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Dedicated to the memory of Alexander V. Nagaev

We extend classical results by A. V. Nagaev [Izv. Akad. Nauk UzSSR
Ser. Fiz.–Mat. Nauk 6 (1969) 17–22, Theory Probab. Appl. 14 (1969) 51–64,
193–208] on large deviations for sums of i.i.d. regularly varying random vari-
ables to partial sum processes of i.i.d. regularly varying vectors. The results
are stated in terms of a heavy-tailed large deviation principle on the space of
càdlàg functions. We illustrate how these results can be applied to functionals
of the partial sum process, including ruin probabilities for multivariate ran-
dom walks and long strange segments. These results make precise the idea
of heavy-tailed large deviation heuristics: in an asymptotic sense, only the
largest step contributes to the extremal behavior of a multivariate random
walk.

1. Introduction and background. The notion of regular variation is funda-
mental in various fields of applied probability. It serves as domain of attraction
condition for partial sums of i.i.d. random vectors [26] or for component-wise
maxima of vectors of i.i.d. random vectors [25], and it occurs in a natural way for
the finite-dimensional distributions of the stationary solution to stochastic recur-
rence equations (see [11, 15]), including ARCH and GARCH processes; see [2]
and Section 8.4 in [8]. To start with, we consider an R

d -valued vector X. We call
it regularly varying if there exists a sequence (an) of positive numbers such that

an ↑ ∞ and a nonnull Radon measure µ on the σ -field B(R
d\{0}) of the Borel

sets of R
d\{0} such that µ(R

d\R
d) = 0 and

nP(a−1
n X ∈ ·) v→ µ(·),(1.1)
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where
v→ denotes vague convergence on B(R

d\{0}). We refer to [14] and [24, 25]
for the concept of vague convergence. It can be shown that the above conditions
on the distribution of X necessarily imply that µ(tA) = t−αµ(A) for some α > 0,
all t > 0 and any Borel set A. Therefore, we also refer to regular variation with
index α in this context.

Definition (1.1) of regular variation has the advantage that it can be extended to
random elements X with values in a separable Banach space (e.g., [1]) or certain
linear metric spaces. Recently, de Haan and Lin [12] have used regular variation
of stochastic processes with values in the space of continuous functions on [0,1]
to prove weak convergence results for the extremes of regularly varying processes
with continuous sample paths. They also considered regular variation for stochas-
tic processes with values in the Skorokhod space D = D([0,1],R

d) of R
d -valued

càdlàg functions on [0,1], equipped with the J1-topology (see [3]) very much in
the same way as (1.1). This idea was taken up by Hult and Lindskog [13]. They
characterized regular variation of càdlàg processes by regular variation of their
finite-dimensional distributions in the sense of (1.1) and a relative compactness
condition in the spirit of weak convergence of stochastic processes; see [3]. Then,
not surprisingly, one can derive a continuous mapping theorem for regularly vary-
ing stochastic processes and apply it to various interesting functionals, including
suprema of Lévy and Markov processes with weakly dependent increments.

In this paper we continue the investigations started by Hult and Lindskog [13] in
a different direction. As a matter of fact, the notion of regular variation as defined
in (1.1) is closely related to large deviation results for processes with heavy-tailed
margins. Such results have been proved since the end of the 1960s by, among
others, A. V. Nagaev [19, 20], S. V. Nagaev [21] and Cline and Hsing [5] for
various one-dimensional settings; see Section 8.6 in [8] and [18] for surveys on the
topic. In the mentioned papers it was shown for a random walk Sn = Z1 +· · ·+Zn

of i.i.d. random variables Zi that relations of the type

sup
x≥λn

∣∣∣∣ P(Sn > x)

nP(Z1 > x)
− 1

∣∣∣∣ → 0(1.2)

hold for suitable sequences λn → ∞ and heavy-tailed distributions of Zi . For ex-
ample, S. V. Nagaev [21] showed that (1.2) holds for i.i.d. centered random vari-
ables Zi which are regularly varying with index α > 2, where the sequence (λn)

can be chosen as λn = a
√

n logn for any a >
√

α − 2. As a matter of fact, re-
sults of type (1.2) also hold for Zi’s with a subexponential distribution. The latter
class of distributions is wider than the class of regularly varying distributions. For
our purposes, we will focus on regularly varying Zi’s with index α > 0. Then it
follows from (1.2), using the uniform convergence theorem for regularly varying
functions (see [4]), that

sup
x≥1

∣∣∣∣P(λ−1
n Sn ∈ (x,∞))

nP(Z1 > λn)
− x−α

∣∣∣∣ → 0.
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Motivated by this, we say that the partial sum process Sn = Z1 + · · · + Zn of i.i.d.
R

d -valued regularly varying random vectors Zi satisfies a large deviation principle

if there exist sequences γn,λn ↑ ∞ and a nonnull Radon measure µ on B(R
d\{0})

such that

γnP(λ−1
n Sn ∈ ·) v→ µ(·).(1.3)

Similarly to the notion of regular variation, the latter definition allows one to ex-
tend large deviation principles from R

d -valued sequences (Sn) to sequences of
stochastic processes (Xn) with values in D. This extension can be handled in the
same way as for regular variation: one can give a criterion for a large deviation
principle in terms of large deviation principles for the finite-dimensional distribu-
tions of the sequence (Xn) in combination with a relative compactness condition.
As a consequence, one can derive a continuous mapping theorem.

The hard part of the proofs is to show the large deviation principle for the se-
quence (Xn). However, for the partial sums Sn of i.i.d. regularly varying R

d -valued
Zi ’s, this is a relatively straightforward task. We show in Theorem 2.1 that a func-
tional analogue to (1.3) with limiting measure m holds for the D-valued suitably
centered processes (S[nt])t∈[0,1] with γn = [nP(|Z| > λn)]−1. If the index of reg-
ular variation α > 1, we may choose λn = n. The limiting measure m is concen-
trated on step functions with one step. The interpretation is that, for large n, the
process λ−1

n S[n·] behaves like a step function with one step. As a consequence, we
determine, in Theorem 3.1, the asymptotic behavior of the probability

ψu(A) = P(Sn − cn ∈ uA for some n ≥ 1)

as u → ∞. Here the steps Zi are regularly varying with index α > 1 and
E(Zi ) = 0. Moreover, c �= 0 is a vector and A is a set bounded away from some
narrow cone in the direction −c. The probability ψu(A) may be interpreted as a
multivariate ruin probability; ruin occurs when the random walk with drift −c hits
the set A. If µ denotes the limiting measure in (1.3) of the random walk, then

µ∗(A◦) ≤ lim inf
u→∞

ψu(A)

uP(|Z| > u)

≤ lim sup
u→∞

ψu(A)

uP(|Z| > u)
≤ µ∗(A),

where A◦ and A are the interior and closure of A, respectively, and for any set B ,

µ∗(B) =
∫ ∞

0
µ(cv + Bc) dv, Bc = {x + ct,x ∈ B, t ≥ 0}.

For more details, see Section 3.
The functional large deviation result also applies to the asymptotic behavior

of long strange segments of a random walk (see Section 4). Suppose α > 1 and
E(Zi ) = 0. For a set A ∈ B(Rd) bounded away from 0, let

Rn(A) = sup
{
k : Si+k − Si ∈ kA for some i ∈ {0, . . . , n − k}}.
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A segment of length Rn(A) is called a long strange segment. The name is moti-
vated by observing that Rn(A) is the length of an interval over which the sample
mean is “far away” from the true mean. We show, in Theorem 4.1, that, for every
t ∈ (0,1) and A ∈ B(Rd) bounded away from 0,

µ(A◦(t)) ≤ lim inf
n→∞

P(n−1Rn(A) > t)

nP(|Z| > n)

≤ lim sup
n→∞

P(n−1Rn(A) > t)

nP(|Z| > n)
≤ µ(A∗(t)),

where

A∗(t) = ⋃
t≤s≤1

sA, A◦(t) = ⋃
t<s≤1

sA◦.

In particular, if A is an increasing set (i.e., tx ∈ A for x ∈ A, t ≥ 1) with
µ(∂A) = 0, this simplifies to

lim
n→∞

P(n−1Rn(A) > t)

nP(|Z| > n)
= t−αµ(A).

From this result we derive, in Theorem 4.2, the weak limit of (a−1
n Rn(A)), where

(an) is the sequence associated with the regularly varying Zi’s in (1.1).
We want to mention that some of the technical issues encountered in the proofs

in this paper arise when switching from the discrete time random walk to the con-
tinuous time limit. Many of these technical difficulties can be avoided when study-
ing Lévy processes instead of random walks. The results for Lévy processes are
completely analogous.

