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CONVERGENCE RATE OF LINEAR TWO-TIME-SCALE
STOCHASTIC APPROXIMATION?

By VIJAY R. KONDA AND JOHN N. TSITSIKLIS
Massachusetts | nstitute of Technology

We study the rate of convergence of linear two-time-scale stochastic ap-
proximation methods. We consider two-time-scale linear iterations driven
by i.i.d. noise, prove some results on their asymptotic covariance and estab-
lish asymptotic normality. The well-kmen result [Polyak, B. T. (1990)Au-
tomat. Remote Contr. 51 937-946; Ruppert, D. (1988). Technical Report 781,
Cornell Univ.] on the optimality of Plgak—Ruppert averaging techniques
specialized to linear stochastic approximation is established as a consequence
of the general results in this paper.

1. Introduction. Two-time-scale stochastic approximation methods [Borkar
(1997)] are recursive algorithms in which some of the components are updated
using step-sizes that are very small compared to those of the remaining compo-
nents. Over the past few years, several such algorithms have been proposed for
various applications [Konda and Borkar (1999), Bhatnagar, Fu, Marcus and Fard
(2001), Baras and Borkar (2000), Bhatnagar, Fu and Marcus (2001) and Konda
and Tsitsiklis (2003)].

The general setting for two-time-scale algorithms is as follows. £, r)
andg(6, r) be two unknown functions and léé*, »*) be the unique solution to
the equations

(1.2) f@,r)y=0, g@,r)=0.

The functionsf(-,-) and g(-,-) are accessible only by simulating or observ-
ing a stochastic system which, givéhand r as input, produces (6, r, V)

andG (@, r, W). Here,V andW are random variables, representing noise, whose
distribution satisfies

f@,ry=E[F@,r V)], g6,r)=E[G@O,r, W)] vo,r.

Assume that the nois@’/, W) in each simulation or observation of the stochastic
system is independent of the noise in all other simulations. In other words, assume
that we have access to an independent sequence of fundtions V) and

G (-, -, Wi). Suppose that for any giveh the stochastic iteration

(1.2) rie1=ri + GO, ri, Wi)
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is known to converge to somk(9). Furthermore, assume that the stochastic
iteration

(1.3) Ok+1 = Ok + vk F (Ok, h(61), Vi)

is known to converge t®@*. Given this information, we wish to construct an
algorithm that solves the system of equations (1.1).

Note that the iteration (1.2) has only been assumed to converge li®n
held fixed. This assumption allows us to fixat a current valu&y, run the
iteration (1.2) for a long time, so that becomes approximately equal Ag9;),
use the resulting; to updateg; in the direction of F (6, rx, W), and repeat
this procedure. While this is a sound approach, it requires an increasingly large
time between successive update®f Two-time-scale stochastic approximation
methods circumvent this difficulty by using different step siZ&g and{y;} and
updated;, andry, according to

Ok+1 =0k + BiF Ok, 1k, Vi),
ret1 =ri + v GOk, ri, W),

wherep; is very small relative tg/. This make®; “quasi-static” compared te,
and has an effect similar to fixing, and running the iteration (1.2) forever. In
turn, 6, sees; as a close approximation @f6;) and therefore its update looks
almost the same as (1.3).

How small should the ratig; /y, be for the above scheme to work? The answer
generally depends on the functiofig, -) andg(-, -), which are typically unknown.
This leads us to consider a safe choice whergbyy, — 0. The subject of this
paper is the convergence rate analysis of the two-time-scale algorithms that result
from this choice. We note here that the analysis is significantly different from the
case where li(8;/vx) > 0, which can be handled using existing technigues.

Two-time-scale algorithms have been proved to converge in a variety of contexts
[Borkar (1997), Konda and Borkar (1999) and Konda and Tsitsiklis (2003)].
However, except for the special case of Polyak—Ruppert averaging, there are no
results on their rate of convergence. The existing analysis [Ruppert (1988), Polyak
(1990), Polyak and Juditsky (1992) and Kushner and Yang (1993)] of Polyak—
Ruppert methods rely on special structure and are not applicable to the more
general two-time-scale iterations considered here.

The main result of this paper is a rule of thumb for calculating the asymptotic
covariance of linear two-time-scale stochastic iterations. For example, consider the
linear iterations

(1.4) Ok+1 =0k + Br(b1 — A116k — Arork + Vi),
(1.5) i1 =k + Yk (b2 — A216k — Aori + Wy).
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1/2

We show that the asymptotic covariance matrix &~ 6, is the same as
-1/2

that of g, 6k, whereé; evolves according to the single-time-scale stochastic
iteration:

Ok+1 = O + Br(b1 — A1160 — A1oFk + Vi),
0= by — A1k — Azoirk + Wy.

Besides the calculation of the asymptotic covariancé,@]f/zek (Theorem 2.8),
we also establish that the distribution @Il/z(ek — 6*) converges to a Gaussian
with mean zero and with the above asymptotic covariance (Theorem 4.1). We
believe that the proof technigques of this paper can be extended to nonlinear
stochastic approximation to obtain similar results. However, this and other possible
extensions (such as weak convergence of paths to a diffusion process) are no
pursued in this paper.

