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Let sk = 1√
N

(v1k, . . . , vNk)
T , k = 1, . . . ,K , where {vik, i, k = 1, . . .}

are independent and identically distributed random variables with Ev11 = 0
and Ev2

11 = 1. Let Sk = (s1, . . . , sk−1, sk+1, . . . , sK), Pk = diag(p1, . . . ,

pk−1,pk+1, . . . , pK) and βk = pksTk (SkPkST
k + σ 2I)−1sk , where pk ≥ 0

and the βk is referred to as the signal-to-interference ratio (SIR) of user k with
linear minimum mean-square error (LMMSE) detection in wireless commu-
nications. The joint distribution of the SIRs for a finite number of users and
the empirical distribution of all users’ SIRs are both investigated in this paper
when K and N tend to infinity with the limit of their ratio being positive con-
stant. Moreover, the sum of the SIRs of all users, after subtracting a proper
value, is shown to have a Gaussian limit.

1. Introduction. Consider a symbol synchronous direct sequence code divi-
sion multiple access (DS-CDMA) system with K users. The discrete-time model
for the received signal y in a symbol interval is

y =
K∑

k=1

xksk + w,(1.1)

where the xk is the symbol transmitted by user k, sk ∈ RN is the signature sequence
of user k and w ∈ RN is the noise vector with mean zero and covariance matrix
σ 2I . We also assume that the symbol vector x = (x1, . . . , xK) has a covariance
matrix P where P = diag(p1, . . . , pK) with pk being the received power of user k,
that is, Ex2

k = pk and that the symbol vector is uncorrelated with the noise (more
details can be found in [13]).

The engineering goal is to demodulate the transmitted xk for each user. Assume
that the receiver has already acquired the knowledge of the signature sequences.
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For user k, the linear minimum mean-square error (LMMSE) receiver generates
an output in a form aT

k y where ak is chosen to minimize the mean-squared error

E|xk − aT
k y|2.(1.2)

The relevant performance measure is the signal-to-interference ratio (SIR) of the
estimate (see [13]), which is defined by

βk = pksT
k (SkPkST

k + σ 2I)−1sk, k = 1, . . . ,K,(1.3)

where Sk and Pk are obtained from S = (s1, . . . , sK) and P by deleting the kth
column, respectively.

It is difficult to obtain clear engineering insights from (1.3) since it is dependent
on the signature sequences. However, if signature sequences are modeled as being
random, one may further proceed with the analysis using random matrix theory
when the number of users K and the processing gain N approach infinity, that is,
suppose

sk = 1√
N

(v1k, . . . , vNk)
T ,

k = 1, . . . ,K , where {vik, i, k = 1, . . .} are independent and identically distributed
(i.i.d.) random variables. Rigorously speaking, if vik are random variables, then
(1.2) should be viewed as a conditional expectation and at this time it is also neces-
sary to assume that the signature sequences are independent of transmitted symbol
and noise.

Indeed, considerable progress has been made in this area. For example, Tse and
Hanly in [11] derived the asymptotic SIR under MMSE, a decorrelator receiver and
a match filter receiver and fluctuations of SIR have subsequently been considered
in [10]. Some related results can be found in [13]. Also see [12], and references
therein and see the review paper [1] concerning random matrix theory as well.

However, there are still many open problems in this area. For example, Tse and
Zeitouni in [10] asked: What is the empirical distribution of the SIR levels of the
users across the system? Is this empirical distribution suitable for characterizing
the asymptotic distribution of the SIR for a particular user? Is there any type of
“weak asymptotic independence” among users? Also, the asymptotic distribution
of the sum of all users’ SIRs under MMSE has remained unsolved, which has a
close connection with another important performance measure, sum mutual infor-
mation or spectral efficiency (suitable scaling) (for more information concerning
the sum mutual information or the spectral efficiency, see [9] and [14]).

In this paper we will answer the above questions. In other words, we will derive
the joint asymptotic distribution of the SIRs for different users and the limiting
empirical distribution of the SIRs of the users across the system. The sum of the
SIRs for all users, after subtracting a proper value, is also shown to have a Gaussian
limit, which gives the asymptotic distribution for sum mutual information under
MMSE.
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Before stating our main results, we will introduce some notation. Write BN =
SPST , whose empirical spectral distribution (ESD) is denoted by F BN . The ESD
of power matrix P is denoted by HN . Let cN = K/N . Fc,H (x) and H will
denote the weak limits of the distribution functions F BN , HN respectively, as
N,K → ∞ if the limits exist. Define b = ∫

(x + σ 2)−1 dF c,H (x) and bN =∫
(x + σ 2)−1 dF cN ,HN (x), where FcN,HN (x) = Fc,H (x)|c=cN ,H=HN

.

THEOREM 1.1. Suppose that:

(a) {vij , i, j = 1, . . .} are i.i.d. with Ev11 = 0, Ev2
11 = 1 and Ev6

11 < ∞.
(b) HN converges weakly to some distribution function H and the elements

of P are bounded by some constant.
(c) K/N → c > 0 as N → ∞.

Then, for any finite integer m

(√
N(β1 − p1bN), . . . ,

√
N(βm − pmbN)

) D−→ N(0,C)(1.4)

with covariance matrix

C =
(

2
∫

dF c,H (x)

(x + σ 2)2 +
(∫

dF c,H (x)

x + σ 2

)2

(Ev4
11 − 3)

)
(1.5)

× diag(p2
1, . . . , p

2
m).

REMARK 1.1. Theorem 1.1 indicates that the asymptotic independence of the
SIR among users holds, as conjectured by Tse and Zeitouni in [10]. This theorem
also includes Theorem 4.5 of [10] as a special result. Actually Tse and Zeitouni
in [10] only derived the asymptotic distribution for a single SIR under the condi-
tions that p1 = · · · = pK and v11 is symmetric.

THEOREM 1.2. In addition to the assumptions (b) and (c) of Theorem 1.1, we
suppose: (a′) {vij , i, j = 1, . . .} are i.i.d. with Ev11 = 0 and Ev4

11 < ∞. Then

GN(x)
i.p.−→ G(x),(1.6)

where

GN(x) = 1

K

K∑
k=1

I (βk ≤ x);(1.7)

i.p. denotes the convergence in probability. Moreover, the Stieltjes transform
of G(x) is

∫
(bx − z)−1 dH(x).

REMARK 1.2. Theorem 1.2 characterizes the empirical distribution function
of the SIRs for different users, and, simultaneously, it reveals that the asymptotic
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empirical distribution of the SIRs for a whole system is different from the asymp-
totic distribution of the SIR for a particular user, which is normally distributed, as
shown in Theorem 1.1. For example, consider a special case p1 = · · · = pK = p;
then one can easily obtain G(x) = I (pb ≤ x < ∞).

