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RATE OF CONVERGENCE IN THE MULTIDIMENSIONAL
CENTRAL LIMIT THEOREM FOR STATIONARY PROCESSES.

APPLICATION TO THE KNUDSEN GAS AND
TO THE SINAI BILLIARD

BY FRANÇOISE PÈNE

Université de Bretagne Occidentale

We show how Rio’s method [Probab. Theory Related Fields 104 (1996)
255–282] can be adapted to establish a rate of convergence in 1√

n
in the

multidimensional central limit theorem for some stationary processes in the
sense of the Kantorovich metric. We give two applications of this general
result: in the case of the Knudsen gas and in the case of the Sinai billiard.

0. Introduction.

0.1. Context. We denote probability dynamical system (�,F , ν, T ) where
(�,F , ν) is a probability space endowed with a ν-preserving transformation T

of �. Let a probability dynamical system (�,F , ν, T ) and a measurable func-
tion f :� → R

d (with d ≥ 1) be given; we consider the stationary process
(Xk := f ◦ T k)k≥1.

We say that a R
d -random variable N is Gaussian if, for any β ∈ R

d , the distri-
bution of the real-valued random variable 〈β,N〉 is either a normal distribution or
a Dirac measure. With this definition, a Gaussian random variable has a general
normal distribution (cf. [16], III-6 for more details). We say that we have a central
limit theorem (CLT) for (Xk)k≥1 if ( 1√

n

∑n
k=1 Xk)n≥1 converges in distribution to

a Gaussian random variable N .
CLTs in the context of dynamical systems have been established in many arti-

cles (cf. [13, 27, 36, 39]). In these works, multidimensional central limit theorem
follows directly from one-dimensional central limit theorem. Indeed, let us recall
that the fact that ( 1√

n

∑n
k=1 Xk)n≥1 converges in distribution to N means that, for

all β ∈ R
d , the one-dimensional process ( 1√

n

∑n
k=1〈β,Xk〉)n≥1 converges in dis-

tribution to 〈β,N〉.
In the present paper, we are interested in questions of speed of convergence

in the CLT for multidimensional stationary processes. There are many ways of
estimating the speed in the CLT. Let us endow R

d with the supremum norm | · |∞

Received June 2004; revised December 2004.
AMS 2000 subject classifications. 37D50, 60F05.
Key words and phrases. Multidimensional central limit theorem, Kantorovich metric, Prokhorov

metric, rate of convergence.

2331

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/105051605000000476
http://www.imstat.org
http://www.ams.org/msc/


2332 F. PÈNE

and with the Borel σ -algebra B(Rd). For any φ : Rd → R, we denote by Lφ its
Lipschitz constant:

Lφ := sup
x,y∈Rd : x 	=y

|φ(x) − φ(y)|
|x − y|∞ .

We can estimate the rate of convergence in the CLT for (Xk)k by estimating the
following quantities:

(a) uniform norm of the difference between the distribution functions (DF met-
ric):

DFn := sup
(x1,...,xd )∈Rd

∣∣∣∣∣ν
(

1√
n

n∑
k=1

X
(1)
k ≤ x1, . . . ,

1√
n

n∑
k=1

X
(d)
k ≤ xd

)

− P
(
N(1) ≤ x1, . . . ,N

(d) ≤ xd

)∣∣∣∣∣,
where X

(i)
k and N(i) are the ith coordinates of Xk and of N , respectively;

(b) in the sense of the Prokhorov metric (� metric):

�n := inf

{
ε > 0 :∀B ∈ B(Rd), ν

(
1√
n

n∑
k=1

Xk ∈ B

)
− P(N ∈ Bε) ≤ ε

}
,

where Bε is the open ε-neighborhood of B;
(c) in the sense of the Lipschitz bounded metric (LB metric):

LBn := sup

{∣∣∣∣∣Eν

[
φ

(
1√
n

n∑
k=1

Xk

)]
− E[φ(N)]

∣∣∣∣∣, φ : Rd → R,‖φ‖∞ + Lφ ≤ 1

}
;

(d) in the sense of the Kantorovich metric (κ metric):

κn := sup

{∣∣∣∣∣Eν

[
φ

(
1√
n

n∑
k=1

Xk

)]
− E[φ(N)]

∣∣∣∣∣, φ : Rd → R,Lφ ≤ 1

}
.

We will give additional details about the metrics corresponding to these quantities.

0.2. Previous results.

0.2.1. One-dimensional processes (d = 1). When d = 1, it is classical to esti-
mate the speed in the CLT in the sense of the uniform error between the distribution
functions (DF metric).

In [1, 3, 15] a rate of convergence in 1√
n

in the sense of the DF metric is estab-
lished for sequences (Xk)k of independent identically distributed random variables
such that E[|X1|3] < +∞. Moreover, this result is optimal.
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This result has been extended to some martingale processes (cf. [7]) and to some
stationary processes ([37] extended in [22, 23] and in [26, 25]).

When d = 1 and when (Xk)k is a sequence of independent identically distrib-
uted random variables, Nagaev [31] establishes a nonuniform estimate for the dif-
ference between the distribution functions:

∃L > 0 ∀n ≥ 1
∣∣∣∣ν
(

X1 + · · · + Xn√
n

≤ x

)
− P(N ≤ x)

∣∣∣∣≤ LE[|X1|3]√
n(1 + |x|3) .

A direct consequence of this is a speed of convergence in 1√
n

in the sense of the
DF metric but also in the sense of the Kantorovich metric (cf. Proposition 0.10).
Results in the sense of the Kantorovich metric have been established by many
authors. Let us mention the article [41] of Sunklodas.

0.2.2. Multidimensional processes. For sequences of independent identically
distributed random variables (Xk)k≥1 with values in R

d and admitting an invertible
covariance matrix and admitting moments of the third order, a speed in 1√

n
is estab-

lished by Bergström in the sense of the DF metric (cf. theorem of page 121 in [2]).
This result gives an extension of the Berry–Esseen result to the d-dimensional
case.

In [23] Jan shows that Rio’s result can be extended to the d-dimensional case
(in the sense of the DF metric).

In [44] Yurinskii establishes an inequality linking the Prokhorov metric with
characteristic functions. This result allows to establish a rate of convergence in 1√

n

for sequences of independent identically distributed random variables in the sense
of the Prokhorov metric. We will recall and use this inequality in the case of the
Knudsen gas.

Let us also mention the works of [4, 35, 38, 42] in which the rate of convergence
in the CLT is estimated in other ways for independent random variables sequences.

0.3. Contents of the present paper. In Section 1 we give a result of speed of
convergence in the CLT for some stationary processes (Xk)k in the sense of the
Kantorovich metric (Theorem 1.1). The proof of this result, given in the Appen-
dix, uses an adaptation of the method developed in [37] and extended in [26, 25].
In these papers, a rate of convergence in the sense of the DF metric has been estab-
lished in the one-dimensional case. Our hypothesis is analogous to the hypothesis
of [26, 25] but weaker than it.

In Sections 2 and 3 we will give applications of our result.
In Section 2 we study the Knudsen gas model studied by Boatto and Golse

in [6]. We use a Markov model of it. We show that the results of [6] are related
to questions of rate of convergence in the CLT. For this model, we will, first, es-
timate the speed of convergence in the CLT in the sense of the Prokhorov metric
(using Yurinskii’s result of [44] and an extension of the method of perturbation of
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quasi-compact operators [20, 29, 30]). Second, we apply Theorem 1.1 of Section 1
and establish a rate in the sense of the Kantorovich metric. This result gives an
extension of a result of [6].

In Section 3 we are interested in the question of the rate of convergence in the
multidimensional CLT for (Xk := f ◦ T k)k where T is the billiard transformation
of the Sinai billiard [40] and f is a smooth (Hölder continuous) function. Using
Theorem 1.1 of Section 1, we establish a rate of convergence in 1√

n
in the sense

of the Kantorovich metric. This is, to our knowledge, the first time that a speed of
convergence in 1√

n
is established in this context. In [33, 34] a speed of convergence

in 1
n1/2−α for any α > 0 has been established in the sense of the DF metric and in

the sense of the Prokhorov metric (with an adaptation of a method developed by
Jan in [23] using characteristic functions). The result we present here does not
exactly improve [33, 34]. It gives a better rate with another metric.

0.4. Some metrics for probability measures on R
d . Let us denote by M1(R

d)

the set of probability measures on (Rd,B(Rd)), where B(Rd) is the Borel
σ -algebra of R

d .

DEFINITION 0.1 (The DF metric). For all P,Q in M1(R
d), we define

DF(P,Q) := sup
(x1,...,xd )∈Rd

∣∣∣∣∣P
(

d∏
i=1

]−∞;xi]
)

− Q

(
d∏

i=1

]−∞;xi]
)∣∣∣∣∣.

DEFINITION 0.2 (The Prokhorov metric; cf. [5, 14]). For all P,Q in M1(R
d),

we define

�(P,Q) := inf
{
ε > 0 :∀B ∈ B(Rd),

(
P(B) − Q(Bε)

)≤ ε
}
.

DEFINITION 0.3 (The Ky Fan metric for random variables). If X and Y

are two R
d -valued random variables defined on the same probability space

(E0,T0,P0), we define

K(X,Y ) := inf{ε > 0 : P0(|X − Y |∞ > ε) < ε}.

Let us recall that limn→+∞ K(Xn,Y ) = 0 means that (Xn)n converges in prob-
ability to Y .

PROPOSITION 0.4 ([14], Corollary 11.6.4). For all P,Q in M1(R
d), the

quantity �(P,Q) is the infimum of K(X,Y ) where X and Y are two R
d -valued

random variables defined on the same probability space and such that the distrib-
ution of X is P and the distribution of Y is Q.
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DEFINITION 0.5 (The bounded Lipschitz metric). For all P,Q in M1(R
d),

we define

BL(P,Q) := sup{|EP [φ] − EQ[φ]|, φ : Rd → R,‖φ‖∞ + Lφ ≤ 1}.

In particular, for any bounded Lipschitz continuous function φ : Rd → R, we
have

|EP [φ] − EQ[φ]| ≤ BL(P,Q) × (‖φ‖∞ + Lφ).

PROPOSITION 0.6 ([14], Theorem 11.3.3). Let (Pn)n be a sequence of
M1(R

d) and let P be in M1(R
d). The following properties are equivalent:

(i) the sequence (Pn)n of probability measures converges weakly to P ;
(ii) limn→+∞ �(Pn,P ) = 0;

(iii) limn→+∞ BL(Pn,P ) = 0;
(iv) limn→+∞ DF(Pn,P ) = 0, if P has a continuous distribution.

More precisely, we have (cf. [28], Proposition 1.2 and [14], Problem 11.3.5):

1
3BL(P,Q) ≤ �(P,Q) ≤ (3

2BL(P,Q)
)1/3

.

Let us denote by M1,int(R
d) the set of probability measures on (Rd,B(Rd))

admitting moments of the first order.

DEFINITION 0.7 (The Kantorovich metric, cf. [14, 16]). For all P,Q

in M1,int(R
d), we define

κ(P,Q) := sup{|EP [φ] − EQ[φ]|, φ : Rd → R,Lφ ≤ 1}.

In particular, for any Lipschitz continuous function φ : Rd → R, we have

|EP [φ] − EQ[φ]| ≤ κ(P,Q) × Lφ.

PROPOSITION 0.8 ([14], Theorem 11.8.2). For all P,Q in M1(R
d), the quan-

tity κ(P,Q) is the infimum of E[|X − Y |∞], where X and Y are two R
d -valued

random variables defined on the same probability space and such that the distrib-
ution of X is P and the distribution of Y is Q.

PROPOSITION 0.9. Let (Pn)n be a sequence of M1,int(R
d) and P in M1,int(R

d).
The following properties are equivalent:

(i) the sequence (Pn)n of probability measures converges weakly to P and we
have limn→+∞

∫
Rd |x|∞ dPn(x) = ∫

Rd |x|∞ dP (x);
(ii) limn→+∞ κ(Pn,P ) = 0.
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PROOF. According to Proposition 0.6 and to the fact that BL(Pn,P ) ≤
κ(Pn,P ), it is easy to see that (ii) implies (i).

Let us now suppose that (i) is true and prove that (ii) is then true. Let us write
αn := | ∫

Rd |x|∞ dPn(x)− ∫
Rd |x|∞ dP (x)|. Let φ : Rd → R be any Lipschitz con-

tinuous function with Lipschitz constant Lφ bounded by 1. For any nonnegative
real number M , we define ψM : Rd → R by

ψM(x) =



φ(x), if |φ(x) − φ(0)| ≤ M ,
φ(0) + M, if φ(x) ≥ φ(0) + M ,
φ(0) − M, if φ(x) ≤ φ(0) − M .

For all M > 0 and all integer n ≥ 0, we have∣∣EPn[ψM ] − EP [ψM ]∣∣≤ (M + 1)BL(Pn,P )

and

∀x ∈ R
d |ψM(x) − φ(x)| = |ψM(x) − φ(x)|1{|x|∞>M}

≤ (|x|∞ − M)1{|x|∞>M}
and therefore

|EPn[ψM − φ]| ≤ EPn

[
(| · |∞ − M)1{|·|∞>M}

]
≤ EPn[| · |∞ − min(| · |∞,M)]
≤ EP [| · |∞] + αn − EP [min(| · |∞,M)] + (M + 1)BL(Pn,P )

≤ EP

[
(| · |∞ − M)1{|·|∞>M}

]+ αn + (M + 1)BL(Pn,P ).

Hence, for any M > 0 and any integer n ≥ 0, we have

|EPn[φ] − EP [φ]| ≤ 2EP

[
(| · |∞ − M)1{|·|∞>M}

]+ αn + 2(M + 1)BL(Pn,P ).

Let a real number ε > 0 be given. Let us fix Mε such that EP [| · |∞1{|·|∞>Mε}] < ε
5 .

Let Nε be such that, for any integer n ≥ Nε , we have αn ≤ ε
5 and (Mε +

1)BL(Pn,P ) ≤ ε
5 (according to Proposition 0.6, such a Nε exists). Therefore, for

any n ≥ Nε and any Lipschitz continuous function φ : Rd → R with Lipschitz con-
stant Lφ less than 1, we have

|EPn[φ] − EP [φ]| < ε. �

PROPOSITION 0.10 (The Kantorovich metric, case d = 1 ([14], problem 11.8.1)).
For all P,Q in M1,int(R), we have

κ(P,Q) =
∫

R

|P(]−∞;x]) − Q(]−∞;x])|dx.

1. Abstract theorem. We will denote by Lip(Rd,R) the set of Lipschitz con-
tinuous functions from R

d into R. Let a probability space (�,F , ν) be given. For
any ν-integrable function f :� → R, we denote by Eν[f ] the expectation of f
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with respect to probability measure ν:

Eν[f ] :=
∫
�

f dν.

For all real-valued functions f,g in L2(�, ν), we recall the definition of the co-
variance of f and g (with respect to measure ν):

Covν(f, g) = Eν[fg] − Eν[f ]Eν[g].
For all A = (a1, . . . , ad) and B = (b1, . . . , bd) in R

d , we denote by A⊗B and A⊗2

the square matrices given by

A ⊗ B := (aibj )i,j=1,...,d and A⊗2 := A ⊗ A.

Let M = (Mi,j )i,j=1,...,d be a random variable on � with values in the set of the
square matrices such that, for any i, j = 1, . . . , d , Mi,j is ν-integrable. Then, the
expectation Eν[M] of M is the d-dimensional matrix given by

Eν[M] := (Eν[Mi,j ])i,j=1,...,d .

Let us consider a sequence of stationary R
d -valued random variables (Xk)k≥0

defined on (�,F , ν).
For any integer n ≥ 1, we write Sn :=∑n

k=1 Xk and S0 = 0.
Using an adaptation of Rio’s method developed in [37], we will establish the

following result:

THEOREM 1.1. Let (Xk)k≥0 be a sequence of stationary R
d -valued bounded

random variables defined on (�,F , ν) with expectation 0. Let us suppose
that there exist two real numbers C ≥ 1, M ≥ max(1,‖X0‖∞) and an in-
teger r ≥ 0 and a sequence of real numbers (ϕp,l)p,l bounded by 1 with∑

p≥1 p maxl=0,...,�p/(r+1)� ϕp,l < +∞ such that for any integers a, b, c ≥ 0 sat-
isfying 1 ≤ a + b + c ≤ 3, for any integers i, j, k,p, q, l with 1 ≤ i ≤ j ≤
k ≤ k + p ≤ k + p + q ≤ k + p + l, for any i1, i2, i3 ∈ {1, . . . , d}, for any
F : Rd × ([−M;M]d)3 → R bounded, differentiable, with bounded differential,
we have ∣∣Cov

(
F(Si−1,Xi,Xj ,Xk),

(
X

(i1)
k+p

)a(
X

(i2)
k+p+q

)b(
X

(i3)
k+p+l

)c)∣∣
(1)

≤ C(‖F‖L∞ + ‖|DF|∞‖L∞)ϕp,l,

where DF is the Jacobian matrix of F and X
(s)
m is the sth coordinate of Xm. Then,

the following limit exists:

�2 := lim
n→+∞

1

n
(E[S⊗2

n ]).

