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MONOTONE PROPERTIES OF RANDOM GEOMETRIC GRAPHS
HAVE SHARP THRESHOLDS

BY ASHISH GOEL,1 SANATAN RAI2 AND BHASKAR KRISHNAMACHARI

Stanford University, Stanford University and University of Southern California

Random geometric graphs result from taking n uniformly distributed
points in the unit cube, [0,1]d , and connecting two points if their Euclid-
ean distance is at most r , for some prescribed r . We show that monotone
properties for this class of graphs have sharp thresholds by reducing the prob-
lem to bounding the bottleneck matching on two sets of n points distributed
uniformly in [0,1]d . We present upper bounds on the threshold width, and
show that our bound is sharp for d = 1 and at most a sublogarithmic factor
away for d ≥ 2. Interestingly, the threshold width is much sharper for ran-
dom geometric graphs than for Bernoulli random graphs. Further, a random
geometric graph is shown to be a subgraph, with high probability, of another
independently drawn random geometric graph with a slightly larger radius;
this property is shown to have no analogue for Bernoulli random graphs.

1. Introduction. Consider n points distributed uniformly and independently
in the unit cube [0,1]d . Given a fixed distance r > 0, connect two points if their
Euclidean distance is at most r . Such graphs are called random geometric graphs,
and are denoted by G(d)(Xn; r), as in [24]. Classically, these graphs have been the
subject of much study because of connections to percolation, statistical physics,
hypothesis testing and cluster analysis. Further, random geometric graphs are bet-
ter suited than more combinatorial classes (such as Bernoulli random graphs) to
model problems where the existence of an edge between two different nodes de-
pends on their spatial distance. As a result, random geometric graphs have re-
ceived increased attention in recent years in the context of distributed wireless
networks (such as sensor networks), see, for example, [12–14]; and layout prob-
lems as in [5, 16, 24]. Another area is cluster analysis, especially its applications
in medicine, biology and ecology; these may be found in [10].

In applications such as distributed wireless networks, the connectivity of ran-
dom geometric graphs is of interest. Gupta and Kumar showed that for d = 2, if
πr(n)2 = (logn + cn)/n, then as n ↑ ∞ the graph is connected almost surely as
n ↑ ∞ if cn ↑ ∞ and is disconnected almost surely if cn ↓ −∞ [12]. This re-
sult is remarkably similar to the corresponding result for Bernoulli random graphs
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(also known as Erdős–Renyi graphs). An instance of a Bernoulli random graph
is obtained by taking n points and connecting any two with probability p, inde-
pendently of all other pairs. This class of graphs is denoted by Gn,p . Erdős and
Renyi [7, 8] showed that if p(n) = (logn + cn)/n, then the graph is a.s. connected
or disconnected as cn ↑ ∞ or cn ↓ −∞. For d = 2, Gupta and Kumar’s result can
also be obtained from Penrose’s work on the longest edge of minimal spanning tree
of G(Xn; r(n)) [23]. Connectivity of random geometric graphs for d = 1 was also
studied by Godehardt and Jaworski [11]. Connectivity results under the l∞-norm
may be found in [1].

In both random geometric graphs and Bernoulli random graphs, property thresh-
olds are of great interest. To quote Bollobás [2]:

One of the main aims of the theory of random graphs is to determine when a given
property is likely to appear.

Particularly interesting are thresholds for monotone properties, of which connec-
tivity is a classic example. A seminal result of Friedgut and Kalai [9] states that
all monotone graph properties have a sharp threshold in Bernoulli random graphs,
and the threshold width is δ(ε) = O(log ε−1/ logn). They also demonstrated a
monotone property with a threshold width of �(1/ log2 n) and conjectured that
this is tight [i.e., the best upper bound on threshold width is O(1/ log2 n)]. Their
upper bound on threshold width was improved to O(1/ log2−γ n) for all γ > 0 by
Bourgain and Kalai [4].

The similarity of the connectivity threshold for random geometric graphs and
Bernoulli random graphs led to the conjecture that all monotone properties also
have a sharp threshold in random geometric graphs (see [18, 20] for a more de-
tailed discussion). For the d = 1 case, sharp thresholds for monotone properties are
implicit in the recent work of McColm [20], though he does not compute bounds
on the width. The definition of sharp thresholds we use in this paper is the one used
by Friedgut and Kalai and is based on the threshold width. The definition used by
McColm is the one used in the text by Janson, Łuczak and Ruciński [17], and is
stronger than the one used by Friedgut and Kalai; we discuss this in more detail
at the end of the Introduction. The analysis of random geometric graphs is tech-
nically challenging because of dependence of the edges. The triangle inequality
implies that the event that points x and z are connected is not independent of the
event {(x, y) and (y, z) are edges}. This is in stark contrast to the case of Bernoulli
random graphs. Hence proof techniques that have been successful for Gn,p cannot
be exploited in the case of random geometric graphs.