In the linear case, our results also explain why Polyak—Ruppert averaging is
optimal. Suppose that we are looking for the solution of the linear system

Ar=>b

in a setting where we only haweccess to noisy gasurements df — Ar. The
standard algorithm in this setting is

(1.6) rip1=rk + vk (b — Arg + Wy),

and is known to converge under suitable conditions. (H8fgrepresents zero-
mean noise at time.) In order to improve the rate of convergence, Polyak (1990)
and Ruppert (1988) suggest using the average

1k—1
(1.7) Oe== r
k =0

as an estimate of the solution, insteadrgflt was shown in Polyak (1990) that
if ky, — oo, the asymptotic covariance afk6; is A~1I'(A’)~1, whereT is the
covariance ofW;. Furthermore, this asymptotic covariance matrix is known to be
optimal [Kushner and Yin (1997)].

The calculation of the asymptotic covariance in Polyak (1990) and Ruppert
(1988) uses the special averaging structure. We provide here an alternative
calculation based on our results. Note thasatisfies the recursion

(1.8) O 1 =06k +

—6),
k+1(rk )

and the iteration (1.6)—(1.8) fof, andé; is a special case of the two-time-scale
iterations (1.4) and (1.5), with the correspondebge- 0, A11 =1, A1o=—1,

Vi =0, bp = b, A1 =0, Ayp = 0. Furthermore, the assumptidry, — oo
corresponds to our general assumpifipry;, — O.
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By applying our rule of thumb to the iteration (1.6)—(1.8), we see that the

asymptotic covariance afv'k + 1)6; is the same as that @l/k + 1)6x, where
0, satisfies

_ _ 1 _
0 =0 T (=G +A YW ,
Je+1 k+k+1( ik +AT(b+ Wp)

or
gkl . .
6 = — ATb+ATW)).
k k1§=o( 1)

It then follows that the covariance of/k6; is A~1I'(A)~1, and we recover
the result of Polyak (1990), Polyak and Juditsky (1992) and Ruppert (1988) for
the linear case.

In the example just discussed, the use of two time-scales is not necessary for
convergence, but is essential for the improvement of the convergence rate. This
idea of introducing two time-scales to improve the rate of convergence deserves
further exploration. Itis investigated to some extent in the context of reinforcement
learning algorithms in Konda (2002).

Finally, we would like to point out the differences between the two-time-scale
iterations we study here and those that arise in the study of the tracking ability
of adaptive algorithms [see Benveniste, Metivier and Priouret (1990)]. There, the
slow component represents the movement of underlying system parameters and
the fast component represents the user’s algorithm. The fast component, that is,
the user’s algorithm, does not affect the slow component. In contrast, we consider
iterations in which the fast component affects the slow one and vice versa.
Furthermore, the relevant figures of merit are different. For example, in Benveniste,
Metivier and Priouret (1990), one is mostly interested in the behavior of the
fast component, whereas we focus on the asymptotic covariance of the slow
component.

The outline of the paper is as follows. In the next section, we consider
linear iterations driven by i.i.d. noise and obtain expressions for the asymptotic
covariance of the iterates. In Section 3, we compare the convergence rate of two-
time-scale algorithms and their single-time-scale counterparts. In Section 4, we
establish asymptotic normality of the iterates.

Before proceeding, we introduce some notation. Throughout the gapegep-
resents the Euclidean norm of vectors or the induced operator norm of matrices.
Furthermore] and 0 represent identity and null matrices, respectively. We use the
abbreviation w.p.1 for “with probability 1.” We use ¢y, ¢2, ... to represent some
constants whose values are not important.

2. Linear iterations. In this section, we consider iterations of the form
(2.1) Ok+1 =0k + Br(b1 — A116k — Arork + Vi),
(2.2) i1 =k + Yk (b2 — A216k — Aori + Wy),
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wheredy is in R", r; is in R™, and b1, b2, A11, A12, A1, Aoo are vectors and
matrices of appropriate dimensions.

Before we present our results, we motivate various assumptions that we will
need. The first two assumptions are standard.

ASSUMPTION 2.1. The random variable§/;, Wy), k =0, 1, ..., are inde-
pendent ofg, 8, and of each other. They have zero mean and common covariance

E[VkV{]1=T11,
E[ViW;]=T12= T3y,
E[WkWIQ] =T1'99.

ASSUMPTION2.2. The step-size sequendes} and{g;} are deterministic,
positive, nonincreasing, and satisfy the following:

2. ,Bk,)’k — 0.

The key assumption that the step sizgsand y; are of different orders of
maghnitude is subsumed by the following.

ASSUMPTION2.3. There exists some> 0 such that
Bk

— — &
Vk

For the iterations (2.1) and (2.2) to be consistent with the general scheme of two-
time-scale stochastic approximations described in the Introduction, we need some
assumptions on the matricds; . In particular, we need iteration (2.2) to converge
to A}j(bz — A210), wheng, is held constant &. Furthermore, the sequenég
generated by the iteration

Ok+1 = Ok + Pr(b1 — A12A§21192 —(A11— A12A2_21A21)9k + Vi),

which is obtained by substitutin@gzl(bz — A216y) for ry initeration (2.1), should
also converge. Our next assumption is needed for the above convergence to take
place.

Let A be the matrix defined by

(2.3) A=A11— A12A2_21A21.