If �2 = 0, then the sequence (Sn)n is bounded in L2.
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Otherwise the sequence of random variables ( Sn√
n
)n≥1 converges in distribution

to a Gaussian random variable N with expectation 0 and with covariance ma-
trix �2 and there exists a real number B > 0 such that, for any integer n ≥ 1 and
any Lipschitz continuous function φ : Rd → R, we have∣∣∣∣E

[
φ

(
Sn√
n

)]
− E[φ(N)]

∣∣∣∣≤ BLφ√
n

.

The proof of this theorem is given in the Appendix.

2. Application to the Knudsen gas. Following Boatto and Golse [6], we are
interested in a generalized model of the Knudsen gas with an isotropic component.
In the present section we use a probabilistic approach. We show how this problem
can be modeled by a Markov chain. Using the method of perturbation of operators
due to Nagaev (see [19, 20, 29, 30]), we get a rate in 1√

n
in the multidimensional

CLT in the sense of the Prokhorov metric. Moreover, we establish the same rate
for the Kantorovich metric. This second result is an application of Theorem 1.1
and gives an extension of a theorem of [6].

2.1. The model. In this section we will make the following assumption.

HYPOTHESIS 2.1. (�,F , ν, T ) is an invertible probability dynamical system,
a :� → R

d is a ν-centered square integrable function and α is a fixed real number
satisfying 0 < α < 1.

The invertibility hypothesis is not restrictive since any dynamical system ad-
mits an invertible extension (its natural extension). Moreover, let us recall that
any stationary sequence of centered and square integrable random variables ad-
mits a representation of the form (Yk = a ◦ T k)k with (�,F , ν, T ) and a as
in Hypothesis 2.1. We denote by Lp(�,R

d) the set of measurable functions
f :� → R

d such that
∫
� |f (ω)|p∞ dν(ω) < +∞. For any f ∈ Lp(�,R

d), we
define ‖f ‖Lp := (

∫
� |f (ω)|p∞ dν(ω))1/p . We denote by L∞(�,R

d) the set of
measurable functions f :� → R

d which are ν-almost surely bounded by some
constant and, for such a function, we denote by ‖f ‖∞ the following real number:

‖f ‖∞ := inf
{
M > 0 :ν({ω ∈ � : |f (ω)|∞ > M}) = 0

}
.

We consider a system of particles moving independently in R
d+1 between two

d-dimensional horizontal plates R
d × {0} and R

d × {ε} separated by some small
distance ε > 0. We suppose that these particles move with speed 1

ε
(a(ω),±1) para-

metrized by ω. In our model, the speed and the parameter ω only change when the
particle hits one of the plates; a particle incoming to the upper plate with the speed
1
ε
(a(ω),1) will outgo:
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FIG. 1.

(a) either (with probability 1 − α) with the speed 1
ε
(a(T (ω)),−1);

(b) or (with probability α) with the speed 1
ε
(a(ω′),−1), where ω′ is given by a

random variable (independent of ω) with distribution ν.

We make analogous assumptions for reflections off the lower plate (replacing 1
ε

by −1
ε

and −1
ε

by 1
ε
). We are interested in the behavior of such a model when

ε goes to zero. See Figure 1.
Let us study the evolution of a single particle moving in this system. Let us write

δ = 1 if, at time 0, the particle is pointing upward and δ = −1 if, at time 0, the
particle is pointing downward. Then, the speed of the particle between the nth and
the (n + 1)st collision off one of the plates is 1

ε
(a(Xn), δ(−1)n), where (Xn)n is a

Markov chain such that the conditional law of Xn+1 with respect to (X0, . . . ,Xn)

is (1 − α)δT (Xn) + αν. Let us notice that the measure ν is an invariant probability
measure for this Markov chain. More precisely, we define (Xn)n∈Z as follows.

NOTATION 2.1. We consider the probability space (�̃, F̃ , ν̃) with �̃ := �Z,
F̃ the product σ -algebra and ν̃ the unique probability measure defined on �̃ such
that we have

Eν̃[f (Xn)] =
∫
�

f dν

and

Eν̃[f (Xn+1)|Xn,Xn−1, . . . ] = (1 − α)f (T (Xn)) + α

∫
�

f dν,

with Xn : �̃ → � given by Xn((ωm)m∈Z) := ωn. We define the transformation T̃

on �̃ by T̃ ((ωn)n∈Z) = (ωn+1)n∈Z.

Since ν is T -invariant, the existence of ν̃ is a consequence of a result of Ionescu
Tulcea (cf. [21], [32], page 154). With this notation, if the particle is at time 0
at the position (x, εz) (with x ∈ R

d and z ∈ [0;1]) with the speed 1
ε
(a(X0),−1)

parametrized by X0, then its horizontal position at time s > 0 will be given by

ξ−
ε (s, x, z, ·) := x+ε ·z ·a(X0)+ε

�(s/ε2)−z�∑
k=1

a(Xk)+ε ·
{

s

ε2 −z

}
a
(
X�(s/ε2)−z�+1

)
,



2340 F. PÈNE

where {u} is the fractional part of u. For symmetry reasons, if the particle was
at time 0 at the position (x, εz) (with x ∈ R

d and z ∈ [0;1]) with the speed
1
ε
(a(X0),1) parametrized by X0, then its horizontal position at time s > 0 is given

by ξ+
ε (s, x, z, ·) := ξ−

ε (s, x,1 − z, ·).

2.2. Results. In [6] Boatto and Golse have studied the following quantities:

F±
ε,φ(s, x, z,ω) = Eν̃

[
φ
(
ξ±
ε (s, x, z, ·))|X0 = ω

]
(their f ±

α,ε corresponds to our F∓
ε,ψ with −a instead of a). More precisely, they

establish the following result in the situation when the dynamical system is given
by the algebraic automorphism T0 of the two-dimensional torus T

2 = R
2

Z2 given by

the matrix
(2 1
1 1

)
. We recall that T0 preserves the Haar measure ν0 on T

2.

THEOREM 2.2.1 ([6]). Let us suppose that (�,F , ν, T ) = (T2,B(T2), ν0,

T0). Let φ be a smooth bounded function with bounded derivatives up to order 4.
Let a be a ν-centered function belonging to Hβ(T2,R

d) with β > 1 such that the
matrix D(a) := ∑

k∈Z(1 − α)|k|
Eν[a ⊗ a ◦ T k] is invertible. Then, for any real

number t0 > 0, we have

sup
s∈[0;t0]

sup
x∈Rd

sup
ω∈�

sup
z∈[0;1]

|F±
ε,φ(s, x, z,ω) − E[φ(x + Bs)]| = O(ε),

where (Bs)s∈R is a d-dimensional Brownian motion with zero mean and with co-
variance matrix D(a).

We will show how this result is related to the central limit theorem for (a(Xk))k
and give some extensions of it. Indeed, for any real number β > 1, the Sobolev
space Hβ(T2,R

d) is contained in L∞(T2,R
d) and we have

REMARK 2.2.2. Under Hypothesis 2.1, if a is in L∞(�,R
d) and φ : Rd → R

is a Lipschitz continuous function, then we have

sup
s>0,x∈Rd ,z∈[0;1]

∥∥∥∥∥F−
ε,φ(s, x, z,ω) − Eν̃

[
φ

(
x + ε

�s/ε2�∑
k=0

a(Xk)

)]∥∥∥∥∥
L∞(�)

≤ εLφ‖a‖∞
(

4 + 2
∑
l≥1

l(1 − α)l−1

)
.

PROOF. We have∣∣∣∣F−
ε,φ(s, x, z,ω) − F−

ε,φ

((⌊
s

ε2

⌋
+ 1
)
ε2, x,1,ω

)∣∣∣∣≤ 4εLφ‖a‖L∞ .
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For any k ≥ 1, we have

F−
ε,φ

(
(k +1)ε2, x,1,ω

)= k∑
j=0

αj (1−α)k−j
∑

l0≥0;l1≥1,...,lj≥1 : l0+···+lj=k

αl0,...,lj (ω),

with

αk(ω) := φ

(
x + ε

k∑
m=0

a(T m(ω))

)

and

αl0,...,lj (ω) :=
∫
�

· · ·
∫
�

φ

(
x + ε

[(
l0∑

m=0

a(T m(ω))

)

+
j∑

i=1

(
li∑

mi=1

a(T mi (ωi))

)])
dν(ω1) · · ·dν(ωj ),

from which we deduce that we have∣∣F−
ε,ϕ

(
(k + 1)ε2, x,1,ω

)− F−
ε,φ

(
(k + 1)ε2, x,1,ω′)∣∣

≤ 2εLφ‖a‖∞
∑
l0≥0

(l0 + 1)(1 − α)l0 .

Moreover, we have

Eν̃

[
F−

ε,φ

((⌊
s

ε2

⌋
+ 1
)
ε2, x,1, ·

)]
= Eν̃

[
φ

(
x + ε

�s/ε2�∑
k=0

a(Xk)

)]
.

�

PROPOSITION 2.2.3. Let us suppose that Hypothesis 2.1 is satisfied. For any
integer k ≥ 0, we have Eν̃[a(X0) ⊗ a(Xk)] = (1 − α)kEν[a ⊗ a ◦ T k]. Moreover,
the following limit exists:

D(a) := lim
n→+∞ Eν̃

[(
1√
n

n−1∑
k=0

Xk

)⊗2]

and satisfies

D(a) =∑
k∈Z

(1 − α)|k|
Eν[a ⊗ a ◦ T k].

PROOF. This is a consequence of the fact that we have Eν̃[a(Xk)|X0] = (1 −
α)ka(T k(X0)). �

Here, we prove the two following results:
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THEOREM 2.2.4 (Rate of convergence in the CLT in the sense of Prokhorov).
Under Hypothesis 2.1, if a :� → R

d belongs to L3(�,R
d) and to L�d/2�+1, then

( 1√
n

∑n−1
k=0 a(Xk))n converges in distribution to a centered Gaussian random vari-

able with covariance matrix D(a) = ∑
k∈Z(1 − α)|k|

Eν[a ⊗ a ◦ T k]. Moreover
there exists a real number A > 0 such that, for any integer n ≥ 1, we have

�

(
ν̃∗
(

1√
n

n−1∑
k=0

a(Xk)

)
,N
(
0,D(a)

))≤ A√
n
,

where ν̃∗( 1√
n

∑n−1
k=0 a(Xk)) denotes the distribution of 1√

n

∑n−1
k=0 a(Xk) with respect

to ν̃.

THEOREM 2.2.5 (Rate of convergence in the CLT in the sense of the Kan-
torovich metric). Under Hypothesis 2.1, if a :� → R

d is a ν-centered function
belonging to L∞(�,R

d), then there exists a constant B > 0 such that, for any
Lipschitz continuous function φ : Rd → R, we have∣∣∣∣∣Eν̃

[
φ

(
1√
n

n−1∑
k=0

a(Xk)

)]
− E[φ(N)]

∣∣∣∣∣≤ B√
n
Lφ,(2)

where N is a d-dimensional centered Gaussian random variable, centered with
covariance matrix D(a) =∑k∈Z(1 − α)|k|

Eν[a ⊗ a ◦ T k].

COROLLARY 2.2.6. Under Hypothesis 2.1, if a : � → R
d is a ν-centered

function belonging to L∞(�,R
d), then, for any Lipschitz continuous function

φ : Rd → R, we have

sup
s>0,x∈Rd

∣∣∣∣∣Eν̃

[
φ

(
x + ε

�s/ε2�∑
k=0

a(Xk)

)]
− E

[
φ
(
x + √

sB1
)]∣∣∣∣∣

≤ εLφ

(
B + ‖a‖L1(ν) + ‖B1‖L1

)
,

where B1 is a d-dimensional Gaussian random variable, centered with covariance
matrix D(a).

PROOF. Let a real number s > 0 be given. If s < ε2, then we have

∣∣∣∣∣Eν̃

[
φ

(
x + ε

�s/ε2�∑
k=0

a(Xk)

)]
− φ(x)

∣∣∣∣∣≤ Lφε‖a‖L1(ν)

and ∣∣E[φ(x + √
sB1

)]− φ(x)
∣∣≤ Lφ

√
s‖B1‖L1 .
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On the other hand, if s ≥ ε2, according to Theorem 2.2.5 [applied to n = � s
ε2 � + 1

and to the Lipschitz continuous function z �→ φ(x + zε
√

� s
ε2 � + 1)], we have

∣∣∣∣∣Eν̃

[
φ

(
x + ε

�s/ε2�∑
k=0

a(Xk)

)]
− E

[
φ

(
x + ε

√⌊
s

ε2

⌋
+ 1B1

)]∣∣∣∣∣≤ BLφε.

Moreover, we have∣∣∣∣E
[
φ

(
x + ε

√⌊
s

ε2

⌋
+ 1B1

)]
− E

[
φ
(
x + √

sB1
)]∣∣∣∣≤ Lφ

(√
s + ε2 − √

s
)‖B1‖L1

≤ Lφ

ε2

2
√

s
‖B1‖L1

≤ Lφ

ε

2
‖B1‖L1 . �

2.3. Martingale method. We recall that the Markov operator Qα,0 associ-
ated to (Xn)n∈Z is defined by Qα,0(f )(ω) := E[f (Xn+1)|Xn = ω], for any
f ∈ L1(�,R). It is given by the following formula:

Qα,0(f )(ω) = (1 − α)f ◦ T (ω) + αEν[f ].(3)

Using a method introduced by Gordin [17], we get

PROPOSITION 2.3.1. Let us suppose that Hypothesis 2.1 is satisfied. Let
p ∈ [1,+∞] and a function f ∈ Lp(�,C) ν-centered. Then, there exists a de-
composition of f of the following form:

f (X0) = gf (X0,X−1) + hf (X0) − hf (X−1), ν̃-a.s.,

with Eν̃[gf (X0,X−1)|X−1] = 0 and h ∈ Lp(�,C).
Moreover, if p ≥ 2, then we have Eν̃[(gf (X0,X−1))

2] = D(f ).

PROOF. Let p and f be as in the hypothesis of the proposition. Let us notice
that Qα,0 acts continuously on Lp(�,C) and that we have (Qα,0)

n(f ) = (1 −
α)nf ◦T n, for any integer n ≥ 0. Using the fact that Xk ◦ T̃ = Xk+1 (for any k ∈ Z),
we can check directly that the functions gf (X0,X−1) =∑n≥0(Qα,0)

n(f )(X0) −∑
m≥1(Qα,0)

n(f )(X−1) and hf = −∑m≥1(Qα,0)
n(f ) are suitable. Let us prove

the second point. By definition, we have

D(f ) := lim
n→+∞Eν̃

[(
1√
n

n−1∑
k=0

f (Xk)

)2]
.

Moreover, we have
n−1∑
k=0

f (Xk) =
(

n−1∑
k=0

gf (Xk,Xk−1)

)
+ hf (Xn−1) − hf (X−1).
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We conclude by noticing that we have Eν̃[gf (Xk,Xk−1)gf (Xl,Xl−1)] = 0 if
k 	= l. �

The sequence of random variables (
∑n

k=0 gf (Xk,Xk−1))n is a martingale and
hf (X0) − hf (X−1) = hf ◦ X0 − hf ◦ X0 ◦ T̃ −1 is a coboundary in (�̃, ν̃, T̃ ).

This result (Proposition 2.3.1) ensures that, if a is in L2(�,R
d), then the se-

quence of random variables (a(Xk))k satisfies a central limit theorem. Here, we
are interested in a more quantitative question: the rate of convergence in the CLT.
To this end, we will use more sophisticated methods (perturbation of operators,
Theorem 1.1).

COROLLARY 2.3.2. Let f be a ν-centered function belonging to L2(�,R)

such that D(f ) = 0. Then we have f = 0, ν-almost surely.

PROOF. Let such a function f be given. According to the two previous results,
there exists a function h ∈ L2(�,R) such that

f (X1) = h(X1) − h(X0), ν̃-a.s.

Let us show that h is almost surely constant. Let us suppose that there exists
two disjoint measurable subsets A and B of � such that ν(h ∈ A) > 0 and
ν(h ∈ B) > 0. Then, there exist ω̃1, ω̃2 ∈ �̃ such that we have

X1(ω̃1) = X1(ω̃2) = ω, h(ω) ∈ A, h(X0(ω̃1)) ∈ A, h(X0(ω̃2)) ∈ B

and

f (X1(ω̃i)) = h(X1(ω̃i)) − h(X0(ω̃i)),

and therefore h(X0(ω̃1)) = h(ω) − f (ω) = h(X0(ω̃2)). �

2.4. Proof of Theorem 2.2.4. The idea of the method we present here is due to
Nagaev [29, 30]. It has been used by many authors (cf., e.g., [19] and [20]). From
formula (3), we get, for any integer n ≥ 0,

Qn
α,0(f )(ω) = (1 − α)nf ◦ T n(ω) + (1 − (1 − α)n

)
Eν[f ].

We recall that we have the following relation:

Qn
α,0(f )(ω) = Eν̃[f (Xn)|X0 = ω].