Our results. We show that all monotone graph properties have a sharp thresh-
old for random geometric graphs, thus resolving the above conjecture. In fact, the
threshold width for random geometric graphs is much sharper than for Bernoulli
random graphs. In order to state our results formally, we need to establish some
notation and some definitions.
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We use the symbol ∼ to mean “distributed as,” so that G ∼ G(d)(Xn; r) means
that G is picked from G(d)(Xn; r). For ease of notation, we omit the superscript d

in G(d)(Xn; r) as the dimension will be clear from the context. The critical radius
for connectivity is defined as rc := (logn/πdn)1/d , where πd is the volume of the
unit sphere in R

d .
A graph property A is a set of undirected and unlabelled graphs. A property A

is increasing if and only if

G ∈ A �⇒ (∀G′)
[(

V (G′) = V (G) and E(G) ⊆ E(G′)
)⇒ G′ ∈ A

]
.

Intuitively speaking, an increasing property is one that is preserved when edges are
added to the graph. A graph property A is monotone if either A or Ac is increas-
ing. Without loss of generality, for the rest of the paper, we shall implicitly mean
increasing properties when referring to monotone properties.

If A is an increasing property, then for 0 < ε < 1/2, let r(n, ε) = inf{r > 0 :
P{G(Xn; r) ∈ A} ≥ ε}. Define further δ(n, ε) := r(n,1 − ε) − r(n, ε). A property
is said to have a sharp threshold if δ(n, ε) = o(1) for all 0 < ε < 1/2.

Our main results are:

THEOREM 1.1. For every monotone property, the width δ(n, ε) is

O

(√
log ε−1

n

)

for d = 1. For d = 2,

δ(n, ε) = O(rc log1/4 n) ≡ O
(
log3/4 n/

√
n
)
,

and for d ≥ 3, the width

δ(n, ε) = O(rc) ≡ O(log1/d n/n1/d).

Thus, all monotone properties have sharp thresholds. Observe that the width is
much sharper than the threshold width for Gn,p . Moreover, we prove a stronger
result: the graphs G(Xn; r) become subgraphs of G(Xn;ρ) for ρ > r , with hight
probability (w.h.p.) as n ↑ ∞. Note only that this is not the case for Bernoulli
random graphs—we shall make this precise in Section 2.

For the lower bounds we have:

THEOREM 1.2. For d ≥ 2, there exists a monotone property with width
δ(n, ε) = �((log ε−1)1/dn−1/d). For d = 1, there exists a monotone property with
width

δ(n, ε) = �
(√

log ε−1/
√

n
)
.
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Hence, we have a tight characterization of the threshold width for d = 1, and
our upper bounds are only a sublogarithmic factor away for d ≥ 2.

The key idea is to relate the behavior of monotone properties to the weight of the
“bottleneck” matching (to be defined later) of the bipartite graph whose vertex sets
are obtained by distributing n points uniformly and independently in [0,1]d . Sharp
results on the “bottleneck” matching weight are implicit in the work of Leighton
and Shor [19] for d = 2 and Shor and Yukich [26] for d ≥ 3. We repeat them here
for convenience.

THEOREM 1.3 ([19, 26]). Consider the bipartite graph on 2n points, where
each set of n points is distributed uniformly and independently in the unit
cube [0,1]d , and independently of each other. If M is the length of the bottleneck
matching, then w.h.p. as n ↑ ∞:

M =
{

�(rc log1/4 n), if d = 2,

�(rc), if d ≥ 3.

In Section 4 we present our own proof of the bound for d ≥ 3. The proof for
the d ≥ 3 case in Shor and Yukich [26] invokes results from polyhedral geome-
try. We present a simpler proof that relies only on the properties of order statis-
tics and Chernoff bounds. We prove that for d = 1, the bottleneck matching is

O(
√

log ε−1/
√

n ) with probability 1 − ε. Moreover, our results also hold for any
�p-norm when p > 1, and not just under the Euclidean norm as in the setting of
this paper. We omit the details, as they require straightforward modifications of the
proofs given herein.