REMARK 1.3. Indeed, the convergence mode in Theorem 1.2 can be strength-
ened to converge with probability 1 according to Theorem 7.1 in [4]. In that paper,
a more flexible model is employed; they show that the corresponding SIR con-
verges with probability 1 and also provide uniform convergence of the SIRs for all
users. It is interesting to consider how to derive the asymptotic distribution of the
SIRs under their model.

THEOREM 1.3. In addition to assumptions (b) and (c) of Theorem 1.1, sup-
pose that (a′′) {vij , i, j = 1, . . .} are i.i.d. with Ev11 = 0,Ev2

11 = 1 and Ev4
11 = 3.

(d)
∫

x(1+xb)−2 dH(x) = ∫
x dH(x)

∫
(1+xb)−2 dH(x) and

∫
x2 dH(x)(

∫
(1+

xb)−2 dH(x))2 + ∫
x2(1 + xb)−4 dH(x) = 2

∫
x2(1 + xb)−2 dH(x)

∫
(1+

xb)−2 dH(x). Then we have

K∑
k=1

(βk − bNpk)
D−→ N(µ,ρ),(1.8)

where

µ

∫
dH(x)

(1 + xb)2

= 2c

∫
dF c,H (x)

(x + σ 2)2

∫
x2

(1 + xb)3 dH(x)(1.9)

− 1

2π

∫ 1

(x + σ 2)2 arg
(

1 − c

∫
t2m2(x)

(1 + tm(x))2 dH(t)

)
dx

and

ρ

(∫
dH(x)

(1 + xb)2

)2

(1.10)

= − 1

2π2

∫ ∫
(d/dz1)m(z1)(d/dz2)m(z2)

(z1 + σ 2)(z2 + σ 2)(m(z1) − m(z2))2 dz1 dz2,

where the contours for z1 and z2 are nonoverlapping and closed and are taken
in the positive direction in the complex plane, both enclosing the support of
Fc,H (x). Here m(z) represents the Stieltjes transform of Fc,H (x) and �m(x) =
limz→x �m(z).



SIGNAL-TO-INTERFERENCE RATIOS OF LMMSE DETECTION 185

REMARK 1.4. Assumption (d) is satisfied when p1 = · · · = pK = p and in
this case the formulas (1.9) and (1.10) can be simplified as

µ

(1 + p)2 = 2c

∫
dF c(x)

(x + σ 2/p)2

∫
x2

(1 + xb)3 dH(x)

− 1

4(a(c) + σ 2/p)
− 1

4(b(c) + σ 2/p)
(1.11)

+ 1

2π

∫ b(c)

a(c)

dx

(x + σ 2/p)
√

4c − (x − 1 − c)2

and

ρ = (1 + p)4 2c

((σ 2/p + c − 1)2 + 4σ 2/p)2 ,(1.12)

where a(c) = (1−√
c )2 and b(c) = (1+√

c )2 and the expression of Fc is referred
to [6].

From Theorem 1.3, we can obtain the following corollary concerning sum mu-
tual information under MMSE.

COROLLARY 1.1. Under the assumptions of Theorem 1.3,

K∑
k=1

(
log(1 + βk) − log(1 + bNpk)

) D−→ N(µ1, ρ1),(1.13)

where

µ1 = µ

∫
dH(x)

1 + xb
− c

∫
dF c,H (x)

(x + σ 2)2

∫
x2

(1 + xb)2 dH(x),

ρ1 = ρ

(∫
dH(x)

1 + xb

)2

.

As is seen from Corollary 1.1, the sum mutual information normalized by N

(which is the spectral efficiency which is relevant in wireless communications)
converges (see also [14]). So one can guess that the small fluctuation, when ex-
panded by a factor of N , appears to be Gaussian. However, it is not an easy task to
prove it.

The organization of the paper is as follows. Section 2 establishes Theorem 1.1.
The proof of Theorem 1.2 is provided in Section 3. The proof of Theorem 1.3 and
Remark 1.4 is included in Section 4 and the proof of Corollary 1.1 is contained
in the last section. Throughout this paper, M may denote different constants on
different occasions and ‖ · ‖ denotes the spectral norm of a matrix or the Euclidean
norm of a vector. Also, set A = SPST + σ 2I, Ak = SkPkST

k + σ 2I, k = 1, . . . ,K ,
to simplify notation.
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2. Proof of Theorem 1.1. Before beginning with the proof, we first state a
lemma.

LEMMA 2.1. Let ajj be the j th diagonal element of A−1
1 . Under the assump-

tions of Theorem 1.1,

lim
N→∞

1

N

N∑
j=1

a2
jj

i.p.−→ b2.(2.1)

PROOF. From the well-known matrix inverse formula, we have

a11 = 1

(S1P1ST
1 + σ 2I)11 − ŝT

1 ŜT
1 (Ŝ1ŜT

1 + σ 2I)−1Ŝ1ŝ1
,(2.2)

where

ŝj = 1√
N

(√
p2vj2, . . . ,

√
pKvjK

)T
, ŜT

1 = (ŝ2, . . . , ŝN), j = 1, . . . ,N,

and (S1P1ST
1 + σ 2I)11 is defined in (2.3).

Applying the Helly–Bray theorem one can find

(S1P1ST
1 + σ 2I)11 = 1

N

K∑
k=2

pkv
2
1k + σ 2 i.p.−→ c

∫
x dH(x) + σ 2,(2.3)

where we also use the fact that

E

∣∣∣∣∣ 1

N

K∑
k=2

pk(v
2
1k − 1)

∣∣∣∣∣
2

= (Ev2
11 − 1)2

N2

K∑
k=2

pk → 0,

as N → ∞.
It is observed that

ŝj = diag
(√

p2, . . . ,
√

pK

)
s̃j , ŜT

1 = diag
(√

p2, . . . ,
√

pK

)
S̃T

1

with s̃j = 1√
N

(vj2, . . . , vjK)T and S̃T
1 = (s̃2, . . . , s̃N). This, together with

Lemma 2.7 in [2], implies

E

∣∣∣∣ŝT
1 ŜT

1 (Ŝ1ŜT
1 + σ 2I)−1Ŝ1ŝ1 − 1

N
tr P2

1S̃T
1 (S̃1P1S̃T

1 + σ 2I)−1S̃1

∣∣∣∣
2

(2.4)

≤ MEv4
11

N
E‖P1S̃T

1 (S̃1P1S̃T
1 + σ 2I)−1S̃1P1‖ → 0,

as N → ∞, where we use

‖P1S̃T
1 (S̃1P1S̃T

1 + σ 2I)−1S̃1P1‖
≤ M‖S̃T

1 (S̃1P1S̃T
1 + σ 2I)−1S̃1P1‖ ≤ M.
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Let s̆j = (v2j , . . . , vNj )
T , B−1

1 = (S̃1P1S̃T
1 +σ 2I)−1, B−1

1j = (S̃1j P1j S̃T
1j+ σ 2I)−1

with S̃1j and P1j obtained, respectively, from the matrix S̃1 and P1 by removing
the j th column. We then have

1

N
tr P2

1S̃T
1 (S̃1P1S̃T

1 + σ 2I)−1S̃1

= 1

N

K∑
j=2

p2
j s̆T

j B−1
1 s̆j(2.5)

= 1

N

K∑
j=2

pj − 1

N

K∑
j=2

pj

1 + pj s̆T
j B−1

1j s̆j
.

