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Stein Estimation for Spherically Symmetric
Distributions: Recent Developments
Ann Cohen Brandwein and William E. Strawderman

Abstract. This paper reviews advances in Stein-type shrinkage estimation
for spherically symmetric distributions. Some emphasis is placed on develop-
ing intuition as to why shrinkage should work in location problems whether
the underlying population is normal or not. Considerable attention is devoted
to generalizing the “Stein lemma” which underlies much of the theoretical
development of improved minimax estimation for spherically symmetric dis-
tributions. A main focus is on distributional robustness results in cases where
a residual vector is available to estimate an unknown scale parameter, and, in
particular, in finding estimators which are simultaneously generalized Bayes
and minimax over large classes of spherically symmetric distributions. Some
attention is also given to the problem of estimating a location vector restricted
to lie in a polyhedral cone.
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1. INTRODUCTION

We are happy to help celebrate Stein’s stunning, deep
and significant contribution to the statistical literature.
In 1956, Charles Stein (1956) proved a result that as-
tonished many and was the catalyst for an enormous
and rich literature of substantial importance in statis-
tical theory and practice. Stein showed that when es-
timating, under squared error loss, the unknown mean
vector θ of a p-dimensional random vector X having
a normal distribution with identity covariance matrix,
estimators of the form (1 − a/{‖X‖2 + b})X domi-
nate the usual estimator θ , X, for a sufficiently small
and b sufficiently large when p ≥ 3. James and Stein
(1961) sharpened the result and gave an explicit class
of dominating estimators, (1 − a/‖X‖2)X for 0 < a <

2(p − 2), and also showed that the choice of a = p − 2
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(the James–Stein estimator) is uniformly best. For fu-
ture reference recall that “the usual estimator,” X, is
a minimax estimator for the normal model, and more
generally for any distribution with finite covariance
matrix.

Stein (1974, 1981), considering general estimators
of the form δ(X) = X + g(X), gave an expression for
the risk of these estimators based on a key Lemma,
which has come to be known as Stein’s lemma. Nu-
merous results on shrinkage estimation in the general
spherically symmetric case followed based on some
generalization of Stein’s lemma to handle the cross
product term Eθ [(X − θ)′g(X)] in the expression for
the risk of the estimator.

A substantial number of papers for the multivariate
normal and nonnormal distributions have been written
over the decades following Stein’s monumental results.
For an earlier expository development of Stein estima-
tion for nonnormal location models see Brandwein and
Strawderman (1990).

This paper covers the development of Stein esti-
mation for spherically symmetric distributions since
Brandwein and Strawderman (1990). It is not encyclo-
pedic, but touches on only some of the significant re-
sults for the nonnormal case.

Given an observation, X, on a p-dimensional spher-
ically symmetric multivariate distribution with un-
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known mean, θ and whose density is f (‖x − θ‖2) (for
x, θ ∈ Rp), we will consider the problem of estimat-
ing θ subject to the squared error loss function, that is,
δ(X) is a measurable (vector-valued) function, and the
loss given by

L(θ, δ) = ‖δ − θ‖2 =
p∑

i=1

(δi − θi)
2,(1.1)

where δ = (δ1, δ2, . . . , δp)′ and θ = (θ1, θ2, . . . , θp)′.
The risk function of δ is defined as

R(θ, δ) = EθL(δ(X), θ).

Unless otherwise specified, we will be using the loss
defined by (1.1). Other loss functions such as the loss
L(θ, δ) = ‖δ − θ‖2/σ 2 will be occasionally used, es-
pecially when there is also an unknown scale parame-
ter, and minimaxity, as opposed to domination, is the
main object of study. We will have relatively little to
say about the important case of confidence set loss, or
of loss estimation.

In Section 2 we provide some additional intuition as
to why the Stein estimator of the mean vector θ makes
sense as an approximation to an optimal linear estima-
tor and as an empirical Bayes estimator in a general lo-
cation problem. The discussion indicates that normal-
ity need play no role in the intuitive development of
Stein-type shrinkage estimators.

Section 3 is devoted to finding improved estima-
tors of θ for spherically symmetric distributions with
a known scale parameter using results of Brandwein
and Strawderman (1991) and Berger (1975) to bound
the risk of the improved general estimator δ(X) =
X + σ 2g(X).

Section 4 considers estimating the mean vector for a
general spherically symmetric distribution in the pres-
ence of an unknown scale parameter, and, more partic-
ularly, when a residual vector is available to estimate
the scale parameter. It extends some of the results from
Section 3 to this case as well as presenting new im-
proved estimators for this problem. The results in this
section indicate a remarkable robustness property of
Stein-type estimators in this setting, namely, that cer-
tain of the improved estimators dominate X uniformly
for all spherically symmetric distributions simultane-
ously (subject to risk finiteness).

In Section 5 we consider the restricted parameter
space problem, particularly the case where θ is re-
stricted to a polyhedral cane, or more generally a
smooth cone. The material in this section is adapted
from Fourdrinier, Strawderman and Wells (2003).

In Section 6 we consider some of the advancements
in Bayes estimation of location vectors for both the
known and unknown scale cases. We present an in-
triguing result of Maruyama Maruyama (2003b) which
is related to the (distributional) robustness of Stein es-
timators in the unknown scale case treated in Section 4.

Section 7 contains some concluding remarks.

2. SOME FURTHER INTUITION INTO
STEIN ESTIMATION

We begin by adding some intuition as to why Stein
estimation is both reasonable and compelling, and refer
the reader to Brandwein and Strawderman (1990) for
some earlier developments. The reader is also referred
to Stigler (1990) and to Meng (2005).

2.1 Stein Estimators as an Approximation to the
Best Linear Estimator

The following is a very simple intuitive development
for optimal linear estimation of the mean vector in Rp

that leads to the Stein estimator.
Suppose Eθ [X] = θ , Cov(X) = σ 2I (σ 2 known),

and consider the linear estimator of the form δa(X) =
(1 − a)X. What is the optimal value of a? The risk is
given by

R(θ, δa) = p(1 − a)2σ 2 + a2‖θ‖2

and the derivative, with respect to a, is

{d/da}R(θ, δa) = 2{−p(1 − a)σ 2 + a‖θ‖2}.
Hence, the optimal a is pσ 2/(pσ 2 + ‖θ‖2) and the
optimal “estimator” is δ(X) = (1 − pσ 2/{pσ 2 +
‖θ‖2})X, which is, of course, not an estimator because
it depends on θ .

However, Eθ [‖X‖2] = pσ 2 + ‖θ‖2, so 1/‖X‖2 is
a reasonable estimator of 1/{pσ 2 + ‖θ‖2}. Hence,
an approximation to the optimal linear “estimator” is
δ(X) = (1 − pσ 2/‖X‖2)X which is the James–Stein
estimator except that p replaces p − 2. Note that as p

gets larger, ‖X‖2/p is likely to improve as an estima-

tor of σ 2 + ‖θ‖2

p
and, hence, we may expect that the

dimension, p, plays a role.