It might seem curious that we do not report the dependence on ε in some of
our bounds on the threshold width. This is because the results of Shor and Yukich
as well as those of Leighton and Shor are high probability results: the bottleneck
matching length is �(rc log1/4 n) in two dimensions and �(rc) in higher dimen-
sions not just in expectation but with probability 1 − o(n−β) for some β > 0.
Hence, in asymptotic notation, our upper bound on δ(n, ε) in two and higher di-
mensions does not depend on ε as long as ε = �(n−β).

Related work. There is a vast body of literature that is directly related to this
paper. It would require a survey paper to even mention the salient results with
any degree of honesty. We can only point the reader to the book by Penrose [24],
the papers by Gupta and Kumar [12–14] and the paper by Shakkottai, Srikant
and Shroff [25]. We note here that our techniques imply a sharp threshold for the
coverage problem as discussed in [25], which is not a graph problem. We omit
the details. The theory of Bernoulli random graphs is covered in the books by
Bollobás [2] and Janson, Łuzak and Rucinski [17]. For some results on matchings
in a similar context, see the paper by Holroyd and Peres [15] and for some results
on covering algorithms see [3]. Sharp thresholds for random geometric graphs
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were conjectured in [18] and [20]. Muthukrishnan and Pandurangan [21] obtained
asymptotically tight thresholds for connectivity, covering and routing-stretch in
d dimensions using a new technique called bin-covering.

Additive versus multiplicative thresholds. In this paper we are primarily con-
cerned with bounding the threshold width of a property, along the lines of Friedgut
and Kalai [9]. Informally, this corresponds to proving sharp “additive” thresholds.
As we mentioned earlier, the notion of sharp thresholds presented in [17] or in [20]
is stronger in that they require δ(n, ε)/r
(n) = o(1). Informally, this corresponds
to “multiplicative” thresholds. We observe that our Theorem 1.1 also yields sharp
thresholds in this stronger sense, provided the threshold radius is high enough.
More precisely, if 
 is a monotone property and r
(n) is its threshold radius, such
that:

rc = o(r
(n)) when d ≥ 3,

rc = o
(
r
(n)/ log1/4 n

)
when d = 2,

√
nr
(n) → ∞ when d = 1,

then 
 also has a sharp threshold in the sense of Janson, Łuczak and Ruciński [17].

Plan of this paper. We first establish the relationship between monotone prop-
erties and bottleneck matchings and prove the upper bound in Section 2. In Sec-
tion 3 we furnish the lower bounds. In Section 4 we discuss the upper bound for
d ≥ 3, and in Section 5 for d = 1. We conclude in Section 6 with some open prob-
lems.

2. Bottleneck matchings and monotone properties. Recall that in a bipar-
tite graph with vertex sets V1 and V2, a perfect matching is a bijection φ :V1 → V2,
such that each v is adjacent to φ(v). Thus a perfect matching is a disjoint collec-
tion of edges that covers every vertex. If the graph is weighted, then we define
the weight of the matching as the maximum weight of any edge in the matching.
A bottleneck matching is the perfect matching with the minimum weight.

Let S1 and S2 denote two sets of n points each, where the points are i.i.d.,
chosen uniformly at random from the set [0,1]d . Form the complete bipartite graph
on (S1, S2) and let the weight of an edge be the Euclidean distance between its
endpoints. Let M

(d)
n denote the bottleneck matching weight of this graph. We omit

the dimension d where it is clear from the context.
We first link the weight of the bottleneck matching with a containment property

on random geometric graphs. We shall write G ⊂ G′ to mean that the graph G is
contained in the graph G′, that is, is isomorphic to a subgraph of G′.

LEMMA 2.1. Suppose P{Mn > γ (n)} ≤ p for some function γ (n) and
some constant p. For any radius r , consider independent random samples
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G ∼ G(Xn; r) and G′ ∼ G(Xn; r + 2γ (n)) in d dimensions. Then, P{G ⊂ G′} ≥
1 − p.

PROOF. Let V represent the set of points in graph G and V ′ the set of points
in graph G′. Let φ denote the bottleneck matching between V and V ′; then Mn is
the weight of this matching. Suppose (u, v) ∈ E(G), that is, ‖u − v‖2 ≤ r . Then,
using triangle inequality,

‖φ(u) − φ(v)‖2 ≤ ‖φ(u) − u‖2 + ‖u − v‖2 + ‖v − φ(v)‖2.