We will see that the good properties of the Markov operator Qα,0 enable us to use
the method used in particular in [20].

NOTATION 2.2. We denote by 〈·, ·〉 the usual scalar product in R
d . If

(B,‖ · ‖B) is a complex Banach space, we will use the following notation:
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1. We denote by B ′ its topological dual (i.e., the set of continuous linear maps
from B in C). We endow this set of the norm ‖ · ‖B′ given by ‖A‖B′ :=
sup‖f ‖B=1 |A(f )|.

2. For any A ∈ B ′ and any f in B, we will use the notation

〈A,f 〉∗ := A(f ).

3. For any A ∈ B ′, any g ∈ B, we denote by g ⊗∗ A the continuous linear endo-
morphism of B defined by

(g ⊗∗ A)(f ) := 〈A,f 〉∗g.

4. We denote by LB the set of continuous linear endomorphisms of B. We endow
this set with the norm ‖ · ‖LB given by ‖P‖LB := sup‖f ‖B=1 ‖P(f )‖B .

Let us consider the Banach space B := L
∞(�,C) endowed with the norm

‖ · ‖B = ‖ · ‖L∞ . For any t ∈ R
d , we denote by Qα,t the linear operator on

L
q(�,C) (for any q ∈ [1;+∞]) defined by

Qα,t (f ) := Qα,0
(
ei〈t,a(·)〉f (·)).

With this definition, we have

(Qα,t (f ))(Xn) = Eν̃

[
ei〈t,a(Xn+1)〉f (Xn+1)|Xn

]
.

The introduction of these operators is motivated by:

REMARK 2.4.1. Under Hypothesis 2.1, for any t ∈ R
d and any integer n ≥ 1,

we have

Eν̃

[
ei〈t,∑n−1

k=0 a(Xk)〉|X−1
]= (Qα,t )

n(1)(X−1).

PROPOSITION 2.4.2. Let us suppose that Hypothesis 2.1 is satisfied. Let
m ≥ 1 be an integer. If a :� → R

d is in Lm(�,R
d), then the function Qα,· : Rd →

LB is Cm on R
d and, for any integer k = 1, . . . ,m and any (j1, . . . , jk) ∈

{1, . . . , d}k , we have

dk

dtj1 · · ·dtjk

Qα,t (f ) := ikQα,t

(
aj1(·) · · ·ajk

(·)f (·))
(where aj is the j th coordinate of a).

We recall that we have Qα,0(f ) = αEν[f ]+ (1−α)f ◦T . This can be rewritten
as follows:

Qα,0(f ) = (1 ⊗∗ ν)f + (1 − α)(f ◦ T − Eν[f ]).
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THEOREM 2.4.3 (Perturbation theorem, see [20]). Let us suppose that Hy-
pothesis 2.1 is satisfied. Let m ≥ 1 be an integer. We suppose that a :� → R

d

is a ν-centered function belonging to Lm(�,R
d). Then, there exist a neighbor-

hood U0 of 0 in R
d and three nonnegative numbers c1, η1, η2 and four functions

λα,· ∈ Cm(U0,C), vα,· ∈ Cm(U0,B), ϕα,· ∈ Cm(U0,B
′) and Nα,· ∈ Cm(U0,LB)

such that:

1. (Initial values) λα,0 = 1, vα,0 = 1, ϕα,0 = ν and Nα,0(f ) = (1 − α)(f ◦ T −
Eν[f ]).

2. (Initial derivatives) For any i = 1, . . . , d , ∂λα,t

∂ti
|t=0 = 0; if m ≥ 2, then we have

Hesst λα,t |t=0 = −D(a), with D(a) :=∑k∈Z(1 − α)|k|
Eν[a ⊗ a ◦ T k].

3. For any t in U0, we have:

(a) (Decomposition of the operator) For any integer n ≥ 1, (Qα,t )
n =

(λα,t )
nvα,t ⊗∗ ϕα,t + (Nα,t )

n.
(b) (Dominating eigenvalue) Qα,tvα,t = λα,tvα,t , (Qα,t )

∗ϕα,t = λα,tϕα,t

and 〈ϕα,t , vα,t 〉∗ = 1.
(c) |λα,t | > 1 − η1.
(d) For any integer n ≥ 1, we have

max
k=0,...,m

max
i1,...,ik∈{1,...,d}

∥∥∥∥ dk

dti1 · · ·dtik
((Nα,t )

n)

∥∥∥∥
LB

≤ c1(1 − η1 − η2)
n.

PROOF. This result is a d-dimensional version of Theorem III-8 of [20],
page 18. Its proof leads to the implicit function theorem and is exactly the same as
the proof of Theorem III-8 of [20]. �

2.4.1. Regular case. In our proof, the following theorem plays the same role
as the Berry–Esseen lemma in the proof of the rate of convergence in the one-
dimensional central limit theorem (see Theorem B of [20], page 12).

PROPOSITION 2.4.4 ([44]). Let Q be some nondegenerate d-dimensional
normal distribution. There exist two real numbers c0 > 0 and � > 0 such that,
for any real number T > 0 and for any Borel probability measure P admitting
moments of order �d

2 � + 1, we have

�(P,Q)

≤ c0

[
1 + �

T

+
(∫

|t |∞<T

�d/2�+1∑
k=0

∑
{i1,...,ik}∈{1,...,d}k

∣∣∣∣ ∂k

∂ti1 · · · ∂tik
(ϕP − ϕQ)(t)

∣∣∣∣2 dt

)1/2]
.
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We will prove the following and conclude according to Proposition 2.4.4.

PROPOSITION 2.4.5. Under the hypotheses of Theorem 2.2.4, if D(a) is in-
vertible, then there exists a real number β > 0 such that, for any integer k =
0, . . . , �d

2 � + 1 and any i1, . . . , ik ∈ {1, . . . , d}, we have

(∫
|t |∞<β

√
n

∣∣∣∣ ∂k

∂ti1 · · · ∂tik

(
Eν̃

[
ei〈t,(1/

√
n )
∑n−1

l=0 a(Xl)〉]− e−(1/2)〈t,D(a)t〉)∣∣∣∣
2

dt

)1/2

= O

(
1√
n

)
.

PROOF. The following formula will be useful in the following.

LEMMA 2.4.6. Let k be a positive integer. Let b be a complex-valued function
Ck-continuous defined on some open subset U of R

d . Let n ≥ 1 be an integer.
Let us consider the function u : U → C given by u(t) := (b( t√

n
))n. Then, for any

i1, . . . , ik ∈ {1, . . . , d}, we have

∂k

∂ti1 · · · ∂tik
u(t)

= ∑
{A1,...,Am}∈Qk

n(n − 1) · · · (n − m + 1)

(
b

(
t√
n

))n−m

×
m∏

i=1

(
∂#Aib

∂ti
l
(i)
1

· · · ∂ti
l
(i)
#Ai

)(
t√
n

)
1

nk/2 ,

where Qk is the set of partitions A = {A1, . . . ,Am} of {1, . . . , k} in nonempty
subsets Ai = {l(i)1 , . . . , l

(i)
#Ai

}.

Let c2 > 0 and β > 0 be two real numbers such that the closed ball B̄|·|∞(0, β)

is contained in U0 and such that for any t ∈ B̄|·|∞(0, β), we have |λα,t | ≤ e−c2〈t,t〉
and e−(1/2)〈t,D(a)t〉 ≤ e−c2〈t,t〉. [This is possible because D(a) is invertible and
because we have Hesst λα,t |t=0 = −D(a).] In the following, n will be any integer
and t ∈ R

d any vector satisfying n ≥ 2 and |t |∞ < β
√

n. For such a couple (n, t),
we have t√

n
∈ U0. Therefore, we have

Eν̃

[
ei〈t,(1/

√
n )
∑n−1

l=0 a(Xl)〉]
= 〈ν, (Qα,t/

√
n)

n1〉∗
= (λα,t/

√
n)

n〈ν, (vα,t/
√

n ⊗∗ ϕα,t/
√

n)1〉∗ + 〈ν, (Nα,t/
√

n)
n1〉∗.
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1. We start by giving an estimation when k = 0. We have

Eν̃

[
ei〈t,(1/

√
n )
∑n−1

l=0 a(Xl)〉]− e−(1/2)〈t,D(a)t〉

= (λα,t/
√

n)
n〈ν, (vα,t/

√
n ⊗ ϕα,t/

√
n)1〉∗

+ 〈ν, (Nα,t/
√

n)
n1〉∗ − e−(1/2)〈t,D(a)t〉

= [(λα,t/
√

n)
n − e−(1/2)〈t,D(a)t〉]

+ (λα,t/
√

n)
n(〈ν, (vα,t/

√
n ⊗∗ ϕα,t/

√
n)1〉∗ − 1

)+ 〈ν, (Nα,t/
√

n)
n1〉∗

= O

(
1√
n
|t |3∞e−c2(1−1/n)〈t,t〉

)
+ O

(
1√
n
|t |∞e−c2〈t,t〉

)

+ c1(1 − η1 − η2)
n |t |∞√

n

= O

(
1√
n
|t |3∞e−(c2/2)〈t,t〉

)
+ O

( |t |∞√
n

e−(c2/2)〈t,t〉
)

+ c1(1 − η1 − η2)
n |t |∞√

n
.

Therefore, we have(∫
|t |∞<β

√
n

∣∣Eν̃

[
ei〈t,(1/

√
n )
∑n−1

l=0 a(Xl)〉]− e−(1/2)〈t,D(a)t〉∣∣2 dt

)1/2

= O

(
1√
n

)
.

2. Let k be an integer satisfying 1 ≤ k ≤ �d
2 � + 1 and (i1, . . . , ik) ∈ {1, . . . , d}k .

According to Theorem 2.4.3, we have

∂k

∂ti1 · · · ∂tik
Eν̃

[
ei〈t,(1/

√
n )
∑n−1

l=0 a(Xl)〉]

=
(

∂k

∂ti1 · · · ∂tik

(
(λα,t/

√
n)

n))〈ν, (vα,t/
√

n ⊗∗ ϕα,t/
√

n)1〉∗

+ O

(
(1 + |t |k∞)

e−(c2/2)〈t,t〉
√

n

)
+ 1

nk/2

〈
ν,

∂k

∂ti1 · · · ∂tik
(Nα,·)n

∣∣∣∣
t/

√
n

1
〉
∗

=
(

∂k

∂ti1 · · · ∂tik

(
(λα,t/

√
n)

n))〈ν, (vα,t/
√

n ⊗∗ ϕα,t/
√

n)1〉∗

+ O

(
(1 + |t |k∞)

e−(c2/2)〈t,t〉
√

n

)
+ c1(1 − η1 − η2)

n

nk/2

=
(

∂k

∂ti1 · · · ∂tik

(
(λα,t/

√
n)

n))

+ O

(
(1 + |t |k+1∞ )

e−(c2/2)〈t,t〉
√

n

)
+ c1(1 − η1 − η2)

n

nk/2 ,
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since 〈ν, (vα,t/
√

n ⊗∗ ϕα,t/
√

n)1〉∗ − 1 = O(
|t |∞√

n
) and ∂k

∂ti1 ···∂tik
((λα,t/

√
n)

n) =
O((1 + |t |k∞)e−(c2/2)〈t,t〉). We will estimate the following quantity:

∂k

∂ti1 · · · ∂tik

(
(λα,t/

√
n)

n)− ∂k

∂ti1 · · · ∂tik
e−(1/2)〈t,D(a)t〉.

In the following b : B̄|·|∞(0, β) → C will be a function C�d/2�+1 on B̄|·|∞(0, β)

such that ∂b
∂ti

(0) = 0 and Hessb(0) = −D(a) and |b(t)| ≤ e−c2〈t,t〉 [we will take

b(t) := λα,t and b(t) := e−(1/2)〈t,D(a)t〉]. According to Lemma 2.4.6, we have

∂k

∂ti1 · · · ∂tik

((
b

(
t√
n

))n)
= ∑

A={A1,...,Am}∈Qk

gn,m(A, b)(t),

with

gn,m(A, b)(t) := n(n − 1) · · · (n − m + 1)

(
b

(
t√
n

))n−m

×
m∏

i=1

(
∂#Aib

∂ti
l
(i)
1

· · · ∂ti
l
(i)
#Ai

)(
t√
n

)
n−k/2.

For any A = {A1, . . . ,Am} ∈ Qk , we denote by m0(A) the number of Ai ∈ A such
that #Ai = 1. Let us notice that we always have 2m ≤ m0(A)+ k. Indeed, we have

k =
m∑

i=1

#Ai ≥ m0(A) + 2
(
m − m0(A)

)= 2m − m0(A).

Therefore, for any A = {A1, . . . ,Am} ∈ Qk , we have

|gn,m(A, b)(t)| ≤ nme−(c2(n−m)/n)〈t,t〉O
(( |t |∞√

n

)m0(A))
n−k/2

= O
(
n(1/2)(2m−(m0(A)+k))|t |∞m0(A)e−(c2/2)〈t,t〉)

= O
(|t |m0(A)∞ e−(c2/2)〈t,t〉).

(a) If A = {A1, . . . ,Am} ∈ Qk is such that 2m < m0(A) + k, then, for any
t ∈ B|·|∞(0, β

√
n ), we have

|gn,m(A, b)(t)| = O

( |t |m0(A)∞√
n

e−(c2/2)〈t,t〉
)
.

(b) Now, let us consider a partition A = {A1, . . . ,Am} ∈ Qk such that
2m = m0(A) + k. Then, A is made of subsets of {1, . . . , d} containing at most
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two elements. For such a partition A, for any t ∈ B|·|∞(0, β
√

n ), we have∣∣gn,m(A, λα,·)(t) − gn,m

(
A, e−(1/2)〈·,D(a)·〉)(t)∣∣

= O

(
1√
n

(
1 + |t |m0(A)+3∞

)
e−(c2/2)〈t,t〉

)
.

Indeed, we have

∂

∂ti

(
λα,· − e−(1/2)〈·,D(a)·〉)( t√

n

)
= O

( |t |2∞
n

)
,

(λα,t/
√

n)
n−m − e−((n−m)/2n)〈t,D(a)t〉 = O

( |t |3∞√
n

e−(c2/2)〈t,t〉
)

and
∂2

∂ti ∂tj

(
λα,· − e−(1/2)〈·,D(a)·〉)( t√

n

)
= O

( |t |∞√
n

)
. �

2.4.2. Degenerate case. In this section we suppose that the matrix D(a) is
degenerate (i.e., noninvertible). There exists a matrix A ∈ GL(Rd) such that we
have

A · D(a) · TA = Jl :=
(

Il 0l,d−l

0d−l,l 0d−l,d−l

)
,

where l is the rank of D(a), Il is the l-dimensional identity matrix and 0m,n is the
(m,n)-dimensional null matrix. By replacing function a(·) by A ·a(·), we can (and
we will) assume that we have D(a) = Jl . According to the previous subsection, we
have

�

(
ν̃∗
((

1√
n

n−1∑
k=0

a1(Xk), . . . ,
1√
n

n−1∑
k=0

al(Xk)

))
,N (0, Il)

)
= O(ε),(4)

where ai is the ith coordinate of a. For any i = l + 1, . . . , d , we have D(ai) = 0
and therefore, according to Corollary 2.3.2, we have ai = 0 almost surely.

2.5. Proof of Theorem 2.2.5. The sequence of random variables (a(Xk))k sat-
isfies the hypotheses of Theorem 1.1. Indeed, for any integers α,β, γ ≥ 0 satisfy-
ing 1 ≤ α + β + γ ≤ 3, any integers 1 ≤ k ≤ k + p ≤ k + p + q ≤ k + p + l, and
any integers i1, i2, i3, we have

Eν̃

[(
ai1(Xk+p)

)α(
ai2(Xk+p+q)

)β(
ai3(Xk+p+l)

)γ |X0,X1, . . . ,Xk

]
= Q

p
α,0(ψ)(Xk)

and

Eν̃

[(
ai1(Xk+p)

)α(
ai2(Xk+p+q)

)β(
ai3(Xk+p+l)

)γ ]= Eν[ψ],
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with ψ = ψq,l,α,β,γ,i1,i2,i3 := aα
i1

× Q
q
α,0(a

β
i2

× (Q
l−q
α,0 a

γ
i3
)). We get

∣∣Cov
(
G(X0, . . . ,Xk),

(
ai1(Xk+p)

)α(
ai2(Xk+p+q)

)β(
ai3(Xk+p+l)

)γ )∣∣
≤ ‖Qp

α,0(ψ − Eν[ψ])‖L∞‖G(X0, . . . ,Xk)‖L1

≤ (1 − α)p‖ψ − Eν[ψ]‖L∞‖G(X0, . . . ,Xk)‖L1

≤ 2(1 − α)p‖ψ‖L∞‖G(X0, . . . ,Xk)‖L1

≤ 2(1 − α)p‖a‖α+β+γ∞ ‖G(X0, . . . ,Xk)‖L1

≤ 2(1 − α)p(1 + ‖a‖3∞)‖G(X0, . . . ,Xk)‖L1 .

