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LARGE DEVIATION ASYMPTOTICS AND CONTROL VARIATES
FOR SIMULATING LARGE FUNCTIONS'

BY SEAN P. MEYN
University of lllinois at Urbana—Champaign

Consider the normalized partial sums of a real-valued function F of a
Markov chain,

n—1
pni=n"' Y F(@®K), n=1
k=0

The chain {®(k):k > 0} takes values in a general state space X, with tran-
sition kernel P, and it is assumed that the Lyapunov drift condition holds:
PV <V — W + blc where V:X — (0,00), W:X — [1, 00), the set C is
small and W dominates F. Under these assumptions, the following conclu-
sions are obtained:

1. It is known that this drift condition is equivalent to the existence of a
unique invariant distribution 7 satisfying w (W) < oo, and the law of large
numbers holds for any function ' dominated by W:

on — ¢ :=n(F), a.s., n — oo.

2. The lower error probability defined by P{¢, < c}, for c < ¢, n > 1,
satisfies a large deviation limit theorem when the function F satisfies a
monotonicity condition. Under additional minor conditions an exact large de-
viations expansion is obtained.

3. If W is near-monotone, then control-variates are constructed based on the
Lyapunov function V, providing a pair of estimators that together satisfy
nontrivial large asymptotics for the lower and upper error probabilities.

In an application to simulation of queues it is shown that exact large de-
viation asymptotics are possible even when the estimator does not satisfy a
central limit theorem.

1. Introduction. This paper explores extensions of the control-variate method
to obtain confidence bounds in simulation of a function of a Markov chain
® = {P(0), D(1),...}. It is assumed that ® evolves on a general state space X,
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equipped with a countably generated sigma-field 8. The statistics of ® are deter-
mined by its initial distribution, and the transition kernel P defined by

P(x,A) :=P{®() e A|P(0) =x}, xeX, AeB.

Let {L, :n > 1} denote the sequence of empirical measures induced by ® on
(X, 8B),
1 n—1
(1) Ly==) bk, n>1.
=0

l’lk_

It is assumed that @ is positive Harris recurrent, with unique invariant probabil-

ity distribution denoted m. Equivalently, for each bounded measurable function
F : X — R, and each initial condition, the law of large numbers holds:

L,(F)— ¢ :=n(F) =/F(x)n(dx), n— o0, a.s.

See [19, 22] or [38], Theorem 17.1.7. For each measurable function F: X — R
satisfying 7w (| F'|) < 0o, the sequence {L,(F):n > 1} is interpreted as Monte Carlo
estimates of the steady-state mean of F'.

While consistent for each initial condition even when F is not bounded,
finer assumptions are required to obtain confidence bounds, that is, bounds on
P{|L,(F) — ¢| = a} for a given a > 0. Such bounds are typically based on one of
the following limit theorems:

THE CENTRAL LIMIT THEOREM (CLT). For some o > 0 and each initial
condition,
2) VilLy(F) — ¢l —>0X,  n— oo,
where X is a standard normal random variable, and the convergence is in distrib-
ution.

THE LARGE DEVIATION PRINCIPLE, OR LDP. For a convex function I : R —
R, and any nonempty open interval (co, c1) C R,

lim n~'logP{L,(F) — ¢ € (co, c1)}
n—oo

3) = nli)ngon_l logP{L,(F)— ¢ € [co, c1]}

=—< min I(c)).
c€lcop,c1]

There has been tremendous research activity concerning large deviation prop-
erties of Markov chains following the pioneering work of Donsker and Varadhan
[15, 46, 47]. The literature contains a broad range of possible conclusions under a
correspondingly broad range of assumptions (see the monographs [11, 12]).
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The strongest conclusions are based on variants of the assumptions imposed by
Donsker and Varadhan in [15, 13, 14], that are essentially equivalent to compact-
ness of the n-step transition operator, for some n > 0 (see [45], Theorem 2.1, or
[10], Lemma 3.4). Under these assumptions the LDP holds for the empirical dis-
tributions [15, 13, 16], and the limit (3) holds for a class of unbounded functions
F:X — R [3, 49]. These conclusions are refined in [34] where in particular pre-
cise limit theory is obtained, generalizing the expansions of Bahadur and Ranga
Rao for the partial sums of independent random variables [2, 4, 11]. Similar re-
sults are obtained in [33] for bounded functions on X under geometric ergodicity
alone. Explicit, finite-time bounds have been obtained for uniformly ergodic chains
in [21, 32].

Although most of the theory is based on assumptions on the Markov chain that
are far stronger than geometric ergodicity, these conditions can be relaxed to obtain
a weaker “pinned LDP” [41, 42]. Lower bounds can be obtained under essentially
irreducibility alone [8, 29, 48].

The function / : R — R U {oo} appearing in (3) has many possible representa-
tions. In the limit theory of [3, 34, 41, 42] and the bounds obtained in [8, 29], the
rate function is expressed as the convex dual

%) I (c) = sup[ca — A(a)], ceR,
aeR

where the “pinned” log moment generating function is defined as
5) A= lim n~'logE,[exp(naL,(F))I{®(n) € C}], acR,

with C C X a “small set” and v a “small measure” (see discussion in Section 2.1).
Under the assumptions imposed in this aforementioned work, the limit (5) exists,
though it may be infinite, and is independent of the particular pair (C, v) chosen
(see [43], and the review in Section 2.1).

Sufficient as well as necessary conditions for the central limit theorem for
Markov chains are presented in [20, 22, 23, 38, 43]. Much of the theory is based
upon the fundamental kernel. Recall that a real-valued kernel P on X x B is viewed
as a linear operator, acting on functions 4 :X — R and probability measures p
on B, via

©) Ph() = fx PC.dyh(y) and wP()= /X pu(dx)P(x. ).

Under appropriate assumptions on @, the fundamental kernel can be expressed for
an appropriate class of functions F : X — R via

o
(7) ZF =Y (P*F —n(F)).

k=0
The following bilinear and quadratic forms are defined for measurable functions
F,G:X— R,

(F,G) := P(FG)— (PF)(PG), Q(F):= P(F*) — (PF)>.
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Under appropriate conditions, the asymptotic variance given in (2) can be ex-
pressed 02(F) = 1(Q(ZF)) (see [38], Theorem 17.5.3, and Proposition 2.1 be-
low).

The purpose of the control-variate method is to reduce the variance of the stan-
dard estimator defined by

(®) ¢Gn = Ly(F), n>1.

Suppose that there is a w-integrable function H :X — R with known mean. By
normalization we can assume that 7(H) = 0, and L,(Fp) is an asymptotically
unbiased estimator of ¢ for each & € R with Fy := F — 6 H.

The asymptotic variance of the controlled estimator is given by

o (Fp) =m(Q(ZFy)) = ((ZF, ZF) —20(ZF, ZH)) + 6>(ZH, ZH)).
Minimizing over 6 € R gives the estimator with minimal asymptotic variance,

. TWZF,ZH))
7 (ZH. ZH)’

See [17, 18, 36, 40] for more details and background on the general control-variate
method.

