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ATLAS MODELS OF EQUITY MARKETS

BY ADRIAN D. BANNER, ROBERT FERNHOLZ AND IOANNIS KARATZAS

INTECH, INTECH and Columbia University

Atlas-type models are constant-parameter models of uncorrelated stocks
for equity markets with a stable capital distribution, in which the growth rates
and variances depend on rank. The simplest such model assigns the same,
constant variance to all stocks; zero rate of growth to all stocks but the small-
est; and positive growth rate to the smallest, the Atlas stock. In this paper we
study the basic properties of this class of models, as well as the behavior of
various portfolios in their midst. Of particular interest are portfolios that do
not contain the Atlas stock.

1. Introduction. Size is one of the most important descriptive characteristics
of assets: one can understand a great deal about an equity market by observing,
and making sense of, the continual ebb and flow of small-, medium- and large-
capitalization stocks in its midst. Thus it is important to have models which de-
scribe (if not explain) this flow, and which exhibit stability properties for the re-
sulting distribution of capital that are in agreement with actual observation. This
paper studies models of this type and analyzes portfolio performance in their con-
text.

The simplest such model is the Atlas model for equity markets, introduced in
Example 5.3.3 of [2]. This is a constant-coefficient model for the values (capi-
talizations) of stocks represented by their relative rank and driven by independent
Brownian motions. It assigns the same, constant volatility to all stocks; zero growth
rate to all stocks but the smallest; and positive growth rate to the smallest stock.
Because it is responsible for all the growth (or support) in the market, this smallest
stock is then called the Atlas stock.

Somewhat more precisely: with g > 0, σ > 0 given constants, with independent
Brownian motions W1(·), . . . ,Wn(·), and with Xi(t) representing the capitaliza-
tion at time t of the stock with index (name) i, the Atlas model postulates the
dynamics

d(logXi(t)) = γi(t) dt + σi(t) dWi(t), i = 1, . . . , n,(1.1)

where the growth rates and volatilities are specified by

γi(t) = ng · 1{Xi(t)=Xpt (n)(t)}, σi(t) = σ.(1.2)
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We are using here the “reverse order-statistics” notation

max
1≤i≤n

Xi(t) =: X(1)(t) ≥ X(2)(t) ≥
· · · ≥ X(n−1)(t) ≥ X(n)(t) := min

1≤i≤n
Xi(t)

(1.3)

for the capitalizations of stocks ranked in descending order, from largest to small-
est; we consider also the random permutation (pt (1), . . . , pt (n)) of (1, . . . , n), for
which

Xpt(k)(t) = X(k)(t), pt (k) < pt(k + 1) if X(k)(t) = X(k+1)(t)(1.4)

hold with k = 1, . . . , n. Roughly speaking, this means that pt(k) is the name (in-
dex) of the stock with the kth-largest relative capitalization at time t , and that ties
are resolved by resorting to the lowest index.

More generally, suppose we are given real numbers γ , g1, . . . , gn,

σ1 > 0, . . . , σn > 0 such that

g1 < 0, g1 + g2 < 0, . . . , g1 + · · · + gn−1 < 0,

g1 + · · · + gn = 0.
(1.5)

Corresponding to these parameters, the general model considered in this paper
postulates the dynamics of (1.1) for the stock capitalizations X1(t), . . . ,Xn(t), but
now with growth rates and volatilities given by

γi(t) = γ +
n∑

k=1

gk1{Xi(t)=Xpt (k)(t)}, σi(t) =
n∑

k=1

σk1{Xi(t)=Xpt (k)(t)}(1.6)

in place of (1.2). In other words, this more general model specifies γ + gk as the
growth rate, and σk as the volatility, for the stock with rank k at any given time.
We shall refer to the model of (1.1), (1.6) as the first-order model.

Clearly

γ = g > 0, gk = −g for k = 1, . . . , n − 1 and gn = (n − 1)g,(1.7)

in the case of the Atlas model of (1.1), (1.2). We shall call generalized Atlas model
a model of the type (1.1), (1.6) with parameters that satisfy (1.7), though with
possibly different volatilities.

All these models have strictly nondegenerate volatility structures and bounded
drift coefficients, so they admit a (unique) equivalent martingale measure on any
given time-horizon; thus there are no relative arbitrage opportunities for such
models, of the type encountered in [3, 4].

The first question that arises for the first-order model of (1.1), (1.6) is the rig-
orous formulation of, and the study of existence/uniqueness of solution to, the
resulting system of stochastic differential equations. This task we undertake in
Section 2, whereas in Section 3 and the Appendix we study the behavior of the
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resulting “ranked capitalization” (reverse-order-statistics) processes of (1.3). Sec-
tion 4 deals with ergodic properties of these processes. Portfolios in the context
of the model (1.1), (1.6) are introduced in Section 5, where we also study the
growth rates of a few relatively easy-to-implement investment rules. Some de-
tailed comparisons of long-term-growth performance are carried out in Section 6.
We conclude with considerations of diversity in Section 7, where some elementary
computations show that models of this sort capture very well the intuitive notion
that “no stock can be allowed to dominate the entire market with anything but ex-
tremely low probability”—despite the fact that such models fail to be diverse in a
strict, almost sure sense.

2. The model. Let us start by constructing a diffusion process corresponding
to the stochastic equation of (1.1), (1.6). We consider a collection {Q(i)

k }1≤i,k≤n of
polyhedral domains in R

n with the following property:

y = (y1, . . . , yn) ∈ Q(i)
k means that yi is ranked kth among y1, . . . , yn.(2.1)

We resolve ties by resorting to the lowest index; for instance, we set

Q(1)
1 = {y ∈ R

n|y1 ≥ yj ∀ j = 2, . . . , n},
Q(1)

n = {y ∈ R
n|y1 < yj ∀ j = 2, . . . , n}

and

Q(1)
k+1 =

{
y ∈ R

n
∣∣∣y1 < min

1≤r≤k
yjr for some j1, . . . , jk,

and y1 ≥ y� ∀� /∈ {j1, . . . , jk}
}

for k = 1, . . . , n − 2. Clearly, the collection {Q(i)
k }1≤i≤n is a partition of R

n for
each fixed k; and{

Q(i)
k

}
1≤k≤n is a partition of R

n for each fixed i.(2.2)

Consider now real constants γ,σ1 > 0, . . . , σn > 0 and g1, . . . , gn satisfying the
conditions of (1.5). We shall look at the system of stochastic differential equations

dYi(t) =
(

n∑
k=1

gk1Q(i)
k

(Y (t)) + γ

)
dt

+
n∑

k=1

σk1Q(i)
k

(Y (t)) · dWi(t), Yi(0) = ȳi ,

(2.3)

for the n-dimensional process Y(·) = (Y1(·), . . . , Yn(·)), with given initial condi-
tion ȳ = (ȳ1, . . . , ȳn). In other words: as long as Y(·) is in the polyhedron Q(i)

k ,
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equation (2.3) postulates that the ith-coordinate process Yi(·) evolve like a Brown-
ian motion with drift gk + γ and variance σ 2

k , for each i = 1, . . . , n.
The theory of Bass and Pardoux [1] establishes that the system of stochastic

differential equations (2.3) has a weak solution, which is unique in the sense of the
probability law. Once this solution has been constructed, we can look at the vector
of processes X(·) = (X1(·), . . . ,Xn(·)) defined by

Xi(t) := eYi(t), i = 1, . . . , n,(2.4)

as the rigorous interpretation of the first-order model of (1.1), (1.6). With this in-
terpretation Yi(t) represents the log-capitalization of the ith company at time t .

Now let us observe from (2.3), the remark preceding (2.2), and (1.5), that we
have

n∑
i=1

Yi(t) = Y + nγ t +
n∑

k=1

σkBk(t)

(2.5)

where Bk(t) :=
n∑

i=1

∫ t

0
1

Q(i)
k

(Y (s)) dWi(s)

and Y = ∑n
i=1 Yi(0). The resulting processes B1(·), . . . ,Bn(·) are continuous local

martingales with quadratic (cross-) variations 〈Bk,B�〉(t) equal to
n∑

i=1

n∑
j=1

∫ t

0
1

Q(i)
k

(Y (s))1
Q

(j)
�

(Y (s)) d〈Wi,Wj 〉(s)

=
n∑

i=1

∫ t

0
1

Q(i)
k

(Y (s))1
Q(i)

�

(Y (s)) ds = δk�t.

Lévy’s characterization (e.g., Theorem 3.3.16 in [8]) identifies the processes
B1(·), . . . ,Bn(·) as independent standard Brownian motions; then the strong law
of large numbers in conjunction with (2.5) gives

lim
T →∞

1

T

n∑
i=1

Yi(T ) = nγ a.s.(2.6)

In the Appendix we shall strengthen this result, and show that in fact

lim
T →∞

1

T
logXi(T ) = lim

T →∞
Yi(T )

T
= γ(2.7)

holds a.s. for every i = 1, . . . , n.

REMARK 2.1 (Coherence). Denoting by X(t) := X1(t)+· · ·+Xn(t) the total
market capitalization and by

µi(t) := Xi(t)

X(t)
, i = 1, . . . , n,(2.8)
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the relative capitalizations of the individual companies, we see from (2.7) that

lim
T →∞

1

T
logX(T ) = max

1≤i≤n

(
lim

T →∞
1

T
logXi(T )

)
= γ,

and thus also

lim
T →∞

1

T
logµi(T ) = 0 ∀ i = 1, . . . , n,

holds a.s. In the terminology of Fernholz ([2], page 26), the model of (2.3),
(2.4)—or equivalently, that of (1.1), (1.6)—is coherent.