3. Application to the Sinai billiard. The billiard system considered here has
been studied in many articles since the fundamental article of Sinai [40]. Let us
mention [8–11, 24]. The question of the CLT in this context has been studied in
many articles [9, 10, 12, 43].

Here, we are interested in the question of speed of convergence in the CLT.
A first result has been established in [33] for one-dimensional observables

(the speed is estimated in the sense of the uniform norm of the difference between
repartition functions). This result has been extended in [34] (for d-dimensional
observables, the speed being estimated in the sense of the Prokhorov metric).

The speed obtained in these two papers is in n−(1/2)+α for all α > 0. Here, we
establish a rate of convergence in the CLT in n−1/2 in the sense of the Kantorovich
metric. This result is an application of Theorem 1.1.

3.1. The model. We are interested in the behavior of a point particle moving
with unit speed in some domain Q of the torus T

2, the complement of which is a
finite union of open sets O1, . . . ,OI called obstacles. Each obstacle Oi is a strictly
convex open set, the boundary of which is C3 and the curvature of the boundary is
never null. See Figure 2.

We suppose that the closures of the obstacles are pairwise disjoint. We suppose
that the point particle moves in Q with unit speed and elastic reflection off the
obstacles. See Figure 3.

FIG. 2.
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FIG. 3.

3.2. The billiard flow. Let us notice that, when the particle hits an obstacle,
the couple position-speed is ambiguously defined: incoming and outgoing vectors
coexist. To avoid this problem, we decide to take the following convention: when
a particle hits an obstacle, its position-speed couple corresponds to the outgoing
vector. Let us be more precise. For all q in ∂Q, we denote by �n(q) the unit vector
normal to ∂Q in q directed to the interior of Q.

The set of configurations is the set Q1 given by

Q1 := {(q, �v) :q ∈ Q, �v ∈ TqQ,‖�v‖ = 1 and
(
q ∈ ∂Q ⇒ 〈�n(q), �v〉 ≥ 0

)}
.

We call billiard flow the flow (Yt )t defined on Q1 such that, for all t > 0, all
(q, �v) ∈ Q1 and all (q ′, �v′) ∈ Q1, the fact that Yt (q, �v) = (q ′, �v′) means that “if a
particle is at q with the speed �v at time 0, then it will be at q ′ with speed �v′ at
time t .”

This flow preserves the normalized Lebesgue µ on Q1.
According to the description of our model, it is natural to study the model cor-

responding to the times when the particle hits an obstacle [cf. the system (M,ν,T )

below].

3.3. The billiard transformation. Let us consider the billiard system (M,ν,T )

defined as follows:

(a) M is the set of configurations of Q1 corresponding to the times when the
particle meets an obstacle, that is,

M := {(q, �v) :q ∈ ∂Q, �v ∈ TqQ,‖�v‖ = 1, 〈�n(q), �v〉 ≥ 0}.
(b) For any i = 1, . . . , I , we write li the length of the boundary ∂Oi of the ob-

stacle Oi . We parametrize M by G :M →⋃I
i=1({i}× R

liZ
×[−π/2;π/2]) defined

by G(q, �v) = (i, r, ϕ) if q ∈ Oi , if r is the curvilinear abscissa of q on Oi , and ϕ is
the angular measure taken in [−π/2;π/2] of the angle between �n(q) and �v.
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FIG. 4.

(c) ν is the Borel probability measure on M of the following form:

ν(A) = 1

C

I∑
i=1

∫
{(r,ϕ) : G−1(i,r,ϕ)∈A}

cos(ϕ) dr dϕ,

where C is some constant.
(d) T is the transformation of M that, at the configuration (q, �v) ∈ M of a

particle at the time just after a reflection, associates the configuration (q ′, �v′) ∈ M

at the time just after the following reflection off ∂Q (cf. Figure 4).
(e) We also define the function τ :M → [0;+∞[ where τ(q, �v) is the time to

wait for a particle at q with speed �v until the next reflection off ∂Q (cf. Figure 4):

τ(q, �v) := min{t > 0 :q + t �v ∈ ∂Q}.
Let us specify the link between billiard transformation and billiard flow. The

flow (Yt )t can be viewed as the special flow over the dynamical system (M,ν,T )

associated to the roof-function τ . This is very natural: we identify ((q, �v), s) with
(q + s�v, �v) (cf. Figure 5).

In the following, we suppose that the billiard system has finite horizon, that is,
that function τ is uniformly bounded.

In Figure 2 only the second domain corresponds to a billiard system with finite
horizon.

3.4. About the regularity of T . Let R0 be the set of configurations correspond-
ing to a vector tangent to an obstacle:

R0 := {(q, �v) ∈ M : 〈�n(q), �v〉 = 0}.
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FIG. 5.

The study of the billiard is complicated by the discontinuity of T at points
of T −1(R0) (cf. Figure 6).

However, we know that, for any integer k ≥ 1, the transformation T k defines a
C1-diffeomorphism from M \⋃k

j=0 T −j (R0) onto M \⋃k
j=0 T j (R0). Moreover,

the sets
⋃k

j=0 T −j (R0) and
⋃k

j=0 T j (R0) are finite union of C1-curves.

FIG. 6.
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3.5. Hyperbolic properties of the billiard transformation. For any C1-curve γ

of M , we define

l(γ ) :=
∫
γ

√
dr2 + dϕ2,

using the parametrization of M by the function G previously defined.

PROPOSITION 3.5.1. There exist two real numbers C0 > 0 and α0 ∈]0;1]
such that, for all x, there exist C1-curves γ s(x) (stable curve) and γ u(x) (unstable
curve) of M containing x (with positive length for ν-almost every x) such that, for
any integer n ≥ 0, all y, z ∈ γ s(x) and all y′, z′ ∈ γ u(x), we have

d
(
T n(y), T n(z)

)≤ C0α
n
0

√
d(y, z)

and

d
(
T −n(y′), T −n(z′)

)≤ C0α
n
0

√
d(y′, z′).

3.6. The functional sets Hη,m. Because of the discontinuities of T , if φ :
M → R is a Hölder continuous function, then φ ◦ T m is generally not a Hölder
continuous function. This observation leads us to the introduction of the sets Hη,m

defined below. These spaces will be such that, if f is η-Hölder continuous, then
f ◦ T m is in Hη,m.

Let a real number η ∈]0;1] be given. For any m, we consider the set Hη,m of
bounded functions φ :M → C such that the following quantity is finite:

C
(η,m)
φ := sup

C∈Cm

sup
x,y∈C,x 	=y

|φ(x) − φ(y)|
(max(d(x, y), . . . , d(T m(x), T m(y))))η

,

where Cm is the set of the connected components of M \⋃m
j=0 T −j (R0) and d is

the metric defined on each connected component of M by d((q, �v), (q ′, �v′)) =√
|r − r ′| + |ϕ − ϕ′|2 if G(q, �v) = (i, r, ϕ) and G(q ′, �v′) = (i, r ′, ϕ′).
The set Hη,m can be understood as the set of functions that are Hölder continu-

ous in the m future configurations. These classes of functions have been introduced
in [33].

Let us notice that the function τ is in H1,1.
In the following section, we give a decorrelation result for these classes of func-

tions. Before recalling this result, let us make some comments about the classes of
functions Hη,m.

PROPOSITION 3.6.1. Let a real number η ∈]0;1] and an integer m0 ≥ 1 be
given. For any functions φ and ψ belonging to Hη,m0 , we have:

1. The functions φ and ψ are uniformly bounded [because the set M \⋃m0
j=0 T −j (R0) has only a finite number of connected components].
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2. The function φ + ψ is in Hη,m0 and we have

C
(η,m0)
φ+ψ ≤ C

(η,m0)
φ + C

(η,m0)
ψ .

3. The product φ · ψ is in Hη,m0 and we have

C
(η,m0)
φ·ψ ≤ C

(η,m0)
φ ‖ψ‖∞ + C

(η,m0)
ψ ‖φ‖∞.

4. For any integer m ≥ 0, φ ◦ T m is in Hη,m0+m and we have

C
(η,m0+m)
φ◦T m ≤ C

(η,m0)
φ .

5. For any integer m ≥ 0, the function φ is in Hη,m0+m and we have

C
(η,m0+m)
φ ≤ C

(η,m0)
φ .

PROOF OF POINT 4. Let x and y be two points of M belonging to the same
connected component of M \⋃m+m0

j=0 T −j (R0). Then T m(x) and T m(y) belong to

the same connected component of M \⋃m0
j=0 T −j (R0) and we have

|φ(T m(x)) − φ(T m(x))|
≤ C

(η,m0)
φ max

(
d
(
T m(x), T m(y)

)
, . . . , d

(
T m+m0(x), T m+m0(y)

)η)
. �

3.7. A decorrelation property. The following result has been established
in [33] (cf. Proposition 1.2 and Corollary B.2 of [33]) with the use of the method
developed by Young in [43].

PROPOSITION 3.7.1. Let a real number η ∈]0;1] be given. For any real num-
ber R > 1, there exist two real numbers Cη,R > 0 and δη,R ∈]0;1[ such that, for
any integers m1 ≥ 0 and m2 ≥ 0, for all φ ∈ Hη,m1 and ψ ∈ Hη,m2 , for any integer
n ≥ 0, we have

|Cov(φ,ψ ◦ T n)|
(5)

≤ Cη,R

(‖φ‖∞‖ψ‖∞ + C
(η,m1)
φ ‖ψ‖∞ + ‖φ‖∞C

(η,m2)
ψ

)
δ
n−Rm1
η,R .

We will not use directly this proposition; we will use a slight modification of it:
reading the proof of Theorem B.1 of [33], we can notice that, in formula (5), co-
efficient C

(η,m2)
ψ can be replaced by the regularity coefficient of ψ on the stable

curves:

C
(η,(s))
ψ := sup

x∈M

sup
y,z∈γ s(x)

|ψ(y) − ψ(z)|
d(y, z)η

[by replacing, in the proof of Theorem B.1, the definition of ψ̂k(x) by the infimum
of ψ̃ ◦ T̃ k

d on the stable curve containing x].
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3.8. Theorem.

THEOREM 3.8.1. Let a real number η ∈]0;1] and an integer m0 ≥ 1 be given.
Let f :M → R

d be a bounded function, the coordinates of which are in Hη,m0 . For
any k, we write Yk := f ◦ T k and Sk := Y1 + · · · + Yk . Then, the following limit
exists:

�2 := lim
n→+∞

1

n
(E[S⊗2

n ]).
If �2 = 0, then (Sn)n is bounded in L2.

Otherwise, the sequence of random variables ( Sn√
n
)n≥1 converges in distribution

to a Gaussian random variable N with null expectation and covariance matrix �2

and there exists a real number B > 0 such that, for all n ≥ 1 and all Lipschitz
continuous function φ : Rd → R, we have∣∣∣∣E

[
φ

(
Sn√
n

)]
− E[φ(N)]

∣∣∣∣≤ BLφ√
n

.

PROOF. For all n, Y1 + · · · + Yn has the same distribution as X1 + · · · + Xn

with Xk := f ◦ T −k . Therefore, it suffices to show that the sequence (Xn)n satis-
fies the hypotheses of Theorem 1.1. Let us take M := max(1,‖f ‖∞). Let a, b, c

be integers satisfying a, b, c ≥ 1 and 1 ≤ a + b + c ≤ 3. Let i, j, k,p, q, l be in-
tegers satisfying 1 ≤ i ≤ j ≤ k ≤ k + p ≤ k + p + q ≤ k + p + l. Let i1, i2, i3 be

integers belonging to {1, . . . , d}. Let F : Rd × ([−M;M]d)
3 → R be a bounded,

differentiable function, with bounded differential. We have∣∣Cov
(
F(Si−1,Xi,Xj ,Xk),

(
X

(i1)
k+p

)a(
X

(i2)
k+p+q

)b(
X

(i3)
k+p+l

)c)∣∣
= ∣∣Cov

(
F
(
f ◦ T −1 + · · · + f ◦ T −(i−1), f ◦ T −i , f ◦ T −j , f ◦ T −k),

f a
i1

◦ T −(k+p)f b
i2

◦ T −(k+p+q)f c
i3

◦ T −(k+p+l))∣∣
= |Cov(φ0,ψ0 ◦ T p+l)|,

where we define

φ0 := f c
i3
f b

i2
◦ T l−qf a

i1
◦ T l

and

ψ0 := F(f ◦ T k−i+1 + · · · + f ◦ T k−1, f ◦ T k−i , f ◦ T k−j , f ).

Let us use formula (5) modified with C
(η,(s))
ψ instead of C

(η,m2)
ψ .

LEMMA 3.8.2. The function ψ0 is in Hη/2,m0+k−i+1 and we have

C
(η/2,(s))
ψ0

≤ ‖DF‖∞C
(η,m0)
f

C
η
0

1 − α
η
0
.
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PROOF. Let three points x, y, z in M be such that y and z are in γ s(x). Then
we have

|f (y) − f (z)| ≤ C
(η,m0)
f C

η
0 d(y, z)η/2,∣∣f (T k−i(y)

)− f
(
T k−i(z)

)∣∣≤ C
(η,m0)
f (C0α

k−i
0 )ηd(y, z)η/2,∣∣f (T k−j (y)

)− f
(
T k−j (z)

)∣∣≤ C
(η,m0)
f (C0α

k−j
0 )ηd(y, z)η/2

and∣∣f ◦ T k−i+1(y) + · · · + f ◦ T k−1(y) − (f ◦ T k−i+1(z) + · · · + f ◦ T k−1(z)
)∣∣

≤
i−1∑
m=1

|f ◦ T k−i+m(y) − f ◦ T k−i+m(z)|

≤
i−1∑
m=1

C
(η,m0)
f (C0α

k−i+m
0 )η d(y, z)η/2

≤ C
(η,m0)
f C

η
0
α

(k−i+1)η
0

1 − α
η
0

d(y, z)η/2. �

Since f is in Hη,m0 , the function φ0 is in Hη/2,m0+l and we have

‖φ0‖∞ ≤ ‖f ‖a+b+c∞ ≤ (1 + ‖f ‖3∞)

and

C
(η/2,m0+l)
φ0

≤ (a + b + c)C
(η/2,m0)
f ‖f ‖a+b+c−1∞ ≤ 3C

(η/2,m0)
f (1 + ‖f ‖2∞).

Therefore, according to (5) modified with C
(η,(s))
ψ instead of C

(η,m2)
ψ , we have

|Cov(φ0,ψ0 ◦ T p+l)|
≤ Cη/2,R

(‖φ0‖∞ + C
(η/2,m0+l)
φ0

)(‖ψ0‖∞ + C
(η/2,(s))
ψ0

)
δ
(p+l)−R(m0+l)
η/2,R

≤ K(‖F‖∞ + ‖DF‖∞)ϕp,l,

with

K := Cη/2,R

(
1 + 3C

(η/2,m0)
f

)
(1 + ‖f ‖3∞)

(
1 + C

(η,m0)
f

C
η
0

1 − α
η
0

)
δ
−Rm0
η/2,R

and

ϕp,l := δ
p−(R−1)l
η/2,R .
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We have ∑
p≥1

p max
l=0,...,�p/�R��ϕp,l ≤ ∑

p≥1

pδ
p−((R−1)/�R�)p
η/2,R

= ∑
p≥1

pδ
((�R�+1−R)/�R�)p
η/2,R < +∞.

�

APPENDIX

PROOF OF THEOREM 1.1. Our proof of Theorem 1.1 follows the same
scheme as [25].

First, since (Xk)k≥1 is stationary, we notice that, for any integer n ≥ 1, we have

E

[(
Sn√
n

)⊗2]
= E[X⊗2

1 ] +
n−1∑
k=1

(
1 − k

n

)
(E[X1 ⊗ Xk+1] + E[Xk+1 ⊗ X1]).(6)

Therefore, according to (1), �2 exists and we have

�2 = E[X⊗2
1 ] +∑

k≥1

(E[X1 ⊗ Xk+1] + E[Xk+1 ⊗ X1]).

Moreover, according to (6), we have

|E[S⊗2
n ] − n�2|∞ ≤ 2

∑
k≥1

k|E[X1 ⊗ Xk+1]|∞ ≤ 4CM
∑
k≥1

kϕk,0.

Hence, if �2 = 0, then the sequence of random variables (Sn)n≥1 is bounded
in L2(�,R

d).
Let us now suppose that �2 is nonnull. Then, there exists k ∈ {1, . . . , d} and a

d-dimensional orthogonal matrix O such that O ·�2 ·O−1 is diagonal. Therefore,
there exists an invertible matrix A such that

A · �2 · tA = Jk,

where tA denotes the matrix transposed to A and where Jk is the d-dimensional
diagonal matrix such that the first k diagonal elements are equal to 1 and the others
to 0.

In the following, we will suppose that �2 is the d-dimensional identity ma-
trix Id . This is not a restrictive hypothesis: it suffices to replace d by k and (Xn)n

by (X̃n := (X̃
(1)
n , . . . , X̃

(k)
n ))n where X̃

(i)
n is the ith coordinate of X̃n := A · Xn

[since the random variables (X̃
(j)
1 + · · · + X̃

(j)
n )n≥1 are bounded in L2(�,R) for

all j = k + 1, . . . , d and the norms on R
d are equivalent].

