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Abstract. In this paper, we study the fluctuations of the extreme eigenvalues of a spiked finite rank deformation of a Hermitian
(resp. symmetric) Wigner matrix when these eigenvalues separate from the bulk. We exhibit quite general situations that will give
rise to universality or non-universality of the fluctuations, according to the delocalization or localization of the eigenvectors of
the perturbation. Dealing with the particular case of a spike with multiplicity one, we also establish a necessary and sufficient
condition on the associated normalized eigenvector so that the fluctuations of the corresponding eigenvalue of the deformed model
are universal.

Résumé. Dans ce papier, nous étudions les fluctuations des valeurs propres extrémales d’une matrice de Wigner hermitienne (resp.
symétrique) déformée par une perturbation de rang fini dont les valeurs propres non nulles sont fixées, dans le cas où ces valeurs
propres extrémales se détachent du reste du spectre. Nous décrivons des situations générales d’universalité ou de non-universalité
des fluctuations correspondant au caractère localisé ou délocalisé des vecteurs propres de la perturbation. Lorsque l’une des valeurs
propres de la perturbation est de multiplicité un, nous établissons de plus une condition nécessaire et suffisante sur le vecteur propre
associé pour que les fluctuations de la valeur propre correspondante du modèle déformé soient universelles.
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1. Introduction

Adding a finite rank perturbation to a GUE matrix, S. Péché [19] pointed out a sharp phase transition phenomenon: ac-
cording to the largest eigenvalue of the perturbation, the largest eigenvalue of the perturbed matrix should either stick
to the bulk and fluctuate according to the Tracy–Widom (or generalized Tracy–Widom) law or should be extracted
away from the bulk and have then fluctuations of Gaussian nature. In the lineage of this work, in a previous paper
[8], we have studied the limiting behavior of extremal eigenvalues of finite rank deformations of Wigner matrices. We
established their almost sure convergence. The limiting values depend only on the spectrum of the deformation AN

and on the variance of the distribution of the entries of the Wigner matrix. On the contrary the fluctuations of these
eigenvalues strongly depend on the eigenvectors of AN . Indeed, in the particular case of a rank one diagonal defor-
mation whose non-null eigenvalue is large enough, we established a central limit theorem for the largest eigenvalue
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which deviates from the rest of the spectrum and proved that the fluctuations of the largest eigenvalue vary with the
particular distribution of the entries of the Wigner matrix. Thus, this fluctuations result differs from that of the full
rank one deformation case investigated in [10] and [12] since this latter case exhibited universal limiting distributions.

Let us recall these results in the complex setting, having in mind that similar results hold in the real symmetric
case. In the following, given an arbitrary Hermitian matrix M of size N , we will denote by λ1(M) ≥ · · · ≥ λN(M) its
N ordered eigenvalues; we will denote the centered Gaussian distribution with variance v by N (0, v).

The random matrices under study are complex Hermitian matrices (MN)N defined on a probability space (Ω, F ,P)

such that

MN = WN√
N

+ AN. (1.1)

AN is a N × N deterministic Hermitian matrix of fixed finite rank and whose spectrum does not depend on N . The
matrix WN is a N × N Wigner Hermitian matrix such that the N2 random variables (WN)ii ,

√
2�e((WN)ij )i<j ,√

2�m((WN)ij )i<j are independent identically distributed with a centered distribution μ of variance σ 2.
As the rank of the AN ’s is assumed to be finite, the Wigner Theorem is still satisfied for the Deformed Wigner model

(MN)N (cf. Lemma 2.2 of [1]): the spectral measure 1
N

∑N
i=1 δλi(MN) of MN converges a.s. towards the semicircle

law μsc whose density is given by

dμsc

dx
(x) = 1

2πσ 2

√
4σ 2 − x21[−2σ,2σ ](x). (1.2)

When AN ≡ 0, it is well-known that once μ has a finite fourth moment, the first largest (resp. last smallest) eigenvalues
of the rescaled Wigner matrix WN/

√
N tend almost surely to the right (resp. left) endpoint 2σ (resp. −2σ ) of the semi-

circle support (cf. [1]). The corresponding fluctuations, which have been first obtained by Tracy and Widom [23] in the
Gaussian case and then extended by Soshnikov [21] for any symmetric probability measure μ having sub-Gaussian
moments, are governed by the so-called Tracy–Widom distributions. Note that the exponential decay condition (with
symmetry assumption) has been replaced by a finite number of moments in [16,20]. Under the subexponential decay
assumption, the symmetry assumption on μ in [21] was replaced in [22] by the vanishing third moment condition and
very recently, Erdös, Yau and Yin [9] proved the edge universality under the subexponential decay assumption alone.

Let us describe how the asymptotic behavior of the extremal eigenvalues of the perturbed Wigner matrix may be
affected by the perturbation by considering the particular case of a rank one perturbation AN with non-null eigen-
value θ . For a large class of probability measures μ, it turns out that the largest eigenvalue λ1(MN) still tends to the

right-endpoint 2σ if θ ≤ σ whereas λ1(MN) jumps above the bulk to ρθ = θ + σ 2

θ
if θ > σ . This was proved by

Péché in her pionnering work [19] when μ is Gaussian, extended in [10] when μ is symmetric and has sub-Gaussian
moments but in the particular case of the full rank one deformation AN given by

(AN)ij = θ/N for all 1 ≤ i, j ≤ N (1.3)

and finally established in [8] for general AN when μ is symmetric and satisfies a Poincaré inequality.
Moreover, considering the perturbation matrix defined by (1.3), Féral and Péché [10] proved that the fluctuations

of λ1(MN) are the same as in the Gaussian setting investigated in [19] and in this sense are universal. Here is their
result when θ > σ :

Proposition 1.1. If μ is symmetric and has sub-Gaussian moments

√
N

(
λ1(MN) − ρθ

) L−→ N
(
0, σ 2

θ

)
,

where σθ = σ

√
1 − σ 2

θ2 .

The proof of this result relies on the computations of moments of MN of high order (depending on N ) and the
knowledge of the fluctuations in the Gaussian case, established by Péché [19].
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On the other hand, for the strongly localized perturbation matrix of rank 1 given by

AN = diag(θ,0, . . . ,0)

with θ > σ , we proved in [8] that the fluctuations of λ1(MN) vary with the particular distribution of the entries of the
Wigner matrix so that this phenomenon can be seen as an example of a non-universal behavior:

Proposition 1.2. Let μ be symmetric and satisfy a Poincaré inequality. Define

cθ = θ2

θ2 − σ 2
and vθ = 1

2

(
m4 − 3σ 4

θ2

)
+ σ 4

θ2 − σ 2
, (1.4)

where m4 := ∫
x4 dμ(x). Then

cθ

√
N

(
λ1(MN) − ρθ

) L−→ {
μ ∗ N (0, vθ )

}
. (1.5)

In the present paper, we consider perturbations AN of higher rank of Wigner matrices associated to some symmetric
probability measure μ satisfying a Poincaré inequality. The a.s. convergence of the extreme eigenvalues has already
been described in [8] (see Theorem 3.1 below). Whenever the largest eigenvalues of MN are extracted away from the
bulk, we describe their fluctuations which depend on the localization of the eigenvectors of AN , as already seen in the
above rank 1 examples. We investigate two quite general situations for which we exhibit a phenomenon of different
nature. To explain this, let us focus on the largest eigenvalue θ1 of AN . We assume that θ1 > σ so that the largest

eigenvalues of MN converges a.s towards ρθ1 = θ1 + σ 2

θ1
> 2σ .

First, when the eigenvectors associated to the largest eigenvalue θ1 of AN are localized, we establish that the
limiting distribution in the fluctuations of λi(MN), 1 ≤ i ≤ k1, around ρθ1 is not universal and we give it explicitely
in terms of these eigenvectors and of the distribution of the entries of the Wigner matrix, see Theorem 3.2.