2.2 Stein Estimators as Empirical Bayes
Estimators for General Location Models

Strawderman (1992) considered the following gen-
eral location model. Suppose X|θ ∼ f (x − θ), where
Eθ [X] = θ , Cov(X) = σ 2I (σ 2 known) but that f (·) is
otherwise unspecified. Also assume that the prior dis-
tribution for θ is given by f �n(θ), the n fold convolu-
tion of f (·) with itself. Hence, the prior distribution of
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θ can be represented as the distribution of a sum of n

i.i.d. variables ui, i = 1, . . . , n, where each u is dis-
tributed as f (u). Also, the distribution of u0 = (X− θ)

has the same distribution and is independent of the
other u’s.

The Bayes estimator can therefore be thought of as

δ(X) = E[θ |X] = E[θ |X − θ + θ ]

= E

[
n∑

i=1

ui

∣∣∣ n∑
i=0

ui

]

and, hence,

δ(X) = nE

[
uj

∣∣∣ n∑
i=0

ui

]

= n

n + 1
E

[
n∑

i=0

ui

∣∣∣ n∑
i=0

ui

]

= n

n + 1
E[X|X] = n

n + 1
X

or, equivalently, δ(X) = E[θ |X] = (1 − 1/{n + 1})X.
Assuming that n is unknown, we may estimate it

from the marginal distribution of X, which has the
same distribution as X − θ + θ = ∑n

i=0 ui . In partic-
ular,

Eθ [‖X‖2] = E

[∥∥∥∥∥
n∑

i=0

ui

∥∥∥∥∥
2]

=
n∑

i=0

E[‖ui‖2] = (n + 1)pσ 2,

since E[ui] = 0 and Cov(ui) = σ 2I , E[‖ui‖2] = pσ 2.
Therefore, (n + 1) can be estimated by (pσ 2)−1‖X‖2.
Substituting this estimator of (n + 1) in the expression
for the Bayes estimator, we have an empirical Bayes
estimator

δ(X) = (1 − pσ 2/‖X‖2)X,

which is again the James–Stein estimator, save for the
substitution of p for p − 2.

Note that in both of the above developments, the
only assumptions were that Eθ(X) = θ, and Cov(X) =
σ 2I . The Stein-type estimator thus appears intuitively,
at least, to be a reasonable estimator in a general loca-
tion problem.

3. SOME RECENT DEVELOPMENTS FOR THE
CASE OF A KNOWN SCALE PARAMETER

Let X ∼ f (‖x −θ‖2), the loss be L(θ, δ) = ‖δ−θ‖2

so the risk is R(θ, δ) = Eθ [‖δ(X) − θ‖2]. Suppose an

estimator has the general form δ(X) = X + σ 2g(X).
Then

R(θ, δ) = Eθ [‖δ(X) − θ‖2]
= Eθ [‖X + σ 2g(X) − θ‖2]
= Eθ [‖X − θ‖2] + σ 4Eθ [‖g(X)‖2]

+ 2σ 2Eθ [(X − θ)′g(X)].
In the normal case, Stein’s lemma, given loosely as fol-
lows, is used to evaluate the last term.

LEMMA 3.1 [Stein (1981)]. If X ∼ N(θ,σ 2I ),
then Eθ [(X − θ)′g(X)] = σ 2Eθ [∇′g(X)] [where
∇′g(·) denotes the gradient of g(·)], provided, say, that
g is continuously differentiable and that all expected
values exist.

PROOF. The proof is particularly easy in one di-
mension, and is a simple integration by parts. In higher
dimensions the proof may just add the one-dimensional
components or may be a bit more sophisticated and
cover more general functions, g. In the most general
version known to us, the proof uses Stokes’ theorem
and requires g(·) to be weakly differentiable. �

Using the Stein lemma, we immediately have the fol-
lowing result.

PROPOSITION 3.1. If X ∼ N(θ,σ 2I ), then

R
(
θ,X + σ 2g(X)

)
= Eθ [‖X − θ‖2] + σ 4Eθ [‖g(X)‖2 + 2∇′g(X)]

and, hence, provided the expectations are finite, a suf-
ficient condition for δ(X) to dominate X is ‖g(x)‖2 +
2∇′g(x) < 0 a.e. (with strict inequality on a set of pos-
itive measures).

The key to most of the literature on shrinkage esti-
mation in the general spherically symmetric case is to
find some generalization of (or substitution for) Stein’s
lemma to evaluate (or bound) the cross product term
Eθ [(X − θ)′g(X)]. We indicate two useful techniques
below.

3.1 Generalizations of James–Stein Estimators
Under Spherical Symmetry

Brandwein and Strawderman (1991) extended the re-
sults of Stein (1974, 1981) to spherically symmetric
distributions for estimators of the form X + ag(X).
The following two preliminary lemmas are necessary
to prove the result in Theorem 3.1.
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LEMMA 3.2. Let X have a distribution that is
spherically symmetric about θ . Then

Eθ [(X − θ)′g(X)|‖X − θ‖2 = R2]
= p−1R2AveB(R,θ)∇′g(X),

provided g(x) is weakly differentiable.

PROOF. Notation for this lemma: S(R, θ) and
B(R, θ) are, respectively, the (surface of the) sphere
and (solid) ball, of radius R centered at θ . Note also
that (X − θ)/R is the unit outward normal vector at
X on S(R, θ). Also dσ(X) is the area measure on
S(R, θ), while A(·) and V (·) denote area and volume,
respectively. Since the conditional distribution of X−θ

given ‖X − θ‖2 = R2 is uniform on the sphere of ra-
dius R, it follows that

Eθ [(X − θ)′g(X)|‖X − θ‖2 = R2]
= AveS(R,θ){(X − θ)′g(X)}

= R

A(S(R, θ))

∮
S(R,θ)

(X − θ)′g(X)

R
dσ(X)

= R

A(S(R, θ))

∫
B(R,θ)

∇′g(x) dx

(
since

V (B(R, θ))

A(S(R, θ))
= R/p

)

= R2

pV (B(R, θ))

∫
B(R,θ)

∇′g(x)dx

(by Stokes’ theorem)

= p−1R2 AveB(R,θ) ∇′g(X). �

The following result is basic to the study of su-
perharmonic functions and is well known (see, e.g.,
du Plessis, 1970, page 54).

LEMMA 3.3. Let h(x) be superharmonic on S(R),
[i.e.,

∑p
i=1{∂2/∂x2

i }h(x) ≤ 0], then AveS(R,θ)h(x) ≤
AveB(R,θ)h(x).

Consider, now, an estimator of the general form X +
ag(X), where a is a scalar, and g(X) maps Rp → Rp .

THEOREM 3.1. Let X have a distribution that is
spherically symmetric about θ . Assume the following:

1. ‖g(x)‖2/2 ≤ −h(x) ≤ −∇′g(x),
2. −h(x) is superharmonic, Eθ [R2h(W)] is nonin-

creasing in R for each θ , where W has a uniform
distribution on B(R, θ),

3. 0 ≤ a ≤ 1/{pE0[1/‖X‖2]}.

Then X + ag(X) is minimax with respect to quadratic
loss, provided g(·) is weakly differentiable and all ex-
pectations are finite.

PROOF.

