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Rejoinder

Ioanna Manolopoulou∗, Cliburn Chan† and Mike West‡

We thank the discussants, Fabio Rigat and Nick Whiteley, for their insightful and
positive comments. They suggest a number of potential directions for extension of
the work and raise connections with other research. We address the points they raise
in connection with broader modeling and communication considerations, followed by
specific aspects and details of computational strategy.

1 Modeling and Communication

Discussion comments on general questions of applied statistical modeling relate to the
need for attention to a balance between contextual/applied interests and statistical
modeling refinements motivated by an application. A good deal of time and effort in
collaborations and applied work is spent on communication of the relevance and roles
of complex Bayesian models to non-statistical disciplinary scientists.

The specific setting here is that of non-parametric Bayesian mixture models. These
models are nowadays standard and widely accepted by statistical and machine learn-
ing communities. Their demonstrated success in applications in many areas in the last
decade or so has done much to foster understanding and appreciation among disciplinary
scientists. In our current applied context of cell subtype characterisation in flow cytom-
etry studies, mixture models are established (e.g. Chan et al. 2008; Pyne et al. 2009).
For the purposes of communication we have promoted non-parametric DP mixtures as
really just direct extensions of standard mixtures that allow for uncertainty about the
(practically effective) number of components. That is easily communicated and the re-
maining technical aspect of note is just the use of effectively standard class of priors over
component parameters. A substantial practical modeling bridge in our work in these
applications is the clustering of subsets of Gaussian DP mixture components according
to concentration around inferred locals modes in the distribution, and putative inter-
pretation of some of these clustered components as defining (resulting non-Gaussian)
subpopulations of biological interest.

On the specific question of inference on the concentration hyperparameter α, which
again has been standard in the literature since the early 1990s, we note that this hier-
archical model specification has the usual goals and attributes of inducing a degree of
robustness while incurring negligible additional computational (Escobar and West 1995;
Ishwaran and James 2002). Although the number of components has no immediate bi-
ological interpretation (other than as a gross upper bound on the number of subtypes)
and so the role of α in its impact on the number of components is only of technical
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interest, inference on such hyper-parameters does have practical utility in, particularly,
studies comparing data sets, as it does in other, related areas of applications of DP
mixtures when comparisons are of interest (e.g. Ji et al. 2009).

2 Computational Strategies and Details

Whiteley is interested in specific formalizations of our adaptive selection strategy as
an optimization problem. Such an approach would certainly be of theoretical interest,
and could lead to a broader view of adaptive data sampling problems in a Bayesian
decision theoretic framework. To develop such an interpretation – and define a class of
utility/objective functions that underlie it – seems challenging; as we point out in the
Appendix of the paper, maximizing the amount of information about a single component
of interest results in an intractable optimization problem and is strongly affected by the
particular structure of each data set (reflected through π, µ, Σ). However, the strategy
is inherently derived from contextual goals/utilities so future work to explore a formal
decision-theoretic treatments is to be encouraged.

The stopping rule for data selection is clearly, as noted in the discussions, a central
element of the analysis. The stopping rule amounts to sampling until the estimated
number of “relevant” observations left to resample is deemed “small enough”. The
specific form of the stopping criterion used in our examples may seem ad-hoc, but it
stems directly from concern about the practical concordance between sample size and the
infinite population structure, which in practice is the assumption that few observations
carry almost all the weight in the targeted resampling. The specific formulation allows
for the number of markers to scale additively and thus requires a relatively small p in
order to ensure a wide enough distribution of weight over the unsampled observations.
It has also been honed and refined in multiple empirical studies. However, this is
one specific choice for stopping rule and we are certainly open to generalisations or
alternatives. A more sophisticated cthreshold might similarly incorporate τ such that
cthreshold = exp(−∑p

i=1(4τii)−1), for example. Again, a broader decision theoretic
view of the stopping rule may also be worth exploring.

Whiteley asks about choices of the size of the random subsample (nR), the size of
the targeted subsample batches (B), as well as MCMC/SMC run lengths and number
of chains. On nR, an inherent trade-off is involved. A larger nR is expected to improve
M-H acceptance rates and precision of inferences on targeted components, but at a
computational cost. In the examples presented in the paper, we used relatively small
values of nR in order to demonstrate the potential of our methods even in cases where
the size of the initial subsample is small. With advances in computation for MCMC
(and other algorithms) in mixtures (e.g. Suchard et al. 2010) larger sample sizes can be
entertained so that larger values of nR can be used. The batch size B might perhaps
be best viewed as a function of nR, e.g., B = bnR for some small fraction b. This
leads to the expectation of relatively modest changes in the SMC updated posteriors at
each batch processing step, requiring a smaller number of Metropolis-Hastings updates.
A large number of Metropolis-Hastings steps at the end of the SMC sampler ensures
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convergence to the final target distribution, which can be checked through the effective
sample size, for example.

Choices of L and run lengths are standard questions in all MCMC and SMC/M-H
implementations, and there is really nothing new to add to the existing, generic MC the-
oretical insights overlaid by cumulated experience and wisdom of the simulation-based
Bayesian community. The number of chains L is linked to the dimension of the data p
and the size of the initial subsample nU , both of which determine the dimensionality of
the parameters µ, Σ and zR. The final size of the targeted subsample nB will affect the
efficiency of the proposals and hence the effective sample size of the particles, and thus
the number of chains L required.

We note also that resampling of the particles is not possible unless the configuration
indicators zR are mutated in the SMC steps as well. In our current formulation in
the paper, samples of zR are fixed for each particle, so that resampling would result in
poor coverage of the zR space. Instead, larger values of nR and efficient proposals are
crucial. Emerging ideas of adaptive variants of SMC methods, such as suggested and
referenced by Whiteley, can also help to reduce particle degeneracy, and are very worth
considering for extensions/modifications of the current approach; here, a schedule of
adaptively choosing B at each SMC iteration could help with controlling the difference
between target distributions at each step, for example.
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