REMARK 2.2 (Taking turns as Atlas). From (2.3), (2.7) and the strong law of
large numbers for Brownian motion, it follows that

lim
T →∞

n∑
k=1

gk

(
1

T

∫ T

0
1

Q(i)
k

(Y (t)) dt

)
= 0 holds a.s.

for every i = 1, . . . , n. Now suppose the parameters of the model satisfy the con-
ditions γ = g > 0, g1 = · · · = gn−1 = −g, gn = (n− 1)g of (1.7) for a generalized
Atlas model; then

n∑
k=1

gk

(
1

T

∫ T

0
1

Q(i)
k

(Y (t)) dt

)
= g

(
n

T

∫ T

0
1

Q(i)
n

(Y (t)) dt − 1
)
,

and for every i = 1, . . . , n we obtain

lim
T →∞

1

T

∫ T

0
1

Q(i)
n

(Y (t)) dt = 1

n
a.s.(2.9)

In other words: “each stock acts as Atlas roughly (1/n)th of the time.” It is then
natural to conjecture that we should have

lim
T →∞

1

T

∫ T

0
1

Q(i)
k

(Y (t)) dt = 1

n
a.s.(2.10)

for every k = 1, . . . , n, that is, not just for k = n as in (2.9).

As it turns out, this property holds for the general first-order model; in particular,
each stock spends asymptotically the same amount of time in every rank.

PROPOSITION 2.3. The solution of the system (2.3) of stochastic differential
equations satisfies the ergodic relation (2.10) for every k = 1, . . . , n and every
i = 1, . . . , n.

PROOF. Let �n denote the symmetric group of permutations of {1, . . . , n}.
For each p ∈ �n, let Rp := ⋂n

k=1 Q
(p(k))
k ; the set Rp consists of all points
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y = (y1, . . . , yn) ∈ R
n such that yp(k) is ranked kth among y1, . . . , yn for all

k = 1, . . . , n (with ties once again resolved in favor of the lowest index). In partic-
ular,

yp(1) ≥ yp(2) ≥ · · · ≥ yp(n) if y ∈ Rp.(2.11)

Clearly {Rp}p∈�n is a partition of R
n. Let R◦

p denote the interior of the polyhe-
dron Rp , and set R◦ := ⋃

p∈�n
R◦

p . The exceptional set Re := R
n\R◦ can also be

described as {(y1, . . . , yn) ∈ R
n|yi = yj for some i 
= j}. Furthermore, any p ∈ �n

acts as a linear transformation of R
n via p(y1, . . . , yn) := (yp−1(1), . . . , yp−1(n));

under this action, we have

y ∈ R◦
p ⇐⇒ p−1y ∈ R◦

1 := {(y1, . . . , yn) ∈ R
n|y1 > y2 > · · · > yn}.(2.12)

Define

G(y) := ∑
p∈�n

1Rp(y)
(
gp−1(1), . . . , gp−1(n)

)t
,

S(y) := ∑
p∈�n

1Rp(y)diag
(
σp−1(1), . . . , σp−1(n)

)
.

Set v := (1,1, . . . ,1)t and note that y ∈ Rp ⇐⇒ y + αv ∈ Rp for all α ∈ R, as
ranks of coordinates are preserved by adding scalar multiples of v. It follows that

G(y + αv) = G(y) and S(y + αv) = S(y) for all y ∈ R
n,α ∈ R.(2.13)

We also have two crucial properties which follow directly from (2.12):

G(py) = pG(y), S(py) = pS(y) for all p ∈ �n,y ∈ R◦.(2.14)

Equations (2.3) and (2.5) may be rewritten in this setting as

dY (t) = (
G(Y(t)) + γ v

)
dt + S(Y (t)) dW(t), Y (0) = ȳ,(2.3)′

d

(
n∑

i=1

Yi(t)

)
= nγ dt + vtS(Y (t)) dW(t),(2.5)′

respectively. Now define the process

Ỹ (t) := Y(t) −
(

1

n

n∑
i=1

Yi(t)

)
v, 0 ≤ t < ∞,

which lives in the subspace � := {(y1, . . . , yn) ∈ R
n|y1 +· · ·+yn = 0} of R

n with
normal vector v. From (2.3)′ and (2.5)′, we have

dỸ (t) = G(Y(t)) dt + S̃(Y (t)) dW(t), Ỹ (0) = ỹ,

where ỹ := ȳ − ( 1
n

∑n
i=1 ȳi)v and S̃(y) := S(y)− 1

n
vvtS(y) for all y ∈ R

n. In fact,

dỸ (t) = G(Ỹ (t)) dt + S̃(Ỹ (t)) dW(t), Ỹ (0) = ỹ,(2.15)
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because of (2.13). We note that if x ∈ �, then for any y ∈ R
n,

xt S̃(y)x = xtS(y)x − 1

n
xtvvtS(y)x = xtS(y)x ≥ σmin‖x‖2,

where we have set σmin := min{σ1, . . . , σn} > 0 and used the fact that xtv ≡
x · v = 0. This means that the covariance matrix in (2.15) is uniformly nonde-
generate when restricted to the subspace �. In particular, the theory of Bass and
Pardoux [1] once again shows that the �-valued solution Ỹ (·) of (2.15) is unique
in the sense of the probability law.

We now claim that

y · G(y) ≤ c‖y‖ holds for all y ∈ �,(2.16)

where c < 0 is a constant depending only on n and g1, . . . , gn. Indeed, fix y ∈ �.
There exists p ∈ �n such that y ∈ Rp , so

y · G(y) =
n∑

i=1

yigp−1(i) =
n∑

k=1

yp(k)gk

= yp(n)

n∑
m=1

gm +
n−1∑
k=1

(
yp(k) − yp(k+1)

) k∑
m=1

gm,

(2.17)

where the final equality follows by summation by parts. From (1.5), we have∑n
m=1 gm = 0 and

∑k
m=1 gm < 0 for all k = 1, . . . , n − 1, and (2.11) gives yp(k) −

yp(k+1) ≥ 0 for the same range of k. Set c = n−1/2 max1≤k≤n−1{∑k
m=1 gm} < 0,

and note that (2.11) and the fact that y ∈ � imply that yp(1) ≥ 0, yp(n) ≤ 0
and yp(1) ≥ yi for all i = 1, . . . , n. In particular, ‖y‖2 ≤ nmax{y2

p(1), y
2
p(n)} ≤

n(yp(1) − yp(n))
2. Finally, (2.17) gives

y · G(y) =
n−1∑
k=1

(
yp(k) − yp(k+1)

) k∑
m=1

gm ≤ c
√

n

n−1∑
k=1

(
yp(k) − yp(k+1)

)
= c

√
n
(
yp(1) − yp(n)

) ≤ c‖y‖.
In the Appendix, it is shown that (2.16) implies that the process

Ỹ (·) is recurrent with respect to B ∩ �,

for some ball B ⊂ R
n centered at 0.

(2.18)

Theorem 5.1 on page 121 of [11] guarantees that the process Ỹ (·) of (2.15) ad-
mits a stationary distribution µ, such that for any bounded, measurable function
f :� → R we have

lim
T →∞

1

T

∫ T

0
f (Ỹ (t)) dt =

∫
�

f (y)dµ(y) a.s.(2.19)
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Moreover, µ is a probability measure on � which does not depend on the initial
value Ỹ (0) = ỹ. Setting ȳ = 0 = ỹ, fix some p ∈ �n and apply it to (2.15) to obtain

d(pỸ (t)) = pG(Ỹ (t)) dt + pS̃(Ỹ (t)) dW(t), Ỹ (0) = 0,

which, in view of (2.14), may be rewritten as

d(pỸ (t)) = G1(pỸ (t)) dt + S̃1(pỸ (t)) dW(t), pỸ (0) = 0,(2.20)

where G1(y) = G(y) and S̃1(y) = S̃(y) for all y not in the exceptional set Re. It
is argued in the Appendix that (2.15), (2.20) imply that the processes

Ỹ (·) and pỸ (·) have the same stationary distribution µ.(2.21)

Since p is arbitrary, it follows that µ is invariant under the action of �n.
From (2.19) with f (y) := 1Rp(y), we obtain

lim
T →∞

1

T

∫ T

0
1Rp(Ỹ (t)) dt =

∫
�

1Rp(y) dµ(y) =
∫
�

1R1(y) dµ(y) a.s.

By the remark preceding (2.13), we may replace Ỹ (t) by Y(t) in the above equa-
tion to conclude that the a.s.-limiting value of T −1 ∫ T

0 1Rp(Y (t)) dt is independent
of p. Summing over all p ∈ �n, we find that

lim
T →∞

1

T

∫ T

0
1Rp(Y (t)) dt = 1

n! for all p ∈ �n, a.s.(2.22)

For fixed i and k, (2.10) now follows by summing (2.22) over the (n − 1)! permu-
tations p ∈ �n satisfying p(k) = i. �

The above proof shows that any given ranking of the stocks in a first-order
model occurs roughly 1/n! of the time. This does not imply that the rank changes
occur with roughly the same frequency at all scales. For example, consider an
Atlas model with n = 3 and constant volatilities across ranks. The plane � =
{(y1, y2, y3)|y1 + y2 + y3 = 0} is represented in Figure 1. The vectors shown are
values for G(y) for various y ∈ �. The function G(·) is constant within each of
the six wedges; furthermore, changes in rank occur when the process Ỹ (·) hits the
exceptional set Re, which is the union of the three lines shown. It is clear from the
direction of the vectors that changes of rank will be likely to occur much more fre-
quently between the bottom two stocks than the top two stocks. That is, changes in
Ỹ (·) between the three pairs of regions labelled (I, II), (III, IV) and (V,VI) occur
more frequently than between (II, III), (IV,V) and (VI, I). Of course, this does not
hold in the general first-order model. The above proof also reveals that the rank-
ordered process

∑
p∈�n

1Rp(Y (·))p−1Y(·) is a reflected Brownian motion in the
polyhedral region R1 with constant drift equal to (g1 +γ, . . . , gn +γ ), covariance
matrix given by diag(σ1, . . . , σn), and normal reflection on the boundary.
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FIG. 1. Projection of the Atlas model with n = 3 onto the subspace �.