R
(
θ,X + ag(X)

) − R(θ,X)

= E
[
Eθ [a2‖g(X)‖2

+ 2a(X − θ)′g(X)|‖X − θ‖2 = R2]]
≤ E

[
Eθ [−2a2h(X)

+ 2a(X − θ)′g(X)|‖X − θ‖2 = R2]]
= E

[
Eθ [−2a2h(X)|‖X − θ‖2 = R2]
+ 2aE[{R2/p}AveB(R,θ) ∇′g(X)|R2]]

≤ E
[
Eθ [−2a2h(X)|‖X − θ‖2 = R2]

+ 2aEθ [{R2/p}Eθh(W)|R2]]
≤ E

[
Eθ [−2a2h(W)|R2]
+ 2aEθ [{R2/p}Eθh(W)|R2]]

(by Lemma 3.3)

= 2aE
[
Eθ [R2h(W)|R2](−a/R2 + 1/p)

]
= 2aE[Eθ [R2h(W)|R2]]E[−a/R2 + 1/p]
≤ 0

by the covariance inequality since Eθ [R2h(W)|R2] is
nonincreasing and −R−2 is increasing and since h ≤ 0.

�
EXAMPLE 3.1. James–Stein estimators [g(x) =

−2(p − 2)x/‖x‖2]: In this case both ‖g(x)‖2/2 and
−∇′g(x) are equal to 2(p − 2)2/‖x‖2. Conditions 1
and 2 of Theorem 3.1 are satisfied for h(x) = −2(p −
2)2/‖x‖2, provided p ≥ 4 since ‖x‖−2 is superhar-
monic if p ≥ 4, and since Eθ [R2/‖X‖2] =
Eθ/R[1/‖X‖2] is increasing by Anderson’s theorem.

Hence, by condition 3, for any spherically symmet-
ric distribution, the James–Stein estimator (1−a2(p−
2)/‖X‖2)X is minimax for 0 ≤ a ≤ 1/{pE0[1/‖X‖2]}
and p ≥ 4. The domination over X is strict for 0 <

a < 1/{pE0[1/‖X‖2]}, and also for a = 1/{pE0[1/

‖X‖2]}, provided the distribution is not normal.
Baranchik (1970), for the normal case, considered

estimators of the form (1 − ar(‖X‖2)/‖X‖2)X under
certain conditions on r(·). Under the assumption that
r(·) is monotone nondecreasing, bounded between 0
and 1, and concave, Theorem 3.1 applies to these esti-
mators as well, and establishes minimaxity for 0 ≤ a ≤
1/{pE0[1/‖X‖2]} and for p ≥ 4.
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We note in passing that the results in this subsection
hold for an arbitrary spherically symmetric distribution
with or without a density. The calculations rely only on
the distribution of X conditional on ‖X − θ‖2 = R2,
and, of course, finiteness of E[‖X‖2] and E[‖g(X)‖2].
3.2 A Useful Expression for the Risk of a

James–Stein Estimator

Berger (1975) gave a useful expression for the risk of
a James–Stein estimator which is easily generalized to
the case of a general estimator, provided the spherically
symmetric distribution has a density f (‖x − θ‖2).

Some form of this generalization (and extensions
to unknown scale case and the elliptically symmet-
ric case) has been used by several authors, includ-
ing Fourdrinier, Strawderman and Wells (2003), Four-
drinier, Kortbi and Strawderman (2008), Fourdrinier
and Strawderman (2008), Maruyama (2003a) and
Kubokawa and Srivastava (2001), among others.

LEMMA 3.4. Suppose X ∼ f (‖x − θ‖2), and let
F(t) = 2−1 ∫ ∞

t f (u) du and Q(t) = F(t)/f (t). Then

R
(
θ,X + g(X)

)
= Eθ [‖X − θ‖2]

+ Eθ [‖g(X)‖2 + 2Q(‖X − θ‖2)∇′g(X)].
PROOF. The lemma follows immediately with the

following identity for the cross product term:

E[(x − θ)′g(X)]
=

∫
Rp

(x − θ)′g(X)f (‖x − θ‖2) dx

=
∫
Rp

g(X)′∇F(‖x − θ‖2) dx

=
∫
Rp

∇′g(X)F (‖x − θ‖2) dx

(by Green’s theorem)

= E[Q(‖X − θ‖2)∇′g(X)]. �

Berger (1975), Maruyama (2003a) and Fourdrinier,
Kortbi and Strawderman (2008) used the above result
for distributions for which Q(t) is bounded below by
a positive constant. In this case, the next result follows
immediately from Lemma 3.4.

THEOREM 3.2. Suppose X ∼ f (‖x − θ‖2), and
that Q(t) ≥ c > 0. Then the estimator X + g(X) dom-
inates X provided ‖g(x)‖2 + 2c∇′g(x) ≤ 0 for all x.

EXAMPLE 3.2. As noted by Berger (1975), if f (·)
is a scale mixture of normals, then Q(t) is bounded be-
low. To see this, note that if X|V ∼ N(θ,V I) and V ∼
g(v), then f (t) = ∫ ∞

0 (2πv)−p/2 exp(−t/2v)g(v) dv.
Similarly,

F(t) = 2−1
∫ ∞
t

f (u) du

= 2−1
∫ ∞

0
g(v)(2πv)−p/2

∫ ∞
t

exp(−u/2v) du

=
∫ ∞

0
(2πv)−p/2v exp(−t/2v)g(v) dv.

Hence,

Q(t) =
∫ ∞

0 v(2−p)/2 exp(−t/2v)g(v) dv∫ ∞
0 v−p/2 exp(−t/2v)g(v) dv

= Et [V ] ≥ E0[V ] =
∫ ∞

0 v1−p/2g(v) dv∫ ∞
0 v−p/2g(v) dv

= E[V 1−p/2]
E[V −p/2] = c > 0,

where Et denotes expectation with respect to the den-
sity proportional to v−p/2 exp(−t/2v)g(v). The in-
equality follows since the family has monotone like-
lihood ratio in t .

Hence, for the James–Stein class (1 − a/‖X‖2)X,
this result gives dominance over X for

a2 − 2a(p − 2)
E[V 1−p/2]
E[V −p/2] ≤ 0

or

0 ≤ a ≤ 2(p − 2)
E[V 1−p/2]
E[V −p/2] .

This bound on the shrinkage constant, a, compares
poorly with that obtained by Strawderman (1974), 0 ≤
a ≤ 2(p − 2)/E[V −1], which may be obtained by
using Stein’s lemma conditional on V and the fact
that Eθ [V/‖X‖2|V ] is monotone nondecreasing in V .
Note that, again by monotone likelihood ratio prop-
erties (or the covariance inequality), (E[V −1])−1 >

E[V 1−p/2]/E[V −p/2].
It is therefore somewhat surprising that Maruyama

(2003a) and Fourdrinier, Kortbi and Strawderman
(2008) were able to use Theorem 3.2, applied to
Baranchik-type estimators, to obtain generalized and
proper Bayes minimax estimators. Without going into
details, the advantage of the cruder bound is that it
requires only that r(t) be monotone, while Strawder-
man’s result for mixtures of normal distributions also
requires that r(t)/t be monotone decreasing.
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Other applications of Lemma 3.4 give refined bounds
on the shrinkage constant in the James–Stein or
Baranchik estimator depending on monotonicity prop-
erties of Q(t). Typically, additional conditions are
required on the function r(t) as well. See, for ex-
ample, Brandwein, Ralescu and Strawderman (1993)
(although the calculations in that paper are somewhat
different than those in this section, the basic idea is
quite similar).