But ‖φ(u) − u‖2 and ‖φ(v) − v‖2 are both at most Mn, and hence ‖φ(u) −
φ(v)‖2 ≤ 2Mn + r . If Mn ≤ γ (n), then the mapping φ establishes that G ⊂ G′,
and hence P{G ⊂ G′} ≥ 1 − p. �

The main result linking monotone properties to bottleneck matchings is:

THEOREM 2.2. If P{Mn > γ (n)} ≤ p, then the
√

p-width of any monotone
property in d dimensions is at most 2γ (n).

PROOF. Let p = ε2, so that P{Mn > γ (n)} ≤ ε2. Let 
 be an arbitrary
increasing monotone property. Let rL = r(n, ε), rU = rL + 2γ (n). Let G ∼
G(Xn; rL), and G′ ∼ G(Xn; rU ), and define q := P{G′ /∈ 
}. Since G is in-
dependent of G′, P{G ∈ 
,G′ /∈ 
} = ε · q . The monotonicity of 
 implies
that if G ∈ 
 and G′ /∈ 
, then G �⊂ G′. This means that P{G �⊂ G′} ≥ ε · q .
By Lemma 2.1 above, P{G �⊂ G′} ≤ p, so that we must have q ≤ ε. But then
r(n,1 − ε) ≤ r(n,1 − q) = rU , so that δ(n, ε) ≤ rU − rL = 2γ (n). �

With Theorem 2.2, the upper bound theorem follows with very little more work:

PROOF OF THEOREM 1.1. Leighton and Shor [19] show that

M(2)
n = �(rc log1/4 n),

with probability at least 1 − n−κ , for some κ > 0, and Shor and Yukich [26] show
that

M(d)
n = �(rc) for d ≥ 3,

with probability at least 1−n−κ ′
, for some κ ′ > 0. Hence Theorem 2.2 implies that

δ(n, ε) = O(rc log1/4 n) for d = 2 and δ(n, ε) = O(rc) for d ≥ 3, for any constant
ε > 0. In fact, the bound on δ(n, ε) holds for any ε = �(n−c), where c > 0 is a
constant.

In Proposition 5.1 (see Section 5), we show that for d = 1,

P

{
M(1)

n ≤ β√
n

}
≥ 1 − exp(−cβ2),
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for some c > 0. By applying Theorem 2.2 with ε = exp(−cβ2) we obtain

δ(n, ε) = O

(√
log ε−1

n

)
. �

REMARK 1. We have in fact shown that G(Xn; r) is a subset of G(Xn; r ′)
w.h.p., when r ′ = r + o(1). The corresponding result does not hold for Bernoulli
random graphs. To see this suppose that G ∼ Gn,p and G′ ∼ Gn,P . For G ⊂ G′,
every edge in G must exist in G′. Hence, for M = (n

2

)
, q = 1 − p and Q = 1 − P ,

and a given matching φ:

P{G ⊂ G′ under φ} =
M∑

K=0

(
M

K

)
pKqM−K

×
M−K∑
L=0

(
M − K

L

)
P K+LQM−K−L

=
M∑

K=0

(
M

K

)
pKqM−K

× P K
M−K∑
L=0

(
M − K

L

)
P LQM−K−L

=
M∑

K=0

(
M

K

)
(pP )KqM−K(P + Q)M−K

= (pP + q)M

= (
p(1 − Q) + q

)
= (1 − pQ)M.

Choose p = 1/4, and P = 3/4. As there are n! matchings:

P{G ⊂ G′} ≤ n! exp
(
−n(n − 1)

32

)
.

The last expression goes to zero as n ↑ ∞. Hence, even in this extreme case when
P − p = 1/2, we do not have Gn,p ⊂ Gn,P with constant probability.

3. The lower bounds. We now present examples of monotone properties to
show that our bounds are tight in the d = 1 case and within a sublogarithmic factor
for d ≥ 2.

For the d = 1 case, we consider the property 
, defined by

G ∈ 
 ⇐⇒ min
u∈V

deg(u) ≥ |V |
4

,
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where V is the vertex set of G. Let x1, . . . , xn be the n uniformly distributed points
in [0,1]; these are the vertices of the graph G. Let x(i) denote the ith order statistic.
We have the following two estimates:

LEMMA 3.1. If 0 < ε ≤ 0.5e−44/6, then for property 
:

r(n,1 − ε) ≥ 1

4
+
√

log 1/2ε

2n
.