All random elements considered are assumed to be defined on a common proba-
bility space (�,F ,P). Denote by D = D([0,1],R

d) the space of càdlàg functions
x : [0,1] → R

d equipped with the J1-metric, referred to as d0 as in [3], which
makes D a complete separable linear metric space. In the proofs we will also use
the equivalent to d0 incomplete J1-metric, d . We denote by SD the “unit sphere”
{x ∈ D : |x|∞ = 1} with |x|∞ = supt∈[0,1] |xt |, equipped with the relativized topol-
ogy of D. Define D0 = (0,∞] × SD, where (0,∞] is equipped with the met-
ric ρ(x, y) = |1/x − 1/y|, making it complete and separable. For any element
x ∈ D0, we write x = (x∗, x̃), where x∗ = |x|∞ and x̃ = x/x∗. Then D0, equipped
with the metric max{ρ(x∗, y∗), d0(̃x, ỹ)}, is a complete separable metric space.
The topological spaces D\{0}, equipped with the relativized topology of D, and
(0,∞) × SD, equipped with the relativized topology of D0, are homeomorphic;
the function T given by T (x) = (|x|∞,x/|x|∞) is a homeomorphism. Hence,

B(D0) ∩ (
(0,∞) × SD

) = B
(
T (D\{0})),

that is, the Borel sets of B(D0) that are of interest to us can be identified with the
usual Borel sets on D (viewed in spherical coordinates) that do not contain the zero
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function. For notational convenience, we will throughout the paper identify D with
the product space [0,∞) × SD so that expressions like D0\D (= {∞} × SD) make
sense. We denote by B(D0) ∩ D the Borel sets B ∈ B(D0) such that B ∩ ({∞} ×
SD) = ∅.

Regular variation on R
d (for random vectors) is typically formulated in terms

of vague convergence on B(R
d\{0}), where R = R ∪ {−∞,∞}. The topology on

R
d\{0} is chosen so that B(R

d\{0}) and B(Rd) coincide on R
d\{0}. Moreover,

B ∈ B(R
d\{0}) is relatively compact (or bounded) in R

d\{0} if and only if B ∩R
d

is bounded away from 0 (i.e., 0 /∈ B ∩ Rd ) in R
d .

We will see that regular variation on D is naturally expressed in terms of so-
called ŵ-convergence of boundedly finite measures on D0. A boundedly finite
measure assigns finite measure to bounded sets. A sequence of boundedly finite
measures (mn)n∈N on a complete separable metric space E converges to m in the

ŵ-topology, mn
ŵ→ m, if mn(B) → m(B) for every bounded Borel set B with

m(∂B) = 0. If the state space E is locally compact, which D0 is not but R
d\{0}

is, then a boundedly finite measure is called a Radon measure, and ŵ-convergence
coincides with vague convergence and we write mn

v→ m. Finally, we notice that

if mn
ŵ→ m and mn(E) → m(E) < ∞, then mn

w→ m. For details on ŵ-, vague and
weak convergence, we refer to [6], Appendix 2. See also [14] for details on vague
convergence and [24, 25] for relations between vague convergence, point process
convergence and regular variation.

We start by defining regular variation of random vectors (see [24–26]).

DEFINITION 1.1. An R
d -valued random vector X is said to be regularly vary-

ing if there exist a sequence (an), 0 < an ↑ ∞, and a nonnull Radon measure µ on

B(R
d\{0}) with µ(R

d\R
d) = 0 such that, as n → ∞,

nP(a−1
n X ∈ ·) v→ µ(·) on B(R

d\{0}).
We write X ∈ RV((an),µ,R

d\{0}).
REMARK 1.1. (i) The limiting measure µ necessarily obeys a homogeneity

property, that is, there exists an α > 0 such that µ(uB) = u−αµ(B) for every

u > 0 and B ∈ B(R
d\{0}). This follows by standard regular variation arguments;

see Theorem 1.14 on page 19 in [16]. We then also refer to regular variation of X
with index α.

(ii) X ∈ RV((an),µ,R
d\{0}) implies that, as u → ∞,

P(X ∈ u·)
P(|X| > u)

v→ cµ(·) on B(R
d\{0}),

for some c > 0. The sequence (an) will always be chosen so that nP(|X| > an) → 1
and, with this choice of (an), it follows that c = 1 above.
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Next we define a heavy-tailed version of large deviation principle.

DEFINITION 1.2. A sequence (Xn) of R
d -valued random vectors is said

to satisfy a heavy-tailed large deviation principle if there exist a sequence

((γn, λn)), 0 < γn,λn ↑ ∞, and a nonnull Radon measure µ on B(R
d\{0}) with

µ(R
d\R

d) = 0 such that, as n → ∞,

γnP(λ−1
n Xn ∈ ·) v→ µ(·) on B(R

d\{0}).
We write (Xn) ∈ LD(((γn, λn)),µ,R

d\{0}).
In this paper we work with functional large deviations for stochastic processes

with càdlàg sample paths. The appropriate version of large deviation principle for
such processes is as follows.

DEFINITION 1.3. A sequence (Xn) of stochastic processes with sample paths
in D is said to satisfy a heavy-tailed large deviation principle if there exist a se-
quence ((γn, λn)), 0 < γn,λn ↑ ∞, and a nonnull boundedly finite measure m on
B(D0) with m(D0\D) = 0 such that, as n → ∞,

γnP(λ−1
n Xn ∈ ·) ŵ→ m(·) on B(D0).

We write (Xn) ∈ LD(((γn, λn)),m,D0).

REMARK 1.2. In [7] a sequence (µn) of measures on a space E is said to
satisfy a large deviation principle if, for all Borel sets A,

− inf
x∈A◦ I (x) ≤ lim inf

n→∞ cn logµn(A)

≤ lim sup
n→∞

cn logµn(A)

≤ − inf
x∈A

I (x),

(1.4)

where I : E → [0,∞] is called a rate function and cn → 0. The cases of inter-
est are those where A becomes for a large n a rare event with respect to µn.
Then (1.4) describes the logarithmic behavior of exponentially fast decaying prob-
abilities (as cn usually goes to zero hyperbolically fast). Nontrivial results require
that the underlying distributions have light tails in the sense of a finite moment
generating function on a “sizable” part of the parameter space. In this paper we
are primarily interested in regularly varying distributions (for which the moment
generating function does not exist). If one denotes µn(A) = P(λ−1

n Xn ∈ A), then
Definition 1.3 can be viewed as describing the nonlogarithmic counterpart of (1.4)
for probabilities that decay, typically, hyperbolically fast. However, the precise re-
lation between Definition 1.3 and regular variation is not completely clear at the
moment.
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The key result we will need is Theorem 1.1 that establishes functional large
deviations for certain Markov processes with increments that are not too strongly
dependent in the sense that an extreme jump does not trigger further jumps or
oscillations of the same magnitude with a nonnegligible probability. We consider
strong Markov processes in the sense of Definition 2 in [10], page 56. Let X =
(Xt )t∈[0,∞) be a Markov process on R

d with transition function Pu,v(x,B). For
r ≥ 0, t ≥ 0 and Bx,r = {y ∈ R

d : |y − x| < r}, define

αr(t) = sup{Pu,v(x,Bc
x,r ) : x ∈ R

d and 0 ≤ u ≤ v ≤ t}.
Our weak dependence (in the tails) condition is

lim
n→∞αελn(n) = 0 for all ε > 0(1.5)

for an appropriate choice of (λn) with λn ↑ ∞.
For an R

d -valued stochastic process X = (Xt )t∈[0,∞), we adopt the notation
Xn = (Xnt )t∈[0,1] throughout the rest of the paper.

THEOREM 1.1. Let X = (Xt )t∈[0,∞) be a strong Markov process with sample
paths in D[0,∞) satisfying (1.5). Suppose there exist a set T ⊂ [0,1] containing
0 and 1 and all but at most countably many points of [0,1], a sequence ((γn, λn)),

0 < γn,λn ↑ ∞, and a collection {mt : t ∈ T } of Radon measures on B(R
d\{0}),

with mt(R
d\R

d) = 0 and with m1 nonnull, such that, as n → ∞,

γnP(λ−1
n Xn

t ∈ ·) v→ mt(·) on B(R
d\{0}) for every t ∈ T ,

and, for any ε > 0 and η > 0, there exists a δ > 0, δ, 1 − δ ∈ T such that

mδ(B
c
0,ε) − m0(B

c
0,ε) ≤ η and m1(B

c
0,ε) − m1−δ(B

c
0,ε) ≤ η.(1.6)

Then (Xn) ∈ LD(((γn, λn)),m,D0), where m is uniquely determined by {mt :
t ∈ T }. Furthermore, m(Vc

0) = 0, where

V0 = {
x ∈ D : x = y1[v,1], v ∈ [0,1),y ∈ R

d\{0}}.(1.7)

This is a modification of Theorems 13 and 15 in [13] with (n, an) replaced by
(γn, λn). The proof of Theorem 1.1 is essentially identical. Notice that the limiting
measure is concentrated on V0, the set of nonzero right-continuous step functions
with exactly one step.