Applications of the risk expression in Lemma 3.4 are
complicated relative to those in the normal case using
Stein’s lemma, in that the mean vector, θ , remains to
complicate matters through the function Q(‖X − θ‖2).
It is both surprising and interesting that matters become
essentially simpler (in a certain sense) when the scale
parameter is unknown, but a residual vector is avail-
able. We investigate this phenomenon in the next sec-
tion.

4. STEIN ESTIMATION IN THE UNKNOWN
SCALE CASE

In this section we study the model (X,U) ∼ f (‖x −
θ‖2 + ‖u‖2), where dimX = dim θ = p, and dimU =
k. The classical example of this model is, of course,
the normal model f (t) = ( 1√

2πσ
)p+ke−t/(2σ 2). How-

ever, a variety of other models have proven useful.
Perhaps the most important alternatives to the normal
model in practice and in theory are the generalized
multivariate-t distributions

f (t) = c

σp+k

(
1

a + t/σ 2

)b

,

or, more generally, scale mixture of normals of the
form

f (t) =
∫ ∞

0

(
1√

2πσ

)p+k

e−t/(2σ 2) dG(σ 2).

These models preserve the spherical symmetry about
the mean vector and, hence, the covariance matrix is a
multiple of the identity. Thus, the coordinates are un-
correlated, but they are not independent except for the
case of the normal model. We look (primarily) at esti-
mators of the form X + {‖U‖2/(k + 2)}g(X).

The main result may be interpreted as follows: If,
when X ∼ N(θ,σ 2I ) (σ 2 known), the estimator X +
σ 2g(X) dominates X, then, under the model (X,U) ∼
f (‖x − θ‖2 + ‖u‖2), the estimator X + {‖U‖2/(k +
2)}g(X) dominates X. That is, substituting the esti-
mator ‖U‖2/(k + 2) for σ 2 preserves domination uni-
formly for all parameters (θ, σ 2) and (somewhat as-
tonishingly) simultaneously for all distributions, f (·).

Note that, interestingly, ‖U‖2/(k + 2) is the minimum
risk equivariant estimator of σ 2 in the normal case un-
der the usual invariant loss. This wonderful result is
due to Cellier and Fourdrinier (1995). We refer the
reader to their paper for the original proof based on
Stokes’ theorem applied to the distribution of X con-
ditional on ‖X − θ‖2 + ‖U‖2 = R2. One interesting
aspect of that proof is that even if the original distri-
bution has no density, the conditional distribution of X

does have a density for all k > 0.
We will approach the above result from two differ-

ent directions. The first approach is essentially an ex-
tension of Lemma 3.4. As in that case, the resulting ex-
pression for the risk still involves both the data and θ

inside the expectation, but the function Q(‖X − θ‖2 +
‖U‖2) is a common factor. This allows the treatment of
the remaining terms as if they are an unbiased estimate
of the risk difference.

The second approach is due to Fourdrinier, Straw-
derman and Wells (2003), and is attractive because it
is essentially statistical in nature, depending on com-
pleteness and sufficiency. It may be argued also that
this approach is somewhat more general in that it may
be useful even when the function g(x) is not necessar-
ily weakly differentiable. In this case an unbiased es-
timator of the risk difference is obtained which agrees
with that in Cellier and Fourdrinier (1995). This is in
contrast to the above method whereby the expression
for the risk difference still has a factor Q(‖X − θ‖2 +
‖U‖2) inside the expectation.

NOTE. Technically, our use of the term “unknown
scale” is somewhat misleading in that the scale pa-
rameter may, in fact, be known. We typically think of
f (·) as being a known density, which implies that the
scale is known as well. It may have been preferable to
write the density as (X,U) ∼ {1/σp+k}f ({‖x − θ‖2 +
‖u‖2}/σ 2), emphasizing the unknown scale parame-
ter. This is more in keeping with the usual canoni-
cal form of the general linear model with spherically
symmetric errors. What is of fundamental importance
is the presence of the residual vector, U , in allowing
uniform domination over the estimator X simultane-
ously for the entire class of spherically symmetric dis-
tributions. Since the suppression of the scale parameter
makes notation a bit simpler, we will, for the most part,
use the above notation in this section. Additionally,
we continue to use the un-normalized loss, L(θ, δ) =
‖δ − θ‖2, and state results in terms of dominance over
X instead of minimaxity, since the minimax risk is in-
finite. In order to speak meaningfully of minimaxity in
the unknown scale case, we should use a normalized
version of the loss, such as L(θ, δ) = ‖δ − θ‖2/σ 2.
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4.1 A Generalization of Lemma 3.4

LEMMA 4.1. Suppose (X,U) ∼ f (‖x − θ‖2 +
‖u‖2), where dimX = dim θ = p, dimU = k. Then,
provided g(x,‖u‖2) is weakly differentiable in each
coordinate:

1. Eθ [‖U‖2(X − θ)′g(X,‖U‖2)] = Eθ [‖U‖2∇′
Xg(X,

‖U‖2)Q(‖X − θ‖2 + ‖U‖2)].
2. Eθ [‖U‖4‖g(X,‖U‖2)‖2] = Eθ [h(X,‖U‖2) ·

Q(‖X − θ‖2 + ‖U‖2)], where Q(t) = {2f (t)}−1 ·∫ ∞
t f (s) ds and

h(x,‖u‖2)

= (k + 2)‖u‖2‖g(x)‖2(4.1)

+ 2‖u‖4 ∂

∂‖u‖2 ‖g(x,‖u‖2)‖2.

PROOF. The proof of part 1 is essentially the same
as the proof of Lemma 3.4, holding U fixed through-
out. The same is true of part 2, where the roles of X

and U are reversed and one notes that

∇′
u(‖u‖2u) = (k + 2)‖u‖2,

∇′
u{(‖u‖2u)‖g(x,‖u‖2)‖2} = h(x,‖u‖2),

which is given by (4.1), and, hence,

Eθ [‖U‖4‖g(X,‖U‖2)‖2]
= Eθ [(‖U‖2U)′U‖g(X,‖U‖2)‖2]
= Eθ [∇′

U {(‖U‖2U)‖g(X,‖U‖2)‖2}
· Q(‖X − θ‖2 + ‖U‖2)]

= Eθ [h(X,‖U‖2)Q(‖X − θ‖2 + ‖U‖2)]. �
One version of the main result for estimators of the

form X + {‖U‖2/(k + 2)}g(X) is the following theo-
rem.