Recall that a square matriA is said to be Hurwitz if the real part of each
eigenvalue o# is strictly negative.
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ASSUMPTIONZ2.4. The matrices-Ayy, —A are Hurwitz.

It is not difficult to show that, under the above assumpti@fs, ;) converges
in mean square and w.p.1 t6*, r*). The objective of this paper is to capture
the rate at which this convergence takes place. Obviously, this rate depends on
the step-size®y, yx, and this dependence can be quite complicated in general.
The following assumption ensures that the rate of mean square convergence
of (6k, ri) to (6*, r*) bears a simple relationship (asymptotically linear) with the

step-size$y, yi.

ASSUMPTION2.5. 1. There exists a constght- 0 such that

im Bty — B =B
2. If e =0, then
lim Vi~ H=0.
3. The matrix—(A — é;I) is Hurwitz.

Note that whens > 0, the iterations (2.1) and (2.2) are essentially single-
time-scale algorithms and therefore can be analyzed using existing techniques
[Nevel'son and Has'minskii (1973), Kusher and Clark (1978), Benveniste,
Metivier and Priouret (1990), Duflo (1997) and Kusher and Yin (1997)]. We in-
clude this in our analysis as we would like to study the behavior of the rate of
convergence as | 0. The following is an example of sequences satisfying the
above assumption with= 0, 8 = 1/(7180):

= —-<a<l1
yk_ (l+k/fo)a’ 2 )
0
ﬂk=ﬂ7,
A+k/71)

Let 6* € R™ and r* € R" be the unique solution to the system of linear
equations

A110 + A1or = Dy,
A2160 + Aoor = bo.
For eachk, let
O =6 — 07,

(2.4) X .
Tk =rr — Ays (b2 — A216k)
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and
=11 = B “El6:6;],
k __ kN _ o=1rrA o7
T = (E30)" = B “Elbkri ],
5=y 'Elf{].
k k
k| P X1
Xt = sk sk |
21 “22
Our main result is the following.

THEOREM 2.6. Under Assumptions 2.1-2.5, and when the constant ¢ of
Assumption 2.3 is sufficiently small, the limit matrices

(2.5) z) = lim =, ) = lim =, =8 = lim =5,
exist. Furthermore, the matrix
() )
s O _ [211 212 }
- ©) ©)
21 X2
is the unique solution to the following system of equations

0 0 > (0 0 0
(2.6) A + 5N - B3 + 41,59 + 5941, =Ty,
0 0
(2.7) Alzzéz) + E}_Z)AIZZ =T1o,
0 0
(2.8) A2ZS) + 58 Ay =T,
Finally,
2.9 imz® =29  imz2% =29  limz{ =39
( ) £l0 11 11 £40 12 12 £40 22 22

PROOF Let us first consider the cage= 0. The idea of the proof is to study
the iteration in terms of transformed variables:

(2.10) Ox = O, Pt = Liby + .,

for some sequence afx m matrices{L;} which we will choose so thadhe faster
time-scale iteration does not involve the slower time-scale variables. To see what

the sequencéL;} should be, we rewrite the iterations (2.1) and (2.2) in terms of
the transformed variables as shown below (see Section A.1 for the algebra leading
to these equations):

Ok+1 =6k — Br(BS 16k + A1) + B Vi,

(2.11) i
Fre1 = Fx — Yi(B510k 4+ B5oi) + v Wi + Br(Liy1 + A§21A21) Vi,
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where
BY; = A — Apoly,
Ly —Liy1 Bk
BS = T+ _(Lk+1 + A3 A1) BY — Ay,

Bk
BS, = —(Lk+1 + A22 A21)A12+ A2

We wish to chooséL,} so thatB%, is eventually zero. To accomplish this, we
define the sequence of matricds;} by

Ly =0, 0 <k <ko,

Lis1= (Ly — yeAoLi + BrAsy A21BE) (I — BiBE)™Y Yk > ko,

SO thatB’g1 = 0 for all k > kg. For the above recursion to be meaningful, we

need(/ — ﬁkB’fl) to be nonsingular for alt > kq. This is handled by Lemma A.1
in the Appendix, which shows that iy is sufficiently large, then the sequence
of matrices{L;} is well defined and also converges to zero.

For everyk > kg, we define

£11 =B LEl6:6),
Sk N sk p=lpp s
(221) = 212— ﬂk E[Qk”k],
sk, =y LERA.
Using the transformation (2.10), it is easy to see that
Sk k
Y11= 2115

(2.12)

Zlo=Shili + 21z
Sk =3k + <§k>(Lk212+ S L+ Lk L)),
SinceL; — 0, we obtain
lim k= lim 5,
lim k= lim L
lim i, = lim L

provided that the limits exist.
To compute lim 222, we use (2.11), the fact thﬁ’z‘1 = 0 for large enouglt,

the fact thatB22 converges tad2, and some algebra, to arrive at the following
recursion fors4,:

(2.13) S = Sk 4 (Moo — AnaSh, — 55,45, + 85,(55,)),
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wherea’z‘z(-) is some matrix-valued affine function (on the space of matrices) such
that

lim 855(T22) =0  forall Sy

Since— Ap; is Hurwitz, it follows (see Lemma A.2 in the Appendix) that the limit
lim A = lim 5k, =5

exists, ancEé%) satisfies (2.8).