An approach considered in [25, 24] is to consider functions of the form H =
J — PJ, and choose J so that it approximates the solution F to Poisson’s equation,

9) PE=F—F+¢.

The idea is that if J = F, then the resulting controlled estimator with 6§ = 1 has
Zero asymptotic variance.

This approach has been successfully applied in queueing models by taking J
equal to an associated fluid value function. The approach is provably effective in
simple models [25], and numerical examples show dramatic variance reduction for
more complex networks [26, 27]. Some theory to help explain the results of [26]
is developed in [37] based on large deviation limit results contained in [33].

For the sake of illustration consider the reflected random walk on R, defined
by the recursion

(10) Sk+1)=[Pk)+ Dk + D], k>0,

with [x]4+ = max(x,0) for x € R, and D i.i.d. Consider first the special case in
which D has common marginal distribution,

[, with probability «,
D) = -1, with probability 1 — «.

In this case ® is a discrete-time model of the M /M /1 queue, and the state space
is then restricted to X = Z_.. It is assumed that o € (0, %) so that @ is a positive
recurrent Markov chain on X.
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18.705

5x108

FiG. 1. Monte Carlo estimates of ¢ := nw(F) with F(x) = e0-1x for x € Zy. The stochastic
process ® is an M /M /1 queue initialized at zero, with load p = 0.9. After a transient period, the
estimates are consistently larger than the steady-state mean of ¢ = (1 — peP)~1(1 - p).

The invariant distribution 7 is geometric, so there is little motivation to simu-
late. However, ignoring this issue momentarily, suppose we wish to estimate using
simulation the steady-state mean of F (x) = ¢#* for a given g > 0.

Shown in Figure 1 are Monte Carlo estimates of the steady-state mean,

¢:=) n@OF@O)=1-p) ) pe,

where p 1= /(1 — o). In this simulation 8 =0.1 and ¢ = 9/19, so that p =9/10
and ¢ = (1 — pef)™1(1 — p) ~ 18.705. The Markov chain ® was initialized at
zero, ®(0) = 0. The runlength in this simulation extended to T =5 x 10°, yet
the estimates are significantly larger than the steady-state mean over much of the
run. The following proposition provides some explanation. A proof is provided in
Section 3.2.

The existence of a nontrivial LDP depends upon structure of the sublevel sets
of F, defined by Cr(r) :={x : F(x) <r} for r > 1. This structure holds in Propo-
sition 1.1(ii) since the sublevel sets are finite for each r.

PROPOSITION 1.1. Consider the M/M /1 queue with p =a/(1 —a) < 1.

(1) The Markov chain is geometrically ergodic, and its marginal distribution
is geometric with parameter p.

(i) Consider the function F(x) = x or F(x) = P x e Z., for some fixed
B € (0, |log(p)|). The Monte Carlo estimates of the steady-state mean ¢ := 7 (F)
are consistent, and there exists ¢ < ¢ such that the LDP (3) holds for any open set
O C (c, 00), and each initial condition ®(0) = x € Z4.. The convex rate function
I :[c, 00) — Ry is strictly positive on [c, ¢) and can be expressed as the convex
dual (4). The rate function is identically zero on [¢, 00). Consequently, we have
for each initial condition x € Z,

Jim log(P{Ly(F) <)) =—1(©) <0, ce@9),
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and

o1
Jim —log(P(Ly(F) 2 ¢)) =0, c=¢.

In this example the chain is geometrically ergodic, so an LDP bound might
not be surprising since an exact LDP holds when F is bounded [33]. Section 3.2
contains a similar example in which analogous conclusions hold, yet ® is not
geometrically ergodic, and {¢,} does not even satisfy the CLT. Moreover, in this
example a control-variate is constructed to obtain a pair of estimators giving upper
and lower confidence bounds.

The remainder of the paper is organized as follows. Section 2 contains a state-
ment and proof of the most important conclusion in this paper, Theorem 2.2, which
establishes the LDP for a general class of functions on X. Section 2.1 contains a
survey of spectral theory for Markov chains, following [3, 33, 34, 39]. A new cri-
terion for the existence of a spectral gap is presented in Section 2.2, which is the
main ingredient in the proof of Theorem 2.2.

Applications of Theorem 2.2 to the construction and analysis of control-variates
are contained in Section 3.1. The simulation algorithm proposed in Section 3.1 is
shown to satisfy exact upper and lower LDP bounds. This result is illustrated in
Section 3.2 using the reflected random walk (10). Conclusions are contained in
Section 4.

2. One-sided large deviation asymptotics. Throughout the paper it is as-
sumed that @ is positive Harris recurrent and aperiodic. Equivalently, there is a
unique invariant probability distribution = on B such that, for any A € 8B satisfy-
ing w(A) > 0, and any initial condition x,

lim [|PX0x, ) =) =0,  xeX
k—o0
where || - || denotes the total-variation norm ([38], Theorem 13.0.1). We denote

by B the set of A € B satisfying 7(A) > 0. We write f € BT if f:X — R, is
a measurable function with [ f dm > 0.

A measurable function s : X — R and a probability measure v on 8B are called
small if for some n > 1 we have

(11) P"(x, A) > s(x)v(A), xeX, AeB.

A set C is called small if s = €l¢ is a small function for some positive €.

The following Lyapunov drift condition is assumed throughout the paper. Given
any measurable function F : X — R satisfying 7 (| F|) < oo, we can construct a
solution to (V3) with W =1 + | F| by applying [38], Theorem 14.2.3. The set Cy
on which V is finite is absorbing, so that the chain can be restricted to this set;
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see [38], Proposition 4.2.3.

For a function W : X — [1, 00),
(V3) a small set C C X, and a constant b < 00,
PV <V — W+ bl¢ onCy :={x:V(x) <oc}.

For a given function W : X — [1, 0o) the weighted L.,-norm is defined as

HhH1v2==SgpIh(X)|/VV(X),

and LY denotes the set of all measurable functions 4 : X — R for which this norm
is finite (see [28, 30, 31, 33, 34, 38]). The supremum norm || - ||s iS precisely
| - lw with W = 1. Two functions W, W’ : X — [1, 00) are called equivalent if
they generate the same function space, that is,

w w’
WeLl and WelLl.

The set of finite measures on B is denoted M ; the set M| C M denotes probability
measures on B; M" C M denotes measures satisfying u(W) < oo; and :MIW =
MY N M.

The convergence results in parts (i) and (ii) of Proposition 2.1 are contained in
the f-norm ergodic theorem (Theorem 14.0.1) of [38]. The interpretation of the
sum as a version of the fundamental kernel is contained in [38], Theorem 17.4.2.

Part (iii) follows from [38], Theorem 17.4.4, and (iv) is contained in [38], The-
orem 16.0.1.