Secondly, if the eigenvectors are sufficiently delocalized, we establish the universality of the fluctuations of
λi(MN), 1 ≤ i ≤ k1, see Theorem 3.3.

Actually, in the rank one case, this study allows us to exibit a necessary and sufficient condition on a normalized
eigenvector of AN associated to the largest eigenvalue θ1 for the universality of the fluctuations (see Theorem 3.4
below). Moreover if such an eigenvector of AN is not localized but does not satisfy the criteria of universality, the
largest eigenvalue of MN may fluctuate according to a mixture of μ and normal distributions generalizing (1.5). We
will describe some of such intermediate situations.

We detail the definition of localization/delocalization and these results in the Section 3.
Our approach is close to the proof of (1.5), with more involved computations and are in the spirit of the works of

[7] and [18]. It is valid in both real and complex settings. Actually, we assume that the eigenvectors associated to the
largest eigenvalues of AN belong to a subspace generated by k (= k(N)) canonical vectors of C

N and the method
requires that N −k −→∞ (and even k√

N
−→0). In particular, this approach does not cover the case of Proposition 1.1

studied by [10] where k = N .
The Deformed Wigner matrix model may be seen as the additive analogue of the spiked population models. These

are random sample covariance matrices (SN)N defined by SN = 1
N

Y ∗
NYN where YN is a p × N complex (resp. real)

matrix (with N and p = pN of the same order as N → ∞) whose entries satisfy first four moments conditions; the
sample column vectors are assumed to be i.i.d., centered and of covariance matrix a deterministic Hermitian (resp.
symmetric) matrix Σp having all but finitely many eigenvalues equal to one. In their pioneering article on that topic
[6], Baik–Ben Arous–Péché pointed out a phase transition phenomenon for the fluctuations of the largest eigenvalue
of SN according to the largest eigenvalue of Σp , in the complex Gaussian setting; their results were extended in [18]
to the real case when the largest eigenvalue of Σp is simple and sufficiently larger than 1 and in [17] to singular
Wishart matrices. In the non-Gaussian case, the fluctuations of the extreme eigenvalues have been recently studied by
Bai–Yao [5] and Féral–Péché [11].

The paper is organized as follows. In Section 2, we present the matricial models under study and the notations that
will be used throughout the paper. In Section 3, we present the main results of this paper. We give a summary of our
approach in Section 4. Section 5 is devoted to the proofs of Theorems 3.2, 3.3 and 3.4. Finally, we recall some basic
facts on matrices, a CLT for random sesquilinear forms and prove some technical results in an Appendix.
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2. Model and notations

The random matrices under study are complex Hermitian (or real symmetric) matrices (MN)N defined on a probability
space (Ω, F ,P) such that

MN = WN√
N

+ AN, (2.1)

where the matrices WN and AN are defined as follows:

(i) WN is a N × N Wigner Hermitian (resp. symmetric) matrix such that the N2 random variables (WN)ii ,√
2�e((WN)ij )i<j ,

√
2�m((WN)ij )i<j (resp. the N(N+1)

2 random variables 1√
2
(WN)ii , (WN)ij , i < j ) are indepen-

dent identically distributed with a symmetric distribution μ of variance σ 2 and satisfying a Poincaré inequality; the
latter condition means that there exists a positive constant C such that for any C 1 function f : R → C such that f and
f ′ are in L2(μ),

V(f ) ≤ C

∫ ∣∣f ′∣∣2 dμ

with V(f ) = E(|f − E(f )|2).
Note that when μ is Gaussian, WN is a GU(O)E(N × N,σ 2) matrix.
(ii) AN is a deterministic Hermitian (resp. symmetric) matrix of fixed finite rank r and built from a family of J

fixed real numbers θ1 > · · · > θJ independent of N with some j0 such that θj0 = 0. We assume that the non-null
eigenvalues θj of AN are of fixed multiplicity kj (with

∑
j �=j0

kj = r). Let J+σ be the number of j ’s such that θj > σ .
We denote by k+σ := k1 + · · · + kJ+σ . We introduce k ≥ k+σ as the minimal number of canonical vectors among the
canonical basis (ei; i = 1, . . . ,N) of C

N needed to express all the eigenvectors associated to the largest eigenvalues
θ1, . . . , θJ+σ of AN . Without loss of generality (using the invariance of the distribution of the Wigner matrix WN by
conjugation by a permutation matrix), we can assume that these k+σ eigenvectors belong to Vect(e1, . . . , ek).

All along the paper we assume that k 
 √
N .

Let us now fix j such that 1 ≤ j ≤ J+σ and let Uk be a unitary matrix of size k such that

diag
(
U∗

k , IN−k

)
AN diag(Uk, IN−k) = diag

(
θj Ikj

, (θlIkl
)l≤J+σ ,l �=j ,ZN−k+σ

)
, (2.2)

where ZN−k+σ is an Hermitian matrix with eigenvalues strictly smaller than θJ+σ .
Define Kj = Kj(N) as the minimal number of canonical vectors among (e1, . . . , ek) needed to express all the

orthonormal eigenvectors v
j
i , 1 ≤ i ≤ kj , of AN associated to θj . Without loss of generality, we can assume that the

v
j
i , 1 ≤ i ≤ kj , belong to Vect(e1, . . . , eKj

). Considering now the vectors vi
j as vectors in C

Kj , we define the Kj × kj

matrix

UKj ×kj
:= (

v
j

1 , . . . , v
j
kj

)
(2.3)

namely UKj ×kj
is the upper left corner of Uk of size Kj × kj . It satisfies

U∗
Kj ×kj

UKj ×kj
= Ikj

. (2.4)

All along the paper, the parameter t is such that t = 4 (resp. t = 2) in the real (resp. complex) setting and we let
m4 := ∫

x4 dμ(x).
Given an arbitrary Hermitian or symmetric matrix M of size N , we will denote by λ1(M) ≥ · · · ≥ λN(M) its N

ordered eigenvalues.
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3. Main results

We first recall the a.s. convergence of the extreme eigenvalues. Define

ρθj
= θj + σ 2

θj

. (3.1)

Observe that ρθj
> 2σ (resp. <−2σ ) when θj > σ (resp. <−σ ) (and ρθj

= ±2σ if θj = ±σ ).
For definiteness, we set k1 + · · · + kj−1 := 0 if j = 1. In [8], we have established the following universal conver-

gence result.

Theorem 3.1 (a.s. behaviour). Let J+σ (resp. J−σ ) be the number of j’s such that θj > σ (resp. θj < −σ ).

(1) ∀1 ≤ j ≤ J+σ , ∀1 ≤ i ≤ kj , λk1+···+kj−1+i (MN) −→ ρθj
a.s.

(2) λk1+···+kJ+σ +1(MN) −→ 2σ a.s.
(3) λk1+···+kJ−J−σ

(MN) −→ −2σ a.s.
(4) ∀j ≥ J − J−σ + 1, ∀1 ≤ i ≤ kj , λk1+···+kj−1+i (MN) −→ ρθj

a.s.

3.1. Fluctuations around ρθj

From Theorem 3.1, for all 1 ≤ i ≤ kj , λk1+···+kj−1+i (MN) converges to ρθj
a.s. We shall describe their fluctuations in

the extreme two cases:

Case (a): Localization of the eigenvectors associated to θj : The sequence Kj(N) is bounded,

sup
N

Kj (N) = K̃j

and the the upper left corner U
K̃j ×kj

of Uk of size K̃j × kj converges towards some matrix Ũ
K̃j ×kj

when N goes to
infinity.