Similarly, =%, satisfies
~ ~ O ~ ~
(214) S =Sh+ w12 - Ay — £HA% +51x(51))

where, as beforei’;z(-) is an affine function that goes to zero. (The coefficients

of this affine function depend, in general, 5}52, but the important property is
that they tend to zero ds— o00.) Since— A2 is Hurwitz, the limit

lim £, =lim £, = =9
exists and satisfies (2.7). Finall¥, satisfies

~ ~ 0 O ~
(2.15) St = S+ Bi(Tu— ArSy) — B35 A — A
— 1A+ AR + 84 (BT),
wheres () is some affine function that goes to zero. (Once more, the coefficients
of this affine function depend, in general, &3, and ££,, but they tend to zero

ask — 00.) Since—(A — 51) is Hurwitz, the limit
lim vk = lim sk =59

exists and satisfies (2.6).

The above arguments show that foe= 0, the limit matrices in (2.5) exist
and satisfy (2.6)—(2.8). To complete the proof, we need to show that these limit
matrices exist for sufficiently smadl> 0 and that the limiting relations (2.9) hold.

As this part of the proof uses standard techniques, we will only outline the analysis.

Define for eaclt,
_ (%
L= <fk) '

The linear iterations (2.1) and (2.2) can be rewritten in terms;cés
Ziy1=Zk — BB Zx + PrUx,

where Uy is a sequence of independent random vectors{@él is a sequence
of deterministic matrices. Using the assumption gty converges te, it can
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be shown that the sequence of matrig&sconverges to some matrig® and,
similarly, that

Iikm E[UU;1=T®

for some matrixI"®). Furthermore, whem > 0 is sufficiently small, it can be
shown that—(B® — %1) is Hurwitz. It then follows from standard theorems

[see, e.qg., Polyak (1976)] on the asymptotic covariance of stochastic approxima-
tion methods, that the limit

lim B rE(Zc 7]

exists and satisfies lanear equation whose coefficients depend smoothlyson

(the coefficients are infinitely differentiable w.rsf). Since the components of the
above limit matrix are}:fl), Zfz) andzé‘? modulo some scaling, the latter matrices
also satisfy a linear equation which depends ofhe explicit form of this equation

is tedious to write down and does not provide any additional insight for our
purposes. We note, however, that when wessiet zero, this system of equations
becomes the same as (2.6)—(2.8). Since (2.6)—(2.8) have a unique solution, the
system of equations foEfl), Efz) and Zéez) also has a unique solution for all
sufficiently smalle. Furthermore, the dependence of the solutiore as smooth
because the coefficients are smooth.in [

REMARK 2.7. The transformations used in the above proof are inspired by
those used to study singularly perturbed ordinary differential equations [Kokotovic
(1984)]. However, most of these transformations were time-invariant because the
perturbation parameter was constant. In such cases, the matetisfies a static
Riccati equation instead of the recursion (2.12). In contrast, our transformations
are time-varying because our “perturbation” paramgiéiy is time-varying.

In most applications, the iteratg¢ corresponds to some auxiliary parameters
and one is mostly interested in the asymptotic covariaﬁ@ of 6;. Note that
according to Theorem 2.6, the covariance of the auxiliary parameters is of the order
of y¢, whereas the covariance@fis of the order of3;. With two time-scales, one
can potentially improve the rate of convergence&pfcf. to a single-time-scale
algorithm) by sacrificing the rate of convergence of the auxiliary parameters. To
make such comparisons possible, we need an alternative interpretaﬂé%\ ahat
does not explicitly refer tdte system (2.6)—(2.8). This is accomplished by our next
result, which provides a useful tool for the design and analysis of two-time-scale
stochastic approximation methods.
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THEOREM2.8. TheasymptotlccovarlancematrlxE(O)ofﬁk ekisthesame

as the asymptotic covariance of g, Y 29k where 6, is generated by
(2.16) Ok+1 =0k + B (b1 — A110 — A1k + Vi),
(2.17) 0=by — A1y — Aoy + Wy.

In other words,
zﬁ_mwﬁmm%

PROOF We start with (2.6)—(2.8) and perform some algebraic manipulations
to eliminateX; (O) andE(o) This leads to a single equation fﬁtﬁ), of the form

AE@+E@A Az

=T11— A12459T21 — T12(Ab) LA, + A12A 55 Too(Aby) 1A%,

Note that the right-hand side of the above equation is exactly the covariance of
Vi — A12A22 Wy. Therefore, the asymptotic covariancegpfis the same as the
asymptotic covariance of the following stochastic approximation:

Ok+1= Ok + Pr(— A0 + Vi — A12A2_21Wk)-

Finally, note that the above iteration is the one obtained by eliminagirfigom
iterations (2.16) and (2.17).0

REMARK. The single-time-scale stochastic approximation procedure in The-
orem 2.8 is not implementable when the matriggsare unknown. The theorem
establishes that two-time-scale stochastic approximation performs as well as if
these matrices are known.

REMARK. The results of the previous section show that the asymptotic

covariance matrix ofs; 1/29k is independent of the step-size schedytg} for
the fast iteration if

& — 0.