THEOREM 4.1. Suppose (X, U) is as in Lemma 4.1.
Then:

1. The risk of an estimator X + {‖U‖2/(k + 2)}g(X)

is given by

R
(
θ,X + {‖U‖2/(k + 2)}g(X)

)
= Eθ [‖X − θ‖2]

+ Eθ

[‖U‖2

k + 2
{‖g(X)‖2 + 2∇′g(X)}

· Q(‖X − θ‖2 + ‖U‖2)

]
,

2. X + {‖U‖2/(k + 2)}g(X) dominates X provided
‖g(x)‖ + 2∇′g(x) < 0.

PROOF. Note that

R
(
θ,X + {‖U‖2/(k + 2)}g(X)

)
= Eθ [‖X − θ‖2]

+ Eθ

[ ‖U‖4

(k + 2)2 ‖g(X)‖2

+ 2
‖U‖2

k + 2
(X − θ)′g(X)

]

= Eθ [‖X − θ‖2]
+ Eθ

[
{‖g(X)‖2 + 2∇′g(X)}

· ‖U‖2Q(‖X − θ‖2 + ‖U‖2)

k + 2

]

by successive application of parts 1 and 2 of Lem-
ma 4.1. �

EXAMPLE 4.1. Baranchik-type estimators: Sup-
pose the estimator is given by (1−‖U‖2r(‖X‖2)/{(k+
2)‖X‖2})X, where r(t) is nondecreasing, and 0 ≤
r(t) ≤ 2(p − 2), then for p ≥ 3 the estimator domi-
nates X simultaneously for all spherically symmetric
distributions for which the risk of X is finite. This fol-
lows since, if g(x) = −xr(‖x‖2)/‖x‖2, then

‖g(x)‖2 + 2∇′g(x)

= r2(‖x‖2)/‖x‖2

− 2{(p − 2)r(‖x‖2)/‖x‖2 − 2r ′(‖x‖2)}
≤ r2(‖x‖2)/‖x‖2 − 2(p − 2)r(‖x‖2)/‖x‖2 ≤ 0.

EXAMPLE 4.2. James–Stein estimators: If
r(‖x‖2) ≡ a, the Baranchik estimator is a James–Stein
estimator, and, since r ′(t) ≡ 0, the risk is given by

Eθ [‖X − θ‖2] + a2 − 2a(p − 2)

k + 2

· E
[‖U‖2

‖X‖2 Q(‖X − θ‖2 + ‖U‖2)

]
.

Just as in the normal case, a = p − 2 is the uniformly
best choice to minimize the risk. But here it is the uni-
formly best choice for every distribution. Hence, the
estimator (1 − (p − 2)‖U‖2/{(k + 2)‖X‖2})X is uni-
formly best, simultaneously for all spherically sym-
metric distributions among the class of James–Stein es-
timators!
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A more refined version of Theorem 4.1 which uses
the full power of Lemma 4.1 is proved in the same way.
We give it for completeness and since it is useful in the
study of risks of Bayes estimators.

THEOREM 4.2. Suppose (X,U) is as in Lem-
ma 4.1. Then, under suitable smoothness conditions
on g(·):
1. The risk of an estimator X + {‖U‖2/(k + 2)}g(X,

‖U‖2) is given by

R
(
θ,X + {‖U‖2/(k + 2)}g(X,‖U‖2)

)
= Eθ [‖X − θ‖2]

+ Eθ [{(k + 2)−1‖U‖2‖g(X,‖U‖2)‖2

+ 2∇′
Xg(X,‖U‖2)

+ 2(k + 2)−2‖U‖4(∂/∂‖U‖2)

· ‖g(X,‖U‖2)‖2}
·Q(‖X − θ‖2 + ‖U‖2)],

2. X + {‖U‖2/(k + 2)}g(X,‖U‖2) dominates X pro-
vided

‖g(x,‖u‖2)‖2 + 2∇′
xg(x,‖u‖2)

+ 2
‖u‖2

k + 2

∂

∂‖u‖2 ‖g(x,‖u‖2)‖2 < 0.

COROLLARY 4.1. Suppose δ(X,‖U‖2) = (1 −
‖U‖2r(‖X‖2/‖U‖2)/‖X‖2)X. Then δ(X,‖U‖2) dom-
inates X provided:

1. 0 ≤ r(·) ≤ 2(p − 2)/(k + 2) and
2. r(·) is nondecreasing.

The result follows from Theorem 4.2 by a straight-
forward calculation.

4.2 A More Statistical Approach Involving
Sufficiency and Completeness

We largely follow Fourdrinier, Strawderman and
Wells (2003) in this subsection. The nature of the con-
clusions for estimators is essentially as in Theorem 4.1,
but the result is closer in spirit to the result of Cellier
and Fourdrinier (1995) in that we obtain an unbiased
estimator of risk difference (from X) instead of the
expression in Theorem 4.1 where the function Q(·),
which depends on θ , intervenes. The following lemma
is the key to this development.

LEMMA 4.2. Let (X,U) ∼ f (‖x − θ‖2 + ‖u‖2),
where dimX = dim θ = p and dimU = k. Suppose
g(·) and h(·) are such that when X ∼ Np(θ, I ),

Eθ [(X − θ)′g(X)] = Eθ [h(X)]. Then, for (X,U) as
above,

Eθ [‖U‖2(X − θ)′g(X)]
= {1/(k + 2)}Eθ [‖U‖4h(X)],

provided the expectations exist.

NOTE. Typically, of course, h(x) is the divergence
of g(x), and, in all cases known to us, this remains
essentially true. We choose this form of expressing
the lemma because in certain instances of restricted
parameter spaces the lemma applies even though the
function g(·) may not be weakly differentiable, but
the equality still holds for g(x)IA(g(x)) and h(x) =
∇′g(x)IA(g(x)), where IA(·) is the indicator function
of a set A.

PROOF OF LEMMA 4.2. Suppose first, that the dis-
tribution of (X,U) is Np+k({θ,0}, σ 2I ) and that θ is
considered known. Then by the independence of X and
U we have by assumption that

Eθ [(X − θ)′g(X)]
= Eθ [(1/k)‖U‖2(X − θ)′g(X)]
= Eθ [{k(k + 2)}−1‖U‖4h(X)].

Hence, the claimed result of the theorem is true for the
normal case. Now use the fact that in the normal case
(for θ known), ‖X − θ‖2 + ‖U‖2 is a complete suffi-
cient statistic. So it must be that

Eθ [‖U‖2(X − θ)′g(X)|‖X − θ‖2 + ‖U‖2]

= Eθ

[‖U‖4h(X)

k + 2

∣∣∣‖X − θ‖2 + ‖U‖2
]

for all ‖X − θ‖2 + ‖U‖2 except on a set of measure
0, since each function of ‖X − θ‖2 + ‖U‖2 has the
same expected value. Actually, it can be shown that
these conditional expectations are continuous in R and,
hence, they agree for all R (see Fourdrinier, Strawder-
man and Wells, 2003).

But the distribution of (X,U) conditional on ‖X −
θ‖2 + ‖U‖2 = R2 is uniform on the sphere centered
at (θ,0) of radius R, which is the same as the condi-
tional distribution of (X,U) conditional on ‖X−θ‖2 +
‖U‖2 = R2 for any spherically symmetric distribution.
Hence, the equality which holds for the normal distri-
bution holds for all distributions f (·). �

Lemma 4.2 immediately gives the following unbi-
ased estimator of risk difference and a condition for
dominating X for estimators of the form δ(X) = X +
{‖U‖2/(k + 2)}g(X).
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THEOREM 4.3. Suppose (X,U), g(x) and h(x)

are as in Lemma 4.2. Then, for the estimator δ(X) =
X + {‖U‖2/(k + 2)}g(X):

1. The risk difference is given by

R(θ, δ) − Eθ [‖X − θ‖2]

= Eθ

[ ‖U‖4

(k + 2)2 {‖g(X)‖2 + 2∇′g(X)}
]
,

2. δ(X) beats X provided ‖g(x)‖2 + 2∇′g(x) ≤ 0,
with strict inequality on a set of positive measure,
and provided all expectations are finite.