PROPOSITION 2.1. Suppose that ® is \r-irreducible and aperiodic and (V3)
holds with V everywhere finite. Then:

(1) The chain is positive Harris recurrent with m(W) < 0o, and we have

lim |P*(x,) —7()|lw=0, xeX
k— 00

Moreover, the fundamental kernel Z : LY, — LY. exists as a bounded linear oper-
ator.

(i) If m(V) < o0, then the chain ® is called W-regular of degree 2. In this
case the fundamental kernel can be expressed as the sum (7). The sum converges
in the induced operator norm from LY to LY. .

(1) If t(WV) < oo, then the CLT (2) holds for each F € Loué.

v) If W > &gV for some g > 0 then we say that (V4) holds. In this case ® is
V -uniformly ergodic: for some constants by < 0o, ro > 1,

Y rSIP ) = Olly <bo(V(X)+1), xeX
k=0
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We list below some other definitions for a given measurable function F : X — R:
The function is called

Degenerate if there is a measurable function H:X — R such that when
D0)~m, F(Pk+ 1)) — F(P(k)) = H(P(k)) a.s. for k > 0. Under appropri-
ate bounds on H this implies that the asymptotic variance of ¢,, is equal to zero.
A converse is provided in [34], Lemma 4.12, based on [33], Proposition 2.4.

Lattice if there are h > 0 and 0 < d < h, such that

Fx)—d . .
12) — 1s an integer, x eX.

If there exists a lattice function F, such that F — Fy is degenerate, then F is
called almost-lattice. Otherwise, F is called strongly nonlattice.

Near-monotone if inf,cx F(x) > —o0, and the sublevel set Cp(r) :={x € X:
F(x) <r} is small or empty for each r < || F |, Where F; = max(F,0) and
|l - llco denotes the supremum norm.

Large deviation bounds are obtained in [3] for countable state-space chains un-
der the assumption that F is near-monotone, and A(F) < || F||co, Where A(F) is
defined in (5) using a = 1. These assumptions are far stronger than geometric er-
godicity when F is unbounded. The results of [3] are strengthened and generalized
to general state-space chains and processes in [33, 34].

By restricting the range of ¢ in (3) we can relax the geometric ergodicity as-
sumption. The proof of Theorem 2.2 is included at the end of this section.

The most important assumption in Theorem 2.2 is the constraint (13). To inter-
pret this condition, consider first the countable state-space case. If V and F have
finite sublevel sets and V is unbounded, then this condition is immediate since
Cr(r) and Cy (rg) are each finite for r < || F|lco and rg < oo, and Cy (rg) 1 X as
140 T oQ.

For general state-space models the set Cy (rg) is always F-regular for any fi-
nite rg, and hence small, by Theorem 14.0.1 combined with Proposition 14.1.2
of [38]. In this way we can interpret (13) as simultaneously a relaxation and
strengthening of the near-monotone condition.

THEOREM 2.2. Suppose that (V3) holds with V everywhere finite, and that
F e Loug is a nondegenerate function satisfying w(F) = 0. Suppose moreover that
the sublevel set Cg(r) satisfies for somer > ¢ =0, ryg < 00,

(13) Cr(r) C Cy(ro).
Then, there exists ¢y < ¢ and a smooth convex function I : (cg, ) — (0, 00) such
that:

(i) The LDP (3) holds for each initial condition x € X and each c € (cg, ).
(ii) If F is strongly nonlattice, then for each c € (cq, ¢), there exists a bounded
function g.: X — (0, 00), such that for each initial condition x € X,

(14) P AL,(F) <c}~ %e—"“c), 1 — oo,



318 S.P.MEYN

The LDP asymptotics described in Theorem 2.2 are based on the spectral the-
ory of a positive semigroup obtained from the function F to be simulated. The
definitions presented in Section 2.1 are taken from [3, 33, 34, 38, 39, 43].

2.1. Positive semigroups. Consider now a positive kernel Pon X x B.Itis
assumed that the semigroup { P¥ : k > 0} is y-irreducible,

o8}
> P*(x,A)>0, xeX,Ae8",
k=0

and also aperiodic,

liminfﬂ{ﬁk(x,A)>0}=1 foreachx e X, A e B8*.
k— 00

For a v -irreducible kernel there exists a function s € 87, a probability measure v
on B, and ng > 1 such that pno > s ® v. The function s and measure v are called
P-small, generalizing the definition for a probabilistic kernel P.

Based on a given function & : X — (0, o0) we consider in Section 2.2 the two
positive kernels,
the scaled kernel: Py, := I, P, or equivalently,

Py(x,A) =h(x)P(x,A), xeX, Aes8B,
the twisted kernel: Py := 1 ;hl P 1, or equivalently,

Ja P(x,dy)h(y)

(15) Py(x, A) = P

xeX, Ae 8.

The twisted kernel is probabilistic, so that Py(x,X) =1 for all x, provided
Ph(x) < oo for all x € X.

For any v -irreducible and aperiodic semigroup, the generalized principal
eigenvalue (g.p.e.) is defined as A = e, where A € [—o0, oc] is the limit,

(16) A:= lim n~'log(vP"s).
n—oo

The limit is independent of the particular small function s € 8" and small mea-
sure v chosen. If A is finite, then there is an associated eigenfunction /:X —
(0, oo] satisfying h(x) < oo a.e. [{], and

Ph < Ah.

This is an equality provided P is A-recurrent,
S o~
Z A v Pks = 00,
k=0

See [9, 33, 43] for further discussion.
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For a given weighting function v: X — [1, 00), the induced operator norm of P
is

1Pl
A1l

(a7 I, = sup] M ke L. al 0,
The spectrum S(P) C C of P is the set of z € C such that the inverse [Iz — P]~!
does not exist as a bounded linear operator on Lg.

The spectral radius of the semigroup { P!} is expressed & = ¢=, where

(18) 2 := lim k™ 'log(| PXl).
k— 00

We say that P is v-uniform if the spectral radius £ is finite, and there exists 7 € LY,
u € MY, such that

sup [I[1z — (P —h ® w1~y < oo.

423

When v = 1 we drop the qualification and simply say that Pis uniform.

If the kernel is v-uniform, then it admits a spectral gap, and the generalized prin-
cipal eigenvalue coincides with £. Moreover, the eigenfunction £ satisfies 4 € LY,
and the eigenfunction equation Ph = \h holds ([34], Proposition 2.9).

2.2. Multiplicative mean-ergodic theorem. The multiplicative mean-ergodic
theorem contained in Theorem 2.3 is the basis of LDP asymptotics for the partial
sums [3, 33, 34].