Case (b): Delocalization of the eigenvectors associated to θj : Kj = Kj(N) → ∞ when N → ∞ and Uk satisfies

kj

max
p=1

Kj

max
i=1

∣∣(Uk)ip
∣∣ −→ 0 as N → ∞. (3.2)

The main results of our paper are the following two theorems. Let cθj
be defined by

cθj
= θ2

j

θ2
j − σ 2

. (3.3)

In Case (a) (which includes the particular setting of Proposition 1.2), the fluctuations of the corresponding rescaled
largest eigenvalues of MN are not universal.

Theorem 3.2. In Case (a): the kj -dimensional vector(
cθj

√
N

(
λk1+···+kj−1+i (MN) − ρθj

); i = 1, . . . , kj

)
converges in distribution to (λi(Vkj ×kj

); i = 1, . . . , kj ) where λi(Vkj ×kj
) are the ordered eigenvalues of the matrix

Vkj ×kj
of size kj defined in the following way. Let W

K̃j
be a Wigner matrix of size K̃j with distribution given by μ (cf.

(i)) and HK̃j
be a centered Hermitian Gaussian matrix of size K̃j independent of W

K̃j
with independent entries Hpl ,

p ≤ l, with variance⎧⎪⎨
⎪⎩

vpp = E
(
H 2

pp

) = t
4

(
m4−3σ 4

θ2
j

) + t
2

σ 4

θ2
j −σ 2 , p = 1, . . . , K̃j ,

vpl = E
(|Hpl |2

) = σ 4

θ2
j −σ 2 , 1 ≤ p < l ≤ K̃j .

(3.4)
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Then, Vkj ×kj
is the kj × kj matrix defined by

Vkj ×kj
= Ũ∗

K̃j ×kj
(W

K̃j
+ H

K̃j
)Ũ

K̃j ×kj
. (3.5)

Case (b) exhibits universal fluctuations.

Theorem 3.3. In Case (b): the kj -dimensional vector

(
cθj

√
N

(
λk1+···+kj−1+i (MN) − ρθj

); i = 1, . . . , kj

)
converges in distribution to (λi(Vkj ×kj

); i = 1, . . . , kj ) where the matrix Vkj ×kj
is distributed as the GU(O)E(kj ×

kj ,
θ2
j σ 2

θ2
j −σ 2 ).

Remark 3.1. Note that since μ is symmetric, analogue results can be deduced from Theorems 3.2 and 3.3 dealing
with the lowest eigenvalues of MN and the θj such that θj < −σ .

Example.

AN = diag
(
Ap(θ1), θ2Ik2,0N−p−k2

)
,

where Ap(θ1) is a matrix of size p defined by Ap(θ1)ij = θ1/p, with θ1, θ2 > σ , p 
 √
N . Then k = p + k2, k1 = 1,

K1 = p, K2 = k2. For j = 1, we are in Case (a) if p is bounded and in Case (b) if p = p(N) → +∞. For j = 2, we
are in Case (a).

3.2. Further result for a spike θj > σ of multiplicity 1

Dealing with a spike θj > σ with multiplicity 1, it turns out that Case (b) is actually the unique situation where
universality holds since we establish the following.

Theorem 3.4. If kj = 1, θj > σ , then the fluctuations of λk1+···+kj−1+1(MN) are universal, namely

√
N

(
λk1+···+kj−1+1(MN) − ρθj

) L−→ N
(

0,
t

2
σ 2

θj

)
, where σθj

= σ

√
1 − σ 2

θ2
j

if and only if

max
l≤Kj

∣∣(Uk)l1
∣∣ → 0 when N → ∞. (3.6)

Moreover, our approach allows us to describe the fluctuations of λk1+···+kj−1+1(MN) for some particular situ-
ations where the corresponding eigenvector of AN is not localized but does not satisfy the criteria of universality
maxl≤Kj

|(Uk)l1| → 0 (that is somehow for intermediate situations between Cases (a) and (b)). Let m be a fixed inte-
ger number. Assume that for any l = 1, . . . ,m, (Uk)l1 is independent of N , whereas maxm<l≤Kj

|(Uk)l1| → 0 when

N goes to infinity. We will prove at the end of Section 5 that cθj

√
N(λk1+···+kj−1+1(MN) − ρθj

) converges in dis-

tribution towards the mixture of μ-distributed or Gaussian random variables
∑m

i,l=1 ailξil + N in the complex case,∑
1≤l≤i≤m ailξil + N in the real case, where ξil, (i, l) ∈ {1, . . . ,m}2, N are independent random variables such that

• for any (i, l) ∈ {1, . . . ,m}2, the distribution of ξil is μ;

• ail =

⎧⎪⎪⎨
⎪⎪⎩

√
2�(

(Uk)l1(Uk)i1
)

if i < l,√
t�(

(Uk)l1(Uk)i1
)

if i > l,√
t
2

∣∣(Uk)l1
∣∣2 if i = l;
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• N is a centered Gaussian variable with variance

t

4

[m4 − 3σ 4]∑m
l=1 |(Uk)l1|4

θ2
j

+ t

2

σ 4

θ2
j − σ 2

+ t

2

[
1 −

(
m∑

l=1

∣∣(Uk)l1
∣∣2

)2]
σ 2.

4. Sketch of the approach

Before we proceed to the proof of Theorems 3.2 and 3.3, let us give the sketch of our approach which are similar in
both cases. To this aim, we define for any random variable λ,

ξN(λ) = cθj

√
N(λ − ρθj

) (4.1)

with cθj
given by (3.3). We also set k̂j−1 := k1 + · · · + kj−1 with the convention that k̂0 = 0.

The reasoning made in the setting of Proposition 1.2 (for which k = k+σ = 1) relies (following ideas previously
developed in [7] and [18]) on the writing of the rescaled eigenvalue ξN(λ1(MN)) in terms of the resolvent of an
underlying non-Deformed Wigner matrix. The conclusion then essentially follows from a CLT on random sesquilinear
forms established by J. Baik and J. Silverstein in the Appendix of [8] (which corresponds to the following Theorem A.2
in the scalar case). In the general case, to prove the convergence in distribution of the vector (ξN(λ

k̂j−1+i
(MN)); i =

1, . . . , kj ), we will extend, as [5], the previous approach in the following sense. We will show that each of these
rescaled eigenvalues is an eigenvalue of a kj × kj random matrix which may be expressed in terms of the resolvent of
a N − k × N − k Deformed Wigner matrix whose eigenvalues do not jump asymptotically outside [−2σ ;2σ ]; then,
the matrix Vkj ×kj

will arise from a multidimensional CLT on random sesquilinear forms. Nevertheless, due to the
multidimensional situation to be considered now, additional considerations are required. Let us give more details.

Consider an arbitrary random variable λ which converges in probability towards ρθj
. Then, applying factorizations

of type (A.1), we prove that λ is an eigenvalue of MN iff ξN(λ) is (on some event having probability going to 1 as
N → ∞) an eigenvalue of a kj × kj matrix X̌kj ,N (λ) of the form

X̌kj ,N (λ) = Vkj ,N + Rkj ,N (λ), (4.2)

where Vkj ,N converges in distribution towards Vkj ×kj
and the remaining term Rkj ,N (λ) turns out to be negligible. Now,

when kj > 1, since the matrix X̌kj ,N (λ) (in (4.2)) depends on λ, the previous reasoning with λ = λ
k̂j−1+i

(MN) for

any 1 ≤ i ≤ kj does not allow us to readily deduce that the kj normalized eigenvalues ξN(λ
k̂j−1+i

(MN)),1 ≤ i ≤ kj ,

are eigenvalues of a same matrix of the form Vkj ,N + oP(1) and then that

(
ξN

(
λ

k̂j−1+i
(MN)

);1 ≤ i ≤ kj

) = (
λi(Vkj ,N );1 ≤ i ≤ kj

) + oP(1). (4.3)

Note that the authors do not develop this difficulty in [5], pp. 464–465. Hence, in the last step of the proof (Step 4 in
Section 5), we detail the additional arguments which are needed to get (4.3) when kj > 1.