5. RESTRICTED PARAMETER SPACES

We consider a simple version of the general re-
stricted parameter space problem which illustrates
what types of results can be obtained. Suppose (X,U)

is distributed as in Theorem 4.1 but it is known that
θi ≥ 0, i = 1, . . . , p, that is, θ ∈ R

p
+ the first orthant.

What follows can be generalized to the case where θ

is restricted to a polyhedral cone, and more generally
a smooth cone. The material in this section is adapted
from Fourdrinier, Strawderman and Wells (2003).

In the normal case, the MLE of θ subject to the
restriction that θ ∈ R

p
+ is X+, where the ith compo-

nent is Xi if Xi ≥ 0 and 0 otherwise. Here, as in
the case of the more general restriction to a convex
cone, the MLE is the projection of X onto the re-
stricted cone. Chang (1982) considered domination of
the MLE of θ when X has a Np(θ, I ) distribution
and θ ∈ R

p
+ via certain Stein-type shrinkage estima-

tors. Sengupta and Sen (1991) extended Chang’s re-
sults to Stein-type shrinkage estimators of the form
δ(X) = (1 − rs(‖X+‖2)/‖X+‖2)X+, where rs(·) is
nondecreasing, and 0 ≤ rs(·) ≤ 2(s − 2)+, and where s

is the (random) number of positive components of X.
Hence, shrinkage occurs only when s, the number of
positive components of X, is at least 3 and the amount
of shrinkage is governed by the sum of squares of the
positive components. A similar result holds if θ is re-
stricted to a general polyhedral cone where X+ is re-
placed by the projection of X onto the cone and s is
defined to be the dimension of the face onto which X

is projected.
We choose the simple polyhedral cone θ ∈ R

p
+ be-

cause it will be reasonably clear that some version of
the Stein Lemma 3.1 applies in the normal case. We
first indicate a convenient, but complicated looking, al-
ternate representation of an estimator of the above form
in this case. Denote the n = 2p orthants of Rp , by

O1, . . . ,On, and let O1 be R+. Then we may rewrite
(a slightly more general version of) the above estima-
tor as

δ(X) =
n∑

i=1

(
1 − ri(‖Pi(X)‖2)

‖Pi(X)‖2

)
Pi(X)IOi

(X),

where Pi(X) is the linear projection of X onto Fi ,
where Fi is the s-dimensional face of R+ = O1 onto
which Oi is projected. Note that if ri(·) ≡ 0, ∀i, the
estimator is just the MLE.

LEMMA 5.1. Suppose X ∼ Np(θ, I ), and let each
ri(·) be smooth and bounded. Then:

1. For each Oi , {ri(‖Pi(x)‖2)/‖Pi(x)‖2}Pi(x)IOi
(x)

is weakly differentiable in x.
2. Further,

Eθ

[(
Pi(X) − θ

)′ ri(‖Pi(X)‖2)

‖Pi(X)‖2 Pi(X)IOi
(X)

]

= Eθ

[{
(s − 2)ri(‖Pi(X)‖2)

‖Pi(X)‖2

+ 2r ′
i (‖Pi(X)‖2)

}
IOi

(X)

]
,

provided expectations exist.
3. δ(X) = ∑n

i=1{1 − ri(‖Pi(X)‖2)/‖Pi(X)‖2} ·
Pi(X)IOi

(X) as given above dominates the MLE
X+, provided ri is nondecreasing and bounded be-
tween 0 and 2(s − 2)+.

PROOF. Weak differentiability in part 1 follows
since the function is smooth away from the bound-
ary of Oi and is continuous on the boundary except at
the origin. Part 2 follows from Stein’s Lemma 3.1 and
the fact that (essentially) Pi(X) ∼ Ns(θ, σ 2I ), since
n− s of the coordinates are 0. Part 3 follows by Stein’s
Lemma 3.1 as in Proposition 3.1 applied to each or-
thant. We omit the details. The reader is referred to
Sengupta and Sen (1991) or Fourdrinier, Strawderman
and Wells (2003) for details in the more general case
of a polyhedral cone. �

Next, essentially applying Lemma 4.2 to each or-
thant and using Lemma 5.1 we have the following gen-
eralization to the case of a general spherically symmet-
ric distribution.

THEOREM 5.1. Let (X,U) ∼ f (‖x − θ‖2 +‖u‖2)

where dimX = dim θ = p and dimU = k and suppose
that θ ∈ R

p
+. Then

δ(X) =
n∑

i=1

{
1 − ‖U‖2ri(‖Pi(X)‖2)

(k + 2)‖Pi(X)‖2

}
Pi(X)IOi

(X)
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dominates the X+, provided ri is nondecreasing and
bounded between 0 and 2(s − 2)+.

6. BAYES ESTIMATION

There have been advancements in Bayes estimation
of location vectors in several directions in the past 15
years. Perhaps the most important advancements have
come in the computational area, particularly Markov
chain Monte Carlo (MCMC) methods. We do not cover
these developments in this review.

Admissibility and inadmissibility of (generalized)
Bayes estimators in the normal case with known scale
parameter was considered in Berger and Strawderman
(1996) and in Berger, Strawderman and Tang (2005)
where Brown’s (1971) condition for admissibility (and
inadmissibility) was applied for a variety of hierarchi-
cal Bayes models. Maruyama and Takemura (2008)
also give admissibility results for the general spheri-
cally symmetric case. At least for spherically symmet-
ric priors, the conditions are, essentially, that priors
with tails no greater than O(‖θ‖−(p−2)) give admis-
sible procedures.

Fourdrinier, Strawderman and Wells (1998), us-
ing Stein’s (1981) results (especially Proposition 3.1
above, and its corollaries), give classes of minimax
Bayes (and generalized Bayes) estimators which in-
clude scaled multivariate-t priors under certain condi-
tions. Berger and Robert (1990) give classes of pri-
ors leading to minimax estimators. Kubokawa and
Strawderman (2007) give classes of priors in the setup
of Berger and Strawderman (1996) that lead to ad-
missible minimax estimators. Maruyama (2003a) and
Fourdrinier, Kortbi and Strawderman (2008), in the
scale mixture of normal case, find Bayes and gener-
alized Bayes minimax estimators, generalizing results
of Strawderman (1974). As mentioned in Section 3,
these results use either Berger’s (1975) result (a version
of which is given in Theorem 3.2) or Strawderman’s
(1974) result for mixtures of normal distributions.
Fourdrinier and Strawderman (2008) proved minimax-
ity of generalized Bayes estimators corresponding to
certain harmonic priors for classes of spherically sym-
metric sampling distributions which are not necessarily
mixtures of normals. The results in this paper are not
based directly on the discussion of Section 3 but are
somewhat more closely related in spirit to the approach
of Stein (1981).