The proof of Theorem 2.3 is identical to the proof of Theorem 3.4 in [34]. The
idea of the proof of (20) is as follows: The twisted kernel f’h is v-uniform, where
h= f is an eigenfunction and v := v/ h, since the twisted kernel is simply a scal-
ing and similarity transformation of Py with f = el’. Since each of the twisted ker-
nels is probabilistic, this implies that Py, is the transition kernel for a v-uniformly
ergodic Markov chain (see [33], Corollary 4.7 or [34], Proposition 2.11 for finer
results). The multiplicative mean-ergodic theorem is a consequence of this mean-
ergodic theorem for the twisted chain, and the representation

P.?(x, A) =E[exp(nL,(F)I{®(n) € A}], xeX, AeB.

An explicit formula for the eigenfunction f is given in (28).

THEOREM 2.3. Suppose that F :X — R is measurable; its g.p.e. )\ is finite;
and that Py is v-uniform, with f = el Then, there exists a measure [i € M and

a function f € LY, satisfying the eigenfunction equations P f =X f , WP = AL,
with normalization,

(19) () =pnx) =1,
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and these are the unique solutions. Moreover, the following multiplicative mean-
ergodic theorem holds: For some by > 0, b; <ocoandall x e X,n > 1,

n—1
E. |:exp<2 F(® (k) — nA):| — fx)

k=0

(20) <bre P0My(x).

In the series of results that follow we present sufficient conditions for uniformity
of a scaled kernel. It will be convenient to consider a family of kernels {P,:a €
(0, 11} where P, = Py, is the scaled kernel defined with f, = et and F:X—> R
a given measurable function. A family of resolvent kernels is defined by

(e e]
(21) Ry:=Y 27% 1Pk, ae0,1],
k=0

and R denotes the kernel obtained when a = 0 so that f,, = 1. It can be shown that
v-uniformity of R, is equivalent to v-uniformity of P, when P is aperiodic and
Aq < 2, and in this case A, is the g.p.e. for P, if and only if y, = (2 — ra)~ Vs the
g.p.e. for R,.

We assume throughout that the function F is normalized so that 7 (F) = 0. It
then follows from the definition (16), Jensen’s inequality and the mean-ergodic
theorem that A,, y, € [1, oo] for each a € R.

Under the assumptions of Theorem 2.4 the kernel R, is a bounded linear oper-
ator on L% for a € [0, 1], where v, = e%". The first bound in (22) is analogous to
Condition (V4) of [38]. These two bounds are equivalent to geometric ergodicity
for the Markov chain in the special case F' = 0. For general F this is not true, as
we shall see in Theorem 2.6.

THEOREM 2.4. Suppose that F : X — R is a given measurable function sat-
isfying w(|F|) < 0o and w(F) = 0. Suppose that there exist Ay < 1, a function
v: X — [1, oo] that is not everywhere infinite, a function s : X — R, a probability
distribution v on 8 and a constant b < oo satisfying the bounds

Prv < rv+bs and

(22)
R,>sQ®v forall0<a<1.

Then, v(x) < oo a.e. [1], and there exists a € (0, 1) such that P, is v,-uniform for
alla € (0,a).

PROOF. To show that R, is v,-uniform we prove that [|G,|[l,, < oo, where
G, denotes the potential kernel,

o

(23) Ga=Y v, '[Ra—s @I,
k=0
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and y, =2 — ka)_l is the g.p.e. for R,,.
Jensen’s inequality implies the following family of bounds:

Pavg < (Ao + bs)* < AgUq + arg—1bs, 0<a<l,

where A; := (A;)" for any t € R. Moreover, the resolvent equation holds: P, R, =
R, P, =2R, — I. This combined with the bound on P,v, gives

(24) 2R4vq — Vg = Rg Pavg < Ra[)_\ava +a)_\a—1bs]»
which on rearranging terms implies the bound
(25) Ravq < YaVa +abgRys,

with 7, = (2 — A4) !, and b, = br,_17,. We evidently have 7, < 1 and A, < 1,
so that b, < b/)_q fora € [0, 1].

Define v/, = (1 + aba)v, — abas where by > b/)_q is fixed. This function is
equivalent to v,, and from (25),

RaV, < (1 + aby)[Vava + aby Rys] — abyRys.

For a > 0 sufficiently small we have b, > (1 + abz)b/)_\.l > (1 4+ aby)b,. Conse-
quently, for such a,

Ravy < (1+ab2)avVa = Vavy + abavas,
and on subtracting the function v(v),)s from each side this gives
[Rq — s @ Vv, < Yav, — (v(v),) — aba¥,)s.

Decreasing a still further we can assume that (v(v,) — abzy,) > 0. We conclude
that there exists a > 0 such that with 6, :=1 — y,,

[Ry — s @ v]v,, < v, — 840, a € (0,al.
Iterating this bound gives
n—1
[Ra —s @ v]"v, <V, —8a Y [Ra — s @ vI*V), n=>1,
k=0

and hence, 322 )[R, — s ® v]¥v/, < v/, which implies the final bound,
7z = (Ra=s @I Iy, <8, ae©.al [z =1.

This completes the proof that |||G,|ll,, < oo since y, > 1, and v, is equivalent
to v, fora € (0,a]. O

The following result provides a simple criterion that guarantees the existence
of s, v satisfying the minorization condition in (22).
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PROPOSITION 2.5.  Suppose that (V3) holds, and that F € Loué. Then, for each
r>1,a€R, the set C =Cy(r) :={x:V(x) <r} is small for the positive ker-
nel P,. Moreover, we have the following uniform bounds: For each ag > 0, r > 1,
there exist eg > 0, ng > 1 and a probability distribution vy € M1 such that,

P} (x, A) > govo(A), x€C, ae€[—ap,aol.

PROOF. Fix a9 > 0, r > 1, set Fo(x) = ao|| FllwW (x), x € X, and define
P:=1 o—Fo P. This is simply the scaled kernel P, with h = e~ 0. A minorization
condition obtained for the kernel P will imply the desired uniform bounds since
P, > P forac [—ag, ag].

For any A € 8 and x € X we have by Jensen’s inequality,

n—1
P'(x,A) = {P”(x, A IE, |:exp<— 3 Fo(cb(k)))JI{cb(n) € A}:| } P"(x, A)
(26) ki’
> exp{P"(x, A)IE, [(- 3 FO(CD(k)))}I{CD(n) e A}“P"(x, A).
k=0

Under (V3) the following bound holds: 0 < P*V <V +nb — ZZ;(l) PkW, so that

n—1
EX[Z Fo(q’(k))} <aol|Fllw[V (x) + nb], xeX,n>1
k=0

Consequently, from (26),

- P"(x, A) > exp{—P"(x, A)"Lap| F|lwlV (x) + nb]} P"(x, A),
xeX,n>1.

This_shows that the semigroup {P":n > 1} is m-irreducible, in the sense that
> P”(gc\, A) > 0 for each x whenever 7(A) > 0. Let A € 87 be any fixed small
set for P; there is a probability distribution vy, € > 0 and an integer m > 1 such
that

P™(x, B) > svy(B), x€A, BeSB.