Our approach will cover Cases (a) and (b) and we will handle both cases once this will be possible. In fact,
the main difference appears in the proof of the convergence in distribution of the matrix Vkj ,N which gives rise to the
“occurrence or non-occurrence” of the distribution μ in the limiting fluctuations and then justifies the non-universality
(resp. universality) in Case (a) (resp. Case (b)).

The proof is organized in four steps as follows. In Steps 1 and 2, we explain how to obtain (4.2): we exhibit the
matrix X̌kj ,N and bring its leading term Vkj ,N to light in Step 2. We establish the convergence in distribution of the
matrix Vkj ,N in Step 3. Step 4 is devoted to the concluding arguments of the proof.

5. Proofs of Theorems 3.2, 3.3 and 3.4

As far as possible, we handle both the proofs of Theorem 3.2 and Theorem 3.3. We will proceed in four steps. First,
let us introduce a few notations.
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For any matrix M ∈ MN(C), we denote by Tr (resp. trN ) the classical (resp. normalized) trace. For a rectangular
matrix, ‖M‖ is the operator norm of M and ‖M‖HS := (Tr(MM∗))1/2 the Hilbert–Schmidt norm.

For an Hermitian matrix, we denote by Spect(M) the spectrum of M . For z ∈ C\Spect(M), GM(z) = (zIN −M)−1

denotes the resolvent of M (we suppress the index M when there is no confusion). We have the following:

For x > λ1(M); ∥∥G(x)
∥∥ ≤ 1

x − λ1(M)
. (5.1)

For a m × q matrix B (or B) and some integers 1 ≤ p ≤ m and 1 ≤ l ≤ q , we denote respectively by [B]↖p×l , [B]↗p×l ,

[B]↙p×l and [B]↘p×l the upper left, upper right, lower left and lower right corner of size p × l of the matrix B . If p = l,
we will often replace the indices p × l by p for convenience. Moreover if p = m , we may replace ↗ or ↘ by → and
↙ or ↖ by ←. Similarly if l = q , we may replace ↗ or ↖ by ↑ and ↙ or ↘ by ↓.

For simplicity in the writing we will define the k ×k, resp. N − k ×N − k, resp. k ×N − k matrix Wk , resp. WN−k ,
resp. Y , by setting

WN =
(

Wk Y

Y ∗ WN−k

)
. (5.2)

Given B ∈ MN(C), we will denote by B̃ the N × N matrix given by

B̃ := diag
(
U∗

k , IN−k

)
B diag(Uk, IN−k) =

(
B̃k B̃k×N−k

B̃N−k×k B̃N−k

)
.

One obviously has that B̃N−k = BN−k .
In this way, we define the matrices M̃N , W̃N and ÃN . In particular, we notice from (2.2) that

ÃN = diag
(
θj Ikj

, (θlIkl
)l≤J+σ ,l �=j ,ZN−k+σ

) =
(

Ãk Ãk×N−k

ÃN−k×k AN−k

)
. (5.3)

Note also that since AN−k is a submatrix of ZN−k+σ , all its eigenvalues are strictly smaller than σ .
Let 0 < δ < (ρθj

− 2σ)/2. For any random variable λ, define the events

Ω
(1)
N (λ) =

{
λ1

(
WN√

N
+ diag(Uk, IN−k)diag(0k+σ ,ZN−k+σ )diag

(
U∗

k , IN−k

))
< 2σ + δ;λ > ρθj

− δ

}
,

Ω
(2)
N =

{
λ1

(
WN−k√

N
+ AN−k

)
≤ 2σ + δ

}

and

ΩN(λ) = Ω
(1)
N (λ) ∩ Ω

(2)
N . (5.4)

On ΩN(λ), neither λ nor ρθj
are eigenvalues of MN−k := WN−k√

N
+ AN−k , thus the resolvent Ĝ(x) of MN−k is well

defined at x = λ and x = ρθj
.

Note that from Theorem 3.1, for any random sequence ΛN converging towards ρθj
in probability,

lim
N −→∞ P

(
ΩN(ΛN)

) = 1.

Let us now introduce on ΩN(λ) some auxiliary matrices that will be of basic use to the proofs.

Bk,N = Wk + 1√
N

(
YĜ(ρθj

)Y ∗ − (N − k)
σ 2

θj

Ik

)
, (5.5)

Vk+σ ,N := [
U∗

k Bk,NUk

]↖
k+σ

, (5.6)
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τN(λ) = 1

N
(λ − ρθj

)Y Ĝ(λ)Ĝ(ρθj
)2Y ∗, (5.7)

φN = − 1

N

(
YĜ(ρθj

)2Y ∗ − σ 2 Tr Ĝ(ρθj
)2Ik

)
, (5.8)

ψN = −σ 2 N − k

N

(
trN−k Ĝ(ρθj

)2 − 1

θ2
j − σ 2

)
Ik, (5.9)

cθj
Dk,N (λ) = τN(λ) + φN + ψN, (5.10)

TN(λ) =
[
U∗

k

(
Wk + 1√

N
YĜ(λ)Y ∗

)
Uk

]↗

k+σ ×(k−k+σ )

, (5.11)

ΔN(λ) = [
U∗

k Y Ĝ(λ)ÃN−k×k

]↗
k+σ ×(k−k+σ )

, (5.12)

Γk+σ ×k−k+σ (λ) = TN(λ) + ΔN(λ), (5.13)

Qk,N (λ) := M̃k + M̃k×N−kĜ(λ)M̃N−k×k, (5.14)

Σk−k+σ (λ) = ([
Qk,N (λ)

]↘
k−k+σ

− λIk−k+σ

)−1
. (5.15)

Note that we will justify that Σk−k+σ (λ) is well defined in the course of the proof of Proposition 5.1 below. Finally,
set

Xk+σ ,N (λ) = [
U∗

k Bk,NUk

]↖
k+σ

+ √
N diag

(
0kj

, (θl − θj )Ikl
, l = 1, . . . , J+σ , l �= j

)
+ ξN(λ)

[
U∗

k Dk,N (λ)Uk

]↖
k+σ

+
(

σ 2

θ2
j − σ 2

ξN(λ)

cθj

k

N
− k√

N

σ 2

θj

)
Ik+σ

− 1√
N

Γk+σ ×k−k+σ (λ)Σk−k+σ (λ)Γk+σ ×k−k+σ (λ)∗. (5.16)

Step 1: We show that an eigenvalue of MN is an eigenvalue of a matrix of size k+σ . More, precisely, we have:

Proposition 5.1. For any random variable λ and any k+σ × k+σ random matrix Δk+σ , on ΩN(λ), λ is an eigenvalue
of M̃N + diag(Δk+σ ,0) iff ξN(λ) is an eigenvalue of Xk+σ ,N (λ) + √

NΔk+σ where Xk+σ ,N (λ) is defined by (5.16).
Moreover, the k − k+σ × k − k+σ matrix Σk−k+σ (λ) defined by (5.15) is such that

∥∥Σk−k+σ (λ)
∥∥ ≤ 1/(ρθj

− 2σ − 2δ).

Proof. Let λ be a random variable. On ΩN(λ),

det(MN − λIN) = det(M̃N − λIN)

= det

(
M̃k − λIk M̃k×N−k

MN−k×k MN−k − λIN−k

)

= det(MN−k − λIN−k)det
(
M̃k − λIk + M̃k×N−kĜ(λ)M̃N−k×k

)
.