As in [37], we will use an inductive proof. The idea is to prove the existence of
a real number A ≥ 1 such that the following property (Pn(A)) is satisfied for any
integer n ≥ 2:

(Pn(A)) :∀ k = 1, . . . , n − 1,∀φ ∈ Lip(Rd,R)∣∣E[φ(Sk)] − E
[
φ
(√

kN
)]∣∣≤ ALφ,
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where N is a d-dimensional Gaussian random variable with expectation 0 and
covariance matrix Id . Let us define Vn := E[S⊗2

n ] and vn := E[S⊗2
n ] − E[S⊗2

n−1].
We have

vn = E[X⊗2
1 ] + ∑

k=1,...,n−1

(E[X1 ⊗ Xk+1] + E[Xk+1 ⊗ X1]).

Hence (vn)n≥1 converges to �2 = Id . There exists n0 ≥ 1 such that for any integer
n ≥ n0, the eigenvalues of vn are between 1

2 and 3
2 . In the following, we will

suppose the existence of a sequence (Ni)i≥0 of independent identically distributed
Gaussian random variables with expectation 0 and covariance matrix Id such that
(Ni)i≥0 is independent of (Xk)k≥0. The main part of the proof is to establish the
following result.

PROPOSITION A.1. Under the hypotheses of Theorem 1.1, there exist a real
number K ≥ M and a continuous decreasing function ψ : [1,+∞] →]0;+∞[
satisfying limε→+∞ ψ(ε) = 0 such that for any integer n ≥ 9n0 and any real num-
ber A ≥ M , if we have (Pn(A)), then, for any real number ε ≥ 1 and any Lipschitz
continuous function φ : Rd → R, we have∣∣E[φ(Sn + εY )] − E

[
φ
(
Sn0−1 + Tn0−1,n + εY

)]∣∣≤ K
(
1 + Aψ(ε)

)
Lφ,

where Y and Tn0−1,n are two ν-centered Gaussian random variables independent
of (Xk)k≥0, with covariance matrices Id and Vn − Vn0−1, respectively.

Let us show how we can conclude once this result is proved.

1. Let us write A1 := d
√

9n0 + maxm=0,...,9n0 ‖Sm‖L1 . For any A ≥ A1, property
(P9n0(A)) is satisfied.

2. Let us show that there exists a real number A0 ≥ M such that, for any integer
n ≥ 9n0 and any real number A ≥ A0, we have (Pn(A)) ⇒ (Pn+1(A)).

Let an integer n ≥ 9n0 and a real number A ≥ M be given such that prop-
erty (Pn(A)) is satisfied. Let φ : Rd → R be any Lipschitz continuous function.
Then, according to Proposition A.1, we have∣∣E[φ(Sn + εY )] − E

[
φ
(
Sn0−1 + Tn0−1,n + εY

)]∣∣≤ K
(
1 + Aψ(ε)

)
Lφ.

Since we have

|E[φ(Sn + εY )] − E[φ(Sn)]| ≤ LφεE[|Y |∞]
and ∣∣E[φ(Sn0−1 + Tn0−1,n + εY

)]− E
[
φ
(
Tn0−1,n

)]∣∣
≤ Lφ

(
εE[|Y |∞] + E

[∣∣Sn0−1
∣∣∞]),

we get ∣∣E[φ(Sn)] − E
[
φ
(
Tn0−1,n

)]∣∣≤ K0
(
1 + Aψ(ε) + 2ε

)
Lφ,
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with K0 := K + E[|Y |∞] + E[|Sn0−1|∞]. Let us now estimate the following
quantity: ∣∣E[φ(√nY

)]− E
[
φ
(
Tn0−1,n

)]∣∣.
Let O = On,n0 be an orthogonal matrix such that O(Vn − Vn0−1)O

−1 is
diagonal with nonnegative diagonal coefficients. Let us denote by �n,n0 the
diagonal matrix with nonnegative diagonal coefficients such that(

�n,n0

)2 = O
(
Vn − Vn0−1

)
O−1.

Let us define Mn,n0 as follows:

Mn,n0 := O−1�n,n0O.

Then, we have (Mn,n0)
2 = Vn − Vn0−1. Let us denote by | · |2 the usual Euclid-

ean norm on R
d and ‖|A‖| := sup|z|2=1 |Az|2 for any (d, d)-matrix A. Let us

recall that if A is a nonnegative symmetric matrix, then ‖|A‖| is equal to the
maximal eigenvalue of A. We have∣∣E[φ(√nY

)]− E
[
φ
(
Tn0−1,n

)]∣∣= ∣∣E[φ(√nY
)− φ

(
Mn,n0Y

)]∣∣
≤ LφE

[∣∣(√nId − Mn,n0

)
Y
∣∣∞]

≤ LφE
[∣∣(√nId − Mn,n0

)
Y
∣∣
2

]
≤ Lφ

∥∥∣∣√nId − Mn,n0

∥∥∣∣E[|Y |2]
≤ Lφ

√∥∥∣∣nId − (Vn − Vn0−1
)∥∥∣∣E[|Y |2]

≤ Lφ

√
‖|nId − Vn‖| +

∥∥∣∣Vn0−1
∥∥∣∣E[|Y |2].

Indeed we have∥∥∣∣√nId − Mn,n0

∥∥∣∣= max
λ∈Sp(Mn,n0 )

∣∣√n − λ
∣∣= max

µ∈Sp(Vn−Vn0−1)

∣∣√n − √
µ
∣∣

≤ max
µ∈Sp(Vn−Vn0−1)

√|n − µ| =
√∥∥∣∣nId − (Vn − Vn0−1

)∥∥∣∣,
where we denote by Sp(A) the set of eigenvalues of the square matrix A. There-
fore, since the sequence of matrices (Vm − m · Id)m is bounded, we have∣∣E[φ(Sn)] − E

[
φ
(√

nY
)]∣∣≤ K ′(1 + Aψ(ε) + 2ε

)
Lφ,

with K ′ := K0 + E[|Y |2] supm≥n0

√‖|mId − Vm‖| + ‖|Vn0−1‖|. Let us denote
by εA the unique real number εA ∈ [1,+∞[ such that 1 + Aψ(εA) = εA.

According to the preceding, for any integer n ≥ 9n0 and any real number
A ≥ M , we have

(Pn(A)) �⇒ (
Pn+1(3K ′εA)

)
.



2362 F. PÈNE

Let us show that there exists a real number A0 ≥ M such that, for any
A ≥ A0, we have 3K ′εA ≤ A. The function A �→ εA is increasing. If we had
M1 := supA εA < +∞, we would have m1 := infA ψ(εA) > 0 and therefore, for
any A, M1 ≥ εA ≥ Aψ(εA) ≥ Am1, which is impossible. Therefore, we have
limA→+∞ εA = +∞. Hence, there exists A0 ≥ M such that for any A ≥ A0,
we have 3K ′(1 + Aψ(εA)) ≤ A and therefore 3K ′εA ≤ A.

Hence, for any real number A ≥ max(A0,A1), we have (P9n0(A)) and, for any
integer n ≥ 9n0, (Pn(A)) ⇒ (Pn+1(A)), from which we deduce Theorem 1.1.

Now, we have to prove Proposition A.1.
Let an integer n ≥ 9n0 be given. Let (Yk)k≥n0 be a sequence of independent

random variables defined on (�,F , ν) independent of (Xk)k≥0 such that Yk is a
Gaussian random variable with expectation 0 and covariance matrix vk . Let Y be
a Gaussian random variable with expectation 0 and covariance matrix Id , defined
on (�,F , ν), independent of ((Yk)k≥n0, (Xk)k≥0) [this is always possible in some
extension of (�,F , ν)].

NOTATION A.2. Let k be an integer such that n0 ≤ k ≤ n. We define �k(f ) =
E[f (Sk−1 + Xk)] − E[f (Sk−1 + Yk)].

For any function φ ∈ Lip(Rd,R), for any real number ε ≥ 1 and any x ∈ R
d ,

we define

fφ,k,n,ε(x) := E

[
φ

(
x +

n∑
i=k+1

Yi + εY

)]
,

with convention
∑n

i=k+1 Yi = 0 if k = n.

Let us notice that we have

E[φ(Sn + εY )] − E

[
φ

(
Sn0−1 +

n∑
i=n0

Yi + εY

)]
=

n∑
k=n0

�k(fφ,k,n,ε).

We will use Taylor expansions for functions h : Rd → R. We will use the following
notation.

NOTATION A.3. Let k be an integer such that k ≥ 1.
If h : Rd → R is k-times differentiable, for any x ∈ R

d , we denote by Dkh(x)

the point of R
{1,...,d}k given by

Dkh(x) :=
(

∂k

∂xi1 · · · ∂xik

h(x)

)
i1,...,ik=1,...,d

.

We denote by | · |∞ the supremum norm on R
{1,...,d}k .
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For any A(1), . . . ,A(k) in R
d , we denote by A(1) ⊗ · · · ⊗ A(k) the point

of R
{1,...,d}k given by

A(1) ⊗ · · · ⊗ A(k) =
(

k∏
j=1

A
(j)
ij

)
i1,...,ik=1,...,d

[if A(l) = (A
(l)
1 , . . . ,A

(l)
d )].

For any integer j satisfying 1 ≤ j ≤ k, for any A ∈ R
{1,...,d}k and any

B ∈ R
{1,...,d}j , we denote by A ∗ B the point of R

{1,...,d}k−j
given by

A ∗ B :=
(

d∑
n1,...,nj=1

An1,...,nj ,i1,...,ik−j
Bn1,...,nj

)
i1,...,ik−j=1,...,d

.

For any A :� → R
{1,...,d}k and any B :� → R

{1,...,d}k , we define (when it is
well defined):

E[A] := (E[Ai1,...,ik

])
i1,...,ik=1,...,d ,

‖A‖∞ := ‖|A|∞‖∞,

Cov(A,B) :=
d∑

i1,...,ik=1

Cov
(
Ai1,...,ik ,Bi1,...,ik

)
.

Let us notice that if j = k, ∗ corresponds to the usual scalar product
on R

{1,...,d}k .
On the other hand, let us notice that the k-linear form on R

d associated to
Dkh(x) is

(A1, . . . ,Ak) �→ Dkh(x) ∗ (A1 ⊗ · · · ⊗ Ak)

and that, for any j = 1, . . . , k, we have

(Dkh(x)) ∗ (A1 ⊗· · ·⊗Ak) = ((Dkh(x)) ∗ (A1 ⊗· · ·⊗Aj)
) ∗ (Aj+1 ⊗· · ·⊗Ak).

We have �k(f ) = �1,k(f ) − �2,k(f ), with

�1,k(f ) := E[f (Sk−1 + Xk)] − E[f (Sk−1)] − 1
2E[D2f (Sk−1)] ∗ vk

and

�2,k(f ) := E[f (Sk−1 + Yk)] − E[f (Sk−1)] − 1
2E[D2f (Sk−1)] ∗ vk.
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A.1. Estimations for small k.

LEMMA A.1.1 (Adaptation of Lemma 6 of [37]). Let f : Rd → R be a func-
tion in C4. We have

|�k(f )| ≤ d4(‖D3f ‖∞ + ‖D4f ‖∞)

(
M3 + 15C2M2(r + 1)

k−1∑
p=0

(1 + p)ϕp,0

+ 3CM

k−2∑
p=r+1

∑
l=1,...,k−1 : (r+1)l≤p

ϕp,l

)
.

PROOF. Since Yk is a Gaussian random variable independent of Sk−1, with
expectation 0 and covariance matrix vk , we have

|�2,k(f )| =
∣∣∣∣E
[
f (Sk−1 + Yk) − f (Sk−1) − 1

2
D2f (Sk−1) ∗ (Yk ⊗ Yk)

]∣∣∣∣
= 1

2

∣∣∣∣
∫ 1

0
(1 − t)2

E[D3f (Sk−1 + tYk) ∗ Y⊗3
k ]dt

∣∣∣∣
= 1

2

∣∣∣∣
∫ 1

0
(1 − t)2

E[g(tYk) ∗ Y⊗3
k ]dt

∣∣∣∣
with g(u) = E[D3f (Sk−1 + u)]

≤ d3

2

∫ 1

0
(1 − t)2 sup

a∈Rd

|E[D3f (Sk−1 + a)]|∞E[|Y⊗3
k |∞]dt

≤ d3

6
sup
a∈Rd

|E[D3f (Sk−1 + a)]|∞E[|Y⊗3
k |∞].

We have E[|Y⊗3
k |∞] ≤ 4d|vk |3/2∞√

2π
. Moreover, according to hypothesis (1), we have

|vk|∞ ≤ 2C(M + 1)
∑k−1

p=0 ϕp,0. According to Hölder inequality and to the fact

that ϕp,0 ≤ 1, we can show (cf. [37], page 264) that we have |vk|3/2∞ ≤ (4C(M +
1))3/2 π√

6

∑k−1
p=0(1 + p)ϕp,0. Hence, we have

|�2,k(f )| ≤ d4 8
√

π

3
√

3
sup
a∈R

|E[D3f (Sk−1 + a)]|∞
(7)

× (C(M + 1)
)3/2

k−1∑
p=0

(1 + p)ϕp,0.

Let us now control �1,k(f ). Since we have vk = E[X⊗2
k ] +∑k−1

i=1 (E[Xi ⊗ Xk] +
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E[Xk ⊗ Xi]), we have

�1,k(f ) = E[D1f (Sk−1) ∗ Xk] + 1
2 Cov

(
D2f (Sk−1),X

⊗2
k

)

− E[D2f (Sk−1)] ∗
k−1∑
i=1

E[Xi ⊗ Xk]

+ E
[1

6D3f (Sk−1 + θkXk) ∗ X⊗3
k

]
,

where θk is a random variable with values in [0;1]. We have∥∥1
6D3f (Sk−1 + θkXk) ∗ X⊗3

k

∥∥∞ ≤ 1
6d3‖D3f ‖∞M3.(8)

On the other hand, according to (1), we have

∣∣Cov
(
D2f (Sk−1),X

⊗2
k

)∣∣≤ k−1∑
i=1

∣∣Cov
(
D2f (Si) − D2f (Si−1),X

⊗2
k

)∣∣
(9)

≤ 3d3CM‖D3f ‖∞
k−1∑
p=1

ϕp,0.

We have

D1f (Sk−1) = D1f (0) +
k−1∑
i=1

(
D1f (Si) − D1f (Si−1)

)

= D1f (0) +
k−1∑
i=1

(
D2f (Si−1) ∗ Xi

+
∫ 1

0
(1 − t)D3f (Si−1 + tXi) ∗ X⊗2

i dt

)

and so

E[D1f (Sk−1) ∗ Xk] − E[D2f (Sk−1)] ∗
k−1∑
i=1

E[Xi ⊗ Xk]

=
k−1∑
i=1

Cov
(
D2f (Si−1),Xi ⊗ Xk

)
(10)

+
k−1∑
i=1

E[D2f (Si−1) − D2f (Sk−1)] ∗ E[Xi ⊗ Xk]

+
k−1∑
i=1

Cov
(∫ 1

0
(1 − t)D3f (Si−1 + tXi) ∗ (X⊗2

i ) dt,Xk

)
,
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since E[D1f (0) ∗ Xk] = D1f (0) ∗ E[Xk] = 0. According to (1), we have

k−1∑
i=1

|E[D2f (Si−1) − D2f (Sk−1)] ∗ E[Xi ⊗ Xk]|

≤ d3‖D3f ‖∞M2CM

k−1∑
i=1

(k − i)ϕk−i,0(11)

≤ 2d3‖D3f ‖∞CM2
k−1∑
p=1

pϕp,0

and
k−1∑
i=1

∣∣∣∣Cov
(∫ 1

0
(1 − t)D3f (Si−1 + tXi) ∗ (X⊗2

i ) dt,Xk

)∣∣∣∣

≤
k−1∑
i=1

d3C(2‖D3f ‖∞M2 + ‖D4f ‖∞M2)ϕk−i,0(12)

≤ 2Cd3(‖D3f ‖∞ + ‖D4f ‖∞)M2
k−1∑
p=1

ϕp,0.

For any integer i = 1, . . . , k − 1, we write j = ji := max(0, (r + 2)i − (r + 1)k).
According to (1), we have∣∣Cov

((
D2f (Si−1) − D2f (Sj )

) ∗ Xi,Xk

)∣∣
≤

i−1∑
m=j+1

∣∣Cov
((

D2f (Sm) − D2f (Sm−1)
) ∗ Xi,Xk

)∣∣
≤ 3d3C‖D3f ‖∞M2(i − j − 1)ϕk−i,0

and

|E[D2f (Si−1) − D2f (Sj )] ∗ E[Xi ⊗ Xk]|
≤ d3‖D3f ‖∞(i − j − 1)M2CMϕk−i,0.