Vk
To understand, at least qualitatively, the effect of the step-sjzesn the
transient behavior, recall the recursions (2.13)—(2.15) satisfied by the covariance
matrices*:

S =Sk 4 BT — Az — 59 4]

— A% - EHA - 5211 +811(21D),
S5 =55, + m(M12— A28 — $oAh, + 81,(5)),
S5t =25+ m(Ta2— A22%5, — T5,A% + 85)(557)),
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where thesz‘j(-) are affine functions that tend to zerofatends to infinity. Using
explicit calculations, it is easy to verify that the error ter&f}sare of the form

- 0 -~ 0
8y = A12(25; — Eél)) + (2, — Eiz)) 12+ O(Bi),

0 < Pr
So= Asa(=f) ~ )+ 0(2),

Vi
85, = 0(@).
Vi

To clarify the meaning of the above relations, the first one states that the affine

function 8%,(£11) is the sum of the constant termyx($5;, — £59) + (55, —

Zig))A/lz, and another affine function aff, whose coefficients are proportional
to .

The above relations show that the rate at whith converges t():ﬁ) depends

on the rate at whictEX, converges to\%, through the terns,. The rate of
convergence ok%,, in turn, depends on that &t%,, through the terns,.. Since

the step-size in the recursions Bk, and =%, is y,, and the error terms in these
recursions are proportional 8 /y«, the transients depend on both sequefiggs
and{g;/v«}. But each sequence has a different effect. Wheis large, instability

or large oscillations of; are possible. On the other hand, wh&y; is large,

the error termﬁf. can be large and can prolong the transient period. Therefore,
one would like to haves, /v, decrease to zero quickly, while at the same time
avoiding largey,. Apart from these loose guidelines, it appears difficult to obtain
a characterization of desirable step-size schedules.

3. Singletime-scale ver sustwo time-scales. In this section, we compare the
optimal asymptotic covariance ¢, Y 29k that can be obtained by a realizable
single-time-scale stochastic iteration, with the optimal asymptotic covariance
that can be obtained by a realizable two-time-scale stochastic iteration. The
optimization is to be carried out over a set of suitable gain matrices that can be used
to modify the algorithm, and the optimality criterion to be used is one whereby a
covariance matrixz is preferable to another covariance matkixif £ — X is
nonzero and nonnegative definite.

Recall that Theorem 2.8 established that the asymptotic covariance of a two-
time-scale iteration is the same as in a related single-time-scale iteration. However,
the related single-time-scale iteration is unrealizable, unless the maiknown.

In contrast, in this section we compare realizable iterations that do not require
explicit knowledge ofA (although knowledge oA would be required in order to
select the best possible realizable iteration).

We now specify the classes of stochastic iterations that we will be comparing.
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1. We consider two-time-scale iterations of the form
Ok+1 =0k + BrG1(b1 — A116k — A1ori + Vi),
T4l =Tk + vi(bo — A210k — Aoori + Wy).

Here, G1 is a gain matrix, which we are allowed to choose in a manner that

minimizes the asymptotic covariance)f Y 29k.
2. We consider single-time-scale iterations, in which we hgve- 8, but in
which we are allowed to use an arbitrary gain matixin order to minimize

the asymptotic covariance gf Y 29k. Concretely, we consider iterations of the

form
9k+1] |:9k] [ by — A116k — A1or + Vi }
=| % |+ gG .
|:”k+l Tk P by — A210 — Agori + Wi

We then have the following result.

THEOREM 3.1. Under Assumptions 2.1-2.5, and with ¢ = 0, the minimal

possible asymptotic covariance of 8, Y 29k , When the gain matrices G1 and G can
be chosen freely, is the same for the two classes of stochastic iterations described
above.

PrROOF The single-time-scale iteration is of the form
Zit1=Zk + BG(b — AZy + Uy),

| Ok I RZ:
Zk_["k}’ Uk_[Wk}

by A1n A2
b_[bz}’ A_[Azl Azz]
As is well known [Kushner and Yin (1997)], the optimal (in the sense of positive
definiteness) asymptotic covarianceﬂ;?l/ ZZk over all possible choices @ is
the covariance ofA~1U;. We note that the top block ofA~1U; is equal
to A~V — A12A2‘21Wk). It then follows that the optimal asymptotic covariance
matrix of ﬁk_l/zek is the covariance oA —1(V; — A12A2_21Wk).
For the two-time-scale iteration, Theorem 2.8 shows that for any choiGa ,of
the asymptotic covariance is the same as for the single-time-scale iteration:

i1 =0 + BrG1(b1 — A + Vi — A12AZ3 Wy).

where

and

From this, it follows that the optimal asymptotic covarianceﬁg?l/ 29k is the

covariance ofA~1(v; — A12A521Wk), which is the same as for single-time-scale
iterations. [J



CONVERGENCE RATE OF LINEAR TWO-TIME-SCALE SA 809

4. Asymptotic normality. In Section 2, we showed tha *E[6;6;] con-

verges tozﬁ). The proof techniques used in that section do not extend easily

(without stronger assumptions) to the nonlinear case. For this reason, we develop
here a different result, namely, the asymptotic normalitg,ofwhich is easier to

extend to the nonlinear case. In particular, we show that the distributiﬁ@léfék

converges to a zero-mean normal distribution with covariance mﬁtﬂk The
proof is similar to the one presented in Polyak (1990) for stochastic approximation
with averaging.