Hence it follows that

E

∣∣∣∣∣ 1

N

K∑
j=1

pj

1 + pj s̆T
j B−1

1j s̆j

− 1

N

K∑
j=1

pj

1 + pjβ

∣∣∣∣∣
≤ M

1

N

K∑
j=1

E

∣∣∣∣s̆T
j B−1

1j s̆j − 1

N
tr B−1

1j

∣∣∣∣

+ M
1

N

K∑
j=1

E

∣∣∣∣ 1

N
B−1

1j − 1

N
tr B−1

1

∣∣∣∣
(2.6)

+ M
K

N
E

∣∣∣∣ 1

N
tr B−1

1 − b

∣∣∣∣
≤ M

cK

N3/2 + M
1

N2

K∑
j=1

E

∣∣∣∣ pj s̆T
j B−2

1j s̆j

1 + pj s̆T
j B−1

1j s̆j

∣∣∣∣ + M
K

N
E

∣∣∣∣ 1

N
tr B−1

1 − b

∣∣∣∣
→ 0 as N → ∞.

In the last step, we also use N−1 tr B−1
1

i.p.−→ b and the uniform integrability of
N−1 tr B−1

1 .
From (2.3)–(2.6) we have

ŝT
1 ŜT

1 (Ŝ1ŜT
1 + σ 2I)−1Ŝ1ŝ1

i.p.−→ c

∫
x dH(x) − c

∫
x dH(x)

1 + xb
.(2.7)

Thus combining (2.3) and (2.7) one can get

a11
i.p.−→

(
σ 2 + c

∫
x dH(x)

1 + xb

)−1

= b.(2.8)
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Since a11 is bounded by 1/σ 2, a11 is then uniformly integrable and so

E

∣∣∣∣∣ 1

N

N∑
j=1

a2
jj − b2

∣∣∣∣∣ ≤ 1

N

N∑
j=1

E|a2
jj − b2| = E|a2

11 − b2| → 0,

as N → ∞. Thus the proof of the above lemma is complete. �

We proceed with the proof of Theorem 1.1. Let S1k1 and S1k1k2 be the matri-
ces obtained from the matrix S1 by removing the k1th column, the k1th and k2th
columns, respectively and let S1m̂ be the matrix obtained from S1 by deleting the
first m − 1 columns. The matrices P1k1,P1k1k2 and P1m̂ are defined similarly. De-
fine A−1

1k1
= (S1k1P1k1ST

1k1
+ σ 2I)−1, A−1

1k1k2
= (S1k1k2P1k1k2ST

1k1k2
+ σ 2I)−1 and

A−1
1m̂

= (S1m̂P1m̂ST
1m̂

+ σ 2I)−1. Furthermore, all analogues such as A−1
1k1k2k3

re-
quired in the following derivation have similar meanings.

Write

p1sT
1 A−1

1 s1

= p1sT
1 A−1

1m̂
s1 −

m∑
k1=2

p1sT
1 A−1

1m̂
pk1sk1sT

k1
A−1

1k1
s1

1 + pk1sT
k1

A−1
1k1

sk1

+
m∑

k1=2

m∑
k2 
=k1

p1sT
1 A−1

1m̂
pk1sk1sT

k1
A−1

1m̂
pk2sk2sT

k2
A−1

1k1k2
s1

(1 + pk1sT
k1

A−1
1k1

sk1)(1 + pk2sT
k2

A−1
1k1k2

sk2)

= p1sT
1 A−1

1m̂
s1 −

m∑
k1=2

p1sT
1 A−1

1m̂
pk1sk1sT

k1
A−1

1m̂
s1

1 + pk1sT
k1

A−1
1k1

sk1

(2.9)

+
m∑

k1=2

m∑
k2 
=k1

p1sT
1 A−1

1m̂
pk1sk1sT

k1
A−1

1m̂
pk2sk2sT

k2
A−1

1m̂
s1

(1 + pk1sT
k1

A−1
1k1

sk1)(1 + pk2sT
k2

A−1
1k1k2

sk2)
+ · · ·

+ (−1)m+1

×
m∑

k1=2,

k2 
=k1,...,

km−1 
=km−2

p1sT
1 A−1

1m̂
pk1sk1sT

k1
A−1

1m̂
pk2sk2 · · ·pkm−1sT

km−1
A−1

1m̂
s1

(1 + pk1sT
k1

A−1
1k1

sk1) · · · (1 + pkm−1sT
km−1

A−1
1m̂

skm−1)
,

where the subscripts k1, . . . , km−1 are larger than 1.
For any i 
= j (i, j = 1, . . . ,m) we have

E(sT
i A−1

1m̂
sj )

2 = E tr A−1
1m̂

sj sT
j A−1

1m̂
sisT

i = E
1

N2 tr A−2
1m̂

which implies

N1/4sT
i A−1

1m̂
sj

i.p.−→ 0
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and then
√

NsT
1 A−1

1m̂
sk1sT

k1
A−1

1m̂
sk2

i.p.−→ 0.(2.10)

Hence, from (2.9) and (2.10) we have
√

N
(
p1sT

1 A−1
1 s1 − √

Np1sT
1 A−1

1m̂
s1

) i.p.−→ 0.(2.11)

Similarly, for any k = 1, . . . ,m one can find
√

N
(
pksT

k A−1
k sk − √

NpksT
k A−1

1m̂
sk

) i.p.−→ 0.

It thus suffices to consider the asymptotic distribution for the linear combina-
tion of

√
N(pksT

k A−1
1m̂

sk − pkbN), k = 1, . . . ,m. To this end, it can be seen that

{pksT
k A−1

1m̂
sk, k = 1, . . . ,m} are independent when the matrix A−1

1m̂
is given and

hence it suffices to consider only one of {pksT
k A−1

1m̂
sk, k = 1, . . . ,m} when the ma-

trix A−1
1m̂

is given.
By Lemma 2.1 and the Jensen inequality, it is easy to verify that

lim
N→∞

N∑
j

a2
jj

/∑
i,j

a2
ij < 1,

where A−1
1m̂

= (aij ). Hence for any k = 1, . . . ,m,

√
N

(
pksT

k A−1
1m̂

sk − pk

tr A−1
1m̂

N

)

D−→ N

(
0,

(
2

∫
dF c,H (x)

(x + σ 2)2 +
(∫

dF c,H (x)

x + σ 2

)2

(Ev4
11 − 3)

)
p2

k

)

by Theorem 1.1 in [5] when A−1
1m̂

is given. Here the asymptotic variance can be
computed using formula (4.23). From result (1) of Theorem 1.1 of [3] it can be
concluded that

√
N

(
pk

tr A−1
1m̂

N
− pkbN

)
i.p.−→ 0.