We give below an intriguing result of Maruyama
(2003b) for the unknown scale case (see also
Maruyama and Strawderman, 2005), which is related

to the (distributional) robustness of Stein estimators in
the unknown scale case treated in Section 4. First, we
give a lemma which will aid in the development of the
main result.

LEMMA 6.1. Suppose (X,U) ∼ η(p+k)/2 ·
f (η{‖x − θ‖2 + ‖u‖2}), the (location-scale invariant)
loss is given by L({θ, η}, δ) = η‖δ − θ‖2 and the prior
distribution on (θ, η) is of the form π(θ, η) = ρ(θ)ηB .
Then provided all integrals exist, the generalized Bayes
estimator does not depend on f (·).

PROOF.

δ(X,U)

= E[θη|X,U ]/E[η|X,U ]
=

[∫
Rp

∫ ∞
0

θη(p+k)/2+B+1

· f (η{‖X − θ‖2 + ‖U‖2})ρ(θ) dη dθ

]

·
[∫

Rp

∫ ∞
0

η(p+k)/2+B+1

· f (η{‖X − θ‖2

+ ‖U‖2})ρ(θ) dη dθ

]−1

.

Making the change of variables w = η(‖X − θ‖2 +
‖U‖2), we have

δ(X,U)

=
[∫

Rp
θ(‖X − θ‖2 + ‖U‖2)−(p+k)/2+B+2

· ρ(θ) dθ

∫ ∞
0

w(p+k)/2+B+1f (w)dw

]

·
[∫

Rp
(‖X − θ‖2 + ‖U‖2)−(p+k)/2+B+2

· ρ(θ) dθ

∫ ∞
0

w(p+k)/2+B+1f (w)dw

]−1

=
∫
Rp θ(‖X − θ‖2 + ‖U‖2)−(p+k)/2+B+2ρ(θ) dθ∫
Rp(‖X − θ‖2 + ‖U‖2)−(p+k)/2+B+2ρ(θ) dθ

.

�
Hence, for (generalized) priors of the above form,

the Bayes estimator is independent of the sampling
distribution provided the Bayes estimator exists; thus,
they may be calculated for the most convenient density,
which is typically the normal. Our next lemma calcu-
lates the generalized Bayes estimator for a normal sam-
pling density and for a class of priors for which ρ(·) is
a scale mixture of normals.
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LEMMA 6.2. Suppose the distribution of (X,U)

is normal with variance σ 2 = 1/η. Suppose also that
the conditional distribution of θ given η and λ is nor-
mal with mean 0 and covariance (1 − λ)/(ηλ)I , and
the density of (η, λ) is proportional to ηb/2−p/2+a ·
λb/2−p/2−1(1 − λ)−b/2+p/2−1, where 0 < λ < 1.

1. Then the Bayes estimator is given by (1 − r(W)/

W)X, where W = ‖X‖2/‖U‖2 and r(w) is given
by

r(w) = w

[∫ 1

0
λb/2(1 − λ)p/2−b/2−1

· (1 + wλ)−k/2−a−b/2−2 dλ

]
(6.1)

·
[∫ 1

0
λb/2−1(1 − λ)p/2−b/2−1

· (1 + wλ)−k/2−a−b/2−2 dλ

]−1

.

This is well defined for 0 < b < p, and k/2 + a +
b/2 + 2 > 0.

2. Furthermore, this estimator is generalized Bayes
corresponding to the generalized prior proportional
to ηa‖θ‖−b, for any spherically symmetric density
f (·) for which

∫ ∞
0 t (k+p)/2+a+1f (t) dt < ∞.

PROOF. Part 1. In the normal case,

δ(X,U) = X + E[η(θ − X)|X,U ]
E[η|X,U ]

= X − ∇Xm(X,U)

2(∂/∂‖U‖2)m(X,U)
,

where the marginal m(x,u) is proportional to

∫ 1

0

∫ ∞
0

∫
Rp

ηb/2+k/2+p/2+aλb/2−1(1 − λ)−b/2−1

· exp(−η{‖x − θ‖2 + ‖u‖2}/2)

· exp
(
− ηλ‖θ‖2

2(1 − λ)

)
dθ dη dλ

= K ′
∫ 1

0

∫ ∞
0

ηb/2+k/2+aλb/2−1(1 − λ)p/2−b/2−1

· exp(−η{λ‖x‖2 + ‖u‖2}/2) dη dλ

= K

∫ 1

0
(λ‖x‖2 + ‖u‖2)−b/2−k/2−a−1λb/2−1

· (1 − λ)p/2−b/2−1 dλ.

Hence, we may express the Bayes estimator as δ(X,

U) = X + g(X,U), where

g(x,u) =
[
∇x

∫ 1

0
(λ‖x‖2 + ‖u‖2)−b/2−k/2−a−1

· λb/2−1(1 − λ)p/2−b/2−1 dλ

]

·
[
−2(d/d‖u‖2)

·
∫ 1

0
(λ‖x‖2 + ‖u‖2)−b/2−k/2−a−1

· λb/2−1(1 − λ)p/2−b/2−1 dλ

]−1

= −x

[∫ 1

0
(λ‖x‖2 + ‖u‖2)−b/2−k/2−a−2

· λb/2(1 − λ)p/2−b/2−1 dλ

]

·
[∫ 1

0
(λ‖x‖2 + ‖u‖2)−b/2−k/2−a−2

· λb/2−1(1 − λ)p/2−b/2−1 dλ

]−1

= −x

[∫ 1

0
(λw + 1)−b/2−k/2−a−2

· λb/2(1 − λ)p/2−b/2−1 dλ

]

·
[∫ 1

0
(λw + 1)−b/2−k/2−a−2

· λb/2−1(1 − λ)p/2−b/2−1 dλ

]−1

= − x

w
r(w).

Part 2. A straightforward calculation shows that
the unconditional density of (θ, η) is proportional to
ηa‖θ‖−b. Hence, part 2 follows from Lemma 6.1. �

The following lemma gives properties of r(w).

LEMMA 6.3. Suppose 0 < b ≤ p − 2 and that
k/2 + a + 1 > 0. Then, (1) r(w) is nondecreasing,
and (2) 0 < r(w) ≤ b/(k + 2a + 2).

PROOF. By a change of variables, letting v = λw

in (6.1), then

r(w) =
[∫ w

0
(v + 1)−b/2−k/2−a−2

· vb/2(1 − v/w)p/2−b/2−1 dv

]
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·
[∫ w

0
(v + 1)−b/2−k/2−a−2

· vb/2−1(1 − v/w)p/2−b/2−1 dv

]−1

.

So, we may rewrite r(w) as Ew[v], where v has den-
sity proportional to (1 + v)−b/2−k/2−a−2vb/2−1(1 −
v/w)p/2−b/2−1I[0,w](v). This density has increasing
monotone likelihood ratio in w as long as p/2 −b/2 −
1 ≥ 0. Hence, part 1 follows.