The last equality in the above equation follows from (A.1). Since on ΩN(λ), λ is not an eigenvalue of MN−k , we can
deduce that λ is an eigenvalue of M̃N if and only if it is an eigenvalue of

Qk,N (λ) = M̃k + M̃k×N−kĜ(λ)M̃N−k×k.
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Now, note that we have also from (A.1) that

det

([
W̃N√

N

]↘

N−k+σ

+ ZN−k+σ − λIN−k+σ

)

= det

(
WN−k√

N
+ [ZN−k+σ ]↘N−k − λIN−k

)
× det

([
Qk,N (λ)

]↘
k−k+σ

− λIk−k+σ

)
.

The matrix [ W̃N√
N

]↘N−k+σ
+ ZN−k+σ is a submatrix of W̃N√

N
+ diag(0k+σ ,ZN−k+σ ) whose eigenvalues are (on ΩN(λ))

smaller than 2σ + δ. So, since on ΩN(λ), λ is greater than ρθj
− δ > 2σ + δ, we can conclude that λ cannot be an

eigenvalue of [ W̃N√
N

]↘N−k+σ
+ ZN−k+σ , and then neither of [Qk,N (λ)]↘k−k+σ

. Thus, we can define

Σk−k+σ (λ) = ([
Qk,N (λ)

]↘
k−k+σ

− λIk−k+σ

)−1
.

Moreover on ΩN(λ), one can see using (A.1) that if λ0 is an eigenvalue of [Qk,N (λ)]↘k−k+σ
− λIk−k+σ then λ is an

eigenvalue of[
W̃N√

N

]↘

N−k+σ

+ ZN−k+σ − diag(λ0Ik−k+σ ,0N−k).

Hence,

λ ≤ λ1

([
W̃N√

N

]↘

N−k+σ

+ ZN−k+σ

)
+ |λ0|

and then

|λ0| ≥ ρθj
− δ − 2σ − δ,

so that finally

∥∥Σk−k+σ (λ)
∥∥ ≤ 1

ρθj
− 2σ − 2δ

. (5.17)

Using once more (A.1), we get that on ΩN(λ), λ is an eigenvalue of Qk,N (λ) if and only if it is an eigenvalue of
[Qk,N (λ)]↖k+σ

− [Qk,N (λ)]↗k+σ ×k−k+σ
Σk−k+σ (λ)[Qk,N (λ)]↙k−k+σ ×k+σ

or equivalently if and only if ξN(λ) is an eigen-
value of

cθj

√
N

([
Qk,N (λ)

]↖
k+σ

− ρθj
Ik+σ − [

Qk,N (λ)
]↗
k+σ ×k−k+σ

Σk−k+σ (λ)
[
Qk,N (λ)

]↙
k−k+σ ×k+σ

)
.

Now using

Ĝ(λ) − Ĝ(ρθj
) = −(λ − ρθj

)Ĝ(ρθj
)Ĝ(λ),

one can replace Ĝ(λ) by Ĝ(ρθj
)+[−(λ−ρθj

)Ĝ(ρθj
)(Ĝ(ρθj

)− (λ−ρθj
)Ĝ(ρθj

)Ĝ(λ))] and get the following writing

1√
N

YĜ(λ)Y ∗ = 1√
N

YĜ(ρθj
)Y ∗ + ξN(λ)Dk,N (λ) − ξN(λ)

N − k

N

σ 2

cθj
(θ2

j − σ 2)
Ik, (5.18)

where

cθj
Dk,N (λ) = 1

N
(λ − ρθj

)Y Ĝ(λ)Ĝ(ρθj
)2Y ∗ − 1

N

(
YĜ(ρθj

)2Y ∗ − σ 2 Tr Ĝ(ρθj
)2Ik

)
− σ 2 N − k

N

(
trN−k Ĝ(ρθj

)2 − 1

θ2
j − σ 2

)
Ik.
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Then

cθj

√
N

([
Qk,N (λ)

]↖
k+σ

− ρθj
Ik+σ

) = cθj

{[
U∗

k

(
Wk + 1√

N

(
YĜ(ρθj

)Y ∗ − (N − k)
σ 2

θj

Ik

))
Uk

]↖

k+σ

+ √
N diag

(
0kj

, (θl − θj )Ikl
, l = 1, . . . , J+σ , l �= j

)
+ ξN(λ)

[
U∗

k Dk,N (λ)Uk

]↖
k+σ

− k√
N

σ 2

θj

Ik+σ + σ 2

θ2
j − σ 2

ξN(λ)

cθj

k

N
Ik+σ

}

− σ 2

θ2
j − σ 2

ξN(λ)Ik+σ .

The proposition (adding an extra matrix Δk+σ for future computations) readily follows. �

Throughout Steps 2 and 3, ΛN denotes any random sequence converging in probability towards ρθj
. The aim of

these two steps is to study the limiting behavior of the matrix Xk+σ ,N (ΛN) (defined by (5.16)) as N goes to infinity.

Step 2: We first focus on the negligible terms in Xk+σ ,N (ΛN) and establish the following.

Proposition 5.2. Assume that k 
 √
N . For any random sequence ΛN converging in probability towards ρθj

, on
ΩN(ΛN),

Xk+σ ,N (ΛN) = Vk+σ ,N + √
N diag

(
0kj

, (θl − θj )Ikl
, l = 1, . . . , J+σ , l �= j

) + (
1 + ∣∣ξN(ΛN)

∣∣)2oP(1) (5.19)

with Vk+σ ,N defined by (5.6).

The proof of this proposition is quite long and is divided in several lemmas. Although our final result in the case k

infinite holds only for k 
 √
N , we will give some estimates for k 
 N once this is possible.

Lemma 5.1. Let k 
 N . Then, on ΩN(ΛN),[
U∗

k Dk,N (ΛN)Uk

]↖
k+σ

= oP(1). (5.20)

Proof. Dk,N(ΛN), τN ,φN and ψN are respectively defined by (5.10), (5.7), (5.8) and (5.9).
Since Y is a submatrix of WN , lim supN

‖Y‖√
N

≤ 2 and ‖Y‖√
N

= OP(1). Thus,

‖τN‖ = OP(ΛN − ρθj
) = oP(1), (5.21)

where we used that ‖Ĝ(λ)‖ ≤ 1
(ρθj

−2σ−2δ)
for λ = ρθj

or λ = ΛN . Therefore,

∥∥[
U∗

k τNUk

]↖
k+σ

∥∥ = oP(1).

It follows from Lemma A.3 in the Appendix that

[
U∗

k ψNUk

]↖
k+σ

:= −σ 2 N − k

N

[
trN−k Ĝ(ρθj

)2 − 1

θ2
j − σ 2

]
Ik+σ = oP(1).

Now, we have

E
(∥∥[

U∗
k φNUk

]↖
k+σ

1ΩN(ΛN)

∥∥2
HS

) ≤ E
(∥∥[

U∗
k φNUk

]↖
k+σ

1
Ω

(2)
N

∥∥2
HS

)

≤
k+σ∑

p,q=1

1

N2
E

(∣∣U (p)∗Ĝ(ρθj
)2 U (q) − σ 2 Tr Ĝ(ρθj

)2δp,q

∣∣21
Ω

(2)
N

)
,
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where for any p = 1, . . . , k+σ , we let U (p) = t [(Y ∗Uk)1,p, . . . , (Y ∗Uk)N−k,p]. We first state some properties of the
vectors U (p).

Lemma 5.2. Let U denote the N − k × k+σ matrix [Y ∗Uk]←k+σ
. Then, the rows (Ui·; i ≤ N − k) are centered i.i.d.

vectors in C
k+σ , with a distribution depending on N . Moreover, we have for all 1 ≤ p,q ≤ k+σ :

E(U1p Ū1q) = δp,qσ 2 with E(U1p U1q) = 0 in the complex case,
(5.22)

E
[|Uip|2|Uiq |2] =

(
1 + t

2
δp,q

)
σ 4 +

[
E

(|W12|4
) −

(
1 + t

2

)
σ 4

] k∑
l=1

∣∣(Uk)l,p
∣∣2∣∣(Uk)l,q

∣∣2
.