In the next section we specialize to sums of heavy-tailed i.i.d. random vectors
and prove a large deviation principle. That result is used in Section 3 to study
multivariate ruin probabilities in the heavy-tailed context, and in Section 4 to study
long strange segments in the heavy-tailed multivariate context.
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2. Large deviations for a heavy-tailed random walk process. In this section
we show a large deviation principle for a random walk with i.i.d. R

d -valued step
sizes Zi . For a generic element of this sequence, Z, we assume that it is regularly

varying: Z ∈ RV((an),µ,R
d\{0}). Recall from Remark 1.1 that Z is then regularly

varying for some α > 0. We will also write Z ∈ RV(α,µ).
Consider the random walk process (Sn) given by

S0 = 0, Sn = Z1 + · · · + Zn, n ≥ 1,

and write Sn = (S[nt])t∈[0,1] for the càdlàg embedding of (Sn). It is our aim to de-
rive a functional version of the large deviation results of A. V. Nagaev [19, 20],
S. V. Nagaev [21] and Cline and Hsing [5], which were mentioned in the Introduc-
tion, for the sequence (Sn).

THEOREM 2.1. Assume that Z ∈ RV(α,µ) and consider a sequence (λn) such
that λn ↑ ∞ and the conditions

λ−1
n Sn

P→ 0, α < 2

λ−1
n Sn

P→ 0, λn/
√

n1+γ → ∞ for some γ > 0, α = 2

λ−1
n Sn

P→ 0, λn/
√

n logn → ∞, α > 2,

hold. Then (Sn) ∈ LD(((γn, λn)),m,D0), where γn = [nP(|Z| > λn)]−1. More-
over, the measure m satisfies m(Vc

0) = 0 and its one-dimensional restrictions sat-
isfy mt = tµ for t ∈ [0,1].

REMARK 2.1. It follows from the proof of Lemma 12 in [13] that the finite-
dimensional restrictions of m satisfy

mt1,...,tk (A1 × · · · × Ak) =
j∑

i=1

(ti − ti−1)µ(Ai ∩ · · · ∩ Ak),(2.1)

0 = t0 ≤ t1 ≤ · · · ≤ tk ≤ 1 with A1 × · · · × Ak ∈ B(R
dk\{0}) and j = inf{i =

1, . . . , k : 0 /∈ Ai}. Notice that the relation (2.1) is equivalent to the statement

m = (Leb × µ) ◦ T −1,(2.2)

where T : [0,1] × (Rd\{0}) → D is given by T (t,x) = x1[t,1](s),0 ≤ s ≤ 1. From
here we immediately conclude that the following property of m in spherical coor-
dinates holds. Let

σ(·) = P
({

�1[V,1](t), t ∈ [0,1]} ∈ ·),
where � and V are independent, V is uniformly distributed on (0,1) and � is
distributed like the spectral measure of Z, that is,

P(� ∈ ·) = µ({x : |x| > 1,x/|x| ∈ ·})
µ({x : |x| > 1}) .
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Then for x > 0,

m({x ∈ D : |x|∞ > x,x/|x|∞ ∈ · })
m({x ∈ D : |x|∞ > 1}) = x−ασ (·).

REMARK 2.2. A light-tailed version of functional large deviations for multi-
variate random walks is Mogulskii’s theorem; see [7], page 152.

REMARK 2.3. Under the conditions of the theorem, one can always choose
λn = cn for any positive c if α ≥ 1 and E(Z) = 0. If α ∈ (0,2), an appeal to [22]
yields that the conditions (i) nP(|Z| > λn) → 0 and (ii) nλ−1

n E(Z1[0,λn](|Z|)) → 0

are necessary and sufficient for λ−1
n Sn

P→ 0. Condition (ii) is satisfied if (i) holds
and one of the following conditions holds: α ∈ (0,1), or α = 1 and Z is symmet-
ric, or α ∈ (1,2) and E(Z) = 0. These conditions are comparable to those in [5]
for α ∈ (0,2). For α > 2, the growth condition on (λn) is slightly more restrictive
than in [21], where one can choose λn = a

√
n logn for any a >

√
α − 2, provided

E(Z) = 0. The reason for the more restrictive assumption is that, for our applica-
tions, we need convergence on the whole space D0, and this is not guaranteed by
the less restrictive assumption.

REMARK 2.4. We mention in passing that the large deviation relation

P(λ−1
n Sn ∈ ·)

nP(|Z| > λn)

v→ µ(·)(2.3)

has a nice interpretation in terms of point process convergence. To see this,
rewrite (2.3) as follows:

n

rn
P
(
a−1
n Srn ∈ ·) v→ µ(·),(2.4)

where, as usual, the sequence (an) satisfies nP(|Z| > an) → 1 and (rn) is an in-
teger sequence such that rn → ∞, rn/n → 0 and nP(|Z| > λrn) → 1. Then (2.4)
is equivalent to the following point process convergence result (see [25], Proposi-
tion 3.21):

Nn =
[n/rn]∑
i=1

δ
a−1
n (Sirn−S(i−1)rn )

d→ N,(2.5)

where δx denotes Dirac measure at x,
d→ stands for convergence in distribution

in the space Mp(R
d\{0}) of point measures on R

d\{0} equipped with the vague
topology and N is a Poisson random measure with mean measure µ. Hence, for
any µ-continuity set A bounded away from zero, P(Nn(A) = 0) → P(N(A) =
0) = exp{−µ(A)}. In particular, for the componentwise maxima,

M(i)
n = max

j=1,...,[n/rn]
(
S

(i)
jrn

− S
(i)
(j−1)rn

)
, i = 1, . . . , d,
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and A = ([0, x1] × · · · × [0, xd ])c, xi ≥ 0, i = 1, . . . , d , we have

P
(
a−1
n M(1)

n ≤ x1, . . . , a
−1
n M(d)

n ≤ xd

)
→ P(Y1 ≤ x1, . . . , Yd ≤ xd) = exp{−µ(A)},

where Y is the vector of the component-wise maxima of the points of the limit-
ing Poisson random measure N . If µ(A) > 0 for some set A of this type, then a
nondegenerate component Yi of the limiting vector Y exists and has a Fréchet dis-
tribution P(Yi ≤ x) = exp{−cx−α}, x > 0, for some c > 0. The distribution of Y
is one of the multivariate extreme value distributions, see [25], Chapter 5.

Another relation equivalent to (2.4) is given by

r−1
n

n∑
i=1

δ
a−1
n (Sirn−S(i−1)rn )

P→ µ,

where
P→ stands for convergence in probability in the space M+(R

d\{0}) of non-

negative Radon measures on R
d\{0}, see [25], Exercise 3.5.7 and [24]. This result

can be interpreted as a “law of large numbers analogue” to the weak convergence
result (2.5).

We start with an auxiliary result about the convergence of the one-dimensional
distributions. The proof is similar to the proof of the results in [5, 19, 21].

LEMMA 2.1. Under the conditions of Theorem 2.1, for every t ≥ 0,

γnP
(
λ−1

n S[nt] ∈ ·) v→ tµ(·) on B(R
d\{0}).

PROOF. We prove the result for t = 1, the general case is completely
analogous by switching from Sn to S[nt]. We start with an upper bound for
γnP(λ−1

n Sn ∈ A), where A is bounded away from zero and satisfies µ(∂A) = 0.

In what follows we write, for any Borel set B ⊂ R
d\{0} and ε > 0,

Bε = {x ∈ R
d\{0} : |y − x| ≤ ε,y ∈ B}.

Then

P(λ−1
n Sn ∈ A)

≤ nP(λ−1
n Z ∈ Aε) + P(λ−1

n Sn ∈ A,λ−1
n Zi /∈ Aε for all i = 1, . . . , n)

≤ nP(λ−1
n Z ∈ Aε) + P(λ−1

n |Sn − Zi | > ε for all i = 1, . . . , n)

= I1 + I2.

By regular variation of Z, Remark 1.1(i) and since µ(∂A) = 0, we have

lim
ε↓0

lim
n→∞γnI1 = lim

ε↓0
µ(Aε) = µ(A).
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Next we show that, for every ε > 0, limn→∞ γnI2 = 0. We consider the following
disjoint partition of � for δ > 0:

B1 = ⋃
1≤i<j≤n

{|Zi | > δλn, |Zj | > δλn},

B2 =
n⋃

i=1

{|Zi | > δλn, |Zj | ≤ δλn, j �= i, j = 1, . . . , n},

B3 =
{

max
i=1,...,n

|Zi | ≤ δλn

}
.

Clearly, γnP(B1) = o(1) and

P({|Sn − Zi | > ελn for all i = 1, . . . , n} ∩ B2)

=
n∑

k=1

P({|Sn − Zi | > ελn for all i = 1, . . . , n}

∩ {|Zk| > δλn, |Zj | ≤ δλn, j �= k, j ≤ n})

≤
n∑

k=1

P(|Sn − Zk| > ελn, |Zk| > δλn)

= P(|Sn−1| > ελn)[nP(|Z| > δλn)]
= o(γ −1

n ),

where the last equality holds since Z is regularly varying. As regards B3, we have

P({|Sn − Zi | > ελn for all i = 1, . . . , n} ∩ B3)

≤ P
(
|Sn−1| > ελn, max

i=1,...,n−1
|Zi | ≤ δλn

)

≤
d∑

k=1

P
(∣∣S(k)

n−1

∣∣ >
ελn

d
, max
i=1,...,n−1

∣∣Z(k)
i

∣∣ ≤ δλn

)
.

Therefore, it suffices to show that, for every k = 1, . . . , d and ε > 0,

P
(∣∣S(k)

n

∣∣ > ελn, max
i=1,...,n

∣∣Z(k)
i

∣∣ ≤ δλn

)
= o

(
nP

(∣∣Z(k)
∣∣ > λn

))
.

We may assume without loss of generality that d = 1 and we adapt the notation

correspondingly. Since λ−1
n Sn

P→ 0, nλ−1
n E(Z1[0,δλn](|Z|)) → 0 for every fixed
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δ > 0. Hence, for large n,

P
(
|Sn| > ελn, max

i=1,...,n
|Zi | ≤ δλn

)

≤ P

(∣∣∣∣∣
n∑

i=1

Zi1[0,δλn](|Zi |)
∣∣∣∣∣ > ελn

)

≤ P

(∣∣∣∣∣
n∑

i=1

(
Zi1[0,δλn](|Zi |) − E

(
Z1[0,δλn](|Z|)))∣∣∣∣∣ >

ελn

2

)
.

An application of the Fuk–Nagaev inequality (e.g., [22], page 78) yields that the
right-hand side is bounded by

I3 = c1nλ−p
n E

(|Z|p1[0,δλn](|Z|)) + exp
{−c2λ

2
n

[
nvar

(
Z1[0,δλn](|Z|))]−1}

= I3,1 + I3,2,

for any p ≥ 2, some c1, c2 > 0. By Karamata’s theorem (e.g., [4]), for any p > α,

E
(|Z|p1[0,δλn](|Z|)) ∼ c(δλn)

pP(|Z| > δλn),

as n → ∞. Hence, for p > max(2, α),

lim
δ↓0

lim sup
n→∞

E(|Z|p1[0,δλn](|Z|))
λ

p
nP(|Z| > λn)

= c lim
δ↓0

lim sup
n→∞

(δλn)
pP(|Z| > δλn)

λ
p
nP(|Z| > λn)

= c lim
δ↓0

δp−α = 0.

We consider 3 distinct cases to bound I3,2:

(i) If var(Z) < ∞, then since λn/
√

n logn → ∞,

lim sup
n→∞

I3,2

nP(|Z| > λn)
= 0.(2.6)

(ii) If α ∈ (0,2), by Karamata’s theorem,

nλ−2
n var

(
Z1[0,δλn](|Z|)) ∼ cnP(|Z| > λn).

Hence, (2.6) holds.
(iii) If α = 2 and var(Z) = ∞, then P(|Z| > λn)λ

2
n and var(Z1[0,δλn](|Z|)) are

slowly varying functions of λn. Taking into account that λnn
−(1+γ )/2 → ∞ for

some γ > 0, we conclude that (2.6) holds. We conclude that

lim sup
n→∞

γnP(λ−1
n Sn ∈ A) ≤ µ(Aε) → µ(A) as ε ↓ 0(2.7)

for any µ-continuity set A bounded away from zero.
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To prove the corresponding lower bound, it suffices to consider rectangles A =
[a,b) ⊂ R

d bounded away from zero. These are µ-continuity sets and they deter-

mine vague convergence on the Borel σ -field B(R
d\{0}) by virtue of the fact that

µ(R
d\R

d) = 0. With a+ε = (a1 + ε, . . . , ad + ε)′ and b−ε = (b1 − ε, . . . , bd − ε)′,
introduce the set A−ε = (a+ε,b−ε], which is a nonempty µ-continuity set for suf-
ficiently small ε > 0. Then

P(λ−1
n Sn ∈ A) ≥ P(λ−1

n Sn ∈ A,λ−1
n Zi ∈ A−ε for some i ≤ n)

≥ P(λ−1
n Zi ∈ A−ε, λ−1

n |Sn − Zi | < ε for some i ≤ n)

≥ nP(λ−1
n Z ∈ A−ε)P(λ−1

n |Sn−1| < ε)

− n(n − 1)

2
[P(λ−1

n Z ∈ A−ε)]2.

Notice that Sn−1/λn
P→ 0. Hence,

lim inf
n→∞ γnP(λ−1

n Sn ∈ A)

≥ lim
n→∞

P(λ−1
n Z ∈ A−ε)

P(|Z| > λn)
= µ(A−ε) → µ(A) as ε ↓ 0,

(2.8)

since A is a µ-continuity set. We conclude from (2.7) and (2.8) that, for every
rectangle A = (a,b],

lim
n→∞γnP(λ−1

n Sn ∈ A) = µ(A).

The latter relations determine the vague convergence γnP(λ−1
n Sn ∈ ·) v→ µ(·). This

concludes the proof. �

PROOF OF THEOREM 2.1. It follows immediately from Lemma 2.1 that, for
every t ≥ 0, γnP(λ−1

n Sn
t ∈ ·) v→ tµ(·). The process (S[t])t∈[0,∞) is a strong Markov

process satisfying the conditions of Theorem 1.1, which immediately yields that
(Sn) ∈ LD(((γn, λn)),m,D0) for some boundedly finite measure m on B(D0) sat-
isfying (2.1) and that m(Vc

0) = 0. �

3. Ruin probabilities for a multivariate random walk with drift. In this
section we are interested in extensions of the notion of ruin probability to an
R

d -valued random walk with regularly varying step sizes. We use the same no-
tation as in Section 2, that is, (Zi ) is an i.i.d. R

d -valued sequence such that
Z ∈ RV(α,µ). Moreover, we assume that α > 1. Then E(Z) is well defined
and we assume that E(Z) = 0. Then we know from Theorem 2.1 that (Sn) ∈
LD((([nP(|Z| > n)]−1, n)),m,D0). We will use this result to derive the asymp-
totic behavior of the probabilities, as u → ∞,

ψu(A) = P(Sn − cn ∈ uA for some n ≥ 1),
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c is a vector and A is a measurable set.
Given c �= 0, let δ > 0 be such that the set

Kδ
c = {

x ∈ R
d :

∣∣x/|x| + c/|c|∣∣ < δ
}

satisfies µ((∂Kδ
c )\{0}) = 0. We will take A ∈ B(Rd\Kδ

c ) to avoid sets A that can
be hit by simply drifting in the direction −c. Recall from Theorem 2.1 that

γnP(Sn ∈ n·) ŵ→ m(·),
where m concentrates on step functions with one step. Using this, we can describe
the intuition behind the main result of this section, Theorem 3.1, as follows. Essen-
tially, for large n, the random walk process Sn reaches a set nA for some t by taking
one large jump to the set. For the random walk with drift, S[nt] − c[nt], the process
first drifts in direction −c. Then, at some time [nv], it takes a large jump to a point
−c[nv] + y and then continues to drift in direction −c. Hence, for S[nt] − c[nt], to
hit a set nA for some t , the jump y must be of the form y = c[nv] + z + cu, some
z ∈ nA and u ≥ 0. That is, y ∈ c[nv] + {z : z ∈ cu + nA,u ≥ 0}. This explains the
appearance of the sets Bc in Theorem 3.1.

Our main result is the following.

THEOREM 3.1. Assume that Z ∈ RV(α,µ) for some α > 1 and E(Z) = 0.
Then for any set A ∈ B(Rd\Kδ

c ) bounded away from 0,

µ∗(A◦) ≤ lim inf
u→∞

ψu(A)

uP(|Z| > u)
≤ lim sup

u→∞
ψu(A)

uP(|Z| > u)
≤ µ∗(A),(3.1)

where, for any set B ∈ B(Rd\Kδ
c ),

µ∗(B) =
∫ ∞

0
µ(cv + Bc) dv

and

Bc = {x + ct,x ∈ B, t ≥ 0}.(3.2)

REMARK 3.1. Notice that neither ψu nor µ∗ are additive set functions and,
hence, they are not measures. Therefore, (3.1) cannot be stated in terms of vague
convergence toward µ∗.

REMARK 3.2. Call a set A c-increasing if x + ct ∈ A whenever x ∈ A and
t ≥ 0. For such sets, Ac = A. If µ(cv + ∂A) = 0 for almost all v ≥ 0, then
µ∗(A◦) = µ∗(A), and Theorem 3.1 gives us

lim
u→∞

ψu(A)

uP(|Z| > u)
= µ∗(A).
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An example would be a half space A = ad + {x : (x,d) ≥ 0} for some d with
(d, c) > 0 and a > 0. The reason is that, because of the scaling property of the
measure µ, it cannot assign a positive mass to any hyperplane unless it contains the
origin. Assuming for the ease of notation that c has positive components, another
example is the set A = ∏d

i=1[xi,∞) for x = (x1, . . . , xd) ∈ [0,∞)d \ {0}.

REMARK 3.3. Notice that the set Bc is universally measurable, and so µ∗(B)

is well defined. Furthermore, it is clear that if B is open, then so is Bc. Moreover,
if B is closed, then, again, so is Bc. To see this, let yn = ctn + xn ∈ Bc with tn ≥ 0
and xn ∈ B for n = 1,2, . . . . Let yn → y as n → ∞. If the sequence (tn) has an
accumulation point, it follows from the fact that B is closed that y ∈ Bc. Therefore,
to show that Bc is closed, it is sufficient to show that the sequence (tn) cannot
converge to infinity. Assume, to the contrary, that tn → ∞. Then∣∣∣∣ xn

|xn| + c
|c|

∣∣∣∣ =
∣∣∣∣ yn − ctn
|yn − ctn| + c

|c|
∣∣∣∣ =

∣∣∣∣ yn/tn − c
|yn/tn − c| + c

|c|
∣∣∣∣ →

∣∣∣∣−c
|c| + c

|c|
∣∣∣∣ = 0,

contradicting the fact that B ∈ B(Rd\Kδ
c ).

REMARK 3.4. In the case d = 1, relation (3.1) with A = [1,∞), µ(A) > 0
and c > 0 reads as follows:

ψu(A) = P
(

sup
n≥1

(Sn − nc) > u

)
∼ 1

(α − 1)c
uP(Z > u).

This is the classical asymptotic result for the ruin probability in the case of regu-
larly varying Zi’s; see [8] and [9], Chapter 1.

We start the proof with some auxiliary results.

LEMMA 3.1. For every A ∈ B(Rd\Kδ
c ) bounded away from 0,

lim
M→∞ lim sup

u→∞
P(

⋃
n>uM{Sn ∈ nc + uA})

uP(|Z| > u)
= 0.

PROOF. There exist finitely many points ai , i = 1, . . . , k, with (c,ai ) > 0 such

that the sets Aai
= {x ∈ R

d : (ai ,x) > 1} satisfy A ⊂ ⋃k
i=1 Aai

∪ (R
d\R

d). Hence,

P

( ⋃
n>uM

{Sn ∈ nc + uA}
)

≤
k∑

i=1

∑
n>uM

P
(
Sn ∈ nc + uAai

)

=
k∑

i=1

∑
n>uM

P
(
(Sn,ai) > n(c,ai ) + u

)
.

(3.3)
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It follows from the uniformity of the large deviation results for one-dimensional
centered random walks with regularly varying step sizes (e.g., [5]) that the right-
hand side of (3.3) is bounded above by

c

k∑
i=1

∑
n>uM

nP
(
(Z,ai ) > n(c,ai ) + u

) ≤ c1

k∑
i=1

∫ ∞
uM

P
(
(Z,ai ) > x(c,ai )

)
dx

≤ c2

k∑
i=1

∫ ∞
uM

P
(|Z| > x(c,ai )/|ai |)dx

∼ c3M
1−αuP(|Z| > u),

as u → ∞ (c, c1, c2, c3 > 0). In the last step we used Karamata’s theorem. This
proves the lemma. �

LEMMA 3.2. If (Xn) ∈ LD(((γn, λn)),m,D0) and (fn) ⊂ D is a sequence of
deterministic functions such that fn → f , then

γnP(λ−1
n Xn + fn − f ∈ ·) ŵ→ m(·) on B(D0).

PROOF. Let A ∈ B(D0) be closed and bounded and take ε > 0 small enough
such that Aε = {x ∈ D0 :d0(x,A) ≤ ε} is closed and bounded. Since fn → f , we
have d0(fn, f ) < ε for n sufficiently large. Hence,

lim sup
n→∞

γnP(λ−1
n Xn + fn − f ∈ A) ≤ lim sup

n→∞
γnP(λ−1

n Xn ∈ Aε)

≤ m(Aε).

Since A is closed, as ε → 0, m(Aε) → m(A) and the conclusion follows from the
Portmanteau theorem. �

PROOF OF THEOREM 3.1. Take A ∈ B(Rd\Kδ
c ) bounded away from 0. We

start with an upper bound for ψu(A). First notice that, for every K > 0,

ψu(A) ≤ P
(
Sn − cn ∈ u(A ∩ {y : |y| ≤ K}) for some n ≥ 0

)
+ P

(
Sn − cn ∈ u(A ∩ {y : |y| > K}) for some n ≥ 0

)
= ψ(1)

u (A) + ψ(2)
u (A).

(3.4)

Let ε > 0 be small enough so that the set Aε = {y ∈ R
d : x ∈ A, |x − y| ≤ ε} is

bounded away from the origin and Aε ⊂ R
d\Kδ/2

c . For all u ≥ max(2,2
√

K/ε ),

if x ∈ u(A ∩ {y : |y| ≤ K}) then
∣∣∣∣x
u

− x
[u]

∣∣∣∣ ≤ ε,



FUNCTIONAL LARGE DEVIATIONS 2667

and so x ∈ [u]Aε . Therefore, for M = 1,2, . . . ,

ψ(1)
u (A) ≤ P(Sn − cn ∈ [u]Aε for some n ≥ 0)

≤ P

( ⋃
n≤[u]M

{Sn ∈ (nc + [u]Aε)}
)

+ P

( ⋃
n>[u]M

{Sn ∈ (nc + [u]Aε)}
)

= ψ(11)
u (A) + ψ(12)

u (A).

(3.5)

We have

ψ(11)
u (A) ≤ P

(
(M[u])−1(

S[M[u]t] − c[M[u]t]) ∈ M−1Aε

for some rational t ∈ [0,1]).
Let f (t) = ct and for a set E ∈ B(Rd),

BE = {x ∈ D : xt ∈ M−1E for some rational t ∈ [0,1]}.(3.6)

Notice that BAε is bounded away from 0 in D since Aε is bounded away from 0
in R

d . Hence, also BAε is bounded away from 0. Since f (t) = ct and Aε ⊂
R

d\Kδ/2
c , also f + BAε is bounded away from 0 (i.e., bounded in D0). An ap-

plication of Theorem 2.1, Lemma 3.2 and the Portmanteau theorem yields

lim sup
u→∞

ψ
(11)
u (A)

MuP(|Z| > Mu)
≤ m(f + BAε)

=
∫ 1

0
µ

(
y : y1[v,1] ∈ f + BAε

)
dv,

(3.7)

where at the last step we used (2.2).
Suppose that, for some y ∈ R

d\{0} and 0 < v < 1, we have y1[v,1] ∈ f + BAε .
Then there are xn ∈ f + BAε and strictly increasing continuous time changes
hn : [0,1] → [0,1], hn(0) = 0, hn(1) = 1 for n ≥ 1 such that

lim
n→∞ sup

0≤t≤1

∣∣y1[h−1
n (v),1](t) − xn(t)

∣∣ = 0(3.8)

and

lim
n→∞ sup

0≤t≤1
|hn(t) − t | = 0.

Let 0 ≤ tn ≤ 1 and zn ∈ M−1Aε be such that xn(tn) = ctn +zn, n = 1,2, . . . . It fol-
lows from the fact that Aε is both bounded away from the origin and Aε ⊂ R

d\Kδ
c

that the sequence of the norms |ctn + zn|, n ≥ 1 is bounded away from zero.
We conclude from (3.8) that, for all n large enough, we must have tn ≥ h−1

n (v).
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If t∗ is any accumulation point of the sequence (tn), it follows that t∗ ≥ v. If
tnk

→ t∗ as k → ∞, then,∣∣y − (
ct∗ + znk

)∣∣ ≤ ∣∣y − (
ctnk

+ znk

)∣∣ + |c|∣∣tnk
− t∗

∣∣ → 0.

Therefore, y − ct∗ ∈ M−1Aε = M−1Aε , and so∫ 1

0
µ

(
y : y1[v,1] ∈ f + BAε

)
dv

≤
∫ 1

0
µ(y : y ∈ ct + M−1Aε for some t ∈ [v,1]) dv

= Mα
∫ 1

0
µ(y : y ∈ ctM + Aε for some t ∈ [v,1]) dv

= Mα−1
∫ M

0
µ(y : y ∈ ct + Aε for some t ∈ [v,M]) dv.

Hence, by (3.7),

lim sup
u→∞

ψ
(11)
u (A)

MuP(|Z| > Mu)
≤ Mα−1

∫ M

0
µ(y : y ∈ ct + Aε for some t ∈ [v,M]) dv.

Letting M → ∞ and using Lemma 3.1 for ψ
(12)
u (A), we conclude that, for all

ε > 0,

lim sup
u→∞

ψ
(1)
u (A)

uP(|Z| > u)
≤

∫ ∞
0

µ(y : y ∈ ct + Aε for some t ≥ v) dv.(3.9)

Fix v > 0, let εn ↓ 0, and assume

y0 ∈
∞⋂

n=1

{y : y ∈ ct + Aεn for some t ≥ v}.

Then for every n ≥ 1, we can write y0 = ctn + xn for some tn ≥ v and xn ∈ Aεn .
The sequence (tn) must be bounded since Aεn ⊂ R

d\Kδ/2
c for all n large enough;

see the discussion in Remark 3.3. Let (nk) be a subsequence such that tnk
→ t∗ ≥ v

as k → ∞. Then xnk
→ x∗ ∈ A as k → ∞ and, hence,

y0 = ct∗ + xnk
+ c

(
tnk

− t∗
) ∈ ct∗ + A.

Therefore, letting ε ↓ 0 in (3.9), we conclude that

lim sup
u→∞

ψ
(1)
u (A)

uP(|Z| > u)
≤

∫ ∞
0

µ(y : y ∈ ct + A for some t ≥ v) dv

=
∫ ∞

0
µ

(
cv + (A)c

)
dv = µ∗(A).

(3.10)
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Furthermore,

ψ(2)
u (A) ≤ P

(
Sn − cn ∈ u

(
(Kδ

c )c ∩ {y : |y| > K}) for some n ≥ 0
)

≤ P
(
Sn − cn ∈ [u]((Kδ

c )c ∩ {y : |y| > K}) for some n ≥ 0
)
.

The argument leading to (3.9) now gives us

lim sup
u→∞

ψ
(2)
u (A)

uP(|Z| > u)

≤
∫ ∞

0
µ

(
y : y ∈ ct + (

(Kδ
c )c ∩ {z : |z| ≥ K}) for some t ≥ v

)
dv.

Let 0 < θ < |c|δ/2. Suppose that there is a number t > 0 such that there exists
y ∈ ct + (Kδ

c )c with |y| ≤ θt . Let z = y − ct . Then∣∣∣∣ z
|z| + c

|c|
∣∣∣∣ =

∣∣∣∣ y − ct
|y − ct | + c

|c|
∣∣∣∣ ≤ 2|y|

t |c| ≤ 2tθ

t |c| < δ

by the choice of θ , contradicting the fact that z ∈ (Kδ
c )c. We conclude that∫ ∞

0
µ

(
y : y ∈ ct + (

(Kδ
c )c ∩ {z : |z| ≥ K}) for some t ≥ v

)
dv

≤
∫ ∞

0
µ

(
y : |y| > θv,

y ∈ ct + (
(Kδ

c )c ∩ {z : |z| ≥ K}) for some t ≥ v
)
dv

(3.11)

and the integral is finite. Indeed,{
y : y ∈ ct + (

(Kδ
c )c ∩ {z : |z| ≥ K}) for some t ≥ v

} ⊂ {z : |z| ≥ δ′K},
with δ′ = δ/2. Hence,∫ ∞

0
µ

(
y : |y| > θv,y ∈ ct + (

(Kδ
c )c ∩ {z : |z| ≥ K}) for some t ≥ v

)
dv

≤
∫ δ′K/θ

0
µ(z : |z| > δ′K)dv +

∫ ∞
δ′K/θ

(θv)−αµ(z : |z| > 1) dv

= (δ′K)1−αµ(y : |y| > 1)
α

θ(α − 1)
→ 0,

as K → ∞, which establishes the upper bound in (3.1).
To prove the lower bound in the theorem, notice that, for every K > 0 and all

ε > 0 small enough, the argument we used to establish (3.5) shows that

ψu(A) ≥ P
(
Sn − cn ∈ [u](Aε ∩ {y : |y| ≤ K}) for some n ≥ 0

)
for all u large enough, where Aε = {x ∈ A : y ∈ A for all y with |y − x| < ε}.
Denoting Dε,K = Aε ∩ {y : |y| ≤ K} and using the notation in (3.6), we conclude
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by Theorem 2.1, Lemma 3.2 and the Portmanteau theorem that, for every M =
1,2, . . . ,

lim inf
u→∞

ψu(A)

MuP(|Z| > Mu)
≥ m

(
f + B◦

Dε,K

)
=

∫ 1

0
µ

(
y : y1[v,1] ∈ f + B◦

Dε,K

)
dv.

(3.12)

Again, fix a set E and suppose that, for some y ∈ R
d\{0} and 0 < v < 1, we have

y − ct∗ ∈ M−1E◦ for some t∗ ∈ [v,1]. Let us check that

y1[v,1] ∈ f + B◦
E.(3.13)

To this end, select δ > 0 small enough so that {z : |y − ct∗ − z| < δ} ⊂ M−1E◦, and
consider any function x such that

d
(
y1[v,1],x

)
<

δ

3

(
1 ∧ 1

|c|
)
,(3.14)

where d refers to the incomplete Skorohod J1-metric. Let h be a strictly increasing
continuous time change, h : [0,1] → [0,1], h(0) = 0, h(1) = 1 such that

|h(t) − t | < δ

2

(
1 ∧ 1

|c|
)

and
∣∣y1[v,1](t) − x(h(t))

∣∣ <
δ

2

(
1 ∧ 1

|c|
)

for all 0 ≤ t ≤ 1. In particular,

|y − x(h(t∗))| ≤ δ

2

(
1 ∧ 1

|c|
)
,

so that

|(y − ct∗) − (x(h(t∗)) − ch(t∗))| < δ.

If h(t∗) = 1, this already tells us by the choice of δ that x ∈ f + BE . If h(t∗) < 1,
select a rational t0 ∈ [h(t∗),1] such that∣∣(y − ct∗) − (

x(t0) − ct0
)∣∣ < δ,

implying once again that x ∈ f + BE . Therefore, any x satisfying (3.14) is in
f + BE , and so (3.13) holds. We conclude that∫ 1

0
µ

(
y : y1[v,1] ∈ f + B◦

Dε,K

)
dv

≥
∫ 1

0
µ

(
y : y1[v,1] ∈ f + M−1D◦

ε,K

)
dv

= Mα−1
∫ M

0
µ(y : y ∈ ct + D◦

ε,K for some t ∈ [v,M]) dv.
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Letting M → ∞, we conclude by (3.12) that

lim inf
u→∞

ψu(A)

uP(|Z| > u)
≥

∫ ∞
0

µ(y : y ∈ ct + D◦
ε,K for some t ≥ v) dv.

Letting first K → ∞ and then ε → 0, we conclude that

lim inf
u→∞

ψu(A)

uP(|Z| > u)
≥

∫ ∞
0

µ(y : y ∈ ct + A◦ for some t ≥ v) dv = µ∗(A◦),

establishing the lower bound in (3.1). �

4. Long strange segments. In this section we study the notion of long strange
segments of R

d -valued random walks with regularly varying steps. Let (Zi ) be an
i.i.d. sequence of random vectors in R

d , and S0 = 0, Sn = Z1 + · · · + Zn, n ≥ 1.
For a set A ∈ B(Rd) bounded away from 0, let

Rn(A) = sup
{
k : Si+k − Si ∈ kA for some i ∈ {0, . . . , n − k}}.

Since we are dealing with the intervals over which the sample mean is “far away”
from the true mean, the random variable Rn(A) is often called the length of the
long strange segment, or long rare segment. See, for example, [7]. The following
theorem describes the large deviations of Rn(A) in the heavy-tailed case. It can
be motivated as follows. Suppose first that the set A is increasing (i.e., tx ∈ A

for all x ∈ A and t ≥ 1). We know from Theorem 2.1 that, for large n, Sn may
be approximated by a step function with one step. The long strange segment is
therefore due to the large jump. If Rn(A) > nt , then the large jump must fall in the
set ntA, which is essentially the same as saying Sn ∈ ntA. Hence, for large n,

P(Rn(A) > nt)

nP(|Z| > n)
≈ P(Sn ∈ ntA)

nP(|Z| > n)
→ µ(tA).

For A nonincreasing, we need to be a bit more careful. To handle this case, we
define, for any A ∈ B(Rd) and 0 ≤ t < 1,

A∗(t) = ⋃
t≤s≤1

sA, A◦(t) = ⋃
t<s≤1

sA◦.(4.1)

Notice that A∗(t) is a closed set and A◦(t) is an open set.