3. Ranked capitalization processes. Having constructed the solution Y(·) =
(Y1(·), . . . , Yn(·)) of the stochastic differential system (2.3), let us now look at the
processes

Zk(t) :=
n∑

i=1

1
Q(i)

k

(Y (t)) · Yi(t), 0 ≤ t < ∞,(3.1)

for k = 1, . . . , n. These are the log-capitalizations of the various companies listed
according to their rank, so that

X(k)(t) = eZk(t), µ(k)(t) := X(k)(t)

X1(t) + · · · + Xn(t)
(3.2)

represent, respectively, the absolute and relative capitalizations of the company
ranked kth at time t , in accordance with (1.3) and (2.8). Denoting by �k,k+1(·) :=
�Zk−Zk+1(·) the local time accumulated at the origin by the nonnegative semi-
martingale Zk(·) − Zk+1(·) up to calendar time t , and setting

�0,1(·) ≡ 0, �n,n+1(·) ≡ 0,

we obtain the dynamics for the processes in (3.1) in the form

dZk(t) =
n∑

i=1

1
Q(i)

k

(Y (t)) · dYi(t) + 1
2 [d�k,k+1(t) − d�k−1,k(t)],

or equivalently

Zk(t) = Zk(0) + (gk + γ )t + σkBk(t) + 1
2 [�k,k+1(t) − �k−1,k(t)],

(3.3)
0 ≤ t < ∞.
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We have used the equations of (2.3) and the notation of (2.5), and have applied
the generalized Itô rule for convex functions of semimartingales from Section 3.7
in [8], in a manner similar to the derivations in Chapter 4 of [2]. (These derivations
require that the processes Y1, . . . , Yn be pathwise mutually nondegenerate, as in
Definition 4.1.2 of [2]; however, this follows from an application of the Girsanov
theorem, which is justified by the uniform nondegeneracy of the variance structure
and boundedness of the drift coefficients.)

In conjunction now with (2.7), the dynamics (3.3) yield the strong law of large
numbers

lim
T →∞

1

T
[�k−1,k(T ) − �k,k+1(T )] = 2gk a.s.(3.4)

for every k = 1, . . . , n. Taking k = 1, this means that the limit

λ1,2 := lim
T →∞

1

T
�1,2(T )

exists a.s., and that λ1,2 = −2g1. Arguing by induction, we see that all limits

λk,k+1 := lim
T →∞

1

T
�k,k+1(T )(3.5)

exist a.s. and satisfy

λk−1,k − λk,k+1 = 2gk for k = 1, . . . , n(3.6)

(of course, λ0,1 = λn,n+1 = 0). In other words, the quantities of (3.5) are given as

λk,k+1 = −2(g1 + · · · + gk) > 0 for k = 1, . . . , n − 1.(3.7)

Observe now from (3.3) the decomposition

Zk(t) − Zk+1(t) = Zk(0) − Zk+1(0) + 
k(t) + �Zk−Zk+1(t)(3.8)

for the nonnegative semimartingale Zk(·)−Zk+1(·). We are using here the notation


k(t) := (gk − gk+1)t − 1
2 [�k−1,k(t) + �k+1,k+2(t)] + sk · W̃ (k)(t),(3.9)

where

sk :=
√

σ 2
k + σ 2

k+1 and W̃ (k)(t) := 1

sk

(
σkBk(t) − σk+1Bk+1(t)

)
(3.10)

is standard Brownian motion. This decomposition (3.8) shows that Zk(·)−Zk+1(·)
is the reflection at the origin of the semimartingale 
k(·) in (3.9). Now the
bounded variation part of the semimartingale 
k(·) is of the form{

(gk − gk+1) − 1

2t
[�k−1,k(t) + �k+1,k+2(t)]

}
t = −(

λk,k+1 + o(1)
)
t

as t → ∞, thanks to (3.5) and (3.6). Thus 
k(·) behaves asymptotically as Brown-
ian motion with negative drift −λk,k+1.
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4. Stability of capital distribution. Let us look now at the ergodic behavior,
as t → ∞, of the nonnegative process

�k(t) := log
(

µ(k)(t)

µ(k+1)(t)

)
= Zk(t) − Zk+1(t) = �k(0) + 
k(t) + ��k

(t),
(4.1)

0 ≤ t < ∞,

in (3.8): namely, the reflection at the origin of the semimartingale 
k(·) of (3.9). As
we have remarked, this process �k(·) behaves asymptotically as Brownian motion
with negative drift −λk,k+1, reflected at the origin. Therefore,

lim
t→∞ log

(
µ(k)(t)

µ(k+1)(t)

)
= lim

t→∞�k(t) = ξk in distribution.(4.2)

Here, for each k = 1, . . . , n − 1 the random variable ξk has an exponential distrib-
ution with parameter

rk := 2λk,k+1

s2
k

= −4(g1 + · · · + gk)

σ 2
k + σ 2

k+1

> 0
(4.3)

that is,P(ξk > x) = e−rkx ∀x ≥ 0.

This leads to the asymptotic Pareto distribution

lim
t→∞P

[
µ(k)(t)

µ(k+1)(t)
> y

]
= y−rk = P(ξk > logy) ∀y ≥ 1(4.4)

for the ratios of successively ranked capitalizations, which is frequently observed
in practice; see Chapter 5 of [2], in particular Figure 5.1 on page 95 and the dis-
cussion on page 102.

We also obtain for every k = 1, . . . , n − 1 the strong law of large numbers

lim
T →∞

1

T

∫ T

0
g(�k(t)) dt = lim

T →∞
1

T

∫ T

0
g

(
log

µ(k)(t)

µ(k+1)(t)

)
dt

= E[g(ξk)] a.s.

(4.5)

for every measurable function g : [0,∞) → R with
∫ ∞

0 |g(x)|e−rkx dx < ∞; see
[10], Theorem 3.1, [5], Section 23 or [11], Theorem 5.1 on page 121.

In fact, we can ascertain a little more generally that we have in distribution:

lim
t→∞

(
�1(t), . . . ,�n−1(t)

) = lim
t→∞

(
log

µ(1)(t)

µ(2)(t)
, . . . , log

µ(n−1)(t)

µ(n)(t)

)
= (ξ1, . . . , ξn−1).

(4.6)

This follows from the very detailed analysis of what Harrison and Williams [6, 7]
and Williams [12] call “reflected (or regulated) Brownian motions” (RBMs, for
short) in polyhedral domains; see, in particular, Sections 4–8 of [7] which are of
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particular relevance to our setting here. Then Theorem 3.1 of [10] guarantees again
that a strong law of large numbers

lim
T →∞

1

T

∫ T

0
g
(
�1(t), . . . ,�n−1(t)

)
dt = E[g(ξ1, . . . , ξn−1)](4.7)

holds a.s., for every bounded, measurable g : [0,∞)n−1 → R.

REMARK. As discussed in [6, 7] and [13], the joint distribution of the random
vector (ξ1, . . . , ξn−1) has a probability density function p : [0,∞)n−1 → [0,∞)

with
∫
[0,∞)n−1 p(x) dx = 1 that satisfies a certain integral equation (the basic ad-

joint relation of (3.2) in [13] or (BAR) on page 103 in [7]). This equation involves
the second-order diffusion operator

Lp(x) := 1

2

n−1∑
k=1

n−1∑
�=1

Ak�

∂2p(x)

∂xk ∂x�

+
n−1∑
k=1

λk,k+1
∂p(x)

∂xk

,

and specifies appropriate boundary conditions on the faces of the orthant [0,∞)n−1.
Here A = {Ak�} = ��′, where we have set

� =


σ1 −σ2 0 · · · 0 0
0 σ2 −σ3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 · · · σn−1 −σn


for the (n − 1) × n volatility matrix for the multidimensional Brownian motion

�̂k(t) = �̂k(0) − λk,k+1t + σkBk(t) − σk+1Bk+1(t) + ��̂k
(t), 0 ≤ t < ∞,

for k = 1, . . . , n − 1, with normal reflection on each of the faces of the orthant. In
particular,

A =



σ 2
1 + σ 2

2 −σ 2
2 0 · · · 0 0

−σ 2
2 σ 2

2 + σ 2
3 −σ 2

3 · · · 0 0
0 −σ 2

3 σ 2
3 + σ 2

4 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −σ 2
n−1 σ 2

n−1 + σ 2
n

 .

The structure of this process has slightly more complicated volatilities than the
setting of [7]; satisfies their “stability condition” λ1,2 > 0, . . . , λn−1,n > 0 which
ensures positive recurrence; but fails to satisfy their “skew-symmetry condition,”
that makes p(·) the product of the exponential densities in (4.3). It is highly un-
likely that the “basic adjoint relation” which characterizes p(·) can be solved in
closed form; as a result, we know only the one-dimensional marginals of the den-
sity p(·), not the density itself.
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By the Skorohod representation, one can construct now, possibly on an enlarged
probability space, copies (̃ξ1, . . . , ξ̃n−1) of the random variables (ξ1, . . . , ξn−1),
as well as copies (µ̃1(·), . . . , µ̃n−1(·)) of the processes (µ1(·), . . . ,µn−1(·)), such
that

lim
t→∞

(
log

µ̃(1)(t)

µ̃(2)(t)
, . . . , log

µ̃(n−1)(t)

µ̃(n)(t)

)
= (̃ξ1, . . . , ξ̃n−1)

holds almost surely instead of just in distribution as in (4.6). In particular,

lim
t→∞

(
µ̃(k)(t)

µ̃(n)(t)

)
= eξ̃n−1+···+ξ̃k , k = 1, . . . , n − 1,

holds almost surely, and gives

lim
t→∞

(
1 − µ̃(n)(t)

µ̃(n)(t)

)
= eξ̃n−1 + eξ̃n−1+ξ̃n−2 + · · · + eξ̃n−1+···+ξ̃1 a.s.

which then leads to

lim
t→∞ µ̃(k)(t) = M̃k := eξ̃n−1+···+ξ̃k

1 + eξ̃n−1 + · · · + eξ̃n−1+···+ξ̃1
a.s.(4.8)

for every k = 1, . . . , n. The understanding here is that the “empty summation,”
which occurs in the numerator when k = n, is taken to be equal to zero.