Since
∑k

l=1 |(Uk)l,p|4 ≤ 1, the fourth moment of U1p is uniformly bounded.

We skip the proof of this lemma which follows from straightforward computations using the independence of the
entries of Y and the fact that Uk is unitary.

Then, according to Theorem A.1 and using (5.1),

1

N2
E

(∣∣U (p)∗Ĝ(ρθj
)2 U (p) − σ 2 Tr Ĝ(ρθj

)2
∣∣21ΩN(ΛN)

) ≤ K

N
E

(
trN Ĝ(ρθj

)41
Ω

(2)
N

)
≤ K

N
E

(∥∥Ĝ(ρθj
)
∥∥41

Ω
(2)
N

)
≤ K

N

1

(ρθj
− 2σ − δ)4

.

Besides for p �= q , using the independence between (U (p), U (q)) and Ĝ(ρθj
), we have:

E
(∣∣U (p)∗Ĝ(ρθj

)2 U (q)
∣∣21

Ω
(2)
N

) =
N−k∑

i,j,l,m

E
[

Ūip

(
G2)

ij
Ujq Ulp

(
G2

)
lm

Ūmq1
Ω

(2)
N

]

=
N−k∑

i,j,l,m

E[Ūip Ujq Ulp Ūmq ]E[(
G2)

ij

(
G2

)
lm

1
Ω

(2)
N

]
,

where we denote by G the matrix Ĝ(ρθj
) for simplicity. From Lemma 5.2, for p �= q , the only terms giving a non-null

expectation in the above equation are those for which:

(1) i = l, j = m and i �= j . In this case,

E[Ūip Ujq Uip Ūjq ] = E[Ūip Uip]E[Ujq Ūjq ] = σ 4

and

N−k∑
i,j,i �=j

E
[(

G2)
ij

(
G2

)
ij

1
Ω

(2)
N

] ≤ E Tr
(
G41

Ω
(2)
N

)
.

(2) i = j = k = l. In this case, using (5.22), there is a constant C > 0 such that

E[Ūip Uiq Uip Ūiq ] = E
[|Uip|2|Uiq |2] ≤ C.

Moreover

N−k∑
i=1

E
[
G2

ii Ḡ
2
ii1Ω

(2)
N

] ≤ E Tr
(
G41

Ω
(2)
N

)
.
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Therefore,

E
(∣∣U (p)∗Ĝ(ρθj

)2 U (q)
∣∣21

Ω
(2)
N

) ≤ (
C + σ 4)

E Tr
(
Ĝ(ρθj

)41
Ω

(2)
N

)
. (5.23)

Hence,

1

N2
E

(∣∣U (p)∗Ĝ(ρθj
)2 U (q)

∣∣21
Ω

(2)
N

) ≤ C + σ 4

N
E

(∥∥Ĝ(ρθj
)
∥∥41

Ω
(2)
N

)

≤ C + σ 4

N

1

(ρθj
− 2σ − δ)4

.

Thus

E
(∥∥[

U∗
k φNUk

]↖
k+σ

∥∥21ΩN(ΛN)

) ≤ (
C + σ 4)k2+σ

N

1

(ρθj
− 2σ − δ)4

.

The convergence in probability of [U∗
k φNUk]↖k+σ

towards zero readily follows by Tchebychev inequality.
Lemma 5.1 is established. �

For simplicity, we now write

Σ(ΛN) = Σk−k+σ (ΛN).

Let us define

Rk,N(ΛN) := − k√
N

σ 2

θj

Ik+σ + σ 2

θ2
j − σ 2

ξN(ΛN)

cθj

k

N
Ik+σ

− 1√
N

Γk+σ ×k−k+σ (ΛN)Σ(ΛN)Γk+σ ×k−k+σ (ΛN)∗. (5.24)

To get Proposition 5.2, it remains to prove that if k 
 √
N ,

Rk,N(ΛN) = (
1 + ∣∣ξN(ΛN)

∣∣)2oP(1). (5.25)

Once k 
 √
N , we readily have that

− k√
N

σ 2

θj

Ik+σ + σ 2

θ2
j − σ 2

ξN(ΛN)

cθj

k

N
Ik+σ = (

1 + ∣∣ξN(ΛN)
∣∣)2oP(1).

Hence, (5.25) will follow if we prove

Lemma 5.3. Assume that k 
 √
N . Let Γk+σ ×k−k+σ (λ) and Σ(λ) be defined as (5.13) and (5.15). On ΩN(ΛN),

1√
N

Γk+σ ×k−k+σ (ΛN)Σ(ΛN)Γk+σ ×k−k+σ (ΛN)∗ = (
1 + ∣∣ξN(ΛN)

∣∣)2oP(1). (5.26)

Proof. For the proof, we use the following decomposition (TN(λ) and ΔN(λ) being defined by (5.11) and (5.12)):

Γk+σ ×k−k+σ (ΛN)Σ(ΛN)Γk+σ ×k−k+σ (ΛN)∗

= TNΣT ∗
N + TNΣΔN(ΛN)∗ + ΔN(ΛN)ΣΔN(ΛN)∗ + ΔN(ΛN)ΣT ∗

N, (5.27)
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where (using (5.18))

TN := TN(ΛN)

=
[
U∗

k

(
Wk + 1√

N
YĜ(ΛN)Y ∗

)
Uk

]↗

k+σ ×(k−k+σ )

= [
U∗

k Bk,NUk

]↗
k+σ ×k−k+σ

+ ξN(ΛN)
[
U∗

k Dk,N(ΛN)Uk

]↗
k+σ ×k−k+σ

and we replaced Σ(ΛN) by Σ . We will prove the following lemma on TN .

Lemma 5.4. If k 
 N ,

∥∥[
U∗

k Dk,N (ΛN)Uk

]↗
k+σ ×k−k+σ

∥∥ = oP(1). (5.28)

If k 
 √
N ,

∥∥[
U∗

k Bk,N (ΛN)Uk

]↗
k+σ ×k−k+σ

∥∥
HS = oP

(
N1/4) (5.29)

and therefore, for k 
 √
N ,

‖TN‖ = oP

(
N1/4)(1 + ∣∣ξN(ΛN)

∣∣).
Proof. To prove (5.28), we use the decomposition

cθj

[
U∗

k Dk,N(ΛN)Uk

]↗
k+σ ×k−k+σ

= [
U∗

k τNUk

]↗
k+σ ×k−k+σ

+ [
U∗

k φNUk

]↗
k+σ ×k−k+σ

.

As in the proof of Lemma 5.1, we have

E
(∥∥[

U∗
k φNUk

]↗
k+σ ×k−k+σ

∥∥2
HS1ΩN(ΛN)

) ≤ (
C + σ 4)kk+σ

N

1

(ρθj
− 2σ − δ)4

,

so that, for k 
 N and using Tchebychev inequality, we can deduce that

∥∥[
U∗

k φNUk

]↗
k+σ ×k−k+σ

∥∥
HS1ΩN(ΛN) = oP(1).

From (5.21),

∥∥[
U∗

k τNUk

]↗
k+σ ×k−k+σ

∥∥ = oP(1)

and therefore∥∥[
U∗

k Dk,N (ΛN)Uk

]↗
k+σ ×k−k+σ

∥∥ = oP(1).

