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Abstract. We approach a discussion of this paper by asking: to what extent the
specific models and computational techniques used succeed in bridging data and
research questions? This discussion is mostly seen as an opportunity to pose useful
questions rather than providing definitive answers, pointing to relevant literature
when necessary.

Introduction

Experimental science has traditionally advanced through relatively well-posed questions,
which inspired the construction of measurement technologies and the development of
theories explaining consistently observed patterns (Kuhn (1962)). A modeler’s job here
is naturally integrated in and constrained by the process of scientific research from the
design of an experiment to the formulation of stochastic models characterising mea-
surement errors and uncontrolled variation. The rapid collection of multivariate data,
starting in the 1990s, increases the complexity of this scenario. This radical change
is one of the most relevant markers of the quantitative revolution in the natural sci-
ences, in particular in genetics (Golub et al. (1999), Sebastiani et al. (2003), Jung et al.
(2008), Stephens and Balding (2009)). As the experimentalist is inundated by noisy
measurements, the theorist can’t keep up developing deterministic reference frameworks
encompassing large networks of relations involving different data dimensions. This pa-
per illustrates the role of the Bayesian statistician as the necessary third pillar of the
learning process in the data-rich scenario of contemporary science.

1 How many parameters?

Since Bayesian nonparametrics came to age, with the marriage to suitable numerical
approximation techniques such as Markov chain Monte Carlo and with the development
of an appropriate vocabulary of processes, we have been fascinated by its endless flexi-
bility. Following this well-established tradition, the authors propose as their workhorse
a multivariate Dirichlet process mixture of Normal-Wishart priors in conjunction with
a Gaussian likelihood. A Gamma hyper-prior for the Dirichlet precision parameter is
also introduced. Given that in this paper the number of mixture components K is fixed
and typically large, an inspection of the posterior (11) and of the predictive (3) shows
that under this model the posterior inferences for the Gaussian moments are largely
driven by the centering prior G0(·) and by the likelihood function. This could be easily
verified by fitting model (xi | zi = k, φi) ∼ N(xi | φi), (φi | G0) ∼ G0 to the flow
cytometry data. The fundamental issue here is that, when K is large and fixed, the
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gains of Dirichlet mixing the Gaussian mixture model are not obvious. Since Dirichlet
mixing increases the complexity of the posterior distributions, especially those of the
covariance matrices, was it really worth here? Also, should our ability to construct
complex models be somewhat tempered by the need to explain in simple terms what
Bayesians do to the experimentalists providing us with motivating data?

2 Weighty sub-samples

In a first instance, the authors propose a two-step procedure to better focus their pos-
terior inferences on the mixture component of interest in a computationally affordable
manner. The sub-sample XR is chosen here uniformly among all possible sets of size
nR < N whereas the targeted sub-sample XT of size nT << nR < N and moments
(µk∗ ,Σ∗k) is chosen using weights proportional to the Gaussian probability density func-
tion with the same mean and with a tuned covariance matrix. A key advantage of the
latter is that the tuning vector v allows weighting differently the components of the co-
variance matrix, reflecting a focus on selected data dimensions. As noted by the authors,
both this two-stage procedure and its multi-stage sequential Monte Carlo formulation
can perform poorly when nT is small. In this case, XR might contain little or no informa-
tion about (µk∗ ,Σ∗k) unless nR approaches N , which defeats the purpose of the selection
sampling approach. This is not an academic question inasmuch as the proportion of cell
sub-types k∗ along with their associated moments might reveal therapeutically relevant
differences among candidate immunization strategies. From a Bayesian perspective, it
is natural to seek an improvement of this key aspect of the methodology by asking:
what does the experimentalist know about the rare cell sub-type prior to observing this
particular data set? To what extent can this existing prior knowledge be reflected in
improved weighting of observations allocated respectively to XR and XT ? From this
angle, a striking feature of the multi-stage selection sampling algorithm proposed here
is that the starting value of the weights wi is effectively 1/(nT + nR) with no further
reference to, for instance, the hyperparameters of the prior G.

3 Beyond Metropolis-Hastings

Bayesian statistics is overcoming a certain fascination for Markov chain Monte Carlo,
mostly by recognising the limitations of traditional sampling recipes and by exploring
alternative strategies (Jordan et al. (1998), Marjoram et al. (2003), Haario et al. (2006),
Kou et al. (2006), Rue et al. (2008), Del Moral et al. (2006)). In this paper, computations
are carried out by coupling an approximation of the joint posterior density with a
numerical maximisation step using sequential Monte Carlo and a stopping rule. Here
we focus on the former two, leaving a discussion of stopping rules to the next section.