Consider now the vector of random variables (M1, . . . ,Mn) defined by

Mn := (1 + eξn−1 + · · · + eξn−1+···+ξ1)−1 and Mk := Mn · eξn−1+···+ξk(4.9)

for k = 1, . . . , n − 1, by analogy with (4.8). From the equation (4.8) and the dis-
cussion that precedes it, we can recast (4.6) as

lim
t→∞

(
µ(1)(t), . . . ,µ(n)(t)

) = (M1, . . . ,Mn) in distribution.(4.10)

The quantities of (4.9) are the long-term relative weights of the various stocks in
this market, represented by their ranks—from the largest (namely, M1) down to the
smallest (namely, Mn). We also have from (4.7) the strong law of large numbers

lim
T →∞

1

T

∫ T

0
f

(
µ(1)(t), . . . ,µ(n)(t)

)
dt = E[f (M1, . . . ,Mn)] a.s.(4.11)

for every bounded and measurable f :�n → R, where �n = {(x1, . . . , xn) ∈
R

n|x1 ≥ 0, . . . , xn ≥ 0,
∑n

j=1 xj = 1}.
4.1. The certainty-equivalent approximation. The random vector M =

(M1, . . . ,Mn) of (4.9), (4.10) is hard to come to grips with: as we have already re-
marked, we do not know much about the joint distribution of the random variables
(ξ1, . . . , ξn−1) which determine it. In fact, we only know the one-dimensional mar-
ginal distributions of the random variables ξ1, . . . , ξn−1 individually—namely, the
exponentials of (4.3). We look then at a particularly convenient approximation of
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the vector M = (M1, . . . ,Mn), obtained by replacing the random variables ξk in
(4.9) by their expected values

ρk := E(ξk) = 1/rk = − σ 2
k + σ 2

k+1

4(g1 + · · · + gk)
> 0, k = 1, . . . , n − 1,(4.12)

namely,

MCE
n := (1 + eρn−1 + · · · + eρn−1+···+ρ1)−1 and

MCE
k := MCE

n · eρn−1+···+ρk
(4.13)

for k = 1, . . . , n − 1. We call the resulting probability vector MCE = (MCE
1 , . . . ,

MCE
n ) the certainty-equivalent approximation of the long-term relative capitaliza-

tions (M1, . . . ,Mn) in (4.9), (4.10).

EXAMPLE 4.1. For the Atlas model of (1.7) with constant variances

σ 2
k = σ 2 > 0 for k = 1, . . . , n,(4.14)

the quantities of (4.12) take the form ρk = α/k, k = 1, . . . , n − 1 with α :=
σ 2/2g, and we have a further approximation for the certainty-equivalent quantities
of (4.13), namely,

MCE
k ∼ k−α∑n

j=1 j−α
, k = 1, . . . , n.(4.15)

EXAMPLE 4.2. For the generalized Atlas model of (1.7) with linearly growing
variances

σ 2
k = σ 2 + ks2, k = 1, . . . , n for some σ 2 > 0, s2 ≥ 0,(4.16)

we get ρk = 2β + α+β
k

, k = 1, . . . , n − 1 with β := s2/4g, and the certainty-
equivalents of (4.13) are now approximated as

MCE
k ∼ k−(α+β)e−2βk∑n

j=1 j−(α+β)e−2βj
, k = 1, . . . , n.(4.17)

5. Portfolios and their growth rates. Let us consider now investing in the
market of (1.1), (1.6)—equivalently modeled by (2.3) and (2.4)—according to a
portfolio rule π = (π1, . . . , πn). This is a process adapted to the natural filtration
F = {F (t)}0≤t<∞ of the stock-prices F (t) := σ(X(s), 0 ≤ s ≤ t), which satisfies
π1(t) ≥ 0, . . . , πn(t) ≥ 0 and

∑n
i=1 πi(t) = 1 for all 0 ≤ t < ∞. The interpreta-

tion is that πi(t) represents the proportion of the portfolio’s wealth Zπ(t) that is
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invested at time t in the ith stock, so that

dZπ(t)

Zπ(t)
=

n∑
i=1

πi(t) · dXi(t)

Xi(t)

=
n∑

i=1

πi(t) ·
[(

γi(t) + σ 2
i (t)

2

)
dt + σi(t) dWi(t)

]
,

(5.1)

and Zπ(0) = z > 0 is the initial capital. The quantities bi(t) := γi(t) + (σ 2
i (t)/2)

for i = 1, . . . , n appearing in (5.1) are the rates of return of the individual stocks.
As shown in [2], Chapter 1, an application of Itô’s rule casts (5.1) in the equiv-

alent form

logZπ(T ) = log z +
∫ T

0
γ π(t) dt +

n∑
i=1

∫ T

0
πi(t)σi(t) dWi(t),

(5.2)
0 ≤ t < ∞.

Here the quantities

γ π(t) :=
n∑

i=1

πi(t)γi(t) + γ π∗ (t), γ π∗ (t) := 1
2

n∑
i=1

πi(t)
(
1 − πi(t)

)
σ 2

i (t)(5.3)

denote, respectively, the growth rate and the excess growth rate of the portfolio.
The appellation is justified by the a.s. equality

lim
T →∞

1

T

(
logZπ(T ) −

∫ T

0
γ π(t) dt

)
= 0;(5.4)

this is a consequence of (5.2), the boundedness of πi(·), σi(·) and the strong law
of large numbers for Brownian motion. The rate of return and the variance of the
portfolio π(·) are, respectively, the quantities

bπ(t) :=
n∑

i=1

πi(t)
(
γi(t) + (

σ 2
i (t)/2

))
and

(
σπ(t)

)2 :=
n∑

i=1

(πi(t))
2σ 2

i (t).(5.5)

We shall denote by

Gπ(n) := lim
T →∞

1

T

∫ T

0
γ π(t) dt, Gπ∗ (n) := lim

T →∞
1

T

∫ T

0
γ π∗ (t) dt(5.6)

the long-term averages of the growth rate and of the excess growth rate, respec-
tively, whenever these limits exist a.s. In fact, when the first limit in (5.6) exists, it
is clear from (5.4) that

Gπ(n) = lim
T →∞

1

T
logZπ(T )

will also hold a.s. We have parametrized the quantities of (5.6) by the market size n

because we shall also be interested in the large-market behavior, as the number of
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equities tends to infinity, of some simple and consistently defined families � =
{π(n)}n∈N of portfolio rules:

�� := lim
n→∞Gπ(n)

(n), ��∗ := lim
n→∞Gπ(n)

∗ (n).(5.7)

We shall study, and then compare to each other, the quantities of (5.6), (5.7) for
a few simple but important and relatively easy-to-implement investment rules, for
which the limits indicated in (5.7) exist.

EXAMPLE 5.1. The market portfolio rule µ(·) = (µ1(·), . . . ,µn(·)) has al-
ready been introduced in (2.8), namely,

µi(t) := Xi(t)

X1(t) + · · · + Xn(t)
, i = 1, . . . , n.(5.8)

It invests in each company in proportion to its relative market capitalization, and
yields a wealth Zµ(·) = zX(·) that reflects the entire market capitalization, in pro-
portion of course to the initial investment z > 0. For this market portfolio, and with
the notation of (3.2) for the reverse order-statistics, the quantities of (5.3) become

γ µ(t) = γ +
n∑

i=1

gkµ(k)(t) + γ µ∗ (t),

γ µ∗ (t) = 1
2

n∑
k=1

σ 2
k · µ(k)(t)

(
1 − µ(k)(t)

)(5.9)

in the context of the model of (1.1), (1.6). Also, we know from Remark 2.1 that

Gµ(n) := lim
T →∞

1

T

∫ T

0
γ µ(t) dt = lim

T →∞
1

T
logZµ(T ) = γ a.s.(5.10)

so that (5.9), (4.11) then imply

Gµ∗ (n) = lim
T →∞

1

T

∫ T

0
γ µ∗ (t) dt

= 1

2

n∑
k=1

σ 2
k · E

(
Mk(1 − Mk)

) = −
n∑

k=1

gk · E(Mk).

(5.11)

Here (M1, . . . ,Mn) is the vector of long-term ranked market weights
of (4.9), (4.10).

For the (generalized) Atlas model of (1.7), these formulae give

Gµ(n) = g, Gµ∗ (n) = g
(
1 − n · E(Mn)

)
.(5.12)

EXAMPLE 5.2. The equally-weighted portfolio rule η(·) = (η1(·), . . . , ηn(·))
assigns equal weights

ηi(t) := 1

n
, i = 1, . . . , n,(5.13)
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to all stocks at all times. Clearly,

γ η(t) = γ + γ η∗ (t), γ η∗ (t) = n − 1

2n2

n∑
k=1

σ 2
k .(5.14)

For the variance structure of (4.16) and with γ = g > 0, these imply

Gη∗(n) = n − 1

2n

(
σ 2 + s2 n + 1

2

)
, Gη(n) = g + Gη∗(n).(5.15)

In particular, for the constant-variance case of (4.14) we get

�η∗ = σ 2

2
, �η = g + σ 2

2
when s = 0,(5.16)

whereas �
η∗ = �η = ∞ when s > 0 in (4.16).