THEOREM 4.1. If Assumptions 2.1-2.5 hold with ¢ = 0, then ﬁk_l/zék

convergesin distribution to N (0, Eﬂ)).

PROOF Recall the iterations (2.11) in terms of transformed variaBlasd7.
Assuming thak is large enough so thagl =0, these iterations can be written as

Beir = (I — BN — BrAvofi + BiVic + Bedy .
Frer = (I = A2k + v Wi + Bid + Be(Liss + Az3 A2D) Vi,
wherea,gl) andé,gz) are given by
5/9) = A12Lib,
5/£2) =—(Lg+1+ A§21A21)A12Fk-
Using Theorem 2.6E[|6|21/Bx and E[|7|%1/yx are bounded, which implies that
E[|8" %] < cBelLil?.
4.1)
E[|87°] < en,

for some constant > 0. Without loss of generality assunkg= 0 in (2.11). For
eachi, define the sequence of matridé§ andR;, j=>i,as

e =1,
La=0,—BjA0,  Vjx=i
Ri=1,
R =Ri—yjApnR;, Vj=i.
Using the above matrices, andd;, can be rewritten as

k—1 k—1 k—1
(4.2) O = O — > BiOL AL + Y POV + > B eLs?
i=0 i=0 i=0
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and
k—1 R
Fr = er0+ Zy,RkW + Zﬂ,RkS( )
0 0
(4.3) = =

k—1
+ Y BiRL(Liy1+ Ay Aa)Vi.
i=0
Substituting the right-hand side of (4.3) fof in (4.2), and dividing byﬁl/z,
we have
k—1

-1/2x 1 05 1/2 ,0~
By O = ——=0%0+ Y B:O! A12(B; 7" R; o)
k «/F k 12(:) 1Yk
(4.4) +Z BOL(8 1/2 s@) 4 5O 4 5@ 1 5@
k—1 »
+ ) VBiOL(Vi + A12AZy W),
i=0
where
P = Pi g Vk>i,
Bk
1 -1/2 2
sP = Zﬁ,@kA12< / Zﬁ,Rfa( )),
i=0

_ i—1
2 ~ —1/2 j —
@ = Zﬁ,@;Alg(ﬂi 23" iR} (Lj+1+A221A2])v,),

i=0 j=0

52 = Z\/’@)kAlzzy,RW Z\/ﬁ_,®kA12A221W~.

j=0 j=0

We wish to prove that the various terms in (4.4), with the exception of the last
one, converge in probability to zero. Note that the last term is a martingale and
therefore, can be handled by appealing to a central limit theorem for martingales.
Some of the issues we encounter in the remainder of the proof are quite standard,
and in such cases we will only provide an outline.

To better handle each of the various terms in (4.4), we need approximations
of ® and R.. To do this, consider the nonlinear map+> exp(A) from
square matrices to square matrices. A simple application of the inverse function
theorem shows that this map is a diffeomorphism (differentiable, one-to-one
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with differentiable inverse) in a neighborhood of the origin. Let us denote
the inverse of ex@) by In(-). Since In-) is differentiable around = exp(0),
the functione — In(1 — ¢ A) can be expanded into Taylor’s series for sufficiently
smalle as follows:

IN(I —eA) =—¢(A — E(¢)),

where E (¢) commutes withA and lim._,.q E(¢) = 0. Assuming, without loss of
generality, thatyy and 8o are small enough for the above approximation to hold,
we have fork > 0,

k—1
' 1
©; =exp( — Y B;(A — Ef ))),
j=i
4.5
(4.5) | 1 N
R, =ex —Z)/j(Azz— Ej )),
j=i
for some sequence of matriceE,Ei)}, i =1,2, converging to zero. To obtain a
similar representation fap’ , note that Assumption 2.5(1) implies
Pr
Bik+1

for someg;, — 0. Therefore, using the fact that-lx = exp(x (1 —o(x))) and (4.5),
we have

(4.7 9 = exp(—lgﬁj«A — 21) _ E](,3))),

for some sequences of matricE§3) converging to zero. Furthermore, it is not

difficult to see that the matriceSEi), i =1, 2, 3, commute with the matrices, Ao
andA — (B/2)1, respectively. Since-A, —(A — (B/2)1) and— A, are Hurwitz,
using standard Lyapunov techniques we have for some constganis> 0,

k—1
max(|©;|, |O) < c1 exp(—czZ ﬂ,-),

j=i

(4.6) = (14 Be(ex + B)),

4.8
(4.8) | o
IRi| <1 exp(—cz > Vj)-
j=i
Therefore it is easy to see that the first term in (4.4) goes to zero w.p.1. To prove

that the second term goes to zero w.p.1, note that 4a —f Z"/;% B; [cf. (4.6)]
and therefore for some, ¢z > 0, ‘

i-1 3
1872 R0F0l < CleXp<_C2 Z(J’j - gﬁ/)>

Jj=0



812 V. R. KONDA AND J. N. TSITSIKLIS

which goes to zero as — oo (Assumption 2.3). Therefore, it follows from
Lemma A.3 that the second term also converges to zero w.p.1. Using (4.1)
and Lemma A.3, it is easy to see that the third term in (4.4) converges in the