Thus we are done by the Fubini theorem and the Cramér–Wold device.

3. Proof of Theorem 1.2. Let z = u + iv, v > 0. Recall that the Stieltjes
transform is defined for any distribution function F as

mF (z) =
∫ 1

x − z
dF (x), z ∈ C

+ ≡ {z ∈ C,�z > 0}.
Hence, the Stieltjes transform of GN(x) is

mGN(x)(z) = 1

K

K∑
k=1

1

βk − z
(3.1)
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and it suffices to consider mGN(x)(z).
First we obtain a decomposition as follows:

mGN(x)(z) −
∫

dH(x)

bx − z
= V1 + V2 + V3 + V4,(3.2)

where

V1 = mGN(x)(z) − 1

K

K∑
k=1

1

(pk/N) tr A−1
k − z

,

V2 = 1

K

K∑
k=1

(
1

(pk/N) tr A−1
k − z

− 1

(pk/N) tr A−1 − z

)
,

V3 = 1

K

K∑
k=1

(
1

(pk/N) tr A−1 − z
− 1

pkb − z

)
,

V4 = 1

K

K∑
k=1

1

pkb − z
−

∫
dH(x)

xb − z
.

It is straightforward to verify that∣∣∣∣ 1

βk − z

∣∣∣∣ ≤ 1

v
,

∣∣∣∣ 1

pkb − z

∣∣∣∣ ≤ 1

v
;(3.3)

then we have

E|V1| ≤ 1

v2K

K∑
k=1

pkE

∣∣∣∣sT
k A−1

k sk − 1

N
tr A−1

k

∣∣∣∣ ≤ M

N
→ 0,(3.4)

as N → ∞. Similarly, by (3.3) one can find

E|V2| ≤ 1

v2NK

K∑
k=1

E
p2

ksT
k A−2

k sk

1 + pksT
k A−1

k sk

≤ M

N
→ 0,(3.5)

as N → ∞. From the uniform integrability of the random variable N−1 tr A−1,
one can obtain

E|V3| ≤ 1

v2K

K∑
k=1

pkE

∣∣∣∣ 1

N
tr A−1 − b

∣∣∣∣ → 0.(3.6)

It is obvious that |V4| converges to zero. This, together with (3.1)–(3.6), implies
Theorem 1.2 and thus we are done.
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4. Proof of Theorem 1.3. We begin the proof of this theorem with the re-
placement of the entries of S by truncated and centralized variables. Since Ev4

11 <

∞, we have ε−4Ev4
11I (|v11| > ε

√
N) → 0 for any ε > 0. Thus a positive se-

quence εN converging to zero can be selected so that

ε−4
N Ev4

11I
(|v11| > εN

√
N

) → 0.(4.1)

Define v̂ij = vij I (|vij | ≤ εN

√
N) and v̄ij = v̂ij − Ev̂ij , i = 1, . . . ,N , j =

1, . . . ,K . The corresponding matrices and vectors are denoted by ŝk, s̄k , Ŝk and
S̄k , k = 1, . . . ,K , the elements of which are v̂ij or v̄ij instead of vij .

Let

Âk = ŜkPkŜT
k + σ 2I, Āk = S̄kPkS̄T

k + σ 2I.

It follows from (4.1) that

P

(
K∑

k=1

pksT
k A−1

k sk 
=
K∑

k=1

pk ŝT
k Â−1

k ŝk

)

≤ P

(⋃
i,j

(|vij | ≥ εN

√
N

))
(4.2)

≤ NKP
(|v11| ≥ εN

√
N

) → 0,

as N → ∞.
Observe that

|ŝT
k Â−1

k ŝk − s̄T
k Â−1

k s̄k)| ≤ (EŝT
k )Â−1

k Eŝk + 2|ŝT
k Â−1

k Eŝk|
(4.3)

≤ 1

σ 2 ‖Eŝk‖2 + 2|ŝT
k Â−1

k Eŝk|.
Concerning the first item on the right, we have

‖Eŝk‖2 = ‖Eŝ1‖2 = o(N−3),(4.4)

where we use the fact that

Ev̂11 = o(N−3/2).(4.5)

For the second item, by (4.4) one can find

E(s̄T
k Â−1

k Eŝk)
2 ≤ 1

σ 4 ‖Eŝk‖2E‖s̄k‖2

(4.6)

= 1

σ 4 ‖Eŝ1‖2E‖s̄1‖2 = o(N−3).
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Combining (4.3)–(4.6), one can conclude that

E

∣∣∣∣∣
K∑
k

(ŝT
k Â−1

k ŝk − s̄T
k Â−1

k s̄k)

∣∣∣∣∣
(4.7)

≤ 3K

σ 2 ‖Eŝ1‖2 + 2
K∑
k

(E(ŝT
k Â−1

k Eŝk)
2)1/2 −→ 0.

Next we will show that
K∑
k

(s̄T
k Â−1

k s̄k − s̄T
k Ā−1

k s̄k)
i.p.−→ 0.(4.8)

By matrix inverse formula A−1 − B−1 = B−1(B − A)A−1, we have

|s̄T
k Â−1

k s̄k − s̄T
k Ā−1

k s̄k|
= |s̄T

k Ā−1
k [(EŜk)PkE(ŜT

k )

− (EŜk)PkŜT
k − ŜkPk(EŜT

k )]Â−1
k s̄k|

≤ 1

σ 4 ‖s̄k‖2‖EŜk‖2‖Pk‖(4.9)

+ |s̄T
k Ā−1

k [(EŜk)PkŜT
k + ŜkPk(EŜT

k )]Â−1
k s̄k|

≤ MN

σ 4 ‖s̄k‖2(Ev̂11)
2

+ |s̄T
k Ā−1

k [(EŜk)PkŜT
k + ŜkPkE(ŜT

k )]Â−1
k s̄k|.

By Lemma 2.7 of [2] one can obtain

E

(
s̄T
k Ā−1

k ŜkPk(EŜT
k )Â−1

k s̄k − 1

N
tr Ā−1

k ŜkPk(EŜT
k )Â−1

k

)2

≤ NM2

N2σ 8 (Ev̂11)
2E tr ŜkŜT

k

≤ NM2

N2σ 8 (Ev̂11)
2E tr Ŝ1ŜT

1 ,

which implies
K∑

k=1

s̄T
k Ā−1

k ŜkPk(EŜT
k )Â−1

k s̄k − 1

N
tr Ā−1

k ŜkPk(EŜT
k )Â−1

k

i.p.−→ 0.(4.10)

Here we use (4.5) and

1

N
E tr Ŝ1ŜT

1 = 1

N
E

K∑
j=2

ŝT
j ŝj ≤ K2

N2 Ev2
11.(4.11)
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On the other hand we have∣∣∣∣ 1

N
tr Ā−1

k ŜkPkE(ŜT
k )Â−1

k

∣∣∣∣ = |Ev̂11|
N3/2

∣∣∣∣∣
∑

j=1,j 
=k

pj eT Â−1
k Ā−1

k ŝj

∣∣∣∣∣
≤ M|Ev̂11|

σ 4N

K∑
j=1

‖ŝj‖,

where e = (1, . . . ,1)T . This, together with (4.5), gives

E

∣∣∣∣∣ 1

N

K∑
k=1

tr Ā−1
k ŜkPk(EŜT

k )Â−1
k

∣∣∣∣∣ ≤ KM|Ev̂11|
σ 4N

K∑
j=1

(E‖ŝj‖2)1/2 i.p.−→ 0,

and by combining (4.10) one can then find

K∑
k=1

s̄T
k Ā−1

k ŜkPk(EŜT
k )Â−1

k s̄k
i.p.−→ 0.(4.12)

Similarly, one can also show that

K∑
k=1

s̄T
k Ā−1

k (EŜk)PkŜT
k Â−1

k s̄k
i.p.−→ 0.(4.13)

Thus (4.8) immediately follows from (4.5), (4.9), (4.12) and (4.13). It is easy to
check that

1 − var(v̄11) = o(N−1).(4.14)

Applying this and the argument similar to the centralization step, one can then
renormalize the underlying random variables. Consequently, it can be assumed
that the underlying random variables satisfy

Ev11 = 0, Ev2
11 = 1, |v11| ≤ εN

√
N.

In the sequel we still use vij , sk , Sk and Ak instead of v̄11, s̄k , S̄k and Āk to simplify
the notation.

Write ŝk = sT
k A−1

k sk and

K∑
k=1

pkŝk =
K∑

k=1

pksT
k (A−1

k − A−1)sk + tr

(
A−1

(
K∑

k=1

pksksT
k

))

=
K∑

k=1

(pkŝk)
2

1 + pkŝk
+ N − σ 2 tr A−1.

Further, after some simple computations one can find

−
K∑

k=1

1

1 + pkŝk
= N − σ 2 tr A−1 − K.
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Applying the formula

1

1 + pkŝk
= 1

1 + bNpk

− pkŝk − bNpk

(1 + pkŝk)(1 + bNpk)
(4.15)

to the above identity we can arrive at

∫
dHN(x)

(1 + xbN)2

K∑
k=1

pk(ŝk − bN) = U1 − U2 − U3 + U4 − U5,(4.16)

where

U1 =
K∑

k=1

p2
k(ŝk − bN)2

(1 + bNpk)3 ,

U2 = σ 2(trA−1 − NbN),

U3 =
K∑

k=1

p3
k(ŝk − bN)3

(1 + pkbN)3(1 + pkŝk)
,

U4 = N(1 − σ 2bN) − K + K

∫
dHN(x)

1 + xbN

and

U5 =
K∑

k=1

pk(ŝk − bN)

(
1

(1 + pkbN)2 −
∫

dHN(x)

(1 + xbN)2

)
.

As will be seen, the contributions from U3, U4 and U5 can be ignored and the main
terms are U1 and U2.

It is easy to see that bN satisfies

1

bN

= σ 2 + cN

∫
x dHN(x)

1 + xbN

,(4.17)

that is, U4 = 0.
For the term U3 we have

|U3| ≤ M

K∑
k=1

|ŝk − bN |3 ≤ M(U31 + U32 + U33),

where

U31 =
K∑

k=1

∣∣∣∣ŝk − 1

N
tr A−1

k

∣∣∣∣
3

,

U32 =
K∑

k=1

∣∣∣∣ 1

N
tr A−1

k − 1

N
tr A−1

∣∣∣∣
3
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and

U33 = K

∣∣∣∣ 1

N
tr A−1 − bN

∣∣∣∣
3

.

From Lemma 2.7 of [2] one can find

EU31 ≤
K∑

k=1

(
M

N3 Ev4
11E(tr A−2

k )3/2 + M

N3 Ev6
11E tr A−3

k

)
= O(εN).

For the term U32

U32 ≤ 1

N3

K∑
k=1

∣∣∣∣pksT
k A−2

k sk

1 + pkŝk

∣∣∣∣
3

= O(N−2),

where we use the fact ∣∣∣∣pksT
k A−2

k sk

1 + pkŝk

∣∣∣∣ ≤ 1

σ 2 .(4.18)

In the sequel, we will not mention it again whenever (4.18) is used. By Theorem 1
of [3] we have

U33
i.p.−→ 0.

From the above argument it can be concluded that

U3
i.p.−→ 0.(4.19)

We now analyze the term U1 by computing its variance:

E

(
K∑

k=1

p2
k(ŝk − bN)2

(1 + bNpk)3 −
K∑

k=1

p2
kE(ŝk − bN)2

(1 + bNpk)3

)2

= U11 + U12,(4.20)

where

U11 =
K∑

k=1

E

(
p2

k(ŝk − bN)2

(1 + bNpk)3 − p2
kE(ŝk − bN)2

(1 + bNpk)3

)2

and

U12 =
K∑

k1 
=k2

E

[(
p2

k1
(ŝk1 − bN)2

(1 + bNpk1)
3 − p2

k1
E(ŝk1 − bN)2

(1 + bNpk1)
3

)

×
(

p2
k2

(ŝk2 − bN)2

(1 + bNpk2)
3 − p2

k2
E(ŝk2 − bN)2

(1 + bNpk2)
3

)]
.
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Similarly to the argument of (4.19), one can get

U11 ≤ M

K∑
k=1

E(ŝk − bN)4

≤ M

K∑
k=1

[
E

(
ŝk − 1

N
tr A−1

k

)4

+ KE

(
1

N
tr A−1

k − 1

N
tr A−1

)4]
(4.21)

+ MKE

(
1

N
tr A−1 − bN

)4

= O(εN),

as N → ∞. Indeed, in the last step we also use the fact that

KE

(
1

N
tr A−1 − bN

)4

≤
(

1/σ 2 + bN

)2 K

N2 E(tr A−1 − NbN)2 → 0.