EXAMPLE 5.3. The diversity-weighted portfolio rule ϑ(p)(·) = (ϑ
(p)
1 (·), . . . ,

ϑ
(p)
n (·)) is given in terms of the market portfolio as

ϑ
(p)
i (t) := (µi(t))

p

(µ1(t))p + · · · + (µn(t))p
, i = 1, . . . , n,(5.17)

for some fixed number p ∈ (0,1). This portfolio has been studied already by
Fernholz [2] and Fernholz, Karatzas and Kardaras [4]; in particular, we know from
these sources that

log
(

Zϑ(p)
(T )

Zµ(T )

)
= log

(
D(µ(T ))

D(µ(0))

)
+ (1 − p)

∫ T

0
γ ϑ(p)

∗ (t) dt,
(5.18)

0 ≤ T < ∞,

holds a.s. for every T ∈ (0,∞), with the notation D(x) := (
∑n

i=1 x
p
i )1/p . But (5.3)

gives

γ ϑ(p)

(t) − γ ϑ(p)

∗ (t) = γ +
∑n

k=1 gk(µ(k)(t))
p∑n

k=1(µ(k)(t))p
,

with the help of which (5.18) reads

1

T

(
logZϑ(p)

(T ) −
∫ T

0
γ ϑ(p)

(t) dt

)

= 1

T

(
logZµ(T ) − γ

) − 1

T

∫ T

0

∑n
k=1 gk(µ(k)(t))

p∑n
k=1(µ(k)(t))p

dt

+ 1

T
log

(
D(µ(T ))

D(µ(0))

)
− p

T

∫ T

0
γ ϑ(p)

∗ (t) dt.
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Sending T to infinity in this expression and recalling (5.4), (5.10) and (4.11), we
deduce that the a.s. limits of (5.6) exist for the diversity-weighted portfolio, and
are given by

Gϑ(p)

∗ (n) = − 1

p
· E

(∑n
k=1 gk(Mk)

p∑n
k=1(Mk)p

)
,

Gϑ(p)

(n) = γ + (1 − p) · Gϑ(p)

∗ (n).

(5.19)

As expected, these formulae reduce to those of (5.10), (5.11) when p = 1; and for
the Atlas model of (1.7) they give

Gϑ(p)

∗ (n) = g

p
·
[
1 − n · E

(
(Mn)

p∑n
k=1(Mk)p

)]
,

Gϑ(p)

(n) = g + (1 − p)Gϑ(p)

∗ (n).

(5.20)

We shall also look at modified versions of the portfolios considered so far in
Examples 5.1–5.3, which “shun the smallest stock in the market.”

EXAMPLE 5.4. The restricted market portfolio rule µ̂(·) = (µ̂1(·), . . . ,
µ̂n(·)) is defined in terms of the market portfolio of Example 5.1 as

µ̂i(t) := µi(t)

1 − µ(n)(t)
· 1{Xi(t)>X(n)(t)}, i = 1, . . . , n.(5.21)

We shall justify in the Appendix the computations

Gµ̂∗ (n) = −E

(
gnMn−1 + ∑n−1

k=1 gkMk

1 − Mn

)
,

Gµ̂(n) = γ − gn · E

(
Mn−1

1 − Mn

)
.

(5.22)

These quantities are the same in the case (1.7) of the Atlas model:

Gµ̂∗ (n) = Gµ̂(n) = g

(
1 − (n − 1) · E

(
Mn−1

1 − Mn

))
.(5.23)

EXAMPLE 5.5. The restricted equally-weighted portfolio rule η̂(·) =
(η̂1(·), . . . , η̂n(·)) assigns equal weights to all stocks but the smallest, which re-
ceives zero weight:

η̂i(t) := 1

n − 1
· 1{Xi(t)>X(n)(t)}, i = 1, . . . , n.(5.24)

Clearly,

γ η̂(t) = γ − gn

n − 1
+ γ η̂∗ (t), γ η̂∗ (t) = n − 2

2(n − 1)2

n−1∑
k=1

σ 2
k .(5.25)
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For the (generalized) Atlas model of (1.7) with variance structure (4.16), this
gives

Gη̂(n) = Gη̂∗(n) = n(n − 2)

2(n − 1)2

(
σ 2 + s2 n − 1

2

)
.(5.26)

Just as in (5.16), we get then

�η̂∗ = �η̂ = σ 2

2
(5.27)

in the case of equal variances (s = 0), whereas �
η̂∗ = �η̂ = ∞ when s > 0.

EXAMPLE 5.6. The restricted diversity-weighted portfolio rule ϑ̂ (p)(·) =
(ϑ̂

(p)
1 (·), . . . , ϑ̂ (p)

n (·)) is defined as

ϑ̂
(p)
i (t) := (µi(t))

p

(µ(1)(t))p + · · · + (µ(n−1)(t))p
· 1{Xi(t)>X(n)(t)},

(5.28)
i = 1, . . . , n,

for some fixed number p ∈ (0,1). Note that ϑ̂ (1)(·) is simply the restricted market
portfolio µ̂(·) of Example 5.4. We shall see in the Appendix that the a.s. limits
of (5.6) exist for this portfolio and are given by

Gϑ̂(p)

∗ (n) = − 1

p
· E

(
gn(Mn−1)

p + ∑n−1
k=1 gk(Mk)

p∑n−1
k=1(Mk)p

)
,(5.29)

Gϑ̂(p)

(n) = γ − 1

p
· E

(
gn(Mn−1)

p + (1 − p)
∑n−1

k=1 gk(Mk)
p∑n−1

k=1(Mk)p

)
,(5.30)

in the context of the first-order model. Again, these formulae reduce to those
of (5.22) when p = 1.

Just as in (5.23), these quantities are the same in the context of (1.7), namely,

Gϑ̂(p)

∗ (n) = Gϑ̂(p)

(n) = g

p

[
1 − (n − 1) · E

(
(Mn−1)

p∑n−1
k=1(Mk)p

)]
.(5.31)

6. Comparisons and approximations. We can begin now to make some
comparisons of long-term-growth behavior for the portfolio rules introduced in
Examples 5.1–5.6. For instance, (5.12) and (5.16) give

�µ = g and �η∗ = (σ 2/2), �η = g + (σ 2/2) = g(1 + α)(6.1)

in the context of the Atlas model (1.7), (4.14) and with the notation of (4.15) for the
asymptotic (as n → ∞) long-term growth rates of the market portfolio rule µ(·)
and the equally-weighted portfolio rule η(·). Thus, in a large Atlas model, the
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equally-weighted portfolio outperforms the market portfolio in terms of long-term
growth rate, by the amount σ 2/2.

Do these features persist when one is not able to invest in the smallest stock? We
know from (5.27) that the restricted equally-weighted portfolio η̂(·) has asymptotic
long-term growth rate

�η̂ = (σ 2/2) = αg = �η̂∗ .(6.2)

The inability to invest in the smallest stock of a large Atlas model penalizes the
long-term growth rate of equal-weighting by the amount (σ 2/2), but leaves its
long-term excess growth rate the same.

But how about the performance of the restricted market portfolio µ̂(·) of Exam-
ple 5.4? From (5.23) we see that we have to calculate the limit

�µ̂ = g

[
1 − lim

n→∞

(
(n − 1) · E

(
Mn−1

1 − Mn

))]
= �µ̂∗ ,(6.3)

which is not a straightforward task. We work similarly for the diversity-weighted
portfolio ϑ(p)(·) of Example 5.3 and its restricted counterpart ϑ̂ (p)(·) of Exam-
ple 5.6: in accordance with (5.20) and (5.31), we have to compute the quantities

�ϑ(p)

∗ = g

p
·
[
1 − lim

n→∞

(
n · E

(
(Mn)

p∑n
k=1(Mk)p

))]
,

�ϑ(p) = g + (1 − p)�ϑ(p)

∗

(6.4)

and

�ϑ̂(p)

∗ = �ϑ̂(p) = g

p

[
1 − lim

n→∞

(
(n − 1) · E

(
(Mn−1)

p∑n−1
k=1(Mk)p

))]
.(6.5)

To carry out the computations of (6.3)–(6.5) we shall resort to the certainty-
equivalent approximation of Section 4.1. In particular, we shall replace
in (6.3)–(6.5) the random variables M1, . . . ,Mn by the constants

MCE
k ∼ k−(α+β)e−2βk∑n

j=1 j−(α+β)e−2βj
, k = 1, . . . , n with α > 0, β ≥ 0,(6.6)

as in (4.17) and Examples 4.1, 4.2.

6.1. Atlas model with α = (σ 2/2g) > 1. In this setting we have β = 0 and the
series

∑
j∈N j−α appearing in the denominator of

MCE
k ∼ k−α∑n

j=1 j−α
, k = 1, . . . , n,(6.7)

converges, therefore

MCE
n ∼ O(n−α), nMCE

n ∼ O(n1−α) as n → ∞.
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It follows then from (5.12) that

�µ∗ ∼ g

(
1 − lim

n→∞(nMCE
n )

)
∼ g = �µ.(6.8)

EXAMPLE 5.4 (Continued). For the restricted market portfolio µ̂(·) the rela-
tions (6.3) and (6.7) now give

�µ̂ = �µ̂∗ ∼ g

[
1 − lim

n→∞

(
(n − 1) · MCE

n−1

1 − MCE
n

)]
∼ g.(6.9)

Comparing with (6.1) we see that, in this case, dropping (or inability to invest
in) the smallest stock does not result in loss of long-term growth for the market
portfolio.

EXAMPLE 5.3 (Continued). For the diversity-weighted portfolio ϑ(p)(·) the
relations (6.4) and (6.7) give

1 − p

g
�ϑ(p)

∗ ∼ lim
n→∞

(
n(MCE

n )p∑n
k=1(M

CE
k )p

)
∼ lim

n→∞

(
n1−αp∑n
k=1 k−αp

)
.(6.10)

We need to distinguish two cases:
Case I. If (1/α) < p < 1, then the limit in the expression (6.10) is equal to zero,

and we obtain

�ϑ(p)

∗ ∼ g

p
, �ϑ(p) ∼ g + (1 − p)�ϑ(p)

∗ ∼ g

p
.(6.11)

Comparing with (6.1) and (6.8) we see an advantage over the market portfolio µ(·)
in this case: �ϑ(p)

> �µ, �ϑ(p)

∗ > �
µ∗ . But comparing with (6.1) again, we see that

a disadvantage emerges vis-à-vis the equally-weighted portfolio η(·): �η > �ϑ(p)
,

�
η∗ > �ϑ(p)

∗ .

Case II. If 0 < p ≤ (1/α), then limn→∞( n1−αp∑n
k=1 k−αp ) = 1 − αp and (6.10) gives

�ϑ(p)

∗ ∼ αg = (σ 2/2), �ϑ(p) ∼ g + (1 − p)(σ 2/2).(6.12)

There is a definite advantage over the market portfolio (�ϑ(p)
> �µ, �ϑ(p)

∗ > �
µ∗ )

and a disadvantage vis-à-vis the equally-weighted portfolio (�η > �ϑ(p)
, �

η∗ =
�ϑ(p)

∗ ).