Choose n > 1, § > 0 such that P"(x, A) > 6 for x € C. This is possible since the
set C is W-regular, and hence small ([38], Theorem 14.2.3). It follows from (27)
that

P"(x, A) = 8, ;= exp{=8 'l Fllwlr +nbl}s,  xeC,
and hence,
P (x, B) > 8,evo(B), xeC,BeSB.

This completes the proof with no =m +n and g9 =6,¢. [
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Up to now it appears that uniformity is a tremendously strong assumption on
the scaled kernel Py since the implications of uniformity are so strong. However,
under the assumptions of Theorem 2.2 we can establish uniformity of P, for a
range of nonpositive a, even though ® is only positive Harris recurrent.

Recall that P is called uniform if it is v-uniform with v = 1.

THEOREM 2.6. Suppose that (V3) holds with V everywhere finite, and sup-
pose that the function F € Lo“é satisfies (13) for some r > 0 and ro < 00, with
¢ = (F)=0. Then, there exists a < 0 such that:

(i) Py is uniform for each a € (a, 0).
(i1) The eigenfunctions { fa a € (a,0)} C Ls, normalized so that v( fa =1
for some small measure v and each a, are uniformly bounded.

sup fa(x) < 0.
a<a<0
xeX

(iii) Define f /= Ta fa for a € (a,0), with { fa} normalized as in (ii). These
functions are uniformly bounded in norm:

sup | fllv < oo.
a<a<0

(iv) A is convex and analytic on (a, 0), and limg4 %A(a) =0

Define the twisted kernel by P,:=P: ) where fa is an eigenfunction that exists

for P,. We have noted prior to Theorem 2.3 that P, is the transition kernel for a
Ug-uniformly ergodic Markov chain when P, is v,-uniform. As in [33], Proposi-
tion 4.9 one can verify that each of the functions

d > = X -_
=_10g(fa)=fa//fa’ ae(aao)v
da
solves Poisson’s equation for the corresponding twisted kernel,
P,F,=F,— F+¢(a),

where ¢(a) = 7. A(a) is the steady-state mean of F for the twisted kernel. Pois-

son’s equation for P, is used to establish versions of Theorem 2.4(iv) in the papers
[33, 34]. This technique cannot be applied here since we do not know if A is
bounded or smooth for positive a.

The proof of Theorem 2.2 is performed in the remainder of this subsection
through a series of steps.

We see in Lemma 2.7 that part (i) of Theorem 2.2 follows quickly from Theo-
rem 2.4. Recall that G, = [y, — (R, —s ® )]~ ! is the potential kernel previously
defined in (23).
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LEMMA 2.7. If the assumptions of Theorem 2.6 hold, then there exists ag < 0
such that Py is uniform for each a € (ao, 0). The unique eigenfunction fq € Loo
satisfying v(f,) =1 can be expressed

(28) fa = Ggs.

PROOF. Set G =—F, g =¢% and g, = ¢%C for a € R. Note that uniformity
of Pg, is equivalent to uniformity of P_, for any a.

Definev=1,§=r —¢ and b = eXp(SUPyec, (1) 1G(X)]) < 00, s0 that the fol-
lowing bound holds:

ng = e_F < 6_51) =+ bHCp(r)-

Moreover, Proposition 2.5 implies that the minorization condition in (22) holds
with F replaced by G in the definition of R,. Uniformity of Py, for sufficiently
small a > 0 thus follows from Theorem 2.4 and the fact that v is bounded.

The representation (28) follows from Proposition 2.8 of [34] (see also [43]). [

The difficult part of the proof of Theorem 2.6 is to establish convergence of
¢(a) to ¢ as a 1 0. The proof is based on consideration of the following scaled
kernel to bound P,.

For a given small measure v € My, let s = &ylc, () With &, > 0 chosen so that
R > s ® v. For a fixed ¢ > 0, define the scaled kernel,

P(x, A) :=exp(evelcy ¢y) (X)) P(x, A),  xeX,Ae B,
and the resolvent and potential kernels,

_ > - _ e -
R:=) 27K1p  G:=)[R-sevl
k=0 k=0

LEMMA 2.8. Suppose that the assumptions of Theorem 2.6 hold. Then, there
exists € > 0 such that:

(i) Gslloo < 00,
(i) [[GRs|loc <00,
(i) [GW|y < oo.
PROOF. To see (i) we write
P1=1+ (" = Dlcyoy) =146, (¢ = Ds.

Leth=1—¢, I(e?®» —1)s, and choose € > 0 so this is strictly positive everywhere.
From the resolvent equation as in (24) we have

R1=1+¢,1( — 1)Rs,
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and hence
Rh=1=h+e, (e — )s.
On subtracting [s ® v]h from both sides we then obtain
(R—s®@v)h=h —§s,

where 8, = v(h) — sv_l(e‘”v — 1). By reducing ¢ > 0 we can assume that é; > 0.
Exactly as in the proof of Theorem 2.4 we conclude that

o0
Gs = Z[Ié —5® v]ks < Sh_lh,
k=0
which establishes the uniform bound in (i).
Part (ii) follows from (i) and the identity,
(29) GR=G[R—s®Vv]+Gls®v]=G—1+G[s®V],

so that GRs < [G + (Gs) ® v]s = (1 + v(s))Gs.
To see (iii) we note that we can assume without loss of generality that the set C
in (V3) is equal to the set Cy(rg) used here by applying [38], Theorem 14.2.3.
Under this transformation we obtain
PV <V — W+ (e — 1)V + (¢°* — )bl
<V — W+ bys,

where b, = sv_] (e®® — 1) (b + rp).
From the resolvent equation again this implies the bound

RV <V — RW + b,Rs,
and then through familar arguments, GRW <V + b,GRs. This bound combined
with the identity (29) completes the proof of (iii). [J

With this value of & > 0 fixed in the definition of R, and given ag < 0 from
Lemma 2.7, we now identify the lower bound a:

LEMMA 2.9. Suppose that the assumptions of Theorem 2.6 hold. Then, there
exists a € (ag, 0) such that for any a <a <0,
X;lPa <P, < P and fva < f:: Gs,
where fa is defined in (28).
PROOF. The bound A;l P, < P, holds since A, > 1.

To see that P, < P, rewrite this bound as Jfa(x) < exp(evelcy () (x)), or on
taking logarithms,

30) aF(x) <epelcey o) (%), x eX.
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Letting by = SUPy ey (F) |F(x)| with Co(F) = {x € X: F(x) <0}, and applying
the bound (13) gives,

aF(x) < lalbolcyry < lalbolcy (), a<0.
This shows that (30) holds for a € [a, 0) with
a := max(ag, —8v8b0_1).
The second bound fa < f follows immediately from the first since
Vo' '(Ra—5®1)" < (R —s®V)" < (R—s@v)", n=0. O
The previous two lemmas lead to a proof of Theorem 2.6(iii):
LEMMA 2.10. Under the assumptions of Theorem 2.6 the function fé can be
expressed
fr=GalyahaRalr — 201 fa,  a<a<0,
where a is defined in Lemma 2.9. These functions satisfy the uniform bound,

sup | fllv < oo.
a<a<0

PROOF. The eigenfunction normalized with v( fa) = 1 can be expressed
as (28), where the potential kernel G, exists as a bounded linear operator from
LY to LY by the previous two lemmas.