The conditions of the lemma allow interchange of
limit and integration in both numerator and denomina-
tor of r(w) as w → ∞. Hence,

r(w) ≤
∫ ∞

0 (1 + v)−b/2−k/2−a−2vb/2 dv∫ ∞
0 (1 + v)−b/2−k/2−a−2vb/2−1 dv

=
∫ 1

0 ub/2(1 − u)k/2+a du∫ 1
0 ub/2−1(1 − u)k/2+a+1 du

[letting u = v/(v + 1)]
= Beta(b/2 + 1, k/2 + a + 1)

Beta(b/2, k/2 + a + 2)

= b/2

k/2 + a + 1
. �

Combining Lemmas 6.1–6.3 with Corollary 4.1
gives as the main result a class of estimators which
are generalized Bayes and minimax simultaneously for
the entire class of spherically symmetric sampling dis-
tributions (subject to integrability conditions).

THEOREM 6.1. Suppose that the distribution of
(X,U) and the loss function are as in Lemma 6.1, and
that the prior distribution is as in Lemmas 6.2 and 6.3
with a satisfying b/(k + 2a + 2) ≤ 2(p − 2)/(k + 2),
and with 0 < b ≤ p−2. Then the corresponding gener-
alized Bayes estimator is minimax for all densities f (·)
such that the 2(a + 2)th moment of the distribution of
(X,U) is finite, that is, E(R2a+4) < ∞.

We note that the above finiteness condition,
E(R2a+4) < ∞, is equivalent to the finiteness condi-
tion,

∫ ∞
0 t (k+p)/2+a+1f (t) dt < ∞, in Lemma 6.2.

7. CONCLUDING REMARKS

This paper has reviewed some of the developments
in shrinkage estimation of mean vectors for spherically
symmetric distributions, mainly since the review paper
of Brandwein and Strawderman (1990). Other papers
in this volume review other aspects of the enormous
literature generated by or associated with Stein’s stun-
ning inadmissibility result of 1956.

Most of the developments we have covered are, or
can be viewed as, outgrowths of Stein’s papers of 1973
and 1981, and, in particular, of Stein’s lemma which
gives (an incredibly useful) alternative expression for
the cross product term in the quadratic risk function.

Among the topics which we have not covered is the
closely related literature for elliptically symmetric dis-
tributions (see, e.g., Kubokawa and Srivastava, 2001,
and Fourdrinier, Strawderman and Wells, 2003, and the
references therein). We also have not included a discus-
sion of Hartigan’s (2004) beautiful result that the (gen-
eralized or proper) Bayes estimator of a normal mean
vector with respect to the uniform prior on any convex
set in Rp dominates X for squared error loss. Nor have
we discussed the very useful and pretty development
of the Kubokawa (1994) IERD method for finding im-
proved estimators, and, in particular, for dominating
James Stein estimators (see also Marchand and Straw-
derman, 2004, for some discussion of these last two
topics). We nonetheless hope we have provided some
intuition for, and given a flavor of the developments
and rich literature in the area of improved estimators
for spherically symmetric distributions.

The impact of Stein’s beautiful 1956 result and his
innovative development of the techniques in the 1973
and 1981 papers have inspired many researchers, fu-
eled an enormous literature on the subject, led to a
deeper understanding of theoretical and practical as-
pects of “sharing strength” across related studies, and
greatly enriched the field of Statistics. Even some of
the early (and later) heated discussions of the theoret-
ical and practical aspects of “sharing strength” across
unrelated studies have had an ultimately positive im-
pact on the development of hierarchical models and
computational tools for their analysis. We are very
pleased to have been asked to contribute to this volume
commemorating fifty years of development of one of
the most profound results in the Statistical literature in
the last half of the 20th century.
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MR1189780

STEIN, C. (1956). Inadmissibility of the usual estimator for the
mean of a multivariate normal distribution. In Proc. Third
Berkeley Sympos. Math. Statist. Probab. 1954–1955 I 197–206.
Univ. California Press, Berkeley. MR0084922

STEIN, C. (1974). Estimation of the mean of a multivariate nor-
mal distribution. In Proceedings of the Prague Symposium on
Asymptotic Statistics (Charles Univ., Prague, 1973) II 345–381.
Charles Univ., Prague. MR0381062

STEIN, C. M. (1981). Estimation of the mean of a multivariate
normal distribution. Ann. Statist. 9 1135–1151. MR0630098

STIGLER, S. M. (1990). The 1988 Neyman memorial lecture:
A Galtonian perspective on shrinkage estimators. Statist. Sci.
5 147–155. MR1054859

STRAWDERMAN, W. E. (1974). Minimax estimation of loca-
tion parameters for certain spherically symmetric distributions.
J. Multivariate Anal. 4 255–264. MR0362597

STRAWDERMAN, W. E. (1992). The James–Stein estimator as an
empirical Bayes estimator for an arbitrary location family. In
Bayesian Statistics 4 (Peñíscola, 1991) 821–824. Oxford Univ.
Press, New York. MR1380308

http://www.ams.org/mathscinet-getitem?mr=2163154
http://www.ams.org/mathscinet-getitem?mr=1240354
http://www.ams.org/mathscinet-getitem?mr=1080957
http://www.ams.org/mathscinet-getitem?mr=1126343
http://www.ams.org/mathscinet-getitem?mr=0286209
http://www.ams.org/mathscinet-getitem?mr=1323338
http://www.ams.org/mathscinet-getitem?mr=0435422
http://www.ams.org/mathscinet-getitem?mr=2408444
http://www.ams.org/mathscinet-getitem?mr=1626063
http://www.ams.org/mathscinet-getitem?mr=1978175
http://www.ams.org/mathscinet-getitem?mr=2406080
http://www.ams.org/mathscinet-getitem?mr=2060127
http://www.ams.org/mathscinet-getitem?mr=0133191
http://www.ams.org/mathscinet-getitem?mr=1272084
http://www.ams.org/mathscinet-getitem?mr=1811829
http://www.ams.org/mathscinet-getitem?mr=2322131
http://www.ams.org/mathscinet-getitem?mr=2126884
http://www.ams.org/mathscinet-getitem?mr=1965222
http://www.ams.org/mathscinet-getitem?mr=1985652
http://www.ams.org/mathscinet-getitem?mr=2166561
http://www.ams.org/mathscinet-getitem?mr=2408443
http://www.ams.org/mathscinet-getitem?mr=2183446
http://www.ams.org/mathscinet-getitem?mr=1189780
http://www.ams.org/mathscinet-getitem?mr=0084922
http://www.ams.org/mathscinet-getitem?mr=0381062
http://www.ams.org/mathscinet-getitem?mr=0630098
http://www.ams.org/mathscinet-getitem?mr=1054859
http://www.ams.org/mathscinet-getitem?mr=0362597
http://www.ams.org/mathscinet-getitem?mr=1380308

	Introduction
	Some Further Intuition into Stein Estimation
	Stein Estimators as an Approximation to the Best Linear Estimator
	Stein Estimators as Empirical Bayes Estimators for General Location Models

	Some Recent Developments for the Case of a Known Scale Parameter
	Generalizations of James-Stein Estimators Under Spherical Symmetry
	A Useful Expression for the Risk of a James-Stein Estimator

	Stein Estimation in the Unknown Scale Case
	A Generalization of Lemma 3.4
	A More Statistical Approach Involving Sufficiency and Completeness

	Restricted Parameter Spaces
	Bayes Estimation
	Concluding Remarks
	References