Thus, (5.28) is established.
For (5.29), recall that [U∗

k Bk,NUk]↗k+σ ×k−k+σ
= [U∗

k WkUk]↗k+σ ×k−k+σ
+ 1√

N
[U∗

k Y Ĝ(ρθj
)Y ∗Uk]↗k+σ ×k−k+σ

. Since

‖Wk‖ = OP(
√

k), we have ‖[U∗
k WkUk]↗k+σ ×k−k+σ

‖2 = OP(
√

k). Hence, as k 
 √
N , we can deduce that

‖[U∗
k WkUk]↗k+σ ×k−k+σ

‖HS = oP(N1/4).
Now, let us prove the same estimate for the remaining term. Using the same proof as in (5.23), one can get that for

p �= q , for some constant C > 0,

E
(∣∣U (p)∗Ĝ(ρθj

)U (q)
∣∣21

Ω
(2)
N

) ≤ CE Tr
(
Ĝ(ρθj

)21
Ω

(2)
N

)
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and then that for some constant C > 0,

E

[∥∥∥∥ 1√
N

[
U∗

k Y Ĝ(ρθj
)Y ∗Uk

]↗
k+σ ×k−k+σ

∥∥∥∥
2

HS
1
Ω

(2)
N

]
≤ Ckk+σ

1

(ρθj
− 2σ − δ)2

.

Then using that

P

(∥∥∥∥ 1√
N

[
U∗

k Y Ĝ(ρθj
)Y ∗Uk

]↗
k+σ ×k−k+σ

∥∥∥∥
HS

1
Ω

(2)
N

> εN1/4
)

≤ 1

ε2
√

N
E

[∥∥∥∥ 1√
N

[
U∗

k Y Ĝ(ρθj
)Y ∗Uk

]↗
k+σ ×k−k+σ

∥∥∥∥
2

HS

]

we deduce since k 
 √
N that∥∥∥∥ 1√

N

[
U∗

k Y Ĝ(ρθj
)Y ∗Uk

]↗
k+σ ×k−k+σ

∥∥∥∥
HS

1
Ω

(2)
N

= oP

(
N1/4).

Thus (5.29) and Lemma 5.4 are proved. �

Using that

‖Σ‖ ≤ 1

ρθj
− 2σ − 2δ

, (5.30)

one can readily notice that Lemma 5.4 leads to

1√
N

TNΣT ∗
N = (

1 + ∣∣ξN(ΛN)
∣∣)2oP(1). (5.31)

We now consider the remaining terms in the r.h.s. of (5.27). We first show the following result where we recall that
ΔN(ρθj

) = [U∗
k Y Ĝ(ρθj

)ÃN−k×k]↗k+σ ×k−k+σ
.

Lemma 5.5. 1√
N

TNΣΔN(ρθj
)∗, 1√

N
ΔN(ρθj

)ΣΔN(ρθj
)∗ and 1√

N
ΔN(ρθj

)ΣT ∗
N are all equal to some (1 +

|ξN(ΛN)|)oP(1).

Proof. We will show that, on ΩN(ΛN), for any u > 0,

ΔN(ρθj
) = oP

(
Nu

)
. (5.32)

One can readily see that this leads to the announced result combining Lemma 5.4, (5.30) and (5.32).
First, using the fact that U∗

k Y is independent of 1
Ω

(2)
N

Ĝ(ρθj
) and that for any p, the random vector U (p) =

t [(Y ∗Uk)1,p, . . . , (Y ∗Uk)N−k,p] has independent centered entries with variance σ 2, one has that

E
(
1ΩN(ΛN) TrΔN(ρθj

)ΔN(ρθj
)∗

) ≤ E
(
1
Ω

(2)
N

TrΔN(ρθj
)ΔN(ρθj

)∗
)

= k+σ σ 2
E

{
1
Ω

(2)
N

Tr
[
Ĝ2(ρθj

)ÃN−k×k−k+σ Ã∗
N−k×k−k+σ

]}
≤ k+σ σ 2

E
{
1
Ω

(2)
N

∥∥Ĝ(ρθj
)
∥∥2 Tr ÃN−k×k−k+σ Ã∗

N−k×k−k+σ

}

≤ k+σ σ 2

(ρθj
− 2σ − δ)2

Tr A2
N

= k+σ σ 2

(ρθj
− 2σ − δ)2

J∑
l=1

klθ
2
l .
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Therefore, P(1ΩN(ΛN)‖ΔN(ρθj
)‖HS ≥ εNu) ≤ ε−2N−2uE(1ΩN(ΛN)‖ΔN(ρθj

)‖2
HS) goes to zero as N tends to infinity.

Hence (5.32) holds true on ΩN(ΛN) and the proof of Lemma 5.5 is complete. �

Let us now prove that

Lemma 5.6. ΔN(ΛN) = ΔN(ρθj
) + OP(|ξN(ΛN)|).

Proof. We have

ΔN(ΛN) − ΔN(ρθj
) = −(ΛN − ρθj

)
[
U∗

k Y Ĝ(ρθj
)Ĝ(ΛN)ÃN−k×k

]↗
k+σ ×k−k+σ

.

Let us define ∇k+σ = [U∗
k Y Ĝ(ρθj

)Ĝ(ΛN)ÃN−k×k]↗k+σ ×k−k+σ
. Then for some constant C > 0 depending on the matrix

ÃN−k×k ,

Tr
(∇k+σ ∇∗

k+σ

) ≤ C
∥∥Ĝ(ρθj

)
∥∥2∥∥Ĝ(ΛN)

∥∥2 Tr
(

U ∗U
)

≤ C

(ρθj
− 2σ − 2δ)4

Tr
(

U ∗U
)
,

where we denote as before U = [Y ∗Uk]←k+σ
. Thus letting C′ := Cc−2

θj
,

∥∥ΔN(ΛN) − ΔN(ρθj
)
∥∥2

HS ≤ C′(ξN(ΛN)
)2 1

(ρθj
− 2σ − 2δ)4

1

N
Tr

(
U ∗U

)
.

From Lemma 5.2, it follows that

1

N
Tr

(
U ∗U

) P→ k+σ σ 2

implying that ‖ΔN(ΛN) − ΔN(ρθj
)‖HS = OP(|ξN(ΛN)|). �

We are now in position to conclude the proof of Lemma 5.3. Indeed, writing

ΔN(ΛN)ΣT ∗
N = (

ΔN(ΛN) − ΔN(ρθj
)
)
ΣT ∗

N + ΔN(ρθj
)ΣT ∗

N

and

ΔN(ΛN)ΣΔN(ΛN) = ΔN(ρθj
)ΣΔN(ρθj

)∗

+ (
ΔN(ΛN) − ΔN(ρθj

)
)
ΣΔN(ρθj

)∗

+ (
ΔN(ΛN) − ΔN(ρθj

)
)
Σ

(
ΔN(ΛN) − ΔN(ρθj

)
)∗

+ ΔN(ρθj
)Σ

(
ΔN(ΛN) − ΔN(ρθj

)
)∗

,

we deduce from Lemmas 5.4, 5.6 and (5.30), (5.32) that 1√
N

ΔN(ΛN)ΣT ∗
N and 1√

N
ΔN(ΛN)ΣΔN(ΛN)∗ are both

equal to some (1 + |ξN(ΛN)|)oP(1). Using also (5.31), we can deduce that

1√
N

Γk+σ ×k−k+σ (ΛN)ΣΓk+σ ×k−k+σ (ΛN)∗ = (
1 + ∣∣ξN(ΛN)

∣∣)2oP(1) (5.33)

which gives (5.26) and completes the proof of Lemma 5.3. �

Combining all the preceding, we have established Proposition 5.2. We now prove that provided it converges in
distribution, with a probability going to one as N goes to infinity, ξN(ΛN) is actually an eigenvalue of a matrix of
size kj .
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Lemma 5.7. For all u > 0,

‖Vk+σ ,N‖HS

Nu
= oP(1).