For any two values a;, ap we then have

(31) faz - fal = Gags - Gals = Gaz[(yal - yaz)l - (Ral - Raz)]Gals-

Lemmas 2.9 and 2.8 imply that fal = G, s is uniformly bounded. Convexity of A
implies that |y, — Va,|(a2 — ap)~!is uniformly bounded for a < ay < a1 < 0,
and it may then be verified using the mean value theorem that for some constant
b0<:OO,

(ar — al)_l(|ya1 — Yar| + |Ray1 — Ray 1| yy) < bo, a<ay<ap<0.
Applying Lemma 2.8 once more we conclude that
(02_01)_1”fva2_fvalnvfbl» a<a<ap <0,

where by := by||GW ||y < oo. These bounds justify considering the limit az | aj
in (31) to obtain both the desired expression for f, and the uniform bounds. [J

_ LEMMA 2.11.  Suppose that the assumptions of Theorem 2.6 hold. Then
fo—>1and Ay — lasa 1 0.
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PROOF. This follows from the uniform bound G, < R, and the formula for
the limiting potential kernel,

o
G=>[R-s®vl"
k=0

We have fa =Gus — Gs as a 10, and it is known that Gs = 1 since ® is Harris
recurrent ([43], Theorem 5.1). [

PROOF OF THEOREM 2.6. Part (i) is given in Lemma 2.7; (ii) follows from
Lemmas 2.8 and 2.9; and (iii) is given in Lemma 2.10.

To see that A is smooth we argue as in [33, 34]: the g.p.e. y, for R, is defined
for a € (a, 0) as the unique solution to

Iy —(Rg—s@v)] ls=1.

Hence smoothness follows from the inverse function theorem—see Proposition 4.8
of [33].
We now show that ¢ (a) = A’(a) — ¢ as a 1 0. Based on Lemma 2.10 we have

h:=lim f =GX fy_,
al%lgfa fo

with X := (yo—ro—)RIF — A,_1. Moreover, v( fé) = 0 for each a, and hence from

the uniform bounds on f; combined with the dominated convergence theorem we
have v(h) = 0.
Lemma 2.11 implies that yo— = Ao— = 1 so that X = [RIF — Az)_l], and also

fo_ =1 so that
0=v(h) =vGX1=pun(RF — iy_),

where © = vG is an unnormalized invariant measure. In particular R = pu, so
that the expression above implies that u(F) = AE)?M(X), or equivalently,

w(F) Y

(t):ﬂ(F):m— 0—- 0

The following result is a weak version of Varadhan’s lemma [11].

PROPOSITION 2.12. The following are equivalent for a nonnegative, measur-
able function F : X — Ry, and any given initial condition xg € X:
(1) For some ¢y > 0,

B 1 n—1
—1(co) :=limsup — log Py, { Y F(®(k) > nco} <0.
n—oo N k=0
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(i) For some 6y > 0,

_ 1 n—1
A(6p) :=limsup — log Ey, |:exp<z eoF(cb(k))ﬂ < 0.
n—oo n k=0

PROOF. The implication (ii) = (i) is simply Chernoff’s bound.
Conversely, if (i) holds, then there exists Ky < oo such that

n—1 -
Pxo { > F(@k) = nCo} < Koe 10", n=0.
k=0

Consequently, since F' is assumed nonnegative-valued, we have for any r > 1,

n—1 |nr]—1
Py { Y F(®(k) > ano} < Pxo{ Y F(@(k) =nreo

k=0 k=0
< Koe—l_(co)(nr—l)’ n> 0.

Fix 6y < ¢y 7 (co). On multiplying each side of this bound by exp(6gconr) we
obtain

n—1 -
= |:H{ Z F(® (k) > nrc()}eeoconi| < Kle(Q()Co—l(Co))nr’ n>0,
k=0

where K1 := Koe[_ () Integrating both sides from r =1 to oo we arrive at the
bound, for each n > 0 and 6y < ¢, 'y (co),

n—1
: to e
E. | ex OoF (D (k <e‘090”<1 +K _6046—1&0)11)
[ p(Z 0 F ( ()))]_ N T y——

k=0

This implies (ii) with A(0p) < cobp. O

2.3. Proof of Theorem 2.2. Under the assumptions of Theorem 2.6 the func-
tion A(a) is convex on (a, 0). Define the parameters,

EO:E&I%A@); C =£i{1(1)j—aA(a).
Theorem 2.6(iv) implies that ¢; = ¢. By convexity we have ¢y < ¢y, and this in-
equality is strict if F' is nondegenerate since then
(32) oF = d—zA(a) >0, ae(@,0).
@ da? ' '

Equation (32) follows from [33], Proposition 2.4 (see also [34], Lemma 4.12).
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For ¢ € (co, ¢1) the convex dual of A is expressed

I(c)= H}@%)[ca — A(a)] =ca®™ — A(a™),

where a* is chosen so that %A(a) = ¢. The function I serves as an LDP rate
function within this range.
The LDP (3) for ¢ € (co, ¢) then follows from the multiplicative ergodic Theo-
rem 2.3 and standard arguments [4, 11].
The proof of the exact LDP (14) is identical to that of the corresponding results
in [33, 34], where
1

fa*a

8c = a* o
a* e (a, 0) is again chosen so that dd—aA(a) =c, fa* is the eigenfunction satisfying
the normalization (19) and aaz* is defined in (32). The proof amounts to verification
of the assumptions of [4], based on the multiplicative ergodic Theorem 2.3.

3. Application to control-variates. In this section we show how the method
of control-variates can be used to construct a simulator that satisfies an LDP for
the upper and lower tails even when the assumptions on F in Theorem 2.2 are
violated.

We begin with a general application of Theorem 2.2.

3.1. Control-variates based on a Lyapunov function. Suppose that (V3) holds,
and consider the function H :=V — PV.If (V) < o0, then invariance of 7 im-
plies that w(H) = 0, and hence the function H can be used to construct a control-
variate as described in the Introduction.

Recall that the assumption 7 (V) < oo means that the chain is W-regular of
degree 2. In the following result we prefer to avoid this restriction and simply
assume directly that 7 (] H|) < oo and that 7 (H) = 0. Under this assumption, with
H :=V — PV, define the sequence,

n—1
(33) Api=n"" Y H(®(®K)), n>0.
k=0

Positive Harris recurrence of ® implies that A,, — 0 as n — oo with probability 1
([38], Theorem 17.0.1). The control-variate for simulation of a function F based
on the control-variate H and a given parameter 6 € R is given by

Ln(Fp) :=Ly(F) —=0Ln,(H) = L,(F)—0Ap, n=l.