To evaluate the term U12, we need to decompose it further as shown below. The
strategy is to split A−1

k1
into the sum of A−1

k1k2
and

−A−1
k1k2

pk2sk2sT
k2

A−1
k1k2

1 + pk2sT
k2

A−1
k1k2

sk2

,

so does for A−1
k2

. Thus one can find

U12 = U121 + U122 + U123 + U124 + · · · + U129,(4.22)

where

U121 =
K∑

k1 
=k2

E
(
pk1k2βk1k2βk2k1

)
, U122 =

K∑
k1 
=k2

E
(
pk1k2ζk1k2βk2k1

)
,

U123 =
K∑

k1 
=k2

E
(
pk1k2βk1k2ζk2k1

)
, U124 =

K∑
k1 
=k2

E
(
pk1k2ζk1k2ζk2k1

)
,

U125 = −2
K∑

k1 
=k2

E
(
pk1k2ζk1k2αk2k1

)
, U126 = −2

K∑
k1 
=k2

E
(
pk1k2βk1k2αk2k1

)
,

U127 = −2
K∑

k1 
=k2

E
(
pk1k2αk1k2ζk2k1

)
, U128 = −2

K∑
k1 
=k2

E
(
pk1k2αk1k2βk2k1

)
,

U129 = 4
K∑

k1 
=k2

E
(
pk1k2αk1k2αk2k1

)
,
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with

pij = 1

(1 + bNpi)3(1 + bNpj )3 ,

βij = p2
i (s

T
i A−1

ij si − bN)2 − p2
i E(sT

i A−1
ij si − bN)2,

ζij = γ 2
ij

(1 + pj sT
j A−1

ij sj )2
− E

γ 2
ij

(1 + pj sT
j A−1

ij sj )2
,

γij = pipj sT
i A−1

ij sj sT
j A−1

ij si ,

αij = piγij (sT
i A−1

ij si − bN)

1 + pj sT
j A−1

ij sj

− E
piγij (sT

i A−1
ij si − bN)

1 + pj sT
j A−1

ij sj

.

Also, set

αk1 = 1

1 + pk1sT
k1

A−1
k1k2

sk1

, αk2 = 1

1 + pk2sT
k2

A−1
k1k2

sk2

.

As will be seen, each of βij , ζij and αij converges to zero in some way and the
convergence rate is needed to attain our aim. In the subsequent paragraphs we
show that each term U12j , j = 1, . . . ,9, converges to zero.

Consider the term U121 first. It is straightforward to verify that

E

∣∣∣∣sT
k Bksk − 1

N
tr Bk

∣∣∣∣
2

(4.23)

= 1

N2 (Ev4
11 − 3)

N∑
j=1

E
(
b

(k)
jj

)2 + 2

N2 E tr BkBT
k ,

where Bk = (b
(k)
j1j2

) is any symmetric matrix independent of sk . It follows that

E
[((

sT
k1

A−1
k1k2

sk1 − bN

)2 − E
(
sT
k1

A−1
k1k2

sk1 − bN

)2)|A−1
k1k2

]

= 2

N2 tr
(
A−2

k1k2
− EA−2

k1k2

) +
(

1

N
tr A−1

k1k2
− bN

)2

− E

(
1

N
tr A−1

k1k2
− bN

)2

,

and then, that

U121 = E

[
K∑

k1 
=k2

pk1k2E
(
βk1k2 |A−1

k1k2

)
E

(
βk2k1 |A−1

k1k2

)]
,

≤ M

N4

K∑
k1 
=k2

(
E

(
tr A−2

k1k2
− trEA−2

k1k2

)2(4.24)

+ E
(
tr A−1

k1k2
− NbN

)4 + (
E

(
tr A−1

k1k2
− NbN

)2)2)
.
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Since the distribution of tr A−2
k1k2

is dependent on different k1, k2, the difference

between tr A−2
k1k2

and tr A−2 caused by a different k must be eliminated. To this

end, by splitting A−1
k1k2

into the sum of A−1
k1

and ξk1k2 , one can get

E
(
tr A−2

k1k2
− trEA−2

k1k2

)2

≤ ME
(
tr A−1

k1k2
ξk1k2 − trEA−1

k1k2
ξk1k2

)2

+ ME
(
tr ξk1k2A−1

k1
− trEξk1k2A−1

k1

)2(4.25)

+ ME
(
tr A−2

k1
− trEA−2

k1

)2

≤ M + ME
(
tr A−2

k1
− trEA−2

k1

)2
,

where

ξk1k2 = A−1
k1k2

pk2sk2sT
k2

A−1
k1k2

αk2,

and we also used

tr A−1
k1k2

ξk1k2 ≤ σ−2 tr ξk1k2 ≤ σ−4.

Repeating a step similar to (4.25), by Theorem 1 of [3] one can then conclude that

1

N4

K∑
k1 
=k2

E
(
tr A−2

k1k2
− trEA−2

k1k2

)2

≤ MK2

N4 + MK2

N4 E(tr A−2 − trEA−2)2(4.26)

→ 0,

as N → ∞. Again, by an argument analogous to (4.25), one can find

E
(
tr A−1

k1k2
− NbN

)4

≤ ME(tr A−1 − E tr A−1)4 + M(E tr A−1 − NbN)4 + M.

The second term on the right-hand side of the above inequality is bounded by the
argument of Theorem 1 of [3]. We also claim that the first item on the right-hand
side has an order O(N). To see it, set Fj = σ(s1, . . . , sj ) and Ej(·) = E(·|Fj ).
By decomposing as the sum of a martingale difference sequence and using the
Burkholder inequality, we have

E(tr A−1 − E tr A−1)4

= E

(
K∑

k=1

(Ek − Ek−1) tr(A−1 − A−1
k )

)4

(4.27)
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≤ ME

(
K∑

k=1

(
(Ek − Ek−1)ηk

)2
)2

≤ KM

K∑
k=1

E

(
(Ek − Ek−1)

pksT
k A−2

k sk

1 + pk(1/N) tr A−1
k

)4

+ KM

K∑
k=1

E

(
(Ek − Ek−1)

ηk(pkŝk − (pk/N) tr A−1
k )

1 + (pk/N) tr A−1
k

)4

≤ KM

K∑
k=1

E

(
sT
k Ek

(
A−2

k

1 + (pk/N) tr A−1
k

)
sk

− 1

N
Ek

tr A−2
k

1 + (pk/N) tr A−1
k

)4

+ KM

σ 8

K∑
k=1

E

(
ŝk − 1

N
tr A−1

k

)4

≤ MK2

N
= O(N),

where

ηk = pksT
k A−2

k sk

1 + pksT
k A−1

k sk

,

and we also use (4.18) and the equality

ηk = pksT
k A−2

k sk

1 + (pk/N) tr A−1
k

− ηk(pkŝk − (pk/N) tr A−1
k )

1 + (pk/N) tr A−1
k

.