THEOREM 4.1. Suppose Z ∈ RV(α,µ) for some α > 1 and E(Z) = 0. Then,
for every t ∈ (0,1) and A ∈ B(Rd) bounded away from 0,

µ(A◦(t)) ≤ lim inf
n→∞

P(n−1Rn(A) > t)

nP(|Z| > n)
≤ lim sup

n→∞
P(n−1Rn(A) > t)

nP(|Z| > n)
≤ µ(A∗(t)).
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REMARK 4.1. Obviously, if E(Z) = z and A ∈ B(Rd) bounded away from z,
then

µ
(
(A − z)◦(t)

) ≤ lim inf
n→∞

P(n−1Rn(A) > t)

nP(|Z| > n)
≤ lim sup

n→∞
P(n−1Rn(A) > t)

nP(|Z| > n)

≤ µ
(
(A − z)∗(t)

)
.

REMARK 4.2. If the set A is increasing, then it is easy to check that A∗(t) =
tA and A◦(t) = tA◦ for all 0 < t < 1, in which case the scaling property of the
measure µ allows us to state the conclusion of Theorem 4.1 as

t−αµ(A◦) ≤ lim inf
n→∞

P(n−1Rn(A) > t)

nP(|Z| > n)
≤ lim sup

n→∞
P(n−1Rn(A) > t)

nP(|Z| > n)
≤ t−αµ(A).

For the proof of Theorem 4.1, we need two technical lemmas. For a given set
A ∈ B(Rd), let hA : D → [0,1] be given by

hA(x) = sup{t ∈ [0,1] : x(s + t) − x(s) ∈ tA for some s ∈ [0,1 − t]}
with the convention sup ∅ = 0. Recall the definition of V0 from (1.7).

LEMMA 4.1. Let A ∈ B(Rd) be bounded away from 0. If t ∈ (0,1), then:

(1) h−1
A◦ ((t,1]) is open,

(2) V0 ∩ h−1
A ((t,1]) ⊂ V0 ∩ h−1

A
([t,1]).

PROOF. We first show (1). If A◦ = ∅, then h−1
A◦ ((t,1]) = ∅. Therefore, we

can assume that A◦ �= ∅. Take y ∈ h−1
A◦ ((t,1]). Then there exists t∗ > t and s ∈ [0,

1 − t∗] such that y(t∗ + s)− y(s) ∈ t∗A◦. Since A◦ is open, there exists δ > 0 such
that {x : |(y(t∗ + s)−y(s))/t∗ −x| < δ} ⊂ A◦. Let, once again, d be the incomplete
Skorohod metric on the space D, and for a small δ′ > 0, let d(z,y) < δ′. Let h be a
strictly increasing continuous time change, h : [0,1] → [0,1], h(0) = 0, h(1) = 1
such that

|h(t) − t | < 2δ′ and |y(t) − z(h(t))| < 2δ′ for all 0 ≤ t ≤ 1.

Notice that, in particular, t∗ − 4δ′ ≤ h(t∗ + s) − h(s) ≤ t∗ + 4δ′. Therefore,∣∣∣∣z(h(t∗ + s)) − z(h(s))

h(t∗ + s) − h(s)
− y(t∗ + s) − y(s)

t∗
∣∣∣∣

≤ |y(t∗ + s) − y(s)|
∣∣∣∣ 1

t∗
− 1

h(t∗ + s) − h(s)

∣∣∣∣
+ 1

h(t∗ + s) − h(s)

∣∣(z(
h(t∗ + s)

) − z(h(s))
) − (

y(t∗ + s) − y(s)
)∣∣

≤ 4δ′

(t∗ − 4δ′)

( |y(t∗ + s) − y(s)|
t∗

+ 1
)

< δ
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if δ′ is small enough. By the choice of δ, this implies that z(h(t∗ + s)) − z(h(s)) ∈
(h(t∗ + s) − h(s))A◦, and so

hA◦(z) ≥ h(t∗ + s) − h(s) > t∗ − 4δ′ > t

if δ′ is small enough. Hence, z ∈ h−1
A◦ ((t,1]), and the latter set is open.

We now show (2). Let (xn) be a sequence of elements in h−1
A ((t,1]) such that

xn → x for some x = y1[v,1] ∈ V0. For n ≥ 1, let tn > t and sn ∈ [0,1− tn] be such
that

xn(sn + tn) − xn(sn)

tn
∈ A.

Since xn → x, there exists a sequence (λn) of strictly increasing continuous map-
pings of [0,1] onto itself satisfying sups∈[0,1] |λn(s) − s| → 0 and

sup
s∈[0,1]

|xn(s) − x(λn(s))| → 0

as n → ∞. In particular, for every δ > 0, there exists N(δ) such that, for n > N(δ),

sup
s∈[0,1]

|λn(s) − s| < δ, sup
s∈[0,1]

|xn(s) − x(λn(s))| < δ.

Take any ε, ε′ > 0. Then, uniformly in n > N(δ),∣∣∣∣x(λn(tn + sn)) − x(λn(sn))

λn(tn + sn) − λn(sn)
− xn(sn + tn) − xn(sn)

tn

∣∣∣∣
≤ ∣∣x(

λn(tn + sn)
) − x(λn(sn))

∣∣∣∣∣∣ 1

λn(tn + sn) − λn(sn)
− 1

tn

∣∣∣∣
+ 1

tn

∣∣(x(
λn(tn + sn)

) − x(λn(sn))
) − (

xn(sn + tn) − xn(sn)
)∣∣

≤ 2δ

tn

(
2|y|

(tn − 2δ)
+ 1

)
< ε,

if δ is small enough. Therefore,

x(λn(tn + sn)) − x(λn(sn))

λn(tn + sn) − λn(sn)
∈ Aε.

If ε is so small that Aε is bounded away from 0, we conclude that

y
λn(tn + sn) − λn(sn)

∈ Aε

for all n large enough. Since for n large enough, λn(tn + sn) − λn(sn) ≥ t − ε′, we
conclude that, for all ε, ε′ > 0, hAε(x) ≥ t − ε′. Letting ε′ → 0, we see that, for
any ε > 0, hAε(x) ≥ t . By letting ε → 0, we conclude that x ∈ h−1

A
([t,1]). �



2674 HULT, LINDSKOG, MIKOSCH AND SAMORODNITSKY

LEMMA 4.2. Let δ ∈ (0,1). Then

{n−1Rn(A) > δ} ⊂ {hA(n−1Sn) > δ}.(4.2)

Furthermore, if supx∈A |x| < ∞, then, for every ε > 0 and 1 > δ′ > δ,

{n−1Rn(A) > δ} ⊃ {
hAε(n

−1Sn) > δ′}(4.3)

for all n large enough, where Aε = {x ∈ A : y ∈ A for all y with |y − x| < ε}.
PROOF. Suppose that n−1Rn(A) = n−1k > δ. Then there exist i ∈ {0, . . . ,

n − k} such that Sk+i − Si ∈ kA. Take t = n−1k and s = n−1i. Then

n−1(
S[n(t+s)] − S[ns]

) ∈ tA,

that is, hA(n−1Sn) ≥ n−1k > δ.
In the opposite direction, let t ∈ (δ′,1] and s ∈ [0,1 − t] be such that

n−1(S[n(t+s)] − S[ns]) ∈ tAε . Then the assumption supx∈A |x| < ∞ implies that

S[n(t+s)] − S[ns]
[n(t + s)] − [ns] ∈ nt

[n(t + s)] − [ns]Aε ⊂ A

for all n large enough, and so

Rn(A) ≥ [n(t + s)] − [ns] > nt − 1 > nδ′ − 1 > nδ

for all n large enough. �

PROOF OF THEOREM 4.1. Take t ∈ (0,1), and A ∈ B(Rd) bounded away
from 0. By Theorem 2.1, (Sn) ∈ LD(((γn, λn)),m,D0) with λn = n and γn =
[nP(|Z| > n)]−1. Since m(Vc

0) = 0,

m ◦ h−1
A

([t,1]) = Leb×µ
({

(v,y) ∈ [0,1] × R
d :hA

(
y1[v,1]

) ∈ [t,1]})
= Leb×µ

({
(v,y) ∈ [0,1] × R

d : y ∈ sA for some t ≤ s ≤ 1
})

= µ(A∗(t)).

Therefore, by Lemma 4.2, the Portmanteau theorem and Lemma 4.1(2), we have

lim sup
n→∞

P(n−1Rn(A) > t)

nP(|Z| > n)
≤ lim sup

n→∞
P(hA(n−1Sn) > t)

nP(|Z| > n)

≤ lim sup
n→∞

P(n−1Sn ∈ h−1
A ((t,1]))

nP(|Z| > n)

≤ m
(
h−1

A ((t,1]))
≤ m

(
h−1

A
([t,1]))

= µ(A∗(t)),
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thus, establishing the upper bound in the theorem.
For the lower bound, suppose first that supx∈A |x| ≤ C for some C < ∞. Then

by Lemma 4.2, the Portmanteau theorem and Lemma 4.1(1), we have, for every
ε > 0 and t ′ ∈ (t,1],

lim inf
n→∞

P(n−1Rn(A) > t)

nP(|Z| > n)

≥ lim inf
n→∞

P(hAε(n
−1Sn) > t ′)

nP(|Z| > n)

≥ lim inf
n→∞

P(h(Aε)◦(n
−1Sn) > t ′)

nP(|Z| > n)

≥ m
(
h−1

(Aε)◦(t
′,1])

= Leb×µ
({

(v,y) ∈ [0,1] × R
d :h(Aε)◦

(
y1[v,1]

)
> t ′

})
= Leb×µ

({(v,y) ∈ [0,1] × R
d : y ∈ s(Aε)

◦ for some t < s ≤ 1})
= µ

( ⋃
t ′<s≤1

s(Aε)
◦
)
.