In Theorem 3.1 we fix a function F € Lo“é together with constants 6_, 64 each
strictly greater than || F'||w. Define

F.=F—60_H, F.,=F+60.H,
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and the pair of estimators
(34) ¢, =L,(F-), ¢ =L,(Fy), n>1.

We denote by A_(a), A+ (a) the logarithm of the generalized principal eigenvalue

for each of the scaled kernels
P =1._P, Pr=1Il.,P, acR

a a

The convex duals of the functions {A_, A} are denoted {/_, I,}.

THEOREM 3.1. Suppose that (V3) holds with W : X — [1, 00) near-monotone
and V : X — (0, 00) everywhere finite, and suppose that w(H) = 0, where H :=
V — PV. Then, for a given function F € Lgvo, there exists g > 0 such that:

(i) The lower LDP limit holds using {¢,"}:

lim n~'logP{¢f <c}=—I1(0),  ce@—e0,9).
(i1) The upper LDP limit holds using {¢,, }:

nlggon—l logP{¢, >c}=—1_(c), ce(p,¢+eo).

(iii) Ifin addition F is strongly nonlattice, then (i) and (ii) can be strengthened
to the corresponding exact LDP limit analogous to (14).

Parts (i) and (ii) of Theorem 3.1 combined imply that
1lim n~"logPy (s — $] € [—& = 61 Ay, & +60_A,1)
=—min(I+(¢p —¢),I_(p+¢)) <O, 0<e<ep.
PROOF OF THEOREM 3.1. By normalization we can assume without loss of
generality that 7w (F) = 0.

Define W' = H + bll¢ so that by definition of H we have PV =V — W' 4+ b,
and by (V3) we also have the lower bound,

W' =(V =PV)+blc> (W —blc)+blc =W.

Both F and H belong to the function space LOVZ/.
We can write

F_.=F—0_H=F —0_(W —blc),

which implies that — F_ is near-monotone whenever 6_ > || F||w since we have
the explicit bound

—F_=(0-—[Fllw)W —0_DIc.
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Similarly, F; is near-monotone whenever 64 > | F|w since we can obtain the
similar lower bound

Fp=F+0,(W —bl)
> —||FllwW +6,+(W' —blc) > 04+ — ||Fllw)W — 6,blc.

Moreover, in either case (13) holds for some r > 0, rg < 00, since W € L Xo
Hence the conclusions of Theorem 3.1 follow from Theorem 2.2. O

3.2. Application to simulation of queues. We now return to the reflected ran-
dom walk (10) to illustrate the conclusions of Theorem 2.2.

The assumptions of Proposition 3.2 will be imposed throughout this section. We
do not assume that E[| D (k)|”] < oo for any p > 2, so the CLT may not hold (see
[23], [1], Theorem 3.2, Chapter 5 and [38], Chapter 17). Moreover, ® may not
be geometrically ergodic since we do not assume that the distribution of D (k) has
exponential tails.

PROPOSITION 3.2. Consider the reflected random walk (10) satisfying
§:=—E[D(k)] >0, 012) = Var(D) < oo, P{D(k) > 0} > 0.
Then:
(1) The following identity holds:
(35) PV(x)=V(x)—x+ R(x), xeRy,

where V(x) =1+ %3_1()62 + éx) and R is bounded. Hence (V3) holds with
Wkx)=1+ %x, x eR;.
(i1) With to equal to the first return time to the origin, we have for each x € R,

T0—1

rl_i)nolor_lE,x[ro] =8"1x, rlggor—ZEmL;) d)(k)} =1571x2

(iii) A unique steady-state distribution v exists satisfying [ eP*m(dx) = oo for
all B > 0 sufficiently large.

(iv) Let A, denote the g.p.e. for the kernel Py, with f, = Y Then ry = 00
forall a > 0 when F(x) = x.

The proof of Proposition 3.2 is postponed to the end of this section. This result
combined with Theorem 2.2 implies the LDP for the M /M /1 queue:

PROOF OF PROPOSITION 1.1. Either of the functions F (x)=x or F(x)=eP*
is near-monotone, with ¢ = m(F) < oco. Moreover, for F(x) = x condition (V3)
holds by Proposition 3.2(i), and with F(x) = eP* for a fixed B € (0, |log(p)|), the
functions V = kF, W = F solve (V3) with k = [1 — (¢ef + (1 —a)e?)]~!. Hence
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the one-sided LDP follows from Theorem 2.2. The proof of the LDP for positive a,
with rate function satisfying I (a) = 0 for a > ¢, follows from Proposition 3.2(iv)
combined with Proposition 2.12. [

Although Proposition 1.1 is stated for the M/M /1 queue, analogous conclu-
sions hold for the general reflected random walk on R under the assumptions of
Proposition 3.2. Part (i) asserts that (V3) holds, and hence the assumptions of The-
orem 3.1 hold with F(x) = x, so that the standard estimator satisfies a one-sided
LDP.

We now show how the Lyapunov function V can be used to construct a control-
variate to obtain both upper and lower error bounds. Note that we do not know if
(V) < oo since we have not assumed that D possesses a third moment. Conse-
quently, we must use some other means to establish that 7 (H) = 0.

Under (V3) it follows from Proposition 2.1(i) that there exists a solution
FelL Y to Poisson’s equation (9). Moreover, it is known that the following scaling
property holds:

(36) rlggor—ZF(rx) =J(x), xeRy,

where J is the fluid value function, J(x) = %S_Ixz. The function F is convex,
unique up to an additive constant and can be chosen so that F : X — R,. The
limit result (36) follows from Proposition 5.3 of [6] (see also [35], Theorem 16).
Convexity is established in [5, 37] for network models.
Iterating Poisson’s equation gives
. . n—1
P'"F=F+np—Y P'F, n>1
k=0
It follows from the f-norm ergodic theorem [38] that for each initial condition
X € R+,
. . n—1
n'P"F@)=n""F)+¢—n'Y P'F(x) >0, n— 00.
k=0
The quadratic growth and positivity of F imply that we can find ¢ > 0 such that
F(x)>¢eV(x)—1forall x. Since n~ ' P"F (x) — 0 as n — oo, we conclude that
alson~ ' P"V (x) — 0 as n — oo for each x.
On setting H =V — PV we see from (35) that the function H can be written

(37 H(x)=x— R(x), x eRy,
where R : X — R is bounded. In particular, it has linear growth so that 7 (| H|) < oo.

Moreover, we have

n—1
P'V=vV-Y P'H  n>1,
k=0
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and since n~! P"V — 0 pointwise, we conclude that 7 (H) = 0. This justifies con-
sideration of Fy = F — 6 H in an asymptotically unbiased estimator of ¢.