Proof. Straightforward computations lead to the existence of some constant C such that

E
(∥∥[

U∗
k WkUk

]
k+σ

∥∥
HS

) ≤ C.

The convergence of ‖[U∗
k WkUk]k+σ ‖/Nu in probability towards zero readily follows by Tchebychev inequality. Fol-

lowing the proof in Lemma 5.1 of the convergence in probability of [U∗
k ΦNUk]k+σ towards zero, one can get that

E

(∥∥∥∥
[
U∗

k

1√
N

1
Ω

(2)
N

(
YĜ(ρθj

)Y ∗ − σ 2 Tr Ĝ(ρθj
)Ik

)
Uk

]↖

k+σ

∥∥∥∥
2

1ΩN(ΛN)

)
≤ (C + σ 4)k2+σ

(ρθj
− 2σ − δ)2

,

and the convergence in probability towards zero of the term inside the above expectation follows by Tchebychev
inequality. Since moreover according to Lemma A.3,

1√
N

1
Ω

(2)
N

(
Tr Ĝ(ρθj

) − (N − k)
1

θj

)
= oP(1),

we can deduce that

N−u

∥∥∥∥
[
U∗

k

1√
N

1
Ω

(2)
N

(
YĜ(ρθj

)Y ∗ − (N − k)
σ 2

θ
Ik

)
Uk

]↖

k+σ

∥∥∥∥1
Ω

(2)
N

= oP(1).

The proof of Lemma 5.7 is complete. �

Proposition 5.3. Let Δkj
be an arbitrary kj × kj random matrix. If ξN(ΛN) converges in distribution, then, with a

probability going to one as N goes to infinity, it is an eigenvalue of Xk+σ ,N (ΛN) + diag(Δkj
,0) iff ξN(ΛN) is an

eigenvalue of a matrix X̌kj ,N (ΛN) + Δkj
of size kj , satisfying

X̌kj ,N (ΛN) = Vkj ,N + oP(1), (5.34)

where Vkj ,N is the kj × kj element in the block decomposition of Vk+σ ,N defined by (5.6); namely

Vkj ,N = U∗
Kj ×kj

[Bk,N ]↖Kj
UKj ×kj

with UKj ×kj
and Bk,N defined respectively by (2.3) and (5.5).

Proof. Since ξN(ΛN) converges in distribution, we can write the matrix Xk+σ ,N (ΛN) given by (5.19) as

Xk+σ ,N (ΛN) = √
N diag

(
0kj

,
(
(θl − θj )Ikl

)
l �=j

) + Řk+σ ,N (ΛN),

where Řk+σ ,N (ΛN) := Vk+σ ,N + oP(1). Let us decompose Xk+σ ,N (ΛN) in blocks as

Xk+σ ,N (ΛN) =
(

Xkj ,N Xkj ×k+σ −kj ,N

Xk+σ −kj ×kj ,N Xk+σ −kj ,N

)
.

We first show that ξN(ΛN) is not an eigenvalue of Xk+σ −kj ,N . Let α = infl �=j |θl − θj | > 0. Since,

Xk+σ −kj ,N = √
N diag

((
(θl − θj )Ikl

)
l �=j

) + Řk+σ −kj ,N ,
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if μ is an eigenvalue of Xk+σ −kj
, then

|μ|/√N ≥ α − ‖Řk+σ −kj ,N‖/√N.

Now, using Lemma 5.7,

‖Řk+σ −kj ,N‖/√N = oP(1).

Hence ξN(ΛN) cannot be an eigenvalue of Xk+σ −kj ,N . Therefore, we can define

X̌kj ,N = Xkj ,N − Xkj ×k+σ −kj ,N

(
Xk+σ −kj ,N − ξN(ΛN)Ik+σ −kj

)−1
Xk+σ −kj ×kj ,N

= Vkj ,N − Řkj ×k+σ −kj ,N

(
Xk+σ −kj ,N − ξN(ΛN)Ik+σ −kj

)−1
Řk+σ −kj ×kj ,N + oP(1).

To get (5.34), it remains to show that

∥∥Řkj ×k+σ −kj ,N

(
Xk+σ −kj ,N − ξN(ΛN)Ik+σ −kj

)−1
Řk+σ −kj ×kj ,N

∥∥ = oP(1).

This follows from the previous computations showing that (for some constant C > 0)

∥∥(
Xk+σ −kj ,N − ξN(ΛN)Ik+σ −kj

)−1∥∥ ≤ (
C + oP(1)

)
/
√

N,

combined with the definition of Řk+σ ,N (ΛN) and Lemma 5.7. The statement of the proposition then follows from
(A.1). �

Step 3: We now examine the convergence of the kj × kj matrix Vkj ,N = U∗
Kj ×kj

[Bk,N ]↖Kj
UKj ×kj

Proposition 5.4. The kj × kj matrix Vkj ,N = U∗
Kj ×kj

[Bk,N ]↖Kj
UKj ×kj

converges in distribution to a GU(O)E(kj ×
kj ,

θ2
j σ 2

θ2
j −σ 2 ) if and only if max

kj

p=1 max
Kj

i=1 |(Uk)ip| converges to zero when N goes to infinity.

Proof. Assume that max
kj

p=1 max
Kj

i=1 |(Uk)ip| converges to zero when N goes to infinity. We decompose the proof

of the convergence of U∗
Kj ×kj

[Bk,N ]↖Kj
UKj ×kj

in distribution to a GU(O)E(kj × kj ,
θ2
j σ 2

θ2
j −σ 2 ) into the two following

lemmas.

Lemma 5.8. If max
kj

p=1 max
Kj

i=1 |(Uk)ip| converges to zero when N goes to infinity then the kj × kj matrix

U∗
Kj ×kj

[Wk]↖Kj
UKj ×kj

converges in distribution to a GU(O)E(kj × kj , σ
2).

Proof. First we consider the complex case. Let αpq ∈ C, 1 ≤ p < q ≤ kj , and αpp ∈ R, 1 ≤ p ≤ kj , and define

LN(α) :=
∑

1≤p<q≤kj

(
αpq

(
U∗

k WkUk

)
pq

+ αpq

(
U∗

k WkUk

)
pq

) +
∑

1≤p≤kj

2αpp

(
U∗

k WkUk

)
pp

.

We have

LN(α) =
Kj∑
i=1

Di(WN)ii +
∑

1≤i<l≤Kj

Ril

(√
2�e

(
(WN)il

)) +
∑

1≤i<l≤Kj

Iil

(√
2�m

(
(WN)il

))
,
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where

Di = 2�e

( ∑
1≤p≤q≤kj

αpq(Uk)iq(Uk)ip

)
,

Ril = √
2�e

( ∑
1≤p≤q≤kj

αpq

(
(Uk)lq(Uk)ip + (Uk)iq(Uk)lp

))
,

Iil = √
2�m

( ∑
1≤p≤q≤kj

αpq

(
(Uk)lq(Uk)ip − (Uk)iq(Uk)lp

))
.

Hence LN(α) = ∑K2
j

m=1 βm,Nφm where φm are i.i.d. random variables with distribution μ and βm,N are real constants

(depending on the αpq ) which satisfy max
K2

j

m=1 |βm,N | → 0 when N goes to infinity. Therefore the cumulants of LN(α)

are given by C
(N)
n = ∑K2

j

m=1 βn
m,NCn(μ) for any n ∈ N

∗ where Cn(μ) denotes the nth cumulant of μ (all are finite since

μ has moments of any order). In particular C
(N)
1 = 0. We are going to prove that the variance of LN(α) is actually

constant, given by

C
(N)
2

σ 2
=

K2
j∑

m=1

β2
m,N = 2

∑
1≤p<q≤kj

|αpq |2 + 4
∑

1≤p≤kj

|αