −w�ηx�)= φx−w�ηx�(t)≤ supt,x φx(t),∣∣∣∣∣ ∑
n∈Ax

J ′n(s, t, x)

∣∣∣∣∣≤ sup
t,x

φx(t)

∫ m∏
j=1

∣∣Et [eisξ |Z = zj ]
∣∣Fk∗

t (dzj )

(4.15)

≤ sup
t,x

φx(t)

[
1− p+ p sup

z∈�

∣∣Et [eisξ |Z = z]∣∣]m.

By Lemma 4.2, supt,x φx(t) < ∞. Let µt(z) = Et [ξ |Z = z]. Then by [2],
Proposition 8.44, for |s| � 1, z ∈ � and t ∈ I ,∣∣Et [eisξ |Z = z]∣∣= ∣∣Et

[
eis(ξ−µt (z))|Z = z

]∣∣
≤ 1− rs2

2
+ 4R|s|3 ≤ 1− rs2

4
.

Because m
x
→ η

k
as x →∞, it is seen that there exists α > 0 such that for |s| � 1

and x � 0, |∑n∈Ax
J ′n(s, t, x)| ≤ Ce−αxs2

, with C > 0 an unspecified constant
that may vary from appearance to appearance. Together with (4.14), this implies
that |∑n∈Ax

Jn(s, t, x)| ≤ C(xe−ax + e−αxs2
). Then by (4.13), there exists δ > 0

such that for |s| ≤ δ, t ∈ I and x � 0, |Gx(t + is)| ≤ C(e−ηx + xe−ax + e−αxs2
).

This then completes the proof of (4.12). �

PROOF OF (4.11). The formula will follow if supt∈I,η<|s|<λ |Gx(t + is)| =
o(x−1/2), where Gx(·) is defined as in (4.12). From the proof of (4.10),
supt∈I,η<|s|<λ |Gx(t + is) −∑n∈Ax

J ′n(s, t, x)| = O(e−ax) for some a > 0. On
the other hand, from (4.15), we obtain |∑n∈Ax

J ′n(s, t, x)| ≤ Cf (s)ηx/k , where C

is a constant and f (s) = supt∈I Et |Et [eisξ |Z]|. As E|E[eisξ |Z]| < 1, it can be
seen that f (s) < 1. The proof then follows. �
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5. Consequences of the uniform exact LDP.

PROOF OF COROLLARY 1.3. Let ν = h′(τ0). For x � 0, there exists a unique
tx ∈ I with h′(tx)= νx := xν+b

x+a
. As tx → τ0, by the uniform convergence,

Pr {W(x + a)≥ xh′(τ0)+ b} ∼ φ(tx)

tx
√

2πxh′′(tx)
e−(x+a)h∗(νx).

Since tx → τ0 > 0, φ(tx)

tx
√

2πxh′′(tx)
= (1+ o(1))

φ(τ0)

τ0
√

2πxh′′(τ0)
. On the other hand,

−(x + a)h∗(νx)+ xh∗(ν)

= x[h∗(ν)− h∗(νx)] − ah∗(νx)

= h∗′(z)x(aν − b)

x + a
− ah∗(νx)→ h∗′(ν)(aν − b)− ah∗(ν),

with z = z(x) between ν and νx . Since h∗′(ν)= τ0 and h∗(ν)= ντ0 − h(τ0), the
limit is ah(τ0)− bτ0. This then completes the proof. �

PROOF OF COROLLARY 1.4. Use the same gx(t), kx(t) and Ft(dx) as in the
proof of Theorem 1.2. On the other hand, define

M̄x(t) := E
[
etW̄ (x)], φ̄x(t)= M̄x(t)

eh(t)x
,

ψ̄x(t) = 1

eh(t)x

∫ ∞
x

gu(t)F (du).

As in the proof of Theorem 1.2, let M̄n(t)=Mxn(t), �̄n(t)= �̄xn(t) and

Pr {Ā∗
n ∈ du− xnνn} = exp{t∗nu}

M̄n(t∗n)
Pr {W̄ (xn) ∈ du},

Ūn = Ā∗
n√

xn�̄′′
n(t

∗
n)

.

Clearly, Lemma 4.1 still applies. The proof then follows from Lemma 5.1 below
and almost the same steps as in the proof of Theorem 1.2. �

LEMMA 5.1. Under the conditions of Corollary 1.4, Lemma 4.2 still holds
if �x(t), φx(t) and φ(t) are replaced by �̄x(t) = 1

x
log M̄x(t), φ̄x(t) and φ̄(x),

respectively, and equations (4.10) and (4.11) still hold if Mn(t), �n(t) and Un are
replaced by M̄n(t), �̄n(t) and Ūn, respectively.

PROOF OF PROPOSITION 1.1. Let the span of Y − f (X) be d . Since X has
a continuous density, each connected component of sppt(X) has a nonempty in-
terior. We first show that if f (x) is continuous but not affine on a nonempty



1038 Z. CHI

(a, b) ⊂ sppt(X), then (X,Y ) satisfies condition (1.17) with k = 2. Let (ξ1, ζ1)

and (ξ2, ζ2) be independent, such that Pr{ξi ∈ dx} = Pr{X ∈ dx|X ∈ [a, b]} and
Pr{ζi ∈ dy|ξi = x} = Pr{Y ∈ dy|X = x}, ∀x ∈ [a, b]. It suffices to show that

E
∣∣E[eis(ζ1+ζ2)|ξ1 + ξ2

]∣∣< 1 ∀s �= 0.(5.1)

Assume that (5.1) is not true for s �= 0. Then for a.e. u ∈ (a, b), there exists h

such that Pr{ζ1+ζ2 ∈ h+ 1
2πs

Z|ξ1+ξ2 = 2u} = 1. Since ζ1+ζ2 ∈ f (ξ1)+f (ξ2)+
dZ a.s., Pr{(h+ 1

2πs
Z)∩ (f (ξ1)+ f (ξ2)+ dZ) �=∅|ξ1 + ξ2 = 2u} = 1, implying

that for a.e. x ∈ (2u− b,2u− a) ∩ (a, b), f (2u− x)+ f (x) ∈ h+ 1
2πs

Z+ dZ.
Since f (2u− x)+ f (x) is continuous in x and 1

2πs
Z+ dZ is discrete, there exists

c such that f (2u− x)+ f (x) ≡ c. In particular, letting x = u yields c = 2f (u).
It follows that for x, y ∈ (a, b), f (x)+ f (y)= 2f (

x+y
2 ) and hence f is affine on

(a, b), a contradiction.
It remains to show (5.1) for the case where f is piecewise affine. By the as-

sumption, there exist disjoint intervals (a1, b1), (a2, b2) ⊂ sppt(X) and constants
c1 �= c2, d1 and d2 such that f (x)= cix+di on (ai, bi). Let (ξ1, ζ1) and (ξ2, ζ2) be
independent such that Pr {ξi ∈ dx} = Pr {X ∈ dx|X ∈ Ii} and Pr{ζi ∈ dy|ξi = x} =
Pr{Y ∈ dy|X = x}. Now sppt(ξ1 + ξ2)= J = [a1 + a2, b1 + b2]. Given ξ1 + ξ2 =
u ∈ J o, Z := f (ξ1)+ f (ξ2)

d= (c2 − c1)η + c1u+ d1 + d2, where Pr {η ∈ dx} =
Pr {ξ2 ∈ dx|ξ2 ∈ I } = Pr {X ∈ dx|X ∈ I }, with I = (u−b2, u−a1)∩ (a2, b2) �=∅.
Thus Z has a density, yielding |E[eis(ζ1+ζ2)|ξ1 + ξ2 = u]| = |E[eisZ|ξ1 + ξ2 =
u]|< 1 for all s �= 0. �

6. Auxiliary technical details.

6.1. Proofs of auxiliary results for the renewal measures.

PROOF OF LEMMA 3.1. By condition (1.4), p̂(z)=Ep[eizX] are analytic and
equicontinuous in Dτ . Fix r0 ∈ (0, τ ). Let µ̄p = Ep|X| and νp = 1

2Ep[X2]. For z

with |z| ≤ r0,

|p̂(z)− 1−µpz− νpz2| ≤
∞∑

n=3

|z|nEp|X|n
n!

= E
[
e|zX|
]− 1− µ̄p|z| − νp|z|2(6.1)

≤ Ep

[|X|3er0|X|]|z|3 ≤ CMτ |z|3,
where C ≥ supx≥0 x3e(r0−τ)x . By (1.4), supp νp <∞. Combined with (1.3), this
implies that there exists δ > 0 such that |p̂(z) − 1| ≥ δ|z| if |�(z)| ≤ δ and
|�(z)| ≤ δ.

Assuming the first statement in Lemma 3.1 were false, there would be tn →
0, θn ∈ R and pn ∈ M, such that θn − itn �= 0 and p̂n(θn − itn) = 1. From the
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previous paragraph, |θn| ≥ δ. Then by |p̂n(θn− itn)− p̂n(θn)| ≤Epn[e|tnX|] − 1≤
M
|tn|/τ
τ − 1 → 0, p̂n(θn) → 1. On the other hand, by (1.6) and (3.7), p̂n(θn) =

(1− λp)�̂p(θn)+ λp�̂p(θn) ≤ Cθ−2
n + γ . Therefore, lim infCθ−2

n ≥ 1− γ > 0
and the θn are bounded. By (1.4), M is tight. Then there exist a probability measure
p0 and an s �= 0 such that, say, pn

w→ p0 and θn → s. Note that |s| ≥ δ. Because p̂

are equicontinuous on Dτ , by p̂n(θn − itn) = 1, we obtain p̂0(s) = 1. Therefore,
p0 is concentrated on a lattice L of span |s|.

Given ε > 0 and η > 0, let Lε =⋃x∈L(x − ε, x + ε). There exists R > T such
that pn((−R,R) ∩ Lε) ≥ 1 − η, ∀n � 1. Then by (1.5), (1.6) and sppt(�p) ⊂
(−T ,T ),

γ + sup
p∈M

�p

(
(−T ,T )∩Lε

)≥ 1− η.(6.2)

Because φp ∈ C2
0((−T ,T )), from supx,y |φ(i)

p (x) − φ
(i)
p (y)| ≤ ∫ T−T |φ(i+1)

p |, i =
0,1, we obtain A := supp∈M ‖φp‖∞ <∞ and by (6.2), γ +A�((−T ,T )∩Lε)≥
1− η. Letting ε → 0 yields γ ≥ 1− η. Since η is arbitrary, we arrive at a contra-
diction to (1.6). This proves the first statement in Lemma 3.1.

To show that Lη <∞ for some η ∈ (0, τ ), given p ∈M,

|Kp(z)| =
∣∣∣∣ 1

1− p̂(z)
− 1

−iµpz

∣∣∣∣= |p̂(z)− 1− iµpz|
µp|p̂(z)− 1||z| .

By (6.1), |p̂(z) − 1 − iµpz| ≤ νp|z|2 + CMτ |z|3 and |p̂(z) − 1| ≥ µp|z| −
νp|z|2 + CMτ |z|3. As infp µp > 0 and supp νp < ∞, there exists δ > 0 with
supp∈M,|�z|,|�z|≤δ |Kp(z)| < ∞. Thus if Lη = ∞ for any η ∈ (0, τ ), then there
exist tn → 0, θn ∈R and pn ∈M such that |θn| ≥ δ and p̂n(θn− itn)− 1→ 0. The
same argument for the first statement then applies to yield a contradiction. This
completes the proof of Lemma 3.1. �

6.2. The moment generating function of the random sum. This part pro-
vides technical results on Mx(t) for the proof of Lemma 4.2. Recall that βX =
lim supx

1
x

log Pr {X > x}.

LEMMA 6.1. The following statements (1)–(4) are true. (1) For any t with
Dt �= ∅, E[etY−sX] is strictly convex in s ∈ Dt . Furthermore, given t1, t2 and
λ ∈ (0,1), we have (1− λ)Dt1 + λDt2 ⊂D(1−λ)t1+λt2 . (2) For any t ∈ R, Dt is a
closed interval and h(t) >−∞. In particular, if h(t) <∞, then h(t) ∈Dt . (3) h

is convex in A= {t ∈R :h(t) <∞} and h(0)= 0. (4) A is an interval with 0 ∈A.
In particular, for any t ∈A, if Do

t �=∅, then Do
s �=∅, ∀s ∈Ao.

PROOF. (1) follows from the strict convexity of ex , the assumption that X

is nondegenerate and Hölder’s inequality. (2) By (1) and Fatou’s lemma, Dt is
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a closed interval. If h(t) = −∞, then for any M � 0, E[etY+MX] ≤ 1, imply-
ing that ess supX ≤ 0, which contradicts (1.1). (3) By (1), h is convex. Clearly,
h(0) ≤ 0. If h(0) < 0, then E[e|h(0)|X] ≤ 1 and by the strict convexity of E[esX],
there exists a > 0 such that E[eaX] < 1. For x � 0, by Chernoff’s inequality,∑

Pr {∑n
i=1 Xi > x} ≤ e−ax∑(E[eaX])n < 1, implying that Pr {N(x)=∞} > 0,

which contradicts (1.1). (4) follows easily from (1). �

LEMMA 6.2 [Upper bound for exponential rate of Mx(t)]. Let t ∈ R be such
that βX < h(t) <∞ and Do

t �=∅. Then Mx(t) is rightcontinuous in x ≥ 0 and for
ε > 0 with h(t)+ ε ∈Do

t , there exists Kε > 0 such that

Mx(t)≤Kεe
(h(t)+ε)x ∀x > 0.(6.3)

Furthermore, if either h(t)≥ 0 or ε < |h(t)|, then one can set Kε = H(h(t))
1−ρ(t,ε)

, where

H(a)=E[e−(0∧a)X] + 1 and ρ(t, ε)=E[etY−(h(t)+ε)X].

PROOF. For brevity, define an
1 =
∑n

i=1 ai . First, suppose that h(t) ≥ 0. Fix
ε > 0 with h(t)+ ε ∈Do

t . By Lemma 6.1, E[etY−(h(t)+ε)X]< 1. Then

etW(x) =
∞∑

k=0

etY k
1 1{N(x)= k} ≤

∞∑
k=0

etY k
1 1{Xk

1 ≤ x}
(6.4)

≤
∞∑

k=0

etY k
1 e(h(t)+ε)(x−Xk

1) = e(h(t)+ε)x
∞∑

k=0

ξk,

where ξk =∏k
j=1 exp{tYj − (h(t)+ ε)Xj }. Let ζx = e(h(t)+ε)x∑ ξk . Then

E[ζx] = e(h(t)+ε)x
∞∑

k=0

ρ(t, ε)k <∞.(6.5)

Equations (6.4) and (6.5) show that Mx(t) ≤ Kεe
(h(t)+ε)x and, given x0 > 0,

etW(x) ≤ ζx0 , ∀x ∈ (0, x0). When y ↓ x, N(y) ↓ N(x) and W(y) → W(x) a.s.
Then by dominated convergence, Mx(t) is rightcontinuous in x.

If βX < h(t) < 0, then we show that for 0 ≤ ε < −h(t), E[e−(h(t)+ε)X] <∞.
Fix δ ∈ (0, h(t)− βX). For x � 1, Pr {X > x} ≤ e−(|h(t)|+δ)x . Then∫ ∞

0
e−(h(t)+ε)xF (dx)≤

∫ ∞
0

e−h(t)xF (dx)

≤ 1+ |h(t)|
∫ ∞

0
e|h(t)|x Pr {X > x}dx <∞

and hence E[e−(h(t)+ε)X1{X ≥ 0}]<∞. On the other hand, because h(t)+ ε < 0,
E[e−(h(t)+ε)X1{X < 0}] < 1. Therefore, E[e−(h(t)+ε)X] ≤ E[e−h(t)X] + 1 < ∞.
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Fix ε ∈ (0,−h(t)) with h(t)+ ε ∈Do
t . Then

etW(x) =
∞∑

k=0

etY k
1 1{N(x)= k} ≤

∞∑
k=0

etY k
1 1{Xk+1

1 > x}

≤
∞∑

k=0

etY k
1 e−(h(t)+ε)(Xk+1

1 −x)(6.6)

= e(h(t)+ε)x
∞∑

k=0

ξke
−(h(t)+ε)Xk+1 .

Note that ξn is independent of Xn+1. An argument similar to that for h(t)≥ 0 can
then be applied. The expression for Kε follows from (6.5) and (6.6). �

LEMMA 6.3 [Upper bound for exponential rate of M
(n)
x (t)]. Suppose that

there exists I = (a, b) such that βX < h(t) < ∞ on I . Also, suppose that there
exist τ ∈ I and η > 0 such that Do

τ �= ∅ and E[etY−h(t)X+η(|X|+|Y |)] < ∞ for
t ∈ I . Then for any x ≥ 0, Mx(t) ∈ C∞(I ) and there exists K = K(n, t, ε),
such that | ∂nMx(t)

∂tn
| ≤ Ke(h(t)+ε)x , ∀t ∈ I , ε > 0. Furthermore, if h(t) + ε ∈ Do

t

and either h(t) ≥ 0 or ε < |h(t)|, then one can set K = H(h(t)) × H1(h(t)) ×
Pn(ρ(t, ε)) × (1 − ρ(t, ε))−n, where H(·) is given in Lemma 6.2, H1(a) =
CE[etY−h(t)X+η(|X|+|Y |)] with C an absolute constant and Pn a polynomial of
degree n with absolute constant coefficients. Finally, ∂nM

∂tn
∈ C(I ×R).

PROOF. Because Do
τ �= ∅, by Lemma 6.1, Do

t �= ∅, ∀t ∈ I . Then by
Lemma 6.2, ∀x ≥ 0, Mx(t) < ∞ on I , implying that Mx(t) ∈ C∞(I ) with
M

(n)
x (t) = E[W(x)netW(x)]. For n ≥ 1, by |∑k

i=1 xi |n ≤ kn−1∑k
i=1 |xi |n, if

h(t)≥ 0 and 0 < ε� 1, then, as in (6.4),

|W(x)|netW(x) ≤ e(h(t)+ε)x
∞∑

k=0

kn−1

(
k∑

i=1

|Yi |n
)
ξk.

Let C = supx≥0 xne−ηx and ζi = CetYi−h(t)Xi+η(|Xi |+|Yi |). Since ζi are i.i.d. with
Eζ1 <∞ and |Yi |netYi−(h(t)+ε)Xi ≤ ζi , we have E[|W(x)|netW(x)] ≤ Ke(h(t)+ε)x ,
where K = Eζ1

∑∞
k=1 knρ(t, ε)k−1. The case βX < h(t) < 0 is proved likewise.

The rest of the proof follows that of Lemma 6.2. �

LEMMA 6.4 [Exact exponential rate of Mx(t)]. Suppose that βX < h(t) <∞
and E[etY−h(t)X] = 1. Suppose that either (1) Pr {X ≥ 0} = 1, or (2) Do

t �=∅ and
E[eq(tY−(0∧h(t))X)|X > 0]<∞, ∀q > 0. Then 1

x
logMx(t)→ h(t).

PROOF. By Lemma 6.2, we have lim sup 1
x

logMx(t) ≤ h(t). It remains to
demonstrate that lim inf 1

x
logMx(t) ≥ h(t). First suppose that (1) is true. Then
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Dt = [h(t),∞) �= ∅. Assume that the lower bound does not hold. Then there
exist ε > 0 and zn →∞ such that f (zn) := Mzn(t)

e(h(t)−ε)zn
→ 0. Fix ηn ↓ 0. Then

xn := sup{x :∀u ∈ [0, x), f (u)≥ ηn}<∞ and

f (xn)≥
∫ x

0

gu(t)

e(h(t)−ε)u
f (xn − u)F (du)≥ ηnE

[
eZ1{X ∈ (0, xn]}],

where Z = tY − (h(t) − ε)X. Since Mx(t) is rightcontinuous, f (xn) ≤ ηn

and hence E[eZ1{X ∈ [0, xn]}] ≤ 1. Note that xn is increasing. If xn ↑ ∞,
then E[eZ] ≤ 1, contradicting the definition of h(t). If xn → z < ∞, then
Mxn(t) = f (xn)e

(h(t)−ε)xn → 0, that is, E[etW(xn)] → 0, which implies that
Pr {|W(xn)|> M} → 1 for any M > 0. However, since N(z) <∞ and |Y | <∞
a.s., this is impossible. Thus the lower bound holds.

Suppose that (2) is true. Let Un = exp{tYn − h(t)Xn}, Zn = U1 · · ·Un and
T (x)=N(x)+ 1. Fix ε > 0 with h(t)+ ε ∈Do

t . Define ξn as in (6.4). Then

Zn1{T (x)= n} ≤ Zn1{T (x)≥ n}

≤
n∏

k=1

etYk−h(t)Xk × eε(x−∑n−1
i=1 Xi) = eεxξn−1Un.

Since E[ξn−1] = ρ(t, ε)n−1 and E[Un] = 1, with ρ(t, ε) < 1 defined as in Lemma
6.2, there exists M > 1 such that for x � 1, E[ZT (x)1{T (x) ≥ Mx}] < 1

2 . Let

X∗ =X∗(x)=∑T (x)
i=1 Xi − x, ζ = ζ(x)= 1

T (x)
etYT (x)−h(t)X∗

. Then

E
[
etW(x)ζ

]≥ 1

Mx
E
[
etW(x)etYT (x)−h(t)X∗

1{T (x) < Mx}]≥ eh(t)x

2Mx
.

Fix p, q > 1 with 1
p
+ 1

q
= 1 and pt ∈Ao. Then E[eptW(x)]1/pE[ζ q]1/q ≥ eh(t)x

2Mx
.

Note that Mx(pt) = E[eptW(x)]. Also, note that 0 < X∗ ≤ Xn if T (x) = n. So
by the assumption, E[ζ q] ≤ ∑n−qE[eq(tYn−(h(t)∧0)Xn)1{Xn > 0}] < ∞. Thus
lim inf 1

px
logMx(pt) ≥ h(t). Replacing pt by t , we get lim inf 1

x
logMx(t) ≥

ph(t/p), ∀t ∈Ao. Let p ↑ 1. Since h(t) is convex and hence continuous in Ao,
the lower bound follows. �

6.3. Proofs of auxiliary results for the uniform exact LDP.

PROOF OF LEMMA 4.1. Recall the definition of I0 and η > 0 given just before
(4.2). By (1.18), there exists a > 0 such that

sup
t∈I0

Et

[
ea|X|]≤E

[
eτ0Y−h(τ0)X+η0(|X|+|Y |)]<∞.

Let R > 0 and π(x) ∈ C∞
0 (sppt(�) ∩ (−R,R)) such that 0 ≤ π(x) ≤ 1 and∫

πφ > 0. Now each Ft has a subcomponent with density kx(t)π(x)φ(x) ∈
C2

0((−R,R)). It is then seen that the conditions in Theorem 1.1 are satisfied. �
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PROOF OF LEMMA 4.2. By (4.2), h ∈ C∞(I0) and E[etY−h(t)X] = 1, one
can choose ε ∈ (0,

ε0∧η
4 ) and I = (τ0 − ε, τ0 + ε) such that (1) h(t) + ε ∈ Do

t

and |h(t)− h(τ0)| ≤ η
4 for every t ∈ I ; (2) supt∈I ρ(t, a) < 1, ∀a ∈ (0, ε], where

ρ(t, a)= E[etY−(h(t)+ε)X]; (3) inft∈I |h(n)(t)|<∞, n≥ 0. By Lemma 6.3, ∀x >

0, Mx(t) ∈ C∞(I ) and ∀0 < η� 1, there exists K(η) > 0 such that

sup
t∈I

{
e−h(t)x(|Mx(t)| + |M ′

x(t)| + |M ′′
x (t)|)}≤K(η)eηx.(6.7)

We first show (4.7). From the definitions, for x ≥ 0,

Mx(t)= Pr {X > x} +
∫ x

−∞
gu(t)Mx−u(t)F (du),(6.8)

φx(t)= ψx(t)+
∫ x

−∞
ku(t)φx−u(t)F (du)

(6.9)
= ψx(t)+

∫ x

−∞
φx−u(t)Ft (du).

From (6.7), supx≥0,t∈I {e−εxφx(t)}<∞, ∀ε� 1. On the other hand, by the se-
lection of I0, βX < infI0 h≤ infI h. Since ψx(t)= e−h(t)x Pr {X > x}, there exists
ε > 0 such that supt∈I ψx(t)= o(e−εx). We now apply Lemma 4.1 and Corollary
1.2 to (6.9). Then

φx(t)→ 1

Et [X]
[∫ ∞

0
ψx(t) dx −

∫ 0

−∞

(∫ |x|
0

φu(t) du

)
Ft(dx)

]
uniformly exponentially fast for t ∈ I . The right-hand side is φ(t), so (4.7) holds.

It remains to show (4.6). Because �x(t)= 1
x

logMx(t)= 1
x

logφx(t)+ h(t),

�′
x(t)=

φ′x(t)
xφx(t)

+ h′(t), �′′
x(t)=

φ′′x (t)φx(t)− φ′x(t)2

xφx(t)2 + h′′(t).

Therefore, in order to obtain (4.6), it suffices to show that

lim sup
x→∞

sup
t∈I

∣∣∣∣φ
(n)
x (t)

φx(t)

∣∣∣∣<∞, n= 1,2.(6.10)

To show (6.10) for φ′x(t), we first show that for x > 0 and t ∈ I ,

φ′x(t)=ψ ′
x(t)+

∫ x

−∞
(ku(t)φx−u(t))

′F(du),(6.11)

that is, d
dt

∫ x
−∞ ku(t)φx−u(t)F (du)= ∫ x−∞(ku(t)φx−u(t))

′F(du). It suffices to ver-
ify that for 0 < ε � 1,

∫ x
−∞ sup|s−t |≤ε |(ku(s)φx−u(s))

′′|F(du) < ∞. Indeed, as
kx(t) = e−h(t)xE[etY |X = x] and φx(t) = e−h(t)xMx(t), by (6.7), it can be seen
that for ε � 1, there exists C such that for n ≤ 2, t ∈ I and x ≥ 0, |k(n)

x (t)| ≤
Ce−h(t)xE[etY+ε|Y ||X = x] and supI |φ(n)

x (t)| ≤ Ceεx . By (1.18), fix η > 0 and
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ε ∈ (0,
η
2 ) such that Z := etY−h(t)X+η(|X|+|Y |) ∈ L1 and sup|s−t |≤ε |h(s)− h(t)|<

η
2 . It follows that sup|s−t |≤ε |(ku(s)φx−u(s))

′′| ≤ 4C2eεx[Z|X = u] ∈ L1(F ) and
hence (6.11) holds.

Now let wx(t) = ∫ x−∞ k′u(t)φx−u(t)F (du). By (6.11), φ′x(t) = zx(t) +∫ x
−∞ φ′x−u(t)F (du), where zx(t) = ψ ′

x(t) + wx(t). As
∫∞
−∞ ku(t)F (du) ≡ 1, by

an argument similar to that above,
∫∞
−∞ k′u(t)F (du)= 0. Then

|wx(t)| ≤
∫ x

−∞
|k′u(t)||φx−u(t)− φ(t)|F(du)+ φ(t)

∫ ∞
x

|k′u(t)|F(du).

From (4.7), supt∈I |φx(t)− φ(t)| ≤ Ce−ax for 0 < a � 1. Combining the above
results, we have

|wx(t)| ≤ C

∫ x

−∞
e−h(t)u−a(x−u)E

[
etY+η|Y ||X = u

]
F(du)

+ φ(t)

∫ ∞
x

e−h(t)u+η(x−u)E
[
etY+η|Y ||X = u

]
F(du)

≤ Ce−(η∧ε)x.

On the other hand, because βX < inft∈I h(t), φ′x(t) = −xh′(t)e−h(t)x ×
Pr {X > x} → 0 uniformly exponentially fast on I . Thus supt∈I |zx(t)| → 0 ex-
ponentially fast and Corollary 1.2 can be applied to (6.11) to obtain supI |φ′x(t)−
φ′(t)| → 0 exponentially fast. It also implies that φ ∈C1 (cf. [20], Theorem 7.17).

The exponentially fast convergence supt∈I |φ′′x (t)→ φ′′(t)| → 0 can be proven
likewise. To complete the proof, we must show that, by shrinking I if neces-
sary, inft∈I |φ(t)| > 0. First, if X ≥ 0, a.s., then this follows easily. Suppose that
Pr {X ≥ 0}< 1. Since φx(τ0) > 0, we have φ(τ0)= limx φx(τ0)≥ 0. If φ(τ0)= 0,
then φx(τ0) → 0 exponentially fast in x, that is, there exists a > 0 such that
Mx(τ0)e

−h(τ0)x = o(e−ax). This implies that lim supx
1
x

logMx(τ0) < h(τ0). On
the other hand, by condition (1.19) and Lemma 6.4, (1/x) logMx(τ0) → h(τ0).
The contradiction implies that φ(τ0) > 0. Since φ is continuous around τ0, we can
shrink I to obtain inft∈I φ(t) > 0. This completes the proof of (6.10). �

PROOF OF LEMMA 4.3. Without loss of generality, let d = 1 and Pr{Y >

0} > 0. Clearly, W(x) ⊂ Z. By simple results from number theory, there exist
y1, . . . , ys ∈ sppt(Y ) such that for each large m ∈ N, there exist c1, . . . , cs ∈ N

with
∑

ciyi = m. Fix �i , i ≤ s, such that Pr{X ∈ �i} > 0 and Pr{Y = yi |X =
x} > 0, ∀x ∈ �i . Since the law of X has a subcomponent with a density and
Pr{supn

∑n
i=1 Xi =∞} = 1, there exists t0, such that the law of ξ0 :=∑i≤t0

Xi

has a subcomponent with a density in (0,∞). Then there exist k0 and A ⊂
sppt(ξ0)

o ∩ (0,∞), with �(A) > 0 and Pr{∑i≤t0
Yi = k0|ξ0 = x} > 0, ∀x ∈ A.

By the property of measurable sets in R, {x + y :x, y ∈ A} contains an interval
(a, b) �=∅. Let k = 2k0, t = 2t0. Then (a, b)⊂ sppt(

∑
i≤t Xi)

o and Pr{∑i≤t Yi =
k|∑i≤t Xi = x}> 0, ∀x ∈ (a, b). Finally, there exists I = [t, t+1]∩ sppt(X) with
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t > 0 such that Pr{X ∈ I }> 0. Without loss of generality, assume that all �i , (a, b)

and I are in [−R,R] for some R > 0.
Fix m, p1, . . . , ps , q1, . . . , qs ∈ N such that

∑
piyi =m,

∑
qiyi =m+ 1. De-

fine p =∑pi , q =∑qi . We claim that for x � 0, there exists n ∈N such that the
events E1 and E2 defined as follows each has a positive probability. E1 is the joint
event of (1) N(x)= nt + p, (2) XN(x)+1 ∈ I and (3) {Zi := (Xi, Yi), i ≤ nt + p}
can be partitioned into B1, . . . ,Bs , C1, . . . ,Cn such that |Bj | = pj with Xi ∈ �j

and Yi = yj for each Zi ∈ Bj , Cj = {Zij1, . . . ,Zijt
}, with

∑
l≤t Xijl

∈ (a, b) and∑
l≤t Yijl

= k. E2 is defined likewise, with qi replacing of pi . Event E1 implies
that W(x)= nk +∑piyi = nk +m, while E2 implies that W(x)= nk +m+ 1.
Therefore, nk +m,nk+m+ 1 ∈ sppt(W(x)) and W(x) has span 1.

To verify the claim, let T0 = 1 + max{p,q}. For x � 0, there exists n ∈ N

such that T0R + na < x and −T0R + nb > x. This implies that for any zi1, . . . ,
zipi

∈ �i , i ≤ s, and z ∈ I , there exists a nonempty open interval J ∈ (a, b) such
that the inequalities

∑
i,j

zij +
n∑

i=1

ui ≤ x,
∑
i,j

zij +
n∑

i=1

ui + z > x

are satisfied by any u1, . . . , un ∈ J . Therefore, the probability that all of
the following events on (X1, Y1), . . . , (Xnt , Ynt ) happen simultaneously is pos-
itive: (1)

∑
i,j zij + ∑i Xi < x, (2)

∑
i,j zij + ∑i Xi + z > x and (3) ∀i ≤

n,
∑

l≤t Xit+l ∈ (a, b) and
∑

l≤t Yit+l = k. Let Xnt+1, . . . ,Xnt+p take values
x11, . . . , z1p1, . . . , zs1, . . . , zsps , respectively, while let Xnt+1 = z, and Ynt+1, . . . ,

Ynt+p take values y1, . . . , ys , respectively, such that Ynt+i = yj if
∑j−1

h=1 ph < j ≤∑j
h=1 ph. Then

∑
i≤nt+p Yi = nk+m. Rearrange (X1, Y1), . . . , (Xnt+p,Ynt+p) so

that those with negative values of Xi appear first. This results in N(x) = nt + p

and W(x)= nk+m. Hence the claim holds for E1. The case for E2 can be treated
similarly. �

PROOF OF LEMMA 5.1. In order to show Lemma 4.2 with �x(t), φx(t) and
φ(t) being replaced by �̄x(t), φ̄x(t) and φ̄(x), note that

φ̄x(t)= ψ̄x(t)+
∫ x

−∞
ku(t)φ̄x−u(t)F (du)

= ψ̄x(t)+
∫ x

−∞
φ̄x−u(t)Ft (du),

as opposed to (6.9). From the proof of Lemma 4.2, one can see that the lemma is
implied by Lemma 4.1 and the fact that

sup
t∈I

∣∣ψ(n)
x (t)
∣∣= o(e−ax), n= 0,1,2, for some a > 0.(6.12)