mean (i.e., inL1) to zero. Next, consideE[|S,§1)|]. Using (4.1), we have for some
positive constantsy, ¢ andcs,

i—1
<c1) v exp( Z(czyz - Csﬂ1)>\/ﬂ7
Jj=0 I=j Vi

Sincepg;/y; — 0, Lemma A.3 implies thaﬁ(l) converges in the mean to zero. To
studyS( ) consider
2}

d

Since theV,, are zero mean i.i.d., the above term is bounded above by

i-1
c1 Z Vj exp( Z(Cz)/z - Csﬁz)) Pi
j=0 Vi

I=j

l/ZZﬁ]Rl6(2)

i-1
—1/2 i _
B2 BRI (Ljsa+ Agy A2V,
j=0

for some constantsy, co andcs. Lemma A.3 implies thaﬂ(z) converges in the

mean to zero. Finally, conS|dé},(c ), By interchanging the order of summation,
it can be rewritten as

k—1 k—1
-y o . .
(4.9) > /86 [ﬁ—f 3 4i(©7) tALR! A12A221i| Wi,
j=0 Ji=j
Since— Ay is Hurwitz, we have

o0
Ay) = /0 exp(—Azat) dt,

and we can rewrite the term inside the brackets in (4.9) as

k-1

2ot =t

1 k-1
. g
+A12<§ viR/ —/0

i=j

¥ 1 k—1
exp(—Azzt) dt | — A12Azy expl — Y yiAzz).
—
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We consider each of these terms separately. To analyze the first term, we wish to
obtain an “exponential” representation fa18; /8y, . It is not difficult to see from
Assumptions 2.5 (1) and (2) that

Br+1 Bk

—=—1—eaw)
Vi+1 Vk

Bk
= e exp(—ex vk + 0(e2yP)),

whereg;, — 0. Therefore, using (4.5) and the mean value theorem, we have
YjBi
Bjvi

(@{)—1—1’

B (1=t i-1 B
= C1SUP<81 + —)( J/z) eXp(CzZ(Sz + —)J/l),
I>j Vi I=j I=j Vi

which in turn implies, along with Lemma A.4 (with = 1) and Assumption 2.3,
that the first term is bounded in norm hysup. (e + yi/B)) for some
constantc > 0. The second term is the difference between an integral and its
Riemannian approximation and therefore is bounded in normdup.. ; y; for
some constant > 0. Finally, since— A2, is Hurwitz, the norm of the third term is
bounded above by

k-1
c1 exp(—cz > m)

i=j

for some constantg1,c2 > 0. An explicit computation ofE[|S,£3)|2], using
the fact that(Vy, W;) is zero-mean i.i.d., and an application of Lemma A.3

shows thatS,EB) converges to zero in the mean square. Therefore, the distribution

of ﬁk_l/zék converges to the asymptotic distribution of the martingale comprising
the remaining terms. To complete the proof, we use the standard central limit
theorem for martingales [see Duflo (1997)]. The key assumption of this theorem
is Lindberg’s conditia which, in our case, boils down to the following: for
eache > 0,

k—1
; (k)2 (k)
im >~ E[|xP1{|x{"| = ¢}] =0,
i=0
wherel is the indicator function and for eaé¢hs k,
X = VBiOL(Vi + A1245, W)
The verification of this assumption is quite standardl

REMARK. Similar results are possible for nonlinear iterations with Markov
noise. For an informal sketch of such results, see Konda (2002).
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APPENDIX: AUXILIARY RESULTS

A.l. Verification of (2.11). Without loss of generality, assume thiat =
by =0. Theng* =0 and

Ok = O = 6,
and, using the definition af, [cf. (2.4) and (2.10)], we have
(A.1) Fr = Libk + 7 = Liby + i + A5y A16 = i + M6y,

where
My =Ly + A3 An.
To verify the equation fo§k+1 = Or+1, We use the recursion féf.1, to obtain
Ok+1 =0k — Br(A120k + Ar2rk — Vi)
= 0k — Br(A16k + A12ft — Ar2(Li + Az A6k — Vi)
=tk — Br(A126k — A12A£21A219k — A12L Ok + A1tk — Vi)
= Ok — Br(Ab — A12Li Ok + Ax2ry) + Bi Vi
= O — Br(BL16k + A1272) + Bi Vi,

where the last step makes use of the definiﬁ@: A — AqoLy.
To verify the equation fof1, we first use the definition (A.1) of1, and
then the update formulas f6¢1 andr,,1, to obtain

P41 =rry1+ (A§21A21 + Li+1)0k+1
= ri — Yk (A210k + Agory — W) + (A§21A21 + Li+1)0k+1
=1y — i (A210k + A22(Fx — (L + Azy A21)6k) — Wi
+ (A521A21 + Li+1)0k+1
=rr — yi(A22rk — A22Lk0k — Wi) + My4+160k+1
=y + My10k — vi (A2 — A22Li Ok — Wy)
— BeMi11(Bi16k + A1k — Vi)

Ly — Lg+1

Bk
— ALy + —Mk+131{1]9k
Yk Yk

=ri + My — Vk[

B .
+ Wi — v (Azz + %Mk—i-lAlZ)”k + Bk Mi+1Vi

= 7% — v (B516k + Bioi) + v Wi + BiMit1 Vi,
which is the desired formula.
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A.2. Convergenceof therecursion (2.12).