It also follows from the representation (37) that for any given r > 1, the set
Cr, (r) is compact whenever 6 < 1, and C_p, (r) is compact whenever 6 > 1. This
structure allows the application of Theorem 2.2 to obtain confidence bounds:

PROPOSITION 3.3.  Consider the reflected random walk (10) with E[ D (k)?] <
oo; P{D(k) > 0} > 0; and § > 0. Let F(x) = x for x € Z4, fix two parameters
0+ <1 and 6_ > 1, and define the pair of estimators {¢,,, qb;l"} via (34) with

F.=F—6_H, F.=F—0,H.

Then, there exists a pair of convex functions {I_, I} on R, and a constant eg > 0
such that for each initial condition x € X,

lim n~ogPy (¢ <c}=—11(c) <0,  ce(@—e0,9),

lim n~'logPy(g, =c)=—1-(c) <0,  ce (@, +s0).

Consequently, with {A,} defined in (33), the following limit holds for each € €
(0, &p):
nli)ngon_] 10g P {[¢n — @] € [—& + 04 Ap, £ + O_A, )

=—min(l;(¢p —¢), [ (¢ +¢)) <O.

PROOF. The assumption that P{D(k) > 0} > O is used to deduce that 7 has
support outside of the origin. For ¢ > 0 sufficiently small the set C = [0, ¢] is
small, and satisfies the one-step minorization condition: for some § > 0, P(x, -) >
Sv(-) with v the point-mass at the origin. It follows that the functions {F, F_, F}
are each nondegenerate.

The conclusions then follow from Theorem 3.1. [

An illustration of these controlled estimators is provided in Figure 2. The se-
quence D was chosen of the form D(k) = A(k) — S(k), where A and S are mutu-
ally independent, i.i.d. sequences. Given nonnegative parameters [, o, kK wWe set

PSk)=(1 +r)u}=1—-P{SKk)=0}=(1+x)"",

P{Ak) =(1 +x)a} =1 —P{Ak) =0} = (1 +«)" L.
Consequently, we have E[D (k)] = E[A(k)] —E[S(k)] = —(u —@),and 03, = 05 +
cr§ = (% 4 a?)k. The simulation results shown in Figure 2 used u = 4, o = 3 and
Kk =2,s0that§ =1 and 03 = 25.

The control-variate parameter values 6_ = 1.05 and 61 = 1 were used in the

construction of {¢,, ¢,j }. While this value of 6 violates the strict inequality
0+ > 1 required in Proposition 3.3, we have in this case

Fi(x)=x —04(x — R(x)) = R(x), x e Ry.
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FI1G. 2. Monte Carlo estimates of ¢ := w(F) with F (x) = x for x € Ry.. The stochastic process ®
is reflected random walk (10) with § = —E[D (k)] = 1, and alz) = 25. The uncontrolled estimator
exhibits large fluctuations around its steady-state mean. The upper and lower controlled estimators
show less variability, and the bound ¢, < ¢} is maintained throughout the run.

The function R has mean zero and satisfies (13) when D has bounded support [or
just a (2 + €)-moment], so Theorem 2.2 implies that the lower LDP does hold
using {¢,} when 64 = 1.

The plot at left in Figure 3 illustrates the simulation shown previously in Fig-
ure 2, with the time horizon increased to 7' = 20,000. The plot at right shows
the controlled and uncontrolled estimators with x = 5, and hence 012) = 125. The
bounds ¢, < ¢, < ¢, hold for all large n even though all three estimators are
asymptotically unbiased.

PROOF OF PROPOSITION 3.2. The function R has the explicit form,
R(x) = 167103 — L6 E[{(x + D(K))” + 8(x + D(0))}I(x < —D(K))],
x eX.

Under the second-moment assumption on D (k) the function R is bounded, since
by Chebyshev’s inequality,

E[x’I(x < —D(k))] < x*P{|D(k)| > x} < E[D(k)?], xeRy.
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FI1G. 3. The plot at left shows the same simulation as shown in Figure 2, with the time horizon
increased to T = 20,000. The plot at right shows the two controlled estimators along with the uncon-
trolled estimator when the variance is increased to O'% = 125. In each case the estimates obtained
from the standard Monte Carlo estimator are significantly larger than those obtained using the con-
trolled estimator, and the bound ¢, < ¢;l" again holds for all large n.

The second limit in (ii) follows from Proposition 5.3 of [6] [it can also be proved
using (35) combined with the comparison theorem]. The proof of the first limit is
similar and is omitted (see [7] for similar results).

The existence of 7 satisfying 7w (F) < oo with F(x) = x follows from (35) and
Proposition 2.1. On the interior of the set of 8 € R satisfying 7 (e#¥) < 0o we
have by stationarity,

7(ePF) = Ex[exp(I® (k) + D(k + 1)11)] > Ex[exp(® (k) + D(k + 1))].

Hence by independence of ® (k) and D(k + 1), the log moment generating func-
tions for ® and D satisfy the bound

M(B) :=1log(m(ePF)) > M(B) + Mp(B).

It follows that M (8) = oo when Mp(8) > 0, and this holds for large enough 8 > 0
under the assumption that P{D (k) > 0}.

We now prove (iv). Suppose that in fact Ag, < oo for some positive 6. It then
follows that for Ag > A(6p) :=1log(Ag,),

00 n—1
Z Eg |:exp(z Op® (k) — A())]I{CI)(n) = 0}:| < 0Q.
n=0 k=0

Define, with tg equal to the first return time to the origin,

T0—1
h(x) := E, |:exp(z Op® (k) — A())], x eX.

k=0
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Then, from the previous bound,

00 n—1
h(0) =) Eo |:exp<z Bo® (k) — A0>]1{z0 = i}] < oo.
n=0 k=0

We next demonstrate that 2 must be 7-integrable.
For any x € R we have

h(x) =exp(6oF (x) — Ag)Ex[n(P1)Lo, 20 + Lo, =0],

from which it follows that the following identity holds for a bounded function
by: Ry — R:

exp(6oF (x) — Ag) Ph = exp(bo(x))h(x), x eR,.

This is a version of the drift condition (DV3) of [33, 34], which is far stronger
than the drift condition (V3) of [38]. The comparison theorem of [38] implies that
m(h) < oo.

Next we obtain a lower bound on % using Jensen’s inequality:

T0—1

logh(x) > E, [ > (6@ k) — Ao]}-
k=0

Applying Proposition 3.2(ii), we conclude that the right-hand side is bounded from

below by a quadratic function of x, giving a bound of the form, for some constant

b < o0,

logh(x) > 367 'x% —b(x + 1), x e R,

This bound combined with Proposition 3.2(iii) implies that 7 (&) = oo, which is a
contradiction. [

4. Conclusions. We have seen that it is possible to establish strong LDP as-
ymptotics for unbounded functions even when the assumptions of Donsker and
Varadhan [46, 47] or the weaker geometric ergodicity assumption are violated. We
are currently developing worst-case bounds when the statistics of the process are
only partially known [32, 44], and we are also searching for ways of identifying
explicit bounds on the rate function.

We are eager to develop these simulation techniques to better understand the
value of the application of multiple control-variates for improved confidence
bounds. Applications to network models are also considered in current research.
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