PROOF. Let u = 1/4 + 
, where 
 > 0 is to be determined later. Pick
G ∼ G(Xn;u), and let the vertices be x1, . . . , xn. Then x1, . . . , xn are distributed
uniformly in [0,1]. Observe that

P
{
x(n/4) > u

}≥ ε �⇒ P

{
deg

(
x(1)

)
<

n

4

}
≥ ε

�⇒ P{G /∈ 
} ≥ ε,

where in the first implication we have used the fact that deg(x(1)) < n/4 ⇔
x(n/4+1) − x(1) > u, and that x(n/4+1) − x(1)

d= x(n/4).
Now, P{x(n/4) > u} = P{Bin(n,u) < n/4}, and for some suitably large n0,

P
{

Norm(0,1) < −√
n

}≥ 2ε �⇒ P{Bin(n,u) < n/4} ≥ ε,

whenever n > n0, by the Normal approximation to the Binomial.
Put 
 = β/

√
n for β = √

6 log(0.5/ε)/11. Then for 0 < ε ≤ 0.5e−44/6, we have
β ≥ 2. With a little bit of work, one can see that β2/2 ≤ −4β/3 − log 2ε. Since
x ≥ logx for x ≥ 1, the last inequality implies that β2/2 ≤ log(3β−1/4)− log(2ε).
Observe that any β ≥ 2 satisfies

3

4β
≤ 1

β
− 1

β3

so that

β2

2
≤ log

(
1

β
− 1

β3

)
+ log

1

2ε
,

or

(β−1 − β−3) exp
(
−β2

2

)
≥ 2ε.

But then by Theorem 1.4 of [6], we can conclude P{Norm(0,1) > β} ≥ 2ε. This
shows that

P

{
G

(
Xn; 1

4
+
√

log (2ε)−1

2n

)
/∈ 


}
≥ ε,
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and since 
 is increasing, this means that

r(n,1 − ε) ≥ 1

4
+
√

log (2ε)−1

2n
. �

LEMMA 3.2. For property 
:

r

(
n,

1

2

)
≤ 1

4
+ c√

n
,

for some fixed constant c > 0.

PROOF. Suppose G ∼ G(Xn, l). For any u ∈ V (G), write degL(u) for the
number of points to the left of u and adjacent to it, and similarly let degR(u) stand
for the number of right neighbors. Note that if deg(x(1)) ≥ n/4, then necessarily
deg(x(i)) ≥ n/4 for all 1 ≤ i ≤ n/4. With this observation we have:

P{G /∈ 
} = P

{ ⋃
1≤i≤n

{
deg

(
x(i)

)
<

n

4

}}

≤ P

{{
deg

(
x(1)

)
<

n

4
or deg

(
x(n)

)
<

n

4

}}

+ P

{ ⋃
n/4<i<3n/4

{
degL

(
x(i)

)
<

n

8

}}

+ P

{ ⋃
n/4<i<3n/4

{
degR

(
x(i)

)
<

n

8

}}

≤ 2 P

{
deg

(
x(1)

)
<

n

4

}
︸ ︷︷ ︸

(1)

+ nP

{
deg

(
x(i)

)
<

n

8

}
︸ ︷︷ ︸

(2)

.

To bound the first term (1), first observe that by arguing as in the last lemma
P{deg(x(1)) < n/4} = P{Bin(n, l) < n/4}. By applying Chernoff bounds, we can

find a C1 > 0 so that P{Bin(n, l) < n/4} < e−C2
1/2, when l = 1/4 + C1/

√
n.

To bound the second term (2), again apply Chernoff’s bounds to find C2 > 0,
such that for l = 1/4 + C2/

√
n,

nP

{
deg

(
x(1)

)
<

n

8

}
= nP

{
Bin(n, l) <

n

8

}
≤ n exp

(
− n

32

)
,

so that for n large enough this term is overwhelmingly small. Therefore, for
c ≥ max(C1,C2), and l = 1/4 + c/

√
n, we have

P{G /∈ 
} ≤ e−c2/2 + n exp
(
− n

32

)
,
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so that r(n,1/2) ≤ 1/4 + c/
√

n, for a suitably chosen c. �

Lemmas 3.1 and 3.2 show that for the graph property 
 defined by

G ∈ 
 ⇐⇒ min
u∈V

deg(u) ≥ |V |
4

,

we have

r
(n,1 − ε) ≥ 1

4
+
√

log 1/2ε

2n
when 0 < ε ≤ 0.5e−44/6,

r


(
n,

1

2

)
≤ 1

4
+ c√

n
.

Hence we have shown the d ≥ 2 case of Theorem 1.2:

PROOF OF THEOREM 1.2, LOWER BOUND FOR d = 1. Immediate from the
last two lemmas. �

THEOREM 3.3. For d ≥ 2, there exists an increasing property 
 such that for
0 < ε < 1/2, the threshold width satisfies

δ(n, ε) = �(n−1/d).