Approximation (b) in equation (21) states that the separation of the sample in ran-
dom and targeted subsets is sensible when the moments of the latter are sufficiently
different from those of the former. In this case, the posterior distribution of the indica-
tors zR is essentially unaffected by data belonging to XT . Under this assumption, the
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authors are faced with the daunting task of summing over all possible configurations
of the vector zR so as to approximate the left-hand side of (21). A first solution is
proposed, based on L parallel two-stage samplers. The main unaddressed issues are
how many of these samplers one should ideally run and, even more importantly, what
relationships to induce among the chains generated by the L samplers. Intuitively, L
should scale with the number of configurations of zR one cares about, which itself is
a function of (nR,K) and thus of N . Also, when block-sampling of the zR produces
highly correlated draws, inducing negative correlations among the L chains along the
lines of Frigessi et al. (2000) or using multiple-try strategies (Liu et al. (2000)) exploits
the multiplicity of the multiple-chains sampler to improve mixing.

The authors proceed to elaborating their two-stage sampling strategy by generalising
to a multi-stage SMC algorithm. The main difference with respect to the two-stage
procedure here is the incremental updating of the targeted sub-sample by sampling new
observations without replacement using their weights wi. As such, the stability of this
maximisation step hinges on that of the weights wi. When estimates of the Gaussian
mixture moments are updated, as new components are identified, the weights wi might
change dramatically for all observations. In other terms, this incremental procedure can
be unstable to the extent that an observation which has been sampled in the targeted
set early on might be recognised as not belonging to XT at a later stage. Thankfully,
the authors provide their code along with the paper, so that numerical stability can be
promptly checked by the interested readers using their favorite datasets.

4 Stopping rules

Two stopping rules are proposed to terminate the incremental sampling of observations
in XT . The first prescribes stopping when no observations are found with a Bayes factor
larger than a given threshold. The second rule states that sampling stops when less than
Nthreshold unsampled observations have weights larger than a fixed value cthreshold. It
is not clear whether the first stopping rule is computable and the authors do not make
use of it in either of the examples included in the paper. Implementation of the second
stopping rule requires setting a value of cthreshold. Here an empirical rule is proposed and
then used for the motivating flow cytometry example, setting lower threshold values as
the data dimensionality p increases. Unfortunately, the motivations underpinning this
particular choice are not stated and the simulated data example is not helpful in this
sense. In the latter, the authors first state that, using their empirical stopping rule, the
number of targeted observations is 200. Then a targeted sub-sample with nT = 900
is used, which together with their choice nR = 700 violates one of the desiderata of
the selection sampling approach, that is nT << nR. Figure 1 is not conclusive either,
as the shrinkage of the posterior credible interval of µ11 from its left-most values to its
middle values, when both XR and XT are used, is not compared with the distribution of
intervals one would obtain using, for instance, a second random sub-sample of size 900 in
addition to XR. What needs being clarified here is what cthreshold stands for. A possible
interpretation is that if this is a critical threshold above which an observation should fall
within the targeted sub-sample, then Nthreshold should be zero. In this case, cthreshold
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should be set to a sufficiently high value to allow for efficient computations. Otherwise,
before stopping the algorithm one should decide how to allocate the remaining samples
with weights larger than cthreshold.

5 Feeding back to science

The flow cytometry example demonstrates the payoffs of the authors’modeling and com-
putational efforts to address in a timely fashion an important problem in immunology.
The implementation of their methods illustrates the strengths of the Bayesian approach,
through which the ability of specific viral antigens to elicit a selected response of the
immune system in conjunction with the secretion of effector cytokines is characterised.
In this respect, this paper illustrates the extent to which Bayesian inference is a fun-
damental pillar ensuring that complex, high-dimensional data measuring the behavior
of biological systems under realistic experimental conditions is coherently summarised
and turned into information. The conclusions of the paper illustrate one of the key
challenges Bayesian statisticians face today: feeding back to science their findings in
a way that promotes scientific understanding. This is clearly a challenge, requiring
communication and social skills along with the traditional mathematical and modeling
abilities. It is also a challenge for the Editorial boards, faced with the need to ensure an
appropriate balance between methodological developments, their motivations and ap-
plications. Why should Bayesian statisticians be concerned by this challenge? Because
the impact of the methods we develop, and thus our reputation, critically hinge on our
response.
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