EXAMPLE 5.6 (Continued). For the restricted diversity-weighted portfolio
ϑ̂ (p)(·) the relations (6.5) and (6.7) give

�ϑ̂(p)

∗ = �ϑ̂(p) ∼ g

p

[
1 − lim

n→∞

(
(n − 1)1−αp∑n

k=1 k−αp

)]
.
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From the preceding discussion we see

�ϑ̂(p)

∗ = �ϑ̂(p) ∼ g

p
in case αp > 1(6.13)

(i.e., no disadvantage at all for dropping the smallest stock), and

�ϑ̂(p)

∗ = �ϑ̂(p) ∼ αg = (σ 2/2) in case αp ≤ 1(6.14)

[i.e., a drop of �ϑ(p) −�ϑ̂(p) ∼ (1−αp)g in long-term growth rate, due to inability
to invest in the smallest stock].

If αp > 1, the restricted diversity-weighted portfolio outperforms the restricted
market portfolio [cf. with (6.9)] and underperforms the restricted equally-weighted
portfolio [cf. with (6.2)]. When αp ≤ 1, the advantage versus the restricted
market portfolio remains, but the disadvantage vis-à-vis the restricted equally-
weighted portfolio disappears.

6.2. Atlas model with α = (σ 2/2g) ≤ 1. In this case we have again β = 0
in (6.6), so MCE

k ∼ k−α∑n
j=1 j−α satisfies

lim
n→∞(nMCE

n ) ∼ lim
n→∞

(
n1−α∑n
k=1 k−α

)
= 1 − α.

(a) For the market portfolio µ(·) we have now

�µ = g, �µ∗ ∼ g

(
1 − lim

n→∞(nMCE
n )

)
∼ αg = (σ 2/2)(6.15)

from (6.1) and (6.8), and for its restricted version µ̂(·) equation (6.3) gives

�µ̂ = �µ̂∗ ∼ g ·
[
1 − lim

n→∞

(
(n − 1)MCE

n−1

1 − MCE
n

)]
∼ αg = (σ 2/2).(6.16)

In other words: when the market portfolio cannot invest in the smallest stock, there
is a loss of long-term growth rate (�µ > �µ̂) for α < 1, whereas �µ ∼ �µ̂ for
α = 1.

(b) For the diversity-weighted portfolio ϑ(p)(·) it is easy to check from (6.4)
that the expressions

�ϑ(p)

∗ ∼ αg = (σ 2/2), �ϑ(p) ∼ g + (σ 2/2)(1 − p)(6.17)

of (6.10) and (6.12) prevail again; the same is true of the expressions

�ϑ̂(p)

∗ ∼ (σ 2/2), �ϑ̂(p) ∼ (σ 2/2)(6.18)

of (6.14) for the restricted counterpart ϑ̂ (p)(·) of ϑ(p)(·). In this case the restricted
market, equally-weighted and diversity-weighted portfolios µ̂(·), η̂(·) and ϑ̂ (p)(·)
have exactly the same long-term-growth performance.
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6.3. Maximal growth rate in the Atlas model. All these comparisons beg the
obvious question: What is the maximum long-term growth rate lim infT →∞ 1

T
×

Zπ(T ) from investment, that one can achieve over all possible portfolio rules π(·)?
In the context of the Atlas model it is natural to guess that the best such rate can
be attained by always investing in the smallest, the Atlas stock: namely, that

lim inf
T →∞

1

T
Zπ(T ) ≤ lim

T →∞
1

T
Zπ∗

(T ) = ng a.s.(6.19)

holds for every portfolio π(·), where

π∗
i (t) := 1{Xi(t)=X(n)(t)}, i = 1, . . . , n,(6.20)

is the portfolio that invests always and exclusively in the Atlas stock.
This eminently reasonable guess can be justified rigorously when ng ≥ (σ 2/2)

using the theory for portfolio optimization developed in [9], in particular, Exam-
ple 6.4.2 on page 282 and Theorem 3.10.1 on page 152. It is interesting then to
compare the optimal growth rate Gπ∗

(n) = ng of (6.19) with the growth rate

Gη(n) = g + n − 1

n

σ 2

2

of the equally-weighted portfolio η(·) from (5.15); with that of its modified coun-
terpart η̂(·) from (5.26), namely

Gη̂(n) = g + n(n − 2)

(n − 1)2

σ 2

2
;

and with the asymptotic (as n → ∞) long-term growth rates

�ϑ(p) = lim
n→∞Gϑ(p)

(n) ∼ g

[
1 + 1 − p

p
(1 ∧ αp)

]
of the diversity-weighted portfolio, and

�ϑ̂(p) = lim
n→∞Gϑ̂(p)

(n) ∼ g

p
(1 ∧ αp),

of its restricted counterpart, from (6.11), (6.12) and (6.13), (6.14), respectively.
The trouble, of course, is that the portfolio of (6.20) is extremely hard, if not im-

possible, to implement in practice—quite in contrast to the portfolios of Examples
5.1–5.6 which can be implemented with relative ease.

6.4. Generalized Atlas model of (4.16). Let us consider now the case of vari-
ance coefficients of the form (4.16) with σ 2 > 0. The certainty-equivalent ap-
proximation of (6.6) with β = (s2/4g) > 0 now has the advantage that the series∑

j j−(α+β)e−2βj , appearing in the denominator of (6.6), converges for any values
of the parameters α > 0, β > 0; this makes the analysis much easier than before.
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In particular, it is checked using (6.3)–(6.6) that we have

�µ∗ ∼ g = �µ and �µ̂ ∼ g, �µ̂∗ ∼ g(6.21)

for the market portfolio and its modification µ̂(·); that

�ϑ(p)

∗ ∼ (g/p), �ϑ(p) ∼ g + (1 − p)�ϑ(p)

∗ ∼ (g/p)

for the diversity-weighted portfolio; and

�ϑ̂(p)

∗ ∼ (g/p), �ϑ̂(p) ∼ (g/p)

for its modified version. In other words, the diversity-weighted portfolio loses no
long-term performance by shunning (or failing to invest in) the smallest stock;
and by selecting the parameter p ∈ (0,1) sufficiently small, we see that diversity-
weighted portfolios can be constructed that have arbitrarily large long-term growth
rates—at least if the number of stocks in the market is large.

The assumption of linear growth of variance coefficients with decreasing size
captures quite well the actual measurement of stock-price volatilities reported in
Figure 5.5 of [2], page 109. This figure plots the smoothed annualized values of s2

k

against rank k in the entire U.S. equity market for the period 1990–1999 (see the
discussion in Section 5.1, page 95, of [2], for details of which securities are in-
cluded). Recalling from (3.10) that s2

k = σ 2
k + σ 2

k+1, it is reasonable to make the
approximation σ 2

k ≈ s2
k /2. Accordingly, Figure 2, which shows the annualized val-

ues of σ 2
k against k over the same time period, is a scaled version of Figure 5.5

of [2]. In the figure, the variances σ 2
k do appear to grow roughly linearly with rank.

Using regression, we have estimated the parameters σ 2 and s2 of (4.16) to be 0.075
and 6.0 × 10−5, respectively. Furthermore, we have computed the annualized ex-
cess growth rate of the entire U.S. equity market over the same time period (cf.
Figure 1 of [3]) to be about 4.4%; motivated by the observation �

µ∗ ∼ g of (6.21)

FIG. 2. Smoothed annualized values of σ 2
k , from 1990 to 1999 data.
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FIG. 3. Estimated and actual capital distribution curves for 1990 to 1999.

above, we can estimate that g ∼ 0.044 over this period. Using our estimates for the
parameters σ 2, s2 and g, we have plotted the quantities MCE

k of (6.6) in Figure 3,
along with the observed capital distribution curve as given in Figure 5.3 of [2].
The two curves are in rough agreement, with the biggest discrepancies occurring
for about the 20 highest-ranked stocks.

6.5. Simulations. In order to test the performance of the certainty-equivalent
approximation, we have used numerical simulations to measure the diversity of
Atlas models under a variety of different conditions. In particular, we wish to
see if f CE := f (MCE

1 , . . . ,MCE
n ) is a good approximation for the right-hand

side E[f (M1, . . . ,Mn)] of (4.11), by comparing f CE with the values over time
of T −1 ∫ T

0 f (µ(1)(t), . . . ,µ(n)(t)) dt . We have chosen the function f given by
f (x) := ∑n

i=1 x
p
i . This is the pth power of the so-called diversity function, which

is defined in [2] and also as D(x) in Example 5.3 above. We have set p = 0.5; re-
sults for other values of p in the interval [0.2,0.8] are similar. In each panel of Fig-
ure 4, the horizontal dotted line represents the value of f CE = f (MCE

1 , . . . ,MCE
n ).

The three curves in each panel represent the simulated values of the time averages
T −1 ∫ T

0 f (µ(1)(t), . . . ,µ(n)(t)) dt as T varies. The scale on the horizontal axis
is in years, assuming 250 iterations per year. Of the three curves in each panel,
the solid curve shows the result when the initial values of the weights agree with
(MCE

1 , . . . ,MCE
n ). The dashed curve corresponds to initially equal weights, and the

dotted curve corresponds to an initial distribution where one weight is very close to
1.0. In the three left-hand side panels, the volatility σ 2

k is constant across ranks; the
(constant) growth rate g is chosen appropriately in order to model the three cases
α = 0.5, 1.0 and 1.5. In the corresponding right-hand side panels, the volatility σ 2

k

now grows linearly with rank k, as in (4.16). The parameters σ 2 and s2, now taken
at a daily frequency, have been set as 1/250th of the corresponding annualized val-
ues from Section 6.4 above. Once again the parameter g has been selected in order
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FIG. 4. Average pth power of diversity in Atlas models (n = 5000, p = 0.5).

to achieve the desired values of α. In each case, the number of stocks n was taken
to be 5000, and the simulation was run over 5000 years (1.25 million iterations).