PROOF. Let 
 be the property that the graph is complete. This is trivially a
monotone property.

Suppose 0 < ε < 1/2. Let u := √
d(1 − 2
+) [see Figure 1(a)], for 
+ such

that

0 < 
+ ≤ 1

n−1/d

[
min

(√
2ε, log 2/2

)]1/d
,

and pick G ∼ G(Xn;u). Fix a pair of diagonally opposite corner cubes with
side 
+, and consider the event that there is exactly one point in each. If this
happens, then the graph is not complete, since the points are more than u apart.
Hence:

P{G /∈ 
} ≥
(

n

2

)
(
d+)2 · 2 · (1 − 2
d+)n−2,

since 
+ < (log 2/(2n))1/d . Thus, for large enough n we have

(1 − 2
d+)n−2 ≥
(

1 − 2 log 2

2n

)n−2

≥ 1

2
,

which implies that

P{G /∈ 
} ≥
(

n

2

)
(
d+)2 ≥ ε.
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FIG. 1. Definition of 
+ and 
−.

The last inequality follows because we chose 
d+ ≤ n−1 × min(
√

2ε, log 2/2).
Therefore,

r(n,1 − ε) ≥ u ≥ √
d

(
1 − cε1/2d

n1/d

)
.(1)

Now we shall bound r(n) above. To this end set l =
√

d − 1 + (1 − 4
−)2

[see Figure 1(b)]. Now suppose that 
− = (log ε−1)1/d/(4n1/d), and pick
G ∼ G(Xn; l). Using elementary geometry it is easy to see that, if none of the
n points lies in any of the 2d cubes of side 2
− at the corners of [0,1]d , then the
graph is complete. Hence, for n large:

P{G ∈ 
} ≥ (1 − 2d(2
−)d
)n ≥ exp

(−n(4
−)d
)
,

where we have used the fact that 1−x ≥ e−x , when x ≥ 0, so that (1−x)n ≥ e−nx ,
if x < 1. Since exp(−n(4
−)d) = ε, by our choice of 
−, it must be that

rn(ε) ≤ l =
√

d − 1 +
(

1 − (log ε−1)1/d

n1/d

)2

.(2)

Putting (1) and (2) together:

δ(n, ε) = rn(1 − ε) − rn(ε) ≥ u − l

≥ √
d

(
1 − cε1/d

n1/d

)
−
√

d − 1 +
(

1 −
(

log ε−1

n

)1/d)2

= √
d

(
1 − cε1/d

n1/d

)
−
√

d − 2
(

log ε−1

n

)1/d

+
(

log ε−1

n

)2/d
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= √
d

[(
1 − cε1/d

n1/d

)
−
√

1 − 2

d

(
log ε−1

n

)1/d

+ 1

d

(
log ε−1

n

)2/d
]

= √
d

[(
1 − c

(
ε

n

)1/d)
− 1

+ 1

2

2

d

(
log ε−1

n

)1/d(
1 − 1

2

(
log ε−1

n

)1/d)

+ 1

8

4

d2

(
log ε−1

n

)2/d(
1 − 1

2

(
log ε−1

n

)1/d)2

+ · · ·
]

= √
d

[
log1/d ε−1 − cdε1/d

dcn1/d
+ o

(
1

n1/d

)]

= �

(
log1/d ε−1

n1/d

)
. �

Observe that for any κ > 0 constant, if ε = n−κ , our lower bound for d ≥ 3
matches our upper bound on the threshold width, and is only a factor of �(log1/4 n)

away for d = 2. For any constant ε, the difference between the bounds is
O(log1/d n) and O(log3/4 n), respectively.

4. Bounding the bottleneck matching for d ≥ 3. We now present a simpler
proof of Mn = �(rc) when d ≥ 3 than the proof presented in [26]. We emphasize
that even though we also recursively subdivide the cube, our principle is different.
In our proof, at the end of each step, the points are distributed uniformly in each
subcuboid. This requires careful choice of the cutting plane and a linear transfor-
mation based on order statistics. This, however, permits us to bound the matching
length via Chernoff bounds, as opposed to estimating the aspect ratios of rectan-
gular solids as in [26].

The basic idea is to divide the unit square into n equal boxes. Given n points
distributed uniformly on the square, move the points so that there is roughly a
single point in each box. Now consider the two samples of red and blue points.
Apply this process to both samples. Let 
 be the maximum distance by which
a red point is shifted, and similarly, let 
′ be the maximum shift for any blue
point, along any coordinate direction. Then the triangle inequality tells us that the
bottleneck matching is less than

√
d(
 + 
′ + n−1/d).

We shall now use this idea to bound the bottleneck matching in [0,1]d .
To move each point into its unique box we follow a recursive process. We shall

provide only an informal description here, relegating the details to the Appendix.
Moreover, for simplicity, we shall suppose n to be a power of 2. First divide the
square by drawing a vertical line so that there are exactly n/2 points in each half.
Transform the x-coordinates of the points in each half so that they are uniformly
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distributed in [0,1/2] and [1/2,1]. Now repeat the process along the y-axis for
each rectangle, and then along the z-axis and so on. Repeat when all coordinate
axes have been done once, and so on. One can carry this process for logn steps so
that there is exactly one point in each box. However, for d ≥ 3 it is better to stop at
the j th step, where j < logn. Choose j = �d−1 log2(n/ logn)�. Then the side of
the box and hence the shift thereafter is ≤ 2−j . With this observation we can now
show

PROPOSITION 4.1. If Mn is the weight of the bottleneck matching on a geo-
metric random bipartite graph on 2n points in [0,1]d , for d ≥ 3, then for any
β > 1, we can find a constant cd > 0 such that

P{Mn > cdβrc} ≤ 1

nβ2−1
,

so that Mn = O(rc) w.h.p.

PROOF. To estimate Mn, we compute the total shift experienced by an ar-
bitrary point. To this end, we shall find the shift along each axis, and so shall
concentrate on one coordinate at a time. Let x1, . . . , xd denote the coordinates.
We regard a step as one cycle in which divisions along all axes have been com-
pleted, according to the scheme described above. Therefore, if a step begins with a
d-dimensional cube of side l containing n points, by the end of the step, the cube
has been divided into 2d cubes of side l/2, with n/2d points each.

Let ni = n/2d(i−1) denote the number of points in a subcube at the beginning of
the ith step, and let li = 2−i+1 denote the length of the side of the cube. Lemma A.2
implies that for any point in the left half of such a subcube, the shift δ

(k)
i in the

xk-direction experienced during the ith step satisfies

P
{∣∣δ(k)

i

∣∣> γi

}≤ 2 exp
(
−γ 2

i

l2
i

ni

)
for any γi > 0.

Therefore, if δi is the total shift suffered by a point during the ith step

P{|δi | > γi} ≤ P

{
max

1≤k≤d

∣∣δ(k)
i

∣∣> γi

}
≤

d∑
k=1

P
{∣∣δ(k)

i

∣∣> γi

}

≤ 2d exp
(
−γ 2

i

n

2(i−1)(d−2)

)
.

Now fix a β > 1, and choose γi such that γ 2
i · n/2(i−1)(d−2) = β2 logn. Observe

that with this choice, γi is decreasing with i only when d > 2. Let 
 be the maxi-
mum total shift experienced by any point. Then it must be that

P

{
|
| > √

d

j∑
i=1

γi

}
≤ 2dnj exp(−β2 logn),
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which follows from taking the union bound over all n points, and all d coordinates,
and the fact that after j steps, we divided a given coordinate at most j times. Notice
that after j = logn steps, the side of the subcube reduces to 2− logn+1 = �(1/n),
and therefore subsequent shifts cannot move the point by more than O(1/n).
Hence we can halt the subdivisions after logn steps, knowing that the matched
point is already within O(1/n). Hence,

P

{
|
| > √

d

logn∑
i=1

γi

}
≤ 2dn logn exp(−β2 logn).

However, with a little bit of work, one can see that
logn∑
i=1

γi = β

√
logn

n

logn∑
i=1

2(i−1)(d−2)/2

≤ 2 · β
√

logn

n
2(d−2)/2(log2 n−log2 logn)/d

= 2β

(
logn

n

)1/d

.

Recall that (logn/n)1/d = rcπ
1/d
d , so that we have just shown

j∑
i=1

γi ≤ 2βπ
1/d
d rc.

Therefore, we have

P
{|
| > 2

√
dβπ

1/d
d rc

}≤ P

{
|
| > √

d

j∑
i=1

γi

}
≤ 2d logn

nβ2−1
.

After j steps the side of the cube is 2−j and hence if we arbitrarily move points
within the subcube, the extra shift is at most

√
d2−j . Therefore, if we choose cd to

be any constant larger than
√

d + 2
√

dπ
1/d
d , we get |
| ≤ cdβrc with probability

at least 1 − n1−β2
. �

We note in passing that for the above method to provide a bound in the d = 2
case, one must proceed for logn steps, so that there is only a single point in
each box. However, in this case, one only gets an O(rc logn) bound, which is
off by log1/4 n from the sharp bound in [19].

5. The bound for d = 1. Given n points uniformly distributed in [0,1], fol-
low the recursive division procedure described in the last section. In this case, at
each step the number of points decreases by half. Therefore, we obtain a stronger
result:
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PROPOSITION 5.1. For any β > 0

P
{
M(1)

n ≥ β/
√

n
}= O

(
exp(−cβ2)

)
for some positive constant c.

PROOF. For the sake of simplicity we assume that n = 2k for some k ∈ N;
this makes no difference to the proof except for simplifying some expressions. In
the ith step there are 2i sets of n/2i points each. Therefore, if δi is the shift of an
arbitrary set, then for βi > 0, by Lemma A.2:

P

{
|δi | ≥ βi√

n

}
≤ 2 exp(−2iβ2

i ),

so that the maximum shift 
 of any point satisfies

P

{
max |
| ≥

∑
i βi√
n

}
≤ 2

∑ n

2i
exp(−2iβ2

i ).

Choose the βi ’s such that 2iβ2
i = β2

0 + i, for some β0. Then
∑

i βi ≤ Kβ0 for some
suitable constant K > 0. Taking β = Kβ0, we get

P

{
M(1)

n ≥ β√
n

}
≤ c′ exp(−cβ2),

for some constants c, c′ > 0. �

6. Conclusion. We have shown that all monotone graph properties have a
sharp threshold for random geometric graphs. Moreover, this threshold is sharper
than the one for Bernoulli random graphs.

We have a sharp result for d = 1. For the d ≥ 3 we believe the upper bound
of O(rc) to be actually tight. For the d = 2 case we believe the upper bound to
be O(rc) as well, though this cannot be obtained via bottleneck matchings.

APPENDIX: ESTIMATING THE SHIFT IN EACH RECURSIVE STEP

To establish a bound on the amount by which each point is moved, we must
examine the “shrinking” and “stretching” process formally. For simplicity we
concentrate on the d = 2 case. Ignore the y-coordinates. Then we have n i.i.d.
Unif[0,1] points x1, . . . , xn. It is well known [22] that the k smallest points are
i.i.d. uniform in [0, x(k+1)), and that the n − k largest points are i.i.d. uniform in
(x(k),1], where x(i) is the ith order statistic. Suppose that n is even—the analy-
sis below applies mutatis mutandis when n is odd. Set δl = x(n/2+1) − 1/2 and
δr = 1/2 − x(n/2). Then transform the points as follows:

x(i) �→




x(i) 1/2

1/2 + δl

, for i = 1, . . . ,
n

2
,

1 − (1 − x(i)
) 1/2

1/2 + δr

, for i = n

2
+ 1, . . . , n.
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This transform leaves the smallest n/2 points uniformly distributed in [0,1/2]
and the largest n/2 points uniformly distributed in [1/2,1]. This process is now
repeated �logn� times alternating the x- and y-coordinates. The maximum shift at
any step is not more than |δl| for the points on the left and not more than |δr | for
points on the right. We shall use δ = max{δl, δr}.

Let Xt be the number of points in [0, t] prior to the transformation. The follow-
ing result is immediate:

LEMMA A.1. For 0 < γ < 1/2,

P{|δ| > γ } ≤ 2P

{
X1/2+γ <

n

2

}
.

To bound the last probability, observe that Xt is just the sum of n i.i.d.
Bernoulli’s that are 1 with probability t . Hereafter β > 0 is some constant.

LEMMA A.2. The shift δ of any point in the recursion step satisfies

P{|δ| > γ } = O
(
exp

(−n′(γ / l)2)),
where n′ is the number of points in the subcuboid being divided, and l is length of
the side that is being divided.

PROOF. The proof is a straightforward application of Chernoff’s bound. As-
sume wlog that l = 1:

P{|δ| > γ } ≤ 2P

{
X1/2+γ <

n′

2

}

= 2P

{
X1/2+γ < n′

(
1

2
+ γ

)
− n′γ

}

≤ 2 exp
(
− n′2γ 2

2n′(γ + 1/2)

)

≤ 2 exp(−n′γ 2) since γ ≤ 1/2. �

Generalization to the d ≥ 3 case is straightforward.
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