Hence, we have

k−1∑
i=1

∣∣Cov
(
D2f (Si−1) − D2f (Sj ),Xi ⊗ Xk

)∣∣
(13)

≤ 5d3CM2‖D3f ‖∞(r + 1)

k−1∑
p=1

pϕp,0.
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If (r + 2)i − (r + 1)k ≤ 0, then j = 0 and so Cov(D2f (Sj ),Xi ⊗ Xk) = 0. Hence
we have

k−1∑
i=1

∣∣Cov
(
D2f (Sj ),Xi ⊗ Xk

)∣∣

≤ ∑
i=1,...,k−1 : (r+1)k<(r+2)i

j∑
l=1

∣∣Cov
(
D2f (Sl) − D2f (Sl−1),Xi ⊗ Xk

)∣∣
(14)

≤ ∑
i=1,...,k−1 : (r+1)k<(r+2)i

d33CM‖D3f ‖∞
(r+2)i−(r+1)k∑

l=1

ϕi−l,k−i

≤ 3d3CM‖D3f ‖∞
k−2∑

p=r+1

∑
j=1,...,k−1 : (r+1)j≤p

ϕp,j .
�

LEMMA A.1.2 (Adaptation of Lemma 5 of [37]). For any φ ∈ Lip(Rd,R), for
any integer k = n0, . . . , n and any real number ε ≥ 1, the function fφ,k,n,ε is C∞
and, for any integer i ≥ 1, we have

‖Difφ,k,n,ε‖∞ ≤ Ci

(n − k + ε2)(i−1)/2 Lφ,

with Ci := di+13 · 2i−1 ∫
Rd |z|∞|Dih(z)|∞ dz, where h is the density function of

the Gaussian law with expectation 0 and covariance matrix Id .

PROOF. Let us denote by �n,k,ε2 the positive symmetric matrix such that
�2

n,k,ε2 = Vn − Vk + ε2Id . For any x ∈ R
d , we have

fφ,k,n,ε(x) = E[φ(x + Yk+1 + · · · + Yn + εY )]
= 1√

det(Vn − Vk + ε2Id)

∫
Rd

φ(u)h
(
�−1

n,k,ε2(u − x)
)
du.

Let an integer i ≥ 1 be given. Let k1, . . . , ki in {1, . . . , d} be given. Let us denote,
for any matrix A, the j th column vector of A by [A]j . For any x ∈ R

d , we have

(−1)i
(
Difφ,k,n,ε(x)

)
k1,...,ki

= 1√
det(Vn − Vk + ε2Id)

×
∫

Rd
φ(u)Dih

(
�−1

n,k,ε2(u − x)
) ∗ ([�−1

n,k,ε2]k1 ⊗ · · · ⊗ [�−1
n,k,ε2]ki

)
du

=
∫

Rd
φ(x + �n,k,ε2 · z)Dih(z) ∗ ([�−1

n,k,ε2]k1 ⊗ · · · ⊗ [�−1
n,k,ε2]ki

)
dz
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=
∫

Rd

(
φ(x + �n,k,ε2 · z) − φ(x)

)
× Dih(z) ∗ ([�−1

n,k,ε2]k1 ⊗ · · · ⊗ [�−1
n,k,ε2]ki

)
dz,

since
∫
Rd Dih(z) dz = 0. Let us denote by λ− and λ+, respectively, the smallest

and biggest eigenvalues of Vn − Vk + ε2Id . Since �n,k,ε2 is diagonalizable in an
orthonormal basis, we have

|�n,k,ε2 · z|∞ ≤ dλ
1/2
+ |z|∞.

Moreover, for any j = 1, . . . , d , we have |[�−1
n,k,ε2]j |∞ ≤ λ

−1/2
− . Therefore we have

|Difφ,k,n,ε2(x)|∞ ≤ Lφd
λ

1/2
+ di

λ
i/2
−

∫
Rd

|z|∞|Dih(z)|dz.

Since k ≥ n0, we have
1
2(n − k) + ε2 ≤ λ− ≤ λ+ ≤ 3

2(n − k) + ε2

(according to the fact that two invertible symmetric matrices are diagonal in a same
basis). �

PROPOSITION A.1.3. For any φ ∈ Lip(Rd,R), for any real number ε ≥ 1,
we have

n−�n/3�−1∑
k=n0

|�k(fφ,k,n,ε)| ≤ d4(C3 + C4) ln(3)

×
(
M3 + 15C2M2(r + 1)

∑
p≥0

(1 + p)ϕp,0

+ 3CM
∑

p≥r+1

�p/(r+1)�∑
l=1

ϕp,l

)
Lφ.

PROOF. According to Lemmas A.1.1 and A.1.2, we have
n−�n/3�−1∑

k=n0

|�k(fφ,k,n,ε)|

≤ d4(C3 + C4)

×
n−1∑

m=�n/3�+1

1

m + 1

(
M3 + 15C2M2(r + 1)

∑
p≥0

(1 + p)ϕp,0

+ 3CM
∑

p≥r+1

�p/(r+1)�∑
l=1

ϕp,l

)
Lφ.

�
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A.2. Estimations for big k.

LEMMA A.2.1 (Analogous to Lemma 7 of [37]). For any real number
A ≥ M , for any integer n ≥ 9n0, if property (Pn(A)) is satisfied, then, for any
φ ∈ Lip(Rd,R), for any real number ε ≥ 1, for any integer k ∈ [n − �n

3�;n], for
any integer l ∈ [n

3 ;k], for any integer i ≥ 1, we have

sup
a∈Rd

|E[Difφ,k,n,ε(Sl + a)]|∞ ≤ Ki

(
A

(n − k + ε2)i/2 + 1

n(i−1)/2

)
Lφ,(15)

with Ki := 2i/2di
∫
Rd |Dih(z)|∞ dz + Ci

√
3
i−1

.

PROOF. Let Nl be a Gaussian random variable with null expectation and co-
variance matrix l · Id . Let �n,k,ε2 be as in the proof of Lemma A.1.2. First, let us
notice that, if (Pn(A)) is satisfied, we have

|E[Difφ,k,n,ε(Sl + a)] − E[Difφ,k,n,ε(Nl + a)]|∞
≤ λ

−i/2
− di

∫
Rd

|E[φ(Sl + a + �n,k,ε2 · z)]

− E[φ(Nl + a + �n,k,ε2 · z)]| · |Dih(z)|∞ dz

≤ 2i/2di

(n − k + ε2)
i/2

∫
Rd

ALφ|Dih(z)|∞ dz,

since y �→ φ(y + a + �n,k,ε2z) is Lipschitz continuous with Lipschitz constant
bounded by Lφ . On the other hand, we have

E[Difφ,k,n,ε(Nl + a)] = Di(a �→(
E[fφ,k,n,ε(Nl + a)]))

= Di(a �→ (
E[φ(a + �n,k,ε2+l · N)])),

where N is a Gaussian random variable with null expectation and covariance ma-
trix Id . As in the proof of Lemma A.1.2, we get

|E[Difφ,k,n,ε(Nl + a)]|∞ ≤ Ci√
n − k + l + ε2i−1 Lφ ≤ Ci

√
3
i−1

√
n

i−1 Lφ. �

According to estimation (7) and since k − 1 ≥ n
3 , we have:

LEMMA A.2.2. Let an integer n ≥ 9n0 and a real number A ≥ M be given.
If property (Pn(A)) is satisfied, then, for any φ ∈ Lip(Rd,R), for any integer
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k = n − �n
3�, . . . , n, for any real number ε ≥ 1, we have

|�2,k(fφ,k,n,ε)| ≤ Lφ · d4 16
√

2π

3
√

3
K3

(
A

(n − k + ε2)3/2 + 1

n

)
(CM)3/2

(16)

×
k−1∑
p=0

(1 + p)ϕp,0.

LEMMA A.2.3. There exists a real number K̃ (only depending on d , C, M

and r) such that, for any φ ∈ Lip(Rd,R), for any integer n ≥ 9n0 and any real
number A ≥ M , if property (Pn(A)) is satisfied, then, for any integer k = n −
�n

3�, . . . , n, we have

|�1,k(fφ,k,n,ε)| ≤ LφK̃

(
Aα√

n−k

(n − k + ε2)3/2 + β√
n−k

n
(17)

+ Aγ√
n−k

n − k + ε2 + Aδ√
n−k√

n − k + ε2
+ ϕ�√n−k �+1,0

)
,

with αm := 1 + ∑�m�
p=1 pζp , βm := 1 + ∑�m�

p=1 ζp , γm := ∑�m�
p=�m/(r+2)2� ζp and

δm :=∑+∞
p=�m/(r+2)�+1

ζp

p
, with ζp := p maxj=0,...,�p/(r+1)� ϕp,j .

PROOF. To simplify notation, we will write fk instead of fφ,k,n,ε . We have

�1,k(fk) = E[D1fk(Sk−1) ∗ Xk] + 1
2E[D2fk(Sk−1) ∗ (X⊗2

k − vk)]
+ 1

6E[D3fk(Sk−1) ∗ X⊗3
k ]

+ 1
6E

[∫ 1

0
(1 − t)3D4fk(Sk−1 + tXk) ∗ (X⊗4

k ) dt

]
.

Since we have vk = E[X⊗2
k ] +∑i=1,...,k−1(E[Xk ⊗ Xi] + E[Xi ⊗ Xk]) and since

the matrix E[D2fk(Sk−1)] is symmetric, we have

�1,k(fk) = E[D1fk(Sk−1) ∗ Xk] − ∑
i=1,...,k−1

E[D2fk(Sk−1)] ∗ E[Xk ⊗ Xi]

+ 1
2 Cov(D2fk(Sk−1),X

⊗2
k )

+ 1
6E[D3fk(Sk−1) ∗ X⊗3

k ]

+ 1
6E

[∫ 1

0
(1 − t)3D4fk(Sk−1 + tXk) ∗ X⊗4

k dt

]
.
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For any integer � ∈ {0, . . . , k − 1}, we have

D1fk(Sk−1) − D1fk(Sk−�−1)

=
k−1∑

j=k−�

(
D1fk(Sj ) − D1fk(Sj−1)

)

=
k−1∑

j=k−�

D2fk(Sj−1) ∗ Xj

+ 1
2

k−1∑
j=k−�

D3fk(Sj−1) ∗ X⊗2
j

+ 1
2

k−1∑
j=k−�

∫ 1

0
(1 − t)2D4fk(Sj−1 + tXj ) ∗ X⊗3

j dt.

Therefore we have

�1,k(fk) = E

[
1
6

∫ 1

0
(1 − t)3D4fk(Sk−1 + tXk) ∗ X⊗4

k dt

]

+ 1
6E[D3fk(Sk−1) ∗ X⊗3

k ]
+ E[D1fk(Sk−�−1) ∗ Xk]

−
k−�−1∑

i=1

E[D2fk(Sk−1)] ∗ E[Xk ⊗ Xi]

+ 1
2 Cov

(
D2fk(Sk−1),X

⊗2
k

)

+ 1
2

k−1∑
j=k−�

E[D3fk(Sj−1) ∗ (X⊗2
j ⊗ Xk)]

+ 1
2

k−1∑
j=k−�

E

[∫ 1

0
(1 − t)2D4fk(Sj−1 + tXj ) ∗ (Xk ⊗ X⊗3

j ) dt

]

−
k−1∑

j=k−�

E[D2fk(Sk−1) − D2fk(Sj−1)] ∗ E[Xk ⊗ Xj ]

+
k−1∑

j=k−�

Cov
(
D2fk(Sj−1),Xj ⊗ Xk

)
.

In the following, we take � = �√n − k �, the integer part of
√

n − k. Since n ≥
9n0 ≥ 9 and 2n

3 ≤ k ≤ n, we have 0 ≤ � ≤ k − 1.
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A.2.1. Control of E[1
6

∫ 1
0 (1 − t)3D4fk(Sk−1 + tXk)X

⊗4
k dt]. According to

Lemma A.1.2, we have∣∣∣∣E
[

1

6

∫ 1

0
(1 − t)3D4fk(Sk−1 + tXk) ∗ X⊗4

k dt

]∣∣∣∣
≤ d4 1

24
‖D4fk‖∞M4(18)

≤ d4 M4C4

24

α√
n−k

(n − k + ε2)3/2 Lφ.

A.2.2. Control of 1
6E[D3fk(Sk−1) ∗ X⊗3

k ]. We have D3fk(Sk−1) =
D3fk(Sk−�−1) +∑�

j=1(D
3fk(Sk−j ) − D3fk(Sk−j−1)). According to (1) and to

Lemma A.1.2, we have∣∣Cov
(
D3fk(Sk−�−1),X

⊗3
k

)∣∣≤ d3LφC(C3 + C4)ϕ�√n−k �+1,0(19)

and

�∑
j=1

∣∣Cov
((

D3fk(Sk−j ) − D3fk(Sk−j−1)
)
,X⊗3

k

)∣∣

≤ d3
�∑

j=1

3C4M

(n − k + ε2)3/2 ϕj,0Lφ(20)

≤ d3Lφ3C4M
Aα√

n−k

(n − k + ε2)3/2 .

Moreover, according to Lemma A.2.1, we have

|E[D3fk(Sk−1)] ∗ E[X⊗3
k ]|

≤ d3K3

(
A

(n − k + ε2)3/2 + 1

n

)
M3Lφ(21)

≤ d3K3M
3
(

Aα√
n−k

(n − k + ε2)3/2 + β√
n−k

n

)
Lφ.

A.2.3. Control of E[D1fk(Sk−�−1) ∗ Xk]. According to (1) and to Lem-
ma A.1.2, we have

|E[D1fk(Sk−�−1) ∗ Xk]| = ∣∣Cov
(
D1fk(Sk−�−1),Xk

)∣∣
(22)

≤ d(C1 + C2)ϕ�√n−k �+1,0Lφ.
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A.2.4. Control of
∑k−1

j=�+1 |E[D2fk(Sk−1)] ∗ E[Xk−j ⊗ Xk]|. We have

k−1∑
j=�+1

|E[D2fk(Sk−1)] ∗ E[Xk−j ⊗ Xk]|

≤ d2
k−1∑

j=�+1

|E[D2fk(Sk−1)]|∞|E[Xk−j ⊗ Xk]|∞
(23)

≤ d2
k−1∑

j=�+1

C2√
n − k + ε2

Lφ2CMϕj,0

≤ d22CMC2
δ√

n−k√
n − k + ε2

Lφ.

A.2.5. Control of |Cov(D2fk(Sk−1),X
⊗2
k )|. We have

D2fk(Sk−1) = D2fk(Sk−�−1) +
�∑

j=1

(
D2fk(Sk−j ) − D2fk(Sk−j−1)

)

= D2fk(Sk−�−1) +
�∑

j=1

D3fk(Sk−j−1) ∗ Xk−j

+
�∑

j=1

∫ 1

0
(1 − t)D4fk(Sk−j−1 + tXk−j ) ∗ X⊗2

k−j dt.

Hence, we have

Cov
(
D2fk(Sk−1),X

⊗2
k

)

= Cov
(
D2fk(Sk−�−1),X

⊗2
k

)+ �∑
j=1

Cov
(
D3fk(Sk−�−1) ∗ Xk−j ,X

⊗2
k

)

+
�∑

j=1

�∑
m=j+1

Cov
((

D3fk(Sk−m) − D3fk(Sk−m−1)
) ∗ Xk−j ,X

⊗2
k

)

+
�∑

j=1

∫ 1

0
(1 − t)Cov

(
D4fk(Sk−j−1 + tXk−j ) ∗ X⊗2

k−j ,X
⊗2
k

)
dt.

1. First, according to (1) and to Lemma A.1.2, we have∣∣Cov
(
D2fk(Sk−�−1),X

⊗2
k

)∣∣≤ d2C
C2 + C3√
n − k + ε2

Lφϕl+1,0

(24)
≤ d2C(C2 + C3)ϕ�√n−k�+1,0Lφ.
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2. Control of
∑�

j=1 Cov(D3fk(Sk−�−1) ∗ Xk−j ,X
⊗2
k ).

(a) For any integer j = 1, . . . , � satisfying
√

n−k
r+2 < j ≤ �, we have√

n − k < (r + 2)j and, according to (1) and to Lemma A.1.2, we have

∣∣Cov
(
D3fk(Sk−�−1) ∗ Xk−j ,X

⊗2
k

)∣∣≤ d3 2C(C3 + C4)M

n − k + ε2 Lφϕj,0.

Hence

�∑
j=�√n−k/(r+2)�+1

∣∣Cov
(
D3fk(Sk−�−1) ∗ Xk−j ,X

⊗2
k

)∣∣
(25)

≤ d3 2C(C3 + C4)M

n − k + ε2 γ√
n−kLφ.

(b) For any integer j = 1, . . . , � satisfying j ≤
√

n−k
r+2 , according to (1) and

to Lemma A.1.2, we have

∣∣Cov
(
D3fk(Sk−�−1),Xk−j ⊗ X⊗2

k

)∣∣≤ d3 C(C3 + C4)

n − k + ε2 Lφϕ�+1−j,j

and

∣∣Cov
(
D3fk(Sk−�−1),Xk−j

) ∗ E[X⊗2
k ]∣∣≤ d3 CM2(C3 + C4)

n − k + ε2 Lφϕ�+1−j,0.