Letting first t ′ ↓ t and then ε ↓ 0, we conclude that

lim inf
n→∞

P(n−1Rn(A) > t)

nP(|Z| > n)
≥ µ

( ⋃
t<s≤1

sA◦
)
,

hence, establishing the lower bound in the theorem for sets A bounded in R
d . In

the general case, let, for C > 0, A(C) = {x ∈ A : |x| ≤ C}. Then by what we already
know,

lim inf
n→∞

P(n−1Rn(A) > t)

nP(|Z| > n)
≥ lim inf

n→∞
P(n−1Rn(A(C)) > t)

nP(|Z| > n)
≥ µ

( ⋃
t<s≤1

sA◦
(C)

)
,

and by letting C ↑ ∞, we obtain

lim inf
n→∞

P(n−1Rn(A) > t)

nP(|Z| > n)
≥ µ

( ⋃
t<s≤1

sA◦
)

= µ(A◦(t)),

as required. �

In conclusion we derive the distributional limit of the length Rn(A) of long
strange segments under a different, nonlarge-deviation, scaling. Let an be an in-
creasing sequence such that

nP(|Z| > an) → 1 as n → ∞.(4.4)

Notice that an is regularly varying with index 1/α.
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THEOREM 4.2. Suppose Z ∈ RV(α,µ) for some α > 1 and E(Z) = 0. Then
for every A ∈ B(Rd) bounded away from 0 and every x > 0,

exp

{
−x−αµ

( ⋃
s≥1

sA

)}
≤ lim inf

n→∞ P
(
a−1
n Rn(A) ≤ x

)
≤ lim sup

n→∞
P
(
a−1
n Rn(A) ≤ x

)
≤ exp

{
−x−αµ

( ⋃
s≥1

sA◦
)}

.

In particular, if µ(
⋃

s≥1 sA◦) = µ(
⋃

s≥1 sA) := v, then

a−1
n Rn(A)

d→ v1/αW,(4.5)

where W is a standard Fréchet random variable with distribution P(W ≤ w) =
e−w−α

,w > 0.

REMARK 4.3. For the asymptotic behavior of Rn(A) in the light tailed case,
see [7], Theorem 3.2.1. In the heavy-tailed case, one-dimensional versions of (4.5)
are well known, and not only in the i.i.d. case. See [17] and [23].

REMARK 4.4. If the set A is increasing (see Remark 4.2), then the result of
the theorem can be stated in the form

exp{−x−αµ(A)} ≤ lim inf
n→∞ P

(
a−1
n Rn(A) ≤ x

)
≤ lim sup

n→∞
P
(
a−1
n Rn(A) ≤ x

)
≤ exp{−x−αµ(A◦)},

and the weak convergence in (4.5) holds whenever A is a µ-continuity set, in which
case v = µ(A).

PROOF OF THEOREM 4.2. Observe that, for every n ≥ k and t > 0 by inde-
pendence,

P
(
Rn(A) ≤ t

) ≤ (
P
(
Rk(A) ≤ t

))[n/k]
.(4.6)

Selecting t = xan and k = [Man] for M > x, we obtain, by (4.6),

P
(
a−1
n Rn(A) ≤ x

) ≤ (
P
(
R[Man](A) ≤ anx

))[n/[Man]]

≤
[
1 − P

(
1

[Man]R[Man](A) >
anx

[Man]
)](n/Man)−1

.
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Next, we use the lower bound in Theorem 4.1, the scaling property of the mea-
sure µ, the definition of an and regular variation to see that, for every 0 < ε <

min(1,M/x − 1), we have, for all n large enough,

P
(
a−1
n Rn(A) ≤ x

)
≤

[
1 − P

(
1

[Man]R[Man](A) > (1 + ε)
x

M

)](n/Man)−1

≤
[

1 − (1 − ε)[Man]P(|Z| > [Man])µ
( ⋃

(1+ε)x/M<s≤1

sA◦
)]n/(Man)−1

∼
[

1 − (1 − ε)[Man]M
−α

n
Mα(1 + ε)−αµ

( ⋃
x<s≤M/(1+ε)

sA◦
)]n/(Man)

∼
[

1 − 1 − ε

(1 + ε)α

Man

n
µ

( ⋃
x<s≤M/(1+ε)

sA◦
)]n/(Man)

→ exp

{
− 1 − ε

(1 + ε)α
µ

( ⋃
x<s≤M/(1+ε)

sA◦
)}

as n → ∞. Letting ε ↓ 0 and M ↑ ∞, we conclude by the scaling property of µ

that

lim sup
n→∞

P
(
a−1
n Rn(A) ≤ x

) ≤ exp

{
−µ

( ⋃
x<s<∞

sA◦
)}

= exp

{
−x−αµ

( ⋃
s≥1

sA◦
)}

,

thus, obtaining the upper bound of the theorem.
We now switch to proving the lower bound of the theorem. To this end, notice

that, for every n ≥ k and t > 0,

{Rn(A) > t}
⊂

{
for some j = 1, . . . ,

[
n

k

]
+ 1,

Zi1+1 + · · · + Zi1+i2

i2
∈ A

for some (j − 1)k ≤ i1 < jk, i2 > t and i1 + i2 ≤ jk,

or for some j = 1, . . . ,

[
n

k

]
+ 1, the point jk belongs to an

interval (i1 + 1, i1 + i2) with i2 > t and
Zi1+1 + · · · + Zi1+i2

i2
∈ A

}
.

(4.7)
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We implicitly assume that we have an infinite sequence (Zk) and so having a
subscript k > n does not cause a problem. As before, we select t = xan and
k = [Man], this time for some M > C > x. The role of the extra parameter C

is seen below. We obtain, by (4.7),

P
(
x < a−1

n Rn(A) ≤ C
)

≤ P
(
R

(i)
[Man](A) > anx for some i = 1, . . . ,

[
n

[Man]
]

+ 1
)

+ P
(
R

(i)
2[Can](A) > anx for some i = 1, . . . ,

[
n

[Man]
]

+ 1
)
,

where R
(i)
k (A), i = 1,2, . . . , are i.i.d. copies of Rk(A). Repeating the argument in

the first part of the proof, and using this time the upper bound in Theorem 4.1, we
see that

lim
n→∞ P

(
R

(i)
[Man](A) > anx for some i = 1, . . . ,

[
n

[Man]
]

+ 1
)

= 1 − lim
n→∞

[
1 − (Man)

M−α

n
Mαµ

( ⋃
x≤s≤M

sA

)]n/(Man)

= 1 − exp

{
−µ

( ⋃
x≤s≤M

sA

)}

and

lim
n→∞ P

(
R

(i)
2[Can](A) > anx for some i = 1, . . . ,

[
n

[Man]
]

+ 1
)

= 1 − lim
n→∞

[
1 − (2Can)

(2C)−α

n
(2C)αµ

( ⋃
x≤s≤2C

sA

)]n/(Man)

= 1 − exp

{
−2C

M
µ

( ⋃
x≤s≤M

sA

)}
.

Letting M → ∞, we obtain

lim sup
n→∞

P
(
x < a−1

n Rn(A) ≤ C
) ≤ 1 − exp

{
−µ

( ⋃
s≥x

sA

)}

for every C > x. Letting now C → ∞, we obtain the required lower bound in the
theorem once we show that

lim
C→∞ lim sup

n→∞
P
(
a−1
n Rn(A) > C

) = 0.(4.8)
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Let ρ = infx∈A |x| > 0, and observe that, for every t > 0,

{Rn(A) > t} ⊂
d⋃

j=1

{
Rn,j

([−ρ/
√

d,ρ/
√

d
]c)

> t
}
,

where Rn,j (·) is the long strange segment corresponding to the j th marginal ran-

dom walk (S
(j)
n ), j = 1, . . . , d . Therefore, by the one-dimensional results (see,

e.g., [17]),

lim sup
n→∞

P
(
a−1
n Rn(A) > C

) ≤ lim
n→∞

d∑
j=1

P
(
a−1
n Rn,j

([−ρ/
√

d,ρ/
√

d
]c)

> C
)

=
d∑

j=1

(1 − exp{−KjC
−α}),

where K1, . . . ,Kd are finite nonnegative numbers, from which (4.8) follows im-
mediately. �
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