In each simulation, all three initial conditions eventually lead to values of the
time-average of f which are relatively stable, approximately equal to each other
and which compare favorably with the value arising from the certainty-equivalent
approximation. The rate of convergence seems to increase as α decreases. A pos-
sible explanation for this is that the largest weight µ(1) is quite large for higher
values of α; when this is the case, the diversity f is sensitive to changes in µ(1),
affecting the rate of convergence.

6.6. Efficient portfolios in generalized Atlas models. A portfolio is called ef-
ficient if its variance is minimal among all portfolios with the same rate of return.
Consider a portfolio π̂ (·) in a generalized Atlas market with n+1 stocks, restricted
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to invest in all but the smallest stock at all times; we shall denote by π̂(k)(t) the rel-
ative weight this portfolio assigns to the stock ranked kth at time t . Then from (5.5)
we see that the rate of return and the variance of this portfolio are

bπ̂ (t) = 1
2

n∑
k=1

σ 2
k π̂(k)(t) and

(
σ π̂ (t)

)2 =
n∑

k=1

σ 2
k

(
π̂(k)(t)

)2
,

respectively. In order to minimize (σ π̂ (t))2 with bπ̂ (t) constant and π̂(1)(t) ≥ 0,

. . . , π̂(n)(t) ≥ 0, π̂(1)(t) + · · · + π̂(n)(t) = 1, we must have

2σ 2
k π̂(k)(t) = λ1σ

2
k + λ2, k = 1, . . . , n,

where λ1 and λ2 are Lagrange multipliers. The solution is

π̂(k)(t) = λ · 1

n
+ (1 − λ) · 1

σ 2
k

∑n
j=1 σ−2

j

, 0 ≤ λ ≤ 1.(6.22)

The “efficient frontier” for this model consists of the one-parameter family of
portfolios defined by (6.22). In the case (4.14) of constant variances the two frac-
tions on the right-hand side of (6.22) are equal, so for the prototype Atlas model
equal weights produce the only efficient portfolio.

For the general Atlas model, the value λ = 1 produces the most risky portfolio,
and the value λ = 0 the least risky. With linearly growing variances as in (4.16), the
weights given by (6.22) for the portfolios of the efficient frontier are considerably
less concentrated in the large stocks than the stable market weights of Figure 5.3
in [2], page 108.

7. Considerations of diversity. The Atlas model of (1.1), (1.2) has constant
and invertible volatility matrix and bounded growth rates, so it admits a unique
equivalent martingale measure on every finite time-horizon [0, T ]. For this reason,
it cannot be weakly diverse: in other words, for every T ∈ (0,∞) and δ ∈ (0,1)

we have

P

(
1

T

∫ T

0
µ(1)(t) dt ≤ 1 − δ

)
< 1,(7.1)

as shown in [4]. We shall argue below that the probability in (7.1) is actually very
close to 1; for all intents and purposes, such a model captures rather well in prac-
tice the descriptive and intuitively plausible requirement, that “no stock should be
allowed to dominate the entire market, even on the average, with anything but an
extremely low probability.”

Let us then try to estimate the probability in (7.1) for a market of n = 5000
stocks, similar in size to the U.S. stock market. We take a time period of T = 2
years, let δ = 0.01, and wish to measure the probability that the weak diversity
condition holds, that is, that none of the stocks has a time-average market weight
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greater than 1 − δ = 0.99 over the 2-year period. We shall assume that the stocks
are log-normally distributed relative to the market.

We first need to estimate the relative variance of a typical stock with respect to
the market. The drift component, without leakage, of the diversity-weighted port-
folio in (5.17) is equal to (1 − p)/2, times the weighted average of the relative
variances τii of the stocks in the market. In the example of Fernholz [2], Sec-
tion 6.2, this component was 1.46% per year with p = 0.50, so we can estimate
the average relative stock variance at about 5.84% per year. This means that the
average relative standard deviation would be about 24% per year, which seems
within the range of what one would reasonably expect.

For weak diversity to fail, at least one stock must attain a market weight of
at least 0.98 at some time during the first year, since otherwise the time-average
of the largest weight could not be greater than 0.99 over the 2-year period. By
the reflection principle (e.g. [8], Section 2.6.A) the probability of a stock weight
hitting 0.98 during the first year is equal to twice the probability that its weight
exceeds 0.98 at the end of the year. Let us estimate this last probability.

Suppose the starting weight of the stock is 0.03. For the weight to increase to
0.98, the stock would have to increase relative to the market by a factor A, where

0.03A

0.03A + 0.97
= 0.98,

so A = 1584. On a logarithmic scale, this would be about 7.37 = logA, so with
an annual standard deviation of about 0.24, this is slightly greater than 30 standard
deviations. If stock price has a log-normal distribution, then the probability of a
price move of this size is

1√
2π

∫ ∞
30

e−t2/2 dt <
1

30
√

2π

∫ ∞
30

te−t2/2 dt = e−450

30
√

2π
∼= 10−197.(7.2)

By the reflection principle, the probability that the stock’s market weight attains
0.98 sometime during the year is double this probability. To find the probability
that any one of the n = 5000 stocks attains a market weight of 0.98, we must mul-
tiply the result by 5000, so in all we must multiply the probability in (7.2) by 104.
Hence, the probability that at least one of the stocks reaches 0.98 during the first
year is not greater than 10−193, so the probability in (7.1) that the weak diversity
condition holds, exceeds 1−10−193. Now even without writing this number out as
0.9999 . . .999 we can see that it is pretty close to 1, so it would seem that a market
of this type is likely to behave rather like a diverse market over a 2-year period.
And this is without invoking antitrust legislation.

APPENDIX

PROOF OF (2.7). We shall establish in this section the strong law of large
numbers (2.7). This property is equivalent to the analogous result

lim
t→∞

1

t
Zk(t) = γ a.s. ∀ k = 1, . . . , n(A.1)
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for the log-capitalization processes of (3.1). Indeed, (2.7) implies (A.1) thanks
to (3.1) and the partition property (2.2); and conversely, the partition property that
precedes (2.2) leads to

n∑
k=1

1
Q

(j)
k

(Y (t)) · Zk(t) =
n∑

i=1

Yi(t)

(
n∑

k=1

1
Q(i)

k

(Y (t))1
Q

(j)
k

(Y (t))

)

=
n∑

i=1

δijYi(t) = Yj (t)

for every j = 1, . . . , n, and thus (A.1) leads to (2.7).
We shall prove (A.1) under the assumptions

g1 ≤ 0, g1 + g2 ≤ 0, g1 + · · · + gn−1 ≤ 0(A.2)

and

g1 + · · · + gn = 0(A.3)

which, taken together, are actually weaker than (1.5). To this end, let us recall
from (3.3) that

Zk(t) = Zk(0) + (gk + γ )t + 1
2 [�k,k+1(t) − �k−1,k(t)] + σkBk(t)(A.4)

holds for every k = 1, . . . , n. Fix k ∈ {1, . . . , n − 1} and observe

kZk(t) ≤
k∑

�=1

Z�(t)

(A.5)

=
k∑

�=1

Z�(0) +
(
kγ +

k∑
�=1

g�

)
t + 1

2�k,k+1(t) +
k∑

�=1

σ�B�(t),

(n − k)Zk(t) ≥
n∑

�=k+1

Z�(t)

=
n∑

�=k+1

Z�(0) +
(
(n − k)γ +

n∑
�=k+1

g�

)
t(A.6)

− 1
2�k,k+1(t) +

n∑
�=k+1

σ�B�(t).

After rearranging terms and using (A.3), we see that the two inequalities
of (A.5), (A.6) imply

−1

2

(
1

k
+ 1

n − k

)
�k,k+1(t) ≤ t

k

k∑
�=1

g� − t

n − k

n∑
�=k+1

g� + Rk(t)

=
(

t

k
+ t

n − k

) k∑
�=1

g� + Rk(t),

(A.7)
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where

Rk(t) := 1

k

(
k∑

�=1

Z�(0) +
k∑

�=1

σ�B�(t)

)

− 1

n − k

(
n∑

�=k+1

Z�(0) +
n∑

�=k+1

σ�B�(t)

)
.

(A.8)

From the law of the iterated logarithm for Brownian motion we observe that we
have limt→∞(t−3/4Rk(t)) = 0 a.s., thus

−1
2�k,k+1(t) ≤ t

(
k∑

�=1

g�

)
+ o(t3/4) as t → ∞(A.9)

almost surely—for every k = 1, . . . , n − 1 thanks to (A.7) and (A.8), and trivially
for k = 0 and k = n.

Let us recall now the decomposition

Zk(·) − Zk+1(·) = Zk(0) − Zk+1(0) + 
k(·) + �k,k+1(·)(A.10)

of (3.8), which exhibits the nonnegative semimartingale Zk(·) − Zk+1(·) as the
reflection at the origin of the process 
k(·) of (3.9). Thanks to (A.9), the bounded
variation part (gk − gk+1)t − 1

2 [�k−1,k(t) + �k+1,k+2(t)] of this semimartingale

k(·) is dominated by

(gk −gk+1)t +
(

k−1∑
�=1

g� +
k+1∑
�=1

g�

)
t +o(t3/4) = 2t

(
k∑

�=1

g�

)
+o(t3/4) as t → ∞

a.s. In other words, 
k(·) is dominated by a Brownian motion [thus Zk(·) −
Zk+1(·) is dominated by a reflected Brownian motion] whose drift is bounded from
above by o(t−1/4) a.s. [If the inequalities in (A.2) are strict, as they are in (1.5),
then this drift is eventually negative and we can appeal to the strong law of large
numbers, as opposed to the law of the iterated logarithm, for the Brownian motion
process.] A reflected Brownian motion with drift of this type is easily seen to be
of the order o(t) as t → ∞, and so we have

lim
t→∞

1

t

(
Zk(t) − Zk+1(t)

) = 0 a.s.(A.11)

Now let us divide by t throughout (A.10), then let t → ∞ to obtain

lim
t→∞

1

t

[
1

2

(
�k−1,k(t) + �k+1,k+2(t)

) − �k,k+1(t)

]
= gk − gk+1 a.s.

for every k = 1, . . . , n − 1, from the strong law of large numbers for Brownian
motion in conjunction with (A.11). Adding up from k = � to k = n − 1 we get

lim
t→∞

1

t
[��−1,�(t) − ��,�+1(t) − �n−1,n(t)] = 2(g� − gn) a.s.(A.12)
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for any � = 1, . . . , n − 1, since �n,n+1(·) ≡ 0. Adding up over these values of �

we obtain

lim
t→∞

1

t
[�0,1(t) − �n−1,n(t) − (n − 1) · �n−1,n(t)]

= 2
n−1∑
�=1

g� − 2(n − 1) · gn a.s.,

and recalling (A.3) and �0,1(·) ≡ 0 we arrive at

lim
t→∞

1

t
�n−1,n(t) = 2gn a.s.