Combining the above one can conclude that

1

N4

K∑
k1 
=k2

E
(
tr A−1

k1k2
− NbN

)4 ≤ M

N
→ 0 as N → ∞.

The basic inequality (E|X|)2 ≤ EX2 implies the remaining term in (4.24) also
goes to 0 as N → ∞. Hence U121 can be ignored.

Consider the term U122 second. By (4.23) we have

E
((

pk2αk2sT
k1

A−1
k1k2

sk2sT
k2

A−1
k1k2

sk1

)2|sk2,A−1
k1k2

)
(4.28)

= 3

N2

(
pk2αk2sT

k2
A−2

k1k2
sk2

)2
.
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It follows that

U122 =
K∑

k1 
=k2

E
[
E

(
pk1k2ζk1k2 |sk2,A−1

k1k2

)
βk2k1

]

≤ M

N2

K∑
k1 
=k2

E
(
sT
k2

A−1
k1k2

sk2 − bN

)2

≤ MK2

N3 + M

N2

K∑
k1 
=k2

E

(
1

N
tr A−1

k1k2
− bN

)2

(4.29)

≤ MK2

N3 + MK2

N4 E(tr A−1 − NbN)2

= O

(
1

N

)
.

Similarly, the term U123 converges to zero.
Third, consider the term U124. To simplify the notation, we write

s
(j)
k1

= sT
k1

A−j
k1k2

sk1, s
(j)
k2

= sT
k2

A−j
k1k2

sk2, j = 1,2,

ŝk1k2 = sT
k1

A−1
k1k2

sk2sT
k2

A−1
k1k2

sk1 .

According to (4.28) one can find that

U124 =
K∑

k1 
=k2

E
(
pk1k2α

2
k2

γ 2
k1k2

γ 2
k1k2

α2
k1

)

− 9

N4

K∑
k1 
=k2

p2
k1

p2
k2

pk1k2E
(
pk2αk2s

(2)
k2

)2
E

(
pk1αk1s

(2)
k1

)2

(4.30)

≤ M

K∑
k1 
=k2

Eα2
k2

(
pk2 ŝk1k2

)4 + MK2

N4

≤ MεN = o(1).

Fourth, since the composition of the terms U125 and U127 is similar, we analyze
only the U125 term. From (4.28) we obtain

U125 = −2
K∑

k1 
=k2

E
(
pk1k2α

2
k2

αk1γ
2
k1k2

pk2γk1k2

(
s
(1)
k2

− bN

))
(4.31)

+ 3

N2

K∑
k1 
=k2

pk1k2E
(
pk1pk2s

(2)
k2

αk2

)2
E

(
pk2γk1k2

(
s
(1)
k2

− bN

)
αk1

)
.(4.32)
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By the Hölder inequality and (4.28) one can find∣∣E(
pk2γk1k2

(
s
(1)
k2

− bN

)
αk1

)∣∣
≤ M

(
E

(
pk1 ŝk1k2αk1

)2)1/2(
E

(
s
(1)
k2

− bN

)2)1/2(4.33)

≤ M

N3/2 ,

which implies that the term in (4.31) converges to zero. Moreover, the absolute
value of each summand in (4.31) is not larger than

ME
∣∣α2

k2

(
pk2 ŝk1k2

)3(
s
(1)
k2

− bN

)∣∣
= ME

[∣∣s(1)
k2

− bN

∣∣E(∣∣pk2 ŝk1k2

∣∣3α2
k2

|A−1
k1k2

, sk2

)]

≤ ME

[∣∣s(1)
k2

− bN

∣∣E(∣∣∣∣pk2 ŝk1k2 − 1

N
pk2s

(2)
k2

∣∣∣∣
3

α2
k2

∣∣∣A−1
k1k2

, sk2

)]

+ M

N3 E
[∣∣s(1)

k2
− bN

∣∣E(∣∣pk2s
(2)
k2

∣∣3α2
k2

|A−1
k1k2

, sk2

)]

≤ M(E
∣∣v11

∣∣6 + 2)

N3 E
∣∣(s(1)

k2
− bN

)
s
(2)
k2

∣∣
≤ M

N5/2 ,

which leads the sum in (4.31) to converge to zero. So U125 converges to zero as
N → ∞.

Fifth, consider U126 (U128 can be analyzed similarly):

U126

= −2
K∑

k1 
=k2

pk1k2E
[
p2

k1

(
s
(1)
k1

− bN

)2
pk2γk1k2

(
s
(1)
k2

− bN

)
αk1

]
(4.34)

+ 2
K∑

k1 
=k2

pk1k2p
2
k1

E
(
s
(1)
k1

− bN

)2
Epk2γk1k2

(
s
(1)
k2

− bN

)
αk1 .(4.35)

From the estimate (4.33), the sum in (4.35) has an order O(N−1/2). On the other
hand, each summand in the sum in (4.34) can be rewritten as

E
[
p2

k1
pk2pk1k2

(
s
(1)
k1

− bN

)2
αk1E

(
γk1k2

(
s
(1)
k2

− bN

)|A−1
k1k2

, sk1

)]
≤ E

[
p2

k1
αk1

(
s
(1)
k1

− bN

)2(
E

(
γ 2
k1k2

|A−1
k1k2

, sk1

))1/2

× (
E

((
s
(1)
k2

− bN

)2|A−1
k1k2

, sk1

))1/2]
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≤ M

N
E

[
p2

k1

(
s
(1)
k1

− bN

)2
pk1s

(2)
k1

αk1

(
E

((
s
(1)
k2

− bN

)2|A−1
k1k2

, sk1

))1/2]

≤ M

N5/2 ,

and, thus, the sum in (4.34) converges to zero. Thus U126 converges to zero as well.
Finally, consider the term U129. As was done for the terms U124, U125 and U126,

the U129 term is split into the sum of two terms. It follows from (4.33) that one of
them,

4
K∑

k1 
=k2

pk1k2E
(
pk1γk1k2

(
s
(1)
k1

− bN

)
αk2

)
E

(
pk2γk1k2

(
s
(1)
k2

− bN

)
αk1

)
,

converges to zero. The other term is

4
K∑

k1 
=k2

E
(
pk1k2pk1γk1k2

(
s
(1)
k1

− bN

)
αk2pk2γk1k2

(
s
(1)
k2

− bN

)
αk1

)
.

The absolute value of each of the above summands is not larger than(
E

(
pk1 ŝk1k2

(
s
(1)
k1

− bN

)
αk1

)2)1/2 × (
E

(
pk2 ŝk1k2

(
s
(1)
k2

− bN

)
αk2

)2)1/2
.