Indeed, (6.12) implies Lemmas 6.2–6.4, which are then combined with Lemma
4.1, (6.12) and Corollary 1.2 to obtain (4.6) and (4.7). For the current proof,
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Lemma 4.1 still holds. Therefore, we only need to check (6.12) with ψx replaced
by ψ̄x , as well as Lemmas 6.2–6.4. By Hölder’s inequality,

|ψ̄x(t)| = 1

eh(t)x

∫ ∞
x

g(t, u)F (du)≤ 1

eh(t)x
E[eqtY ]1/q Pr {X > x}1−1/q,

for all q > 1. Set q � 0 so that (1 − 1
q
)βX < h(τ0) < ∞. By the assumption

of Corollary 1.4, E[eqtY ]1/q <∞. Therefore, supt∈I |ψ̄x(t)| = o(e−ax) for some
a > 0. The exponential decay of supt∈I |ψ̄(n)

x (t)| for n = 1,2 can be shown like-
wise. The proofs of Lemmas 6.2–6.4 for M̄x(t) closely follow those for Mx(t). We
omit the detail for brevity.

From the proofs of (4.10) and (4.11), one can see that they are implied by
conditions (1.17) and (1.18) as well as the fact that there exists a > 0 such that
supt∈I,x≥0 |e2axψx(t)| <∞. Conditions (1.17) and (1.18) are still assumed here.
It is not hard to show that there exists a > 0 such that supt∈I,x≥0 |e2axψ̄x(t)|<∞.
By now repeating the proofs, it is seen that (4.10) and (4.11) still hold when M̄n(t),
�̄n(t) and Ūn replace Mn(t), �n(t) and Un. �

APPENDIX

PROOF OF (3.2) AND (3.3). Let P be the probability measure that has density
p. As in [2], ∀r ∈ (0,1), let qr be the density of χp ∗∑∞

n=0 rnP n∗. Then q̂r =
χ̂p

∑∞
n=0 rnp̂n = (1−λ) ˆ̄Np�̂p

1−rp̂
. Since (1 − λp)N̄p is a probability measure, (1 −

λp)| ˆ̄Np| ≤ 1. By (3.7), �̂p ∈ L1. Therefore, χ̂p = (1− λp)�̂p
ˆ̄Np ∈ L1. By |1−

rp̂| ≥ 1− r , q̂r ∈ L1. Given M > 0, by an inverse Fourier transform,

qr(x)= 1

2π

∫ ∞
−∞

e−ixθ χ̂p(θ)

1− rp̂(θ)
dθ = 1

2π

∫ ∞
−∞

�
(
e−ixθ χ̂p(θ)

1− rp̂(θ)

)
dθ

= 1

2π

∫ M

−M
�
(
e−ixθ χ̂p(θ)

1− rp̂(θ)

)
dθ︸ ︷︷ ︸

I1

+ 1

2π

∫
|θ |>M

�
(
e−ixθ χ̂p(θ)

1− rp̂(θ)

)
dθ︸ ︷︷ ︸

I2

.

Let e−ixθχp(θ)= f (θ)+ ig(θ), p̂(θ)= u(θ)+ iv(θ). Then

I1 =
∫ M

−M
f (θ)�

(
1

1− rp̂(θ)

)
dθ +

∫ M

−M

rg(θ)v(θ)

|1− rp̂(θ)|2 dθ = J1 + J2.

For θ �= 0, p̂(θ) �= 1. Therefore, limr↑1 J1 = π
µp
+ ∫M−M f (θ)�( 1

1−p̂(θ)
) dθ (cf. [2],

Lemma 10.11 or [24], page 330). By its definition, �p has a finite mean, say a,
and hence N̄p has finite first moment a

∑
nλn

p . Consequently, χp has a finite mean,
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yielding g(θ)∼ µχpθ as θ → 0. On the other hand, p̂(θ) = 1+ µpθ + o(θ). By
dominated convergence for J2, as r ↑ 1,

J2 →
∫ M

−M

g(θ)v(θ)

|1− p̂(θ)|2 dθ #⇒ I1 → π

µp

+
∫ M

−M
�
(
e−ixθ χ̂p(θ)

1− p̂(θ)

)
dθ.

Because p̂(θ)→ 0 as θ →∞, dominated convergence applies to I2. This then
completes the proof of (3.2). To now obtain (3.3), first let x = 0. Because χp has
a finite first moment and χ̂p ∈ L1, it is seen that χp(θ)/θ ∈ L1. For s > 0, let

g(s)= 1
2π

∫∞
−∞ 1

θ
(
∫∞
−∞ sin(tθ)χp(dt))e−θ2/2s2

dθ . It is seen that g(s) converges to
the left-hand side of (3.3) as s →∞. On the other hand, by Fubini’s theorem,
g(s)= 1

2π

∫∞
−∞ h(t, s)χp(dt), where h(t, s)= ∫∞−∞ 1

θ
sin(tθ)e−θ2/2s2

dθ . Observe
that ∂th= 2πϕs(t), where ϕs is the density of N(0, 1

s
). By h(0, s)= 0, h(t, s)=

2π(Pr {Z ≤ st}− 1
2), where Z ∼N(0,1). Therefore, g(s)= ∫∞−∞ Pr {Z ≤ st}χp(dt)−

1
2 . Let s →∞ and apply dominated convergence to complete the proof. �
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