Moreover, according to (1) and to Lemma A.2.1, since k − � − 1 ≥ n
3 , we have

|E[D3fk(Sk−�−1)] ∗ E[Xk−j ⊗ X⊗2
k ]|

≤ d3K3

(
A

(n − k + ε2)3/2 + 1

n

)
LφC2Mϕj,0,

from which we get

�√n−k/(r+2)�∑
j=1

∣∣Cov
(
D3fk(Sk−�−1) ∗ Xk−j ,X

⊗2
k

)∣∣

≤ d32CM2(C3 + C4)
γ√

n−k

n − k + ε2 Lφ(26)

+ 2CMK3
Aα√

n−k

(n − k + ε2)3/2 Lφ + K32CM
β√

n−k

n
Lφ.

3. Control of
∑�

j=1
∑�

m=j+1 Cov((D3fk(Sk−m)−D3fk(Sk−m−1))∗Xk−j ,X
⊗2
k ).
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(a) For any integers j and m satisfying 1 ≤ j < m ≤ � and m ≤ (r + 2)j ,
according to (1) and to Lemma A.1.2, we have∣∣Cov

((
D3fk(Sk−m) − D3fk(Sk−m−1)

) ∗ Xk−j ,X
⊗2
k

)∣∣
≤ d4 3CC4M

2

(n − k + ε2)3/2 Lφϕj,0.

Hence, we have
�∑

j=1

min(�,(r+2)j)∑
m=j+1

∣∣Cov
((

D3fk(Sk−m) − D3fk(Sk−m−1)
) ∗ Xk−j ,X

⊗2
k

)∣∣
(27)

≤ d4 3CC4M
2(r + 1)α√

n−k

(n − k + ε2)3/2 Lφ.

(b) We will use the following formula: Cov(A ∗ B,C) = Cov(A,B ⊗ C) −
Cov(A,B) ∗ E[C] + E[A] ∗ E[B ⊗ (C − E[C])]. For any integers j and m

satisfying 1 ≤ j ≤ (r + 2)j + 1 ≤ m ≤ �, according to (1) and to Lemma A.1.2,
we have ∣∣Cov

(
D3fk(Sk−m) − D3fk(Sk−m−1),Xk−j ⊗ X⊗2

k

)∣∣
≤ d4C

3C4M

(n − k + ε2)3/2 Lφϕm−j,j

and ∣∣Cov
(
D3fk(Sk−m) − D3fk(Sk−m−1),Xk−j

) ∗ E[X⊗2
k ]∣∣

≤ d4C
3C4M

3

(n − k + ε2)3/2 Lφϕm−j,0,

from which we get
�∑

j=1

∑
(r+2)j+1≤m≤�

∣∣Cov
(
D3fk(Sk−m) − D3fk(Sk−m−1),Xk−j ⊗ X⊗2

k

)∣∣

+
�∑

j=1

∑
(r+2)j+1≤m≤�

∣∣Cov
(
D3fk(Sk−m)

(28)
− D3fk(Sk−m−1),Xk−j

) ∗ E[X⊗2
k ]∣∣

≤ d4 6CC4M
3

(r + 1)(n − k + ε2)3/2 α√
n−kLφ.

Indeed, we have
�∑

j=1

∑
(r+2)j+1≤m≤�

ϕm−j,j ≤
�∑

p=r+2

�p/(r+1)�∑
j=1

ϕp,j ≤ α√
n−k

r + 1
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and
�∑

j=1

∑
(r+2)j+1≤m≤�

ϕm−j,0 ≤ α√
n−k

r + 1
.

Finally, according to (1) and to Lemma A.2.1 (since k − � − 1 ≥ n
3 ), we have

�∑
j=1

∣∣∣∣∣
�∑

m=min(�,(r+2)j)+1

E[D3fk(Sk−m) − D3fk(Sk−m−1)]

∗ E
[
Xk−j ⊗ (X⊗2

k − E[X⊗2
k ])]

∣∣∣∣∣
=

�∑
j=1

∣∣E[D3fk

(
Sk−min(�,(r+2)j)−1

)− D3fk(Sk−�−1)
]

∗ E
[
Xk−j ⊗ (X⊗2

k − E[X⊗2
k ])]∣∣

(29)

=
��/(r+2)�∑

j=1

∣∣E[D3fk

(
Sk−(r+2)j−1

)− D3fk(Sk−�−1)
]

∗ E
[
Xk−j ⊗ (X⊗2

k − E[X⊗2
k ])]∣∣

≤ d3
��/(r+2)�∑

j=1

2K3

(
A

(n − k + ε2)3/2 + 1

n

)
Lφ2CMϕj,0

≤ d34CK3M

(
Aα√

n−k

(n − k + ε2)3/2 + β√
n−k

n

)
Lφ.

4. We have
�∑

j=1

∫ 1

0
(1 − t)

∣∣Cov
(
D4fk(Sk−j−1 + tXk−j ) ∗ X⊗2

k−j ,X
⊗2
k

)∣∣dt

≤ d4
�∑

j=1

∫ 1

0
(1 − t)

3C(C4 + C5)M
2

(n − k + ε2)
3/2 Lφϕj,0 dt(30)

≤ d4 3C(C4 + C5)M
2

(n − k + ε2)
3/2 α√

n−kLφ.

A.2.6. Control of
∑�

j=1 E[D3fk(Sk−j−1) ∗ (X⊗2
k−j ⊗ Xk)]. Let us notice that

we have
�∑

j=1

E[D3fk(Sk−j−1) ∗ X⊗2
k−j ⊗ Xk] =

�∑
j=1

Cov
(
D3fk(Sk−j−1) ∗ X⊗2

k−j ,Xk

)
.
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We control this quantity as we did for

�∑
j=1

Cov
(
D3fk(Sk−j−1) ∗ Xk−j ,X

⊗2
k

)

in the previous section (we get analogous estimations).

A.2.7. Control of
∑�

j=1
∫ 1

0(1− t)2
E[D4fk(Sk−j−1 + tXk−j )∗(X⊗3

k−j ⊗Xk)]dt .

We control quantity
∑�

j=1
∫ 1

0 (1 − t)2 Cov(D4fk(Sk−j−1 + tXk−j ) ∗ X⊗3
k−j ,Xk) dt

as we did for
∑�

j=1
∫ 1

0 (1 − t)Cov(D4fk(Sk−j−1 + tXk−j ) ∗ X⊗2
k−j ,X

⊗2
k ) dt .

We obtain estimations analogous to (30).

A.2.8. Control of
∑�

j=1 E[D2fk(Sk−1) − D2fk(Sk−j−1)] ∗ E[Xk−j ⊗ Xk].
For any integer j = 1, . . . , �, we have

D2fk(Sk−1) − D2fk(Sk−j−1)

=
j∑

m=1

(
D2fk(Sk−m) − D2fk(Sk−m−1)

)

=
j∑

m=1

(
D3fk(Sk−m−1) ∗ Xk−m

+
∫ 1

0
(1 − t)D4f (Sk−m−1 + tXk−m) ∗ X⊗2

k−m dt

)
.

Moreover we have

D3fk(Sk−m−1) = D3fk(Sk−�−1) +
�∑

p=m+1

(
D3fk(Sk−p) − D3fk(Sk−p−1)

)
.

We get

�∑
j=1

E[D2fk(Sk−1) − D2fk(Sk−j−1)] ∗ E[Xk−j ⊗ Xk]

=
�∑

j=1

j∑
m=1

E

[∫ 1

0
(1 − t)D4fk(Sk−m−1 + tXk−m) ∗ X⊗2

k−m dt

]

∗ E[Xk−j ⊗ Xk]

+
�∑

j=1

j∑
m=1

E[D3fk(Sk−�−1) ∗ Xk−m] ∗ E[Xk−j ⊗ Xk]



2378 F. PÈNE

+
�∑

j=1

j∑
m=1

�∑
p=m+1

E
[
D3(fk(Sk−p) − D3fk(Sk−p−1)

) ∗ Xk−m

]

∗ E[Xk−j ⊗ Xk].

1. According to (1) and to Lemma A.1.2, we have

�∑
j=1

j∑
m=1

∣∣∣∣E
[∫ 1

0
(1 − t)D4fk(Sk−m−1 + tXk−m) ∗ X⊗2

k−m dt

]

∗ E[Xk−j ⊗ Xk]
∣∣∣∣

(31)

≤ d4
�∑

j=1

j∑
m=1

C4

(n − k + ε2)3/2 LφM2C2Mϕj,0

≤ d4 2CM3C4

(n − k + ε2)3/2 α√
n−kLφ.

2. We have
∑�

j=1
∑j

m=1 E[D3fk(Sk−�−1) ∗ Xk−m] ∗ E[Xk−j ⊗ Xk] = A1 + A2

with

A1 =
�∑

j=1

j∑
m=1

E[D3fk(Sk−�−1) ∗ Xk−m] ∗ E[Xk−j ⊗ Xk]1{�≥(r+2)m},

A2 =
�∑

j=1

j∑
m=1

E[D3fk(Sk−�−1) ∗ Xk−m] ∗ E[Xk−j ⊗ Xk]1{�<(r+2)m}.

According to (1) and to Lemma A.1.2, we have

|A1| ≤
�∑

j=1

j∑
m=1

d3CM2 C3 + C4

n − k + ε2 Lφϕ�+1−m,01{�≥(r+2)m}

≤ d3CM2 C3 + C4

n − k + ε2 Lφ

�√n−k/(r+2)�∑
m=1

(� + 1 − m)ϕ�+1−m,0

≤ d3CM2 C3 + C4

n − k + ε2 Lφ

�∑
p=�(r+1)

√
n−k/(r+2)�

pϕp,0(32)

≤ d3CM2 C3 + C4

n − k + ε2 Lφγ√
n−k.(33)
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[We use the fact that if � ≥ (r + 2)m, then we have m ≤
√

n−k
r+2 and �+ 1 −m ≥

(r+1)
√

n−k
r+2 ≥ (r + 1)m and m ≤ �+1−m

r+1 .]
On the other hand, we have

|A2| ≤ d3
�∑

j=1

j∑
m=1

2CM2C3

n − k + ε2 ϕj,01{�<(r+2)m}Lφ

≤ d3 2CM2C3

n − k + ε2

�∑
j=�√n−k/(r+2)�

jϕj,0Lφ(34)

≤ d3 2CM2C3

n − k + ε2 γ√
n−kLφ.

3. We have

�∑
j=1

j∑
m=1

(r+2)j∑
p=m+1

∣∣E[(D3fk(Sk−p) − D3fk(Sk−p−1)
) ∗ Xk−m

]

∗ E[Xk−j ⊗ Xk]
∣∣

(35)

≤
�∑

j=1

j∑
m=1

(r+2)j∑
p=m+1

d4C4M
2

(n − k + ε2)3/2 Lφ2CMϕj,0

≤ 2d4CC4M
3

(n − k + ε2)3/2 (r + 2)α√
n−kLφ

and

�∑
j=1

j∑
m=1

�∑
p=(r+2)j+1

∣∣E[(D3fk(Sk−p) − D3fk(Sk−p−1)
) ∗ Xk−m

]

∗ E[Xk−j ⊗ Xk]
∣∣

≤ d4
�∑

j=1

j∑
m=1

�∑
p=(r+2)j+1

3C4M
3

(n − k + ε2)3/2 Lφϕp−m,0(36)

≤ d4 3C4M
3

(n − k + ε2)3/2

1

(r + 1)2

�∑
p=1

p2ϕp,0Lφ

≤ d4 3C4M
3

(n − k + ε2)3/2

1

(r + 1)2 α√
n−kLφ.
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A.2.9. Control of
∑�

j=1 Cov(D2fk(Sk−j−1),Xk−j ⊗ Xk). For any integer
j = 1, . . . , �, we have

D2fk(Sk−j−1) = D2fk(Sk−�−1) +
�∑

m=j+1

(
D2fk(Sk−m) − D2fk(Sk−m−1)

)

and, for any integer m = j + 1, . . . , �:

D2fk(Sk−m) − D2fk(Sk−m−1)

= D3fk(Sk−m−1) ∗ Xk−m +
∫ 1

0
(1 − t)D4f (Sk−m−1 + tXk−m) ∗ X⊗2

k−m dt

= D3fk(Sk−�−1) ∗ Xk−m +
�∑

p=m+1

(
D3fk(Sk−p) − D3fk(Sk−p−1)

) ∗ Xk−m

+
∫ 1

0
(1 − t)D4f (Sk−m−1 + tXk−m) ∗ X⊗2

k−m dt.

Therefore, we have

�∑
j=1

Cov
(
D2fk(Sk−j−1),Xk−j ⊗ Xk

)

=
�∑

j=1

Cov
(
D2fk(Sk−�−1),Xk−j ⊗ Xk

)

+
�∑

j=1

�∑
m=j+1

Cov
(∫ 1

0
(1 − t)D4fk(Sk−m−1 + tXk−m)X⊗2

k−m dt,

Xk−j ⊗ Xk

)

+
�∑

j=1

�∑
m=j+1

Cov
(
D3fk(Sk−�−1) ∗ Xk−m,Xk−j ⊗ Xk

)
1{�<(r+2)m}

+
�∑

j=1

�∑
m=j+1

Cov
(
D3fk(Sk−�−1) ∗ Xk−m,Xk−j ⊗ Xk

)
1{�≥(r+2)m}

+
�∑

j=1

�∑
m=j+1

min(�,(r+2)m)∑
p=m+1

Cov
((

D3fk(Sk−p) − D3fk(Sk−p−1)
)

∗ Xk−m,Xk−j ⊗ Xk

)
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+
�∑

j=1

�∑
m=j+1

Cov
((

D3fk

(
Sk−(r+2)m−1

)− D3fk(Sk−�−1)
)

∗ Xk−m,Xk−j ⊗ Xk

)
1{�≥(r+2)m+1}.

Let us control each term of the right-hand member of this identity.

1. [Control of
∑�

j=1 Cov(D2fk(Sk−�−1),Xk−j ⊗ Xk).]
According to (1) and to Lemma A.1.2, we have

�∑
j=��/(r+2)�+1

∣∣Cov
(
D2fk(Sk−�−1),Xk−j ⊗ Xk

)∣∣

≤
�∑

j=��/(r+2)�+1

(∣∣Cov
(
D2fk(Sk−�−1) ∗ Xk−j ,Xk

)∣∣
+ |E[D2fk(Sk−�−1)] ∗ E[Xk−j ⊗ Xk]|)

≤
�∑

j=��/(r+2)�+1

d2 4C(C2 + C3)M√
n − k + ε2

Lφϕj,0

and

��/(r+2)�∑
j=1

∣∣Cov
(
D2fk(Sk−�−1),Xk−j ⊗ Xk

)∣∣

≤
��/(r+2)�∑

j=1

d2 C(C2 + C3)√
n − k + ε2

Lφϕ�+1−j,j .

Let us notice that if j ≤ � �
r+2�, then we have (r + 2)j ≤ � and so j = (r+1)j

r+1 ≤
�−j+1
r+1 and � + 1 − j ≥ � − � �

r+2� + 1 ≥ r+1
r+2

√
n − k ≥

√
n−k

r+2 . Therefore,
we have

�∑
j=1

∣∣Cov
(
D2fk(Sk−�−1),Xk−j ⊗ Xk

)∣∣
(37)

≤ d2 5C(C2 + C3)M√
n − k + ε2

δ√
n−kLφ.

2. [Control of
∑�

j=1
∑�

m=j+1 Cov(
∫ 1

0 (1 − t)D4fk(Sk−m−1 + tXk−m) ∗ X⊗2
k−m dt,

Xk−j ⊗ Xk).]
Let j and m be two integers satisfying 1 ≤ j ≤ j + 1 ≤ m ≤ �.
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(a) If m ≤ (r + 2)j , then we have∣∣∣∣Cov
(∫ 1

0
(1 − t)D4fk(Sk−m−1 + tXk−m) ∗ (X⊗2

k−m ⊗ Xk−j ) dt,Xk

)∣∣∣∣
+
∣∣∣∣E
[∫ 1

0
(1 − t)D4fk(Sk−m−1 + tXk−m) ∗ X⊗2

k−m dt

]

∗ E[Xk−j ⊗ Xk]
∣∣∣∣

≤ d4C
3(C4 + C5)M

3

(n − k + ε2)3/2 Lφϕj,0.

(b) If m > (r + 2)j , then we have∣∣∣∣Cov
(∫ 1

0
(1 − t)D4fk(Sk−m−1 + tXk−m) ∗ X⊗2

k−m dt,Xk−j ⊗ Xk

)∣∣∣∣
≤ d4C

2(C4 + C5)M
2

(n − k + ε2)3/2 Lφϕm−j,j .