LEMMA A.1l. For ko sufficiently large, the (deterministic) sequence of
matrices {L;} defined by (2.12)iswell defined and convergesto zero.

PrROOFE The recursion (2.12) can be rewritten, for kg, as
Lit1=(U — yxA22) Lk
+ Br(Azy A21B1 + (I — vk A2 L Byy) (I — BiBip ™",
which is of the form
Lit1=( — yxA22) Lk + BrDr(Lk),

for a sequence of matrix-valued functiobg (L) defined in the obvious manner.
Since— Az is Hurwitz, there exists a quadratic norm

xlo = Vx'Qx,
a corresponding induced matrix norm, and a constan® such that
(I —yA2)lp =1 —ay)
for every sufficiently smalj . It follows that
|(I —yA22L|lg = (1 —ay)lLlg

for all matrices L of appropriate dimensions and fgr sufficiently small.
Therefore, for sufficiently largg, we have

(A.2)

|Lit1lo < (L —yra)|Lilo + BID(Lp)lo.

For kg sufficiently large, the sequence of functiof®y (-)}i>x, is well defined
and uniformly bounded on the un2-ball {L:|L|p < 1}. To see this, note that
as long as|L¢|p <1, we have|B’1‘1| = |A — A1oLi| < ¢, for some absolute
constantc. With g, small enough, the matrix — ﬁkBlfl is invertible, and
satisfie§ (I — B¢ BY) 71| < 2. With | B, | bounded by, we have

|Ayy A21BY, + (I — yAp2) Ly BYy| < d(1+ |Lyl),

for some absolute constamt To summarize, for large, if [Li]p <1, we
have|Dr(Ly)| < 4d. Since any two norms on a finite-dimensional vector space
are equivalent, we have

d1Pr )

aYk

Listlo < (1— yea) | Lelo + (yka)(
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for some constant; > 0. Recall now that the sequenég is initialized with
Ly, = 0. If kg is large enough so thal i /ayr < 1, then|Li|o < 1 for all k.
Furthermore, since & x <e¢™*, we have

k—1 k—1 dif:
ILilo < ) vj exp(—a > Vi) (—])
Jj=ko i=j Vi

The rest follows from Lemma A.3 & /yx — 0. O

A.3. Linear matrix iterations. Consider a linear matrix iteration of the form
Y1 =Sk + Br(TC — AZp — Zk B + 8 (X))

for some square matrice$, B, step-size sequeng® and sequence of matrix-
valued affine functiong; (-). Assume:

1. The real parts of the eigenvalues af are positive and the real parts of
the eigenvalues oB are nonnegative. (The roles df and B can also be
interchanged.)

2. By is positive and

Br—0, Y Bi=ooc.
k

3. |Imk Sk () =0.
We then have the following standard result whose proof can be found, for example,
in Polyak (1976).

LEMMA A.2. For any X, lim; Z; = X* exists and is the unique solution to
the equation

AYX +¥B=T.

A.4. Convergence of some series. We provide here some lemmas that are
used in the proof of asymptotic normality. Throughout this sectign} is
a positive sequence such that:

1. % — 0,and
2. Zk Yk = OQ.

Furthermore{z} is the sequence defined by

k—1
to=0, tk=2yk, k> 0.
j=0
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LEMMA A.3. For any nonnegative sequence {3;} that convergesto zero and
any p > 0, we have

k k=1 \ P k—1
(A.3) Iiin v ( > )’i) eXIO(— > Vi)@/ =0.
j=0 \i=j i=j
PROOF Leté§(-) be a nonnegative function gf, co) defined by
3(1) = &, th <t <trya.
Then it is easy to see that for aky > 0,

k k=1 \P k—1
DV ( ) Vi) eXP(— > Vi>5j
J=ko i=j i=j
T &
= | (tx—s5)Pe”"95(s)ds + €,°,
l‘ko
where
] k k=1 \P k—1
lell<c V]'2<Z Vi) exp(— > Vi>3j
J=ko i=j i=j
for some constant > 0. Therefore, fokg sufficiently large, we have
k

k-1 p k-1
iim > w(ny) eXP(— Zyi)&;
i=j i=j

J=ko

_Nime fod(s)(t —s)Pe” "™ ds
- 1— cSURsk, Yk '

To calculate the above limit, note that

t
Iiw‘/ (t —$)Pe”""95(s) ds
0

t
= Iim‘/ sPe™58(t —s)ds
t 0

T 00
§|i5n( sup |8(s)|>/ sPe™ ds+Sup|8(s)|/ sPe™ ds
0 s T

s>t—T
o
=Sup|6(s)|/ sPe™ 5 ds.
K T

SinceT is arbitrary, the above limit is zero. Finally, note that the limit in (A.3)
does not depend on the starting limit of the summatidn.
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LEMMA A.4. Foreach p > 0,thereexists K, > Osuchthat for anyk > j > 0,

k i—1 p i—1
Zm(Zyz) em(—Zy,) <K,.
I=j I=j

i=j
ProoF For all j sufficiently large, we have

k i—1 r i—1 (tk—1) .
fo tPe”Tdt

Vi vi] expl—) v|=
2 l(; ) ( ; ) 1—csups;n

i=j

for somec > 0. O
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