Note that

E
(
pk1 ŝk1k2

(
s
(1)
k1

− bN

)
αk1

)2

= E
(((

s
(1)
k1

− bN

)
αk1

)2
E

((
pk1 ŝk1k2

)2|A−1
k1k2

, sk1

))
= 3

N2 E
((

s
(1)
k1

− bN

)
pk1s

(2)
k1

αk1

)2

≤ 3

σ 4N2 E
(
s
(1)
k1

− bN

)2 ≤ M

N3 .

Similarly,

E
(
pk2 ŝk1k2

(
s
(1)
k2

− bN

)
αk2

)2 ≤ M/N3.

Hence U129 converges to zero.
Summarizing the above argument, one can conclude that the variance of the

term U1 converges to zero as N → ∞ and thus, it is sufficient to compute the
asymptotic value of its expectation, which can be accomplished as follows:

K∑
k=1

p̂kE(ŝk − bN)2

=
K∑

k=1

p̂kE

(
ŝk − 1

N
tr A−1

k

)2

+
K∑

k=1

p̂kE

(
1

N
tr A−1

k − bN

)2

(4.36)
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= 2

N2

K∑
k=1

p̂kE tr A−2
k + o(1)

= 2

N2 E tr A−2
K∑

k=1

p̂k + o(1)

→ 2c

∫
dF c,H (x)

(x + σ 2)2

∫
x2

(1 + xb)3 dH(x),

where p̂k = p2
k/(1 + bNpk)

3, and in the second and third equalities we use a trick
similar to (4.25).

Note

Fc,H = (1 − c)I[0,∞) + cF c,H ,(4.37)

where Fc,H represents the limiting spectral distribution of P1/2ST SP1/2 with
P1/2 = diag(

√
p1, . . . ,

√
pK ). From (4.37), one can get

tr A−1 − NbN = tr(P1/2ST SP1/2 + σ 2I )−1 − K

∫
dF cN ,HN (x)

x + σ 2

and Theorem 1.1 of [3] is then applicable. Thus, for U2 one has a central limit
theorem and it then suffices to show that U5 converges to zero in probability. It is
obvious that the term U5 becomes zero when p1 = · · · = pK ; however, its conver-
gence in probability appears to be somewhat troublesome when the powers of the
users are not the same. We will provide an abridged analysis for this case. Set

ak = 1

(1 + pkbN)2 , a =
∫

dHN(x)

(1 + xbN)2 .

Using steps analogous to (4.25), one can obtain

U5 =
K∑

k=1

pk

(
ŝk − 1

N
tr A−1

k

)
(ak − a)

+ (tr A−1 − NbN)
1

N

K∑
k=1

pk(ak − a) + op(1)

=
K∑

k=1

pk

(
ŝk − 1

N
tr A−1

k

)
(ak − a) + op(1).

Hence it is necessary to show that

Û5
�= E

(
K∑

k=1

pk

(
ŝk − 1

N
tr A−1

k

)
(ak − a)

)2

(4.38)



204 G.-M. PAN, M.-H. GUO AND W. ZHOU

converges to zero. Expanding out the right-hand side of (4.38) one can get

Û5 = U51 + U52,

where

U51 =
K∑

k=1

E

(
pk

(
ŝk − 1

N
tr A−1

k

)
(ak − a)

)2

,

U52 =
K∑

k1 
=k2

E

(
pk1pk2

(
s
(k2)
k1

− 1

N
tr A−1

k1

)

×
(
s
(k1)
k2

− 1

N
tr A−1

k2

)(
ak1 − a

)(
ak2 − a

))
.

It is easy to see that

U51 ≤ M

N

K∑
k=1

(
pk(ak − a)

)2 → 0.

Regarding the term U52, one can show that it converges to zero by an argument
similar to that used for the preceding term U12 and since the process is somewhat
tedious, it is omitted.

For the computation of (1.11) and (1.12), without loss of generality, suppose
p = 1; otherwise replace σ 2 by σ 2/p. As for the formulas (1.9) and (1.11) one can
refer to, respectively, (1.18) and (5.13) of [3].

Now let us derive (1.12). It is shown in [7] that m(z) = mFc,H (z), for each
z ∈ C

+, is the unique solution in C
+ to the equation

m = −
(
z − c

∫
t dH(t)

1 + tm

)−1

.(4.39)

From this equation, the inverse function has an explicit form

z = − 1

m
+ c

∫
t dH(t)

1 + tm
(4.40)

and one can then find for H(t) = I[1,∞)(t)

z = − 1

m(z)
+ c

1 + m(z)
.(4.41)

Suppose the m2 contour encloses the m1 contour (see [8] or [3] for the range
of m(x) for a real x and contour of m). For a fixed m2 it follows from (4.41) and
the Cauchy residue theorem that∫

dm1

(z(m1) + σ 2)(m1 − m2)2 = 1

σ 2

∫
(m2

1 + m1) dm1

(m1 − ma)(m1 − mb)(m1 − m2)2

= 2πi

σ 2

m2
b + mb

(mb − m2)2(mb − ma)
,
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where

ma = −(1 + (c − 1)/σ 2) +
√

(1 + (c − 1)/σ 2)2 + 4/σ 2

2
,

mb = −(1 + (c − 1)/σ 2) −
√

(1 + (c − 1)/σ 2)2 + 4/σ 2

2
.

Consequently,

ρ = 1

σ 2πi

∫
m2

b + mb

(mb − m2)2(mb − ma)(z(m2) + σ 2)
dm2

= m2
b + mb

σ 4π(mb − ma)i

∫
(m2

2 + m2) dm2

(m2 − mb)3(m2 − ma)

= 2(m2
b + mb)(m

2
a + ma)

σ 4(mb − ma)4 = 2c

((σ 2 + c − 1)2 + 4σ 2)2 .

5. Proof of Corollary 1.1. Using the Taylor expansion, one can find

K∑
k=1

(
log(1 + βk) − log(1 + bNpk)

)

=
K∑

k=1

βk − bNpk

1 + bNpk

−
K∑

k=1

(βk − bNpk)
2

2(1 + bNpk)2 +
K∑

k=1

(βk − bNpk)
3

3(1 + ξk)3

=
∫

dHN(x)

1 + xbN

K∑
k=1

(βk − bNpk) −
K∑

k=1

(βk − bNpk)
2

2(1 + bNpk)2 +
K∑

k=1

(βk − bNpk)
3

3(1 + ξk)3

+
K∑

k=1

(βk − bNpk)

(
1

1 + bNpk

−
∫

dHN(x)

1 + xbN

)
,

where each ξk is located in the interval [βk, bNpk]. Since

K∑
k=1

(βk − bNpk)
3

3(1 + ξk)3 ≤
K∑

k=1

|βk − bNpk|3,

Corollary 1.1 holds by the argument of Theorem 1.3.
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