Therefore we have
�∑

j=1

�∑
m=j+1

∣∣∣∣Cov
(∫ 1

0
(1 − t)D4fk(Sk−m−1 + tXk−m) ∗ X⊗2

k−m dt,Xk−j ⊗ Xk

)∣∣∣∣

≤ K̃0

(n − k + ε2)3/2

(�√n−k�∑
p=1

pϕp,0 +
�√n−k �∑

p=1

�p/(r+1)�∑
j=1

ϕp,j

)
Lφ(38)

≤ 2K̃0α
√

n−k

(n − k + ε2)3/2 Lφ,

for some K̃0 only depending on d , C, C4, C5, M and r .

3. We have
�∑

j=1

�∑
m=j+1

∣∣Cov
(
D3fk(Sk−�−1) ∗ Xk−m,Xk−j ⊗ Xk

)
1{�<(r+2)m}

∣∣

≤ d3 K̃1

n − k + ε2

( �√n−k �∑
p=�√n−k/(r+2)2�

pϕp,0

(39)

+
�√n−k �∑

p=�(r+1)
√

n−k/(r+2)2�

�p/(r+1)�∑
j=1

ϕp,j

)
Lφ

≤ d3 2K̃1γ
√

n−k

n − k + ε2 Lφ,
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for some K̃1 only depending on d , C, M and r . Indeed, let j and m be two
integers satisfying 1 ≤ j ≤ j + 1 ≤ m ≤ �.

(a) If � < (r + 2)m and m ≤ (r + 2)j , then we have∣∣Cov
(
D3fk(Sk−�−1) ∗ (Xk−m ⊗ Xk−j ),Xk

)∣∣≤ d3C
2(C3 + C4)

n − k + ε2 LφM2ϕj,0

and

|E[D3fk(Sk−�−1) ∗ Xk−m] ∗ E[Xk−j ⊗ Xk]| ≤ d3 C3M

n − k + ε2 C2Mϕj,0Lφ.

(b) If � < (r + 2)m and m > (r + 2)j , then we have∣∣Cov
(
D3fk(Sk−�−1) ∗ Xk−m,Xk−j ⊗ Xk

)∣∣≤ d3C
2(C3 + C4)M

n − k + ε2 Lφϕm−j,j .

4. We have
�∑

j=1

�∑
m=j+1

Cov
(
D3fk(Sk−�−1) ∗ Xk−m,Xk−j ⊗ Xk

)
1{�≥(r+2)m}

=
�∑

j=1

�∑
m=j+1

E[D3fk(Sk−�−1)] ∗ E[Xk−m ⊗ Xk−j ⊗ Xk]1{�≥(r+2)m}

+
�∑

j=1

�∑
m=j+1

Cov
(
D3fk(Sk−�−1),Xk−m ⊗ Xk−j ⊗ Xk

)
1{�≥(r+2)m}

−
�∑

j=1

�∑
m=j+1

E[D3fk(Sk−�−1) ∗ Xk−m] ∗ E[Xk−j ⊗ Xk]1{�≥(r+2)m}.

(a) We have
�∑

j=1

�∑
m=j+1

|E[D3fk(Sk−�−1)] ∗ E[Xk−m ⊗ Xk−j ⊗ Xk]|

≤ d3K3

(
A

(n − k + ε2)3/2 + 1

n

)
Lφ

×
�∑

j=1

�∑
m=j+1

|E[Xk−m ⊗ Xk−j ⊗ Xk]|∞.

Since we have
�∑

j=1

(r+2)j∑
m=j+1

|E[Xk−m ⊗ Xk−j ⊗ Xk]|∞ ≤
�∑

j=1

(r+2)j∑
m=j+1

2CM2ϕj,0

≤ 2CM2
�∑

j=1

(r + 1)jϕj,0
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and

�∑
j=1

�∑
m=(r+2)j+1

|E[Xk−m ⊗ Xk−j ⊗ Xk]|∞ ≤
�∑

j=1

�∑
m=(r+2)j+1

2CMϕm−j,j

≤ 2CM

�∑
p=1

�p/(r+1)�∑
j=1

ϕp,j ,

we get

�∑
j=1

�∑
m=j+1

|E[D3fk(Sk−�−1)] ∗ E[Xk−m ⊗ Xk−j ⊗ Xk]|
(40)

≤ d34(r + 1)CM2K3

(
Aα√

n−k

(n − k + ε2)3/2 + β√
n−k

n

)
Lφ.

(b) For the two other terms, we write

∣∣Cov
(
D3fk(Sk−�−1),Xk−m ⊗ Xk−j ⊗ Xk

)∣∣≤ d3C
C3 + C4

n − k + ε2 Lφϕ�+1−m,m

and

|E[D3fk(Sk−�−1) ∗ Xk−m] ∗ E[Xk−j ⊗ Xk]|
≤ d3CM2 C3 + C4

n − k + ε2 Lφϕ�+1−m,0,

according to (1) and to Lemma A.1.2. Let us notice that, if � ≥ (r + 2)m, then

we have m ≤
√

n−k
r+2 and so �+1−m ≥ (r+1)

√
n−k

r+2 ≥ (r +1)m and m ≤ �+1−m
r+1 .

Hence, we have

�∑
j=1

�∑
m=j+1

ϕ�+1−m,m1{�≥(r+2)m}

≤
�∑

m=2

(m − 1)ϕ�+1−m,m1{�≥(r+2)m}

≤
�√n−k/(r+2)�∑

m=2

� + 1 − m

r + 1
max

j≤(�+1−m)/(r+1)
ϕ�+1−m,j

≤
�∑

p=�(r+1)
√

n−k/(r+2)�
p max

j≤p/(r+1)
ϕp,j ≤ γ√

n−k.
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Therefore, we have

�∑
j=1

�∑
m=j+1

∣∣Cov
(
D3fk(Sk−�−1),Xk−m ⊗ Xk−j ⊗ Xk

)∣∣1{�≥(r+2)m}

(41)

≤ d3C
(C3 + C4)γ√

n−k

n − k + ε2 Lφ.

In the same way, we get

�∑
j=1

�∑
m=j+1

|E[D3fk(Sk−�−1) ∗ Xk−m] ∗ E[Xk−j ⊗ Xk]|1{�≥(r+2)m}

(42)

≤ d3CM2 (C3 + C4)γ
√

n−k

n − k + ε2 Lφ.

5. We have

�∑
j=1

�∑
m=j+1

min(�,(r+2)m)∑
p=m+1

∣∣Cov
((

D3fk(Sk−p) − D3fk(Sk−p−1)
)

∗ Xk−m,Xk−j ⊗ Xk

)∣∣
(43)

≤ K̃3

(n − k + ε2)3/2 Lφ

(�√n−k�∑
p=1

p2ϕp,0 +
�√n−k �∑

p=1

p

�p/(r+1)�∑
j=1

ϕp,j

)

≤ K̃ ′
3α

√
n−k

(n − k + ε2)3/2 Lφ,

for some K̃3 and K̃ ′
3 only depending on d , C, C4, M and r . Indeed, let j , m

and p be three integers satisfying 1 ≤ j ≤ j + 1 ≤ m ≤ m + 1 ≤ p ≤ �.

(a) If we have p ≤ (r + 2)m and m ≤ (r + 2)j , then we have∣∣Cov
((

D3fk(Sk−p) − D3fk(Sk−p−1)
) ∗ (Xk−m ⊗ Xk−j ),Xk

)∣∣
(44)

≤ d4C
3C4

(n − k + ε2)3/2 LφM3ϕj,0

and ∣∣E[(D3fk(Sk−p) − D3fk(Sk−p−1)
) ∗ Xk−m

] ∗ E[Xk−j ⊗ Xk]
∣∣

(45)

≤ d4C
3C4

(n − k + ε2)3/2 LφM3ϕj,0.
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(b) On the other hand, if p ≤ (r + 2)m and m ≥ (r + 2)j + 1, then we have∣∣Cov
((

D3fk(Sk−p) − D3fk(Sk−p−1)
) ∗ Xk−m,Xk−j ⊗ Xk

)∣∣
≤ d4C

3C4

(n − k + ε2)3/2 LφM2ϕm−j,j .

We conclude with the use of the following formulas:

�∑
j=1

(r+2)j∑
m=j+1

(r+2)m∑
p=m+1

ϕj,0 ≤ (r + 2)3
�∑

j=1

j2ϕj,0

and

�∑
j=1

�∑
m=(r+2)j+1

(r+2)m∑
p=m+1

ϕm−j,j =
�∑

j=1

�∑
m=(r+2)j+1

(r + 1)mϕm−j,j

≤ (r + 2)

�∑
p=1

�p/(r+1)�∑
j=1

pϕp,j .

6. Now we control

�∑
j=1

�∑
m=j+1

Cov
((

D3fk(Sk−(r+2)m−1) − D3fk(Sk−�−1)
)

∗ Xk−m,Xk−j ⊗ Xk

)
1{�≥(r+2)m+1}.

If � ≥ (r + 2)m + 1, then we have

D3fk

(
Sk−(r+2)m−1

)− D3fk(Sk−�−1)

=
�∑

p=(r+2)m+1

(
D3fk(Sk−p) − D3fk(Sk−p−1)

)
.

We will use the following formula:

Cov(A ∗ B,C ⊗ D) = Cov(A,B ⊗ C ⊗ D)

− E[A ∗ B] ∗ E[C ⊗ D] + E[A] ∗ E[B ⊗ C ⊗ D].

(a) If � ≥ p ≥ (r + 2)m + 1, then we have∣∣Cov
(
D3fk(Sk−p) − D3fk(Sk−p−1),Xk−m ⊗ Xk−j ⊗ Xk

)∣∣
≤ d4C

3C4M

(n − k + ε2)3/2 Lφϕp−m,m
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and ∣∣E[(D3fk(Sk−p) − D3fk(Sk−p−1)
) ∗ Xk−m

] ∗ E[Xk−j ⊗ Xk]
∣∣

≤ d4C
3C4M

3

(n − k + ε2)3/2 Lφϕp−m,0.

The sum of these quantities over (j,m,p) satisfying 1 ≤ j ≤ j + 1 ≤ m and
(r + 2)m + 1 ≤ p ≤ � is less than

K̃4

(n − k + ε2)3/2 Lφ

(�√n−k �∑
p=1

p2ϕp,0 +
�√n−k �∑

p=1

p

�p/(r+1)�∑
j=1

ϕp,j

)
.

Thus we have

�∑
j=1

�∑
m=j+1

∣∣Cov
(
D3fk

(
Sk−(r+2)m−1

)

− D3fk(Sk−�−1),Xk−m ⊗ Xk−j ⊗ Xk

)∣∣1{�≥(r+2)m+1}(46)

≤ 2
K̃4α

√
n−k

(n − k + ε2)3/2 Lφ

and

�∑
j=1

�∑
m=j+1

∣∣E[(D3fk

(
Sk−(r+2)m−1

)

− D3fk(Sk−�−1)
) ∗ Xk−m

]
(47)

∗ E[Xk−j ⊗ Xk]
∣∣1{�≥(r+2)m+1}

≤ 2
K̃4α√

n−k

(n − k + ε2)3/2 Lφ.

(b) Let us now control the following quantity:

�∑
j=1

�∑
m=j+1

E
[
D3fk

(
Sk−(r+2)m−1

)− D3fk(Sk−�−1)
]

∗ E[Xk−m ⊗ Xk−j ⊗ Xk]1{�≥(r+2)m+1}.

If � ≥ (r + 2)m + 1 and m ≥ (r + 2)j + 1, we have∣∣E[D3fk

(
Sk−(r+2)m−1

)] ∗ E[(Xk−m − E[Xk−m]) ⊗ Xk−j ⊗ Xk]
∣∣

≤ d3K3

(
A

(n − k + ε2)3/2 + 1

n

)
Lφ2CMϕm−j,j .
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If � ≥ (r + 2)m + 1 and m ≤ (r + 2)j , we have∣∣E[D3fk

(
Sk−(r+2)m−1

)] ∗ E[Xk−m ⊗ Xk−j ⊗ (Xk − E[Xk])]
∣∣

≤ d3K3

(
A

(n − k + ε2)3/2 + 1

n

)
LφC3M2ϕj,0.

Therefore, we have

�∑
j=1

�∑
m=j+1

∣∣E[D3fk

(
Sk−(r+2)m−1

)] ∗ E[Xk−m ⊗ Xk−j ⊗ Xk]1{�≥(r+2)m+1}
∣∣

≤ d3K̃6

(
A

(n − k + ε2)3/2 + 1

n

)
(48)

× Lφ

(�√n−k �∑
p=1

�p/(r+1)�∑
j=1

ϕp,j +
�√n−k �∑

p=1

pϕp,0

)

≤ d3K̃6

(
Aα√

n−k

(n − k + ε2)3/2 + β√
n−k

n

)
Lφ.

In the same way, we get

�∑
j=1

�∑
m=j+1

∣∣E[D3fk(Sk−�−1)
] ∗ E[Xk−m ⊗ Xk−j ⊗ Xk]1{�≥(r+2)m+1}

∣∣
(49)

≤ d3K̃6

(
Aα√

n−k

(n − k + ε2)3/2 + β√
n−k

n

)
Lφ.

This completes the proof of Lemma A.2.3. �

A.3. End of the proof of Proposition A.1. Let an integer n ≥ 9n0 and a real
number A ≥ M be given. Let us suppose that property (Pn(A)) is satisfied. Let a
real number ε ≥ 1 be given.

Let us recall that we have

E[φ(Sn + εY )] − E
[
φ
(
Sn0−1 + Tn0−1,n + εY

)]= n∑
k=n0

�k(fφ,k,n,ε),

with Tn0−1,n :=∑n
i=n0

Yi . Then, according to Proposition A.1.3, we have

n−�n/3�−1∑
k=n0

|�k(fφ,k,n,ε)| ≤ K ′′
1 Lφ,

where K ′′
1 only depends on (d,C,M, r, (ϕp,l)p,l).
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On the other hand, according to Lemma A.2.2, we have

n∑
k=n−�n/3�

|�2,k(fφ,k,n,ε)| ≤ LφK ′′
2

(
1 + A

∑
l≥0

1

(l + ε2)3/2

)
.(50)

Moreover, according to Lemma A.2.3, for any integer k = n−�n
3�, . . . , n, we have

|�1,k(fφ,k,n,ε)| ≤ LφK̃

(
Aα√

n−k

(n − k + ε2)3/2 + β√
n−k

n
+ Aγ√

n−k

n − k + ε2

+ Aδ√
n−k√

n − k + ε2
+ ϕ�√n−k�+1,0

)
,

with αm = 1 +∑�m�
p=1 pζp , βm = 1 +∑�m�

p=1 ζp , γm =∑�m�
p=�m/(r+2)2� ζp and δm =∑+∞

p=�m/(r+2)�+1
ζp

p
with ζp := p maxj=0,...,�p/(r+1)� ϕp,j . We control indepen-

dently each sum of these terms over k ∈ {n − �n
3�, . . . , n}.

1. Control of the first term:
n∑

k=n−�n/3�

Aα√
n−k

(n − k + ε2)3/2

= A

�n/3�∑
l=0

1 +∑�√l�
p=1 pζp

(l + ε2)3/2

(51)

≤ A

((∑
l≥0

1

(l + ε2)3/2

)
+

√
n∑

p=1

( ∑
l≥p2

1

(l + ε2)3/2

)
pζp

)

≤ A

((∑
l≥0

1

(l + ε2)3/2

)
+ ∑

p≥1

2√
p2 + ε2 − 1

pζp

)
.

2. Control of the second term:
n∑

k=n−�n/3�

β√
n−k

n
≤ 1 + ∑

p≥1

ζp.(52)

3. Control of the third term:

n∑
k=n−�n/3�

Aγ√
n−k

n − k + ε2 ≤
�n/3�∑
l=0

A

l + ε2

�√l�∑
p=�√l/(r+2)2�

ζp

≤ A

�√n�∑
p=0

p2(r+2)4∑
l=p2

1

l + ε2 ζp.



2390 F. PÈNE

Therefore, we have
n∑

k=n−�n/3�

Aγ√
n−k

n − k + ε2 ≤ A
∑
p≥0

ln
(

p2(r + 2)4 + ε2

p2 − 1 + ε2

)
ζp.(53)

4. Control of the fourth term:
n∑

k=n−�n/3�

Aδ√
n−k√

n − k + ε2
≤ A

�n/3�∑
l=0

1√
l + ε2

+∞∑
p=�√l/(r+2)�+1

ζp

p

≤ A
∑
p≥1

p2(r+2)2∑
l=0

1√
l + ε2

ζp

p

≤ A
∑
p≥1

2
(√

p2(r + 2)2 + ε2 −
√

ε2 − 1
)ζp

p
.

Hence, we have
n∑

k=n−�n/3�

Aδ√
n−k√

n − k + ε2
≤ A

∑
p≥1

2(r + 2)2(1 + p2)√
p2 + ε2

ζp

p
.(54)

5. Control of the fifth term:
n∑

k=n−�n/3�
ϕ�√n−k �+1,0 =

�n/3�∑
l=0

ϕ�√l �+1,0

≤ ∑
p≥0

#
{
l :
⌊√

l
⌋= p

}
ϕp+1,0,

from which we get
n∑

k=n−�n/3�
ϕ�√n−k �+1,0 ≤ ∑

p≥0

(2p + 1)ϕp+1,0.(55)
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