Substitution into (A.12) yields

lim
t→∞

1

t
[��−1,�(t) − ��,�+1(t)] = 2g� a.s.

for � = 1, . . . , n. The property (A.1) now follows from this, in conjunction
with (A.4) and the strong law of large numbers for Brownian motion. �

REMARK. Suppose now that the condition (A.2) fails; namely, that
∑k

�=1 g� > 0
holds for some k = 1, . . . , n − 1. Then by analogy with (A.5), (A.6) we have

kZ1(t) ≥
k∑

�=1

Z�(t) =
k∑

�=1

Z�(0) +
(
kγ +

k∑
�=1

g�

)
t + 1

2�k,k+1(t) +
k∑

�=1

σ�B�(t),

and the strong law of large numbers for Brownian motion implies

lim inf
t→∞

Z1(t)

t
≥ γ + 1

k

k∑
�=1

g� > γ a.s.

so that (A.1) cannot hold in this case.

PROOF OF (2.18). To see that the process Ỹ (·) is recurrent with respect to
B ∩ � for some ball B ⊂ R

n centered at the origin, it suffices to show that the
process N(·) := (1 + ‖Ỹ (·)‖2)1/2 is recurrent with respect to [1,C] for some
C > 0. An application of Itô’s rule to (2.15) shows that

dN(t) = (
(N(t))−1Ỹ (t) · G(Ỹ (t)) + N1(t)

)
dt

+ (
(N(t))−1Ỹ (t) · S̃(Ỹ (t)) dW(t)

)
,

(A.13)

where

N1(t) := (N(t))−1
(

1 − 1

n

) n∑
i=1

σ 2
i − (N(t))−3

n∑
i=1

(
Ỹpt (i)(t)

)2
σ 2

i .
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Here pt is defined as in (1.4); that is, pt ∈ �n satisfies Ỹ (t) ∈ Rpt for all t ≥ 0.
It is easy to check that N1(t) ≤ c1(N(t))−1 for some c1 > 0; furthermore, the fact
that Ỹ (t) ·G(Ỹ (t)) ≤ c‖Ỹ (t)‖ for some c < 0 implies that the term (N(t))−1Ỹ (t) ·
G(Ỹ (t)) in (A.13) is uniformly bounded from above by some constant c2 < 0
whenever N(t) ≥ 2. It follows that there are constants c3 < 0, C > 0 such that the
drift term in (A.13) is bounded from above by c3 whenever N(t) > C. Finally, note
that the coefficient (N(t))−1Ỹ (t) · S̃(Ỹ (t)) of dW(t) in (A.13) is a matrix whose
entries are uniformly bounded from above and below by maxk{σk} and mink{σk},
respectively. The desired recurrence follows. �

PROOF OF (2.21). In order to prove that the processes Ỹ (·) and pỸ (·) of
(2.15) and (2.20) respectively [with ỹ = 0 in (2.15)] have the same stationary dis-
tribution µ, it suffices to show that the processes have the same law. We claim that
Ỹ (·) also satisfies (2.20), that is,

dỸ (t) = G1(Ỹ (t)) dt + S̃1(Ỹ (t)) dW(t), Ỹ (0) = 0.(A.14)

Indeed, if Ỹ (·) and pỸ (·) both satisfy (A.14), then they have the same law, since
the stochastic differential equation (A.14) has a unique solution in the sense of
the probability law. To establish (A.14) for the process Ỹ (·) of (2.15), note that
G(y) = G1(y) and S(y) = S1(y) except on the set Re = {(y1, . . . , yn) ∈ R

n|yi −
yj = 0 for some i 
= j}. It suffices to show that

meas{t ∈ [0,∞) : Ỹi(t) − Ỹj (t) = 0} = 0 a.s.(A.15)

for all pairs i 
= j . For such pairs (i, j), the process Yij (·) := Ỹi(·) − Ỹj (·) is a
semimartingale, with drift bounded in absolute value by maxk{2|gk|} and variance
bounded from above and below by maxk{2σ 2

k } and mink{2σ 2
k } > 0, respectively.

Over any bounded time-interval [0, T ], removal of drift via the Girsanov theorem,
followed by a time change, establishes (A.15) and completes the proof of (2.21).

�

PROOF OF (5.30), (5.29), (5.22). To justify the computations (5.30), (5.29)
we recall from (4.3.4) of [2] that the a.s. identity

log
Zϑ̂(p)

(T )

Zµ(T )
= 1

p
log

(∑n−1
k=1(µ(k)(T ))p∑n−1
k=1(µ(k)(0))p

)

+ (1 − p)

∫ T

0
γ ϑ̂(p)

∗ (t) dt − 1

2

∫ T

0
ϑ̂

(p)
(n−1)(t) d�n−1,n(t)

holds. From (5.3) we have

γ ϑ̂(p)

(t) − γ ϑ̂(p)

∗ (t) = γ +
n−1∑
k=1

gkϑ̂
(p)
(k) (t) = γ +

∑n−1
k=1 gk(µ(k)(t))

p∑n−1
k=1(µ(k)(t))p

,
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which allows us to write the above identity in the equivalent form

1

T

(
logZϑ̂(p)

(T ) −
∫ T

0
γ ϑ̂(p)

(t) dt

)
= 1

T

(
logZµ(T ) − γ

) − p

T

∫ T

0
γ ϑ̂(p)

∗ (t) dt

+ 1

pT
log

(∑n−1
k=1(µ(k)(T ))p∑n−1
k=1(µ(k)(0))p

)

− 1

T

∫ T

0

∑n−1
k=1 gk(µ(k)(t))

p∑n−1
k=1(µ(k)(t))p

dt − 1

2T

∫ T

0
ϑ̂

(p)
(n−1)(t) d�n−1,n(t).

(A.16)

On the other hand, we get from (3.5), (3.7), (4.11) and (1.5) that

lim
T →∞

1

2T

∫ T

0
ϑ̂

(p)
(n−1)(t) d�n−1,n(t) = gn · E

(
(Mn−1)

p∑n−1
k=1(Mk)p

)
(A.17)

holds a.s. Taking now the limit as T goes to infinity in (A.16) and using (5.4),
(5.10), (4.11) and (A.17), we see that the a.s. limits in (5.6) exist for this portfolio
and are given by the formulae of (5.30), (5.29). Finally, (5.22) is simply a special
case of (5.30), (5.29) in the case p = 1 of the market portfolio. �

Note added in proof. We show that the long-term average relative capitaliza-
tion weight, for each individual stock (listed by name) in a first-order model, tends
to 1/n: in other words, for each i = 1, . . . , n, we have

lim
T →∞

1

T

∫ T

0
µi(t) dt = 1

n
a.s.(N.1)

It is not clear that the left-hand limit exists. To show that it does, first set

g(y1, . . . , yn) :=
(

exp(y1)∑n
i=1 exp(yi)

, . . . ,
exp(yn)∑n
i=1 exp(yi)

)
, (y1, . . . , yn) ∈ R

n.

By (2.19), we have for any i, k = 1, . . . , n and bounded, measurable f ,

lim
T →∞

1

T

∫ T

0
f ◦ g(Ỹ (t))1

Q(i)
k

(Ỹ (t)) dt

=
∫
�

f ◦ g(y)1
Q(i)

k

(y) dµ(y) a.s.
(N.2)

Suppose that f is symmetric in all variables and let p ∈ �n be a permutation
of {1, . . . , n} such that p(j) = i for some j ∈ {1, . . . , n}. Since the measure µ is
invariant under the action of �n, f ◦ g(py) = f ◦ g(y), and 1

Q(i)
k

(py) = 1
Q

(j)
k

(y)

for y not in the µ-null set Re [defined after (2.11)], we have∫
�

f ◦ g(y)1
Q(i)

k

(y) dµ(y) =
∫
�

f ◦ g(y)1
Q

(j)
k

(y) dµ(y).
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It follows that the almost sure limit on the left-hand side of (N.2) is independent
of i. By the definition of g and the symmetry of f , this limit may be expressed as

lim
T →∞

1

T

∫ T

0
f

(
µ(1)(t), . . . ,µ(n)(t)

)
1

Q(i)
k

(Y (t)) dt.

Since {Q(i)
k }1≤i≤n is a partition of R

n for each fixed k, summation of the previous
expression over i and (4.11) lead to the following refinement of (4.11):

lim
T →∞

1

T

∫ T

0
f

(
µ(1)(t), . . . ,µ(n)(t)

)
1

Q(i)
k

(Y (t)) dt

= 1

n
E[f (M1, . . . ,Mn)] a.s.

(4.11)′

In particular, with f (y1, . . . , yn) = yk on the set {y ∈ R
n|y1 ≥ · · · ≥

yn ≥ 0,
∑n

i=1 yi = 1},

lim
T →∞

1

T

∫ T

0
µi(t)1Q(i)

k

(Y (t)) dt = lim
T →∞

1

T

∫ T

0
µ(k)(t)1Q(i)

k

(Y (t)) dt

= 1

n
E[Mk] a.s.

Summation over k, (2.2), and the fact that
∑n

k=1 Mk ≡ 1 lead to the desired re-
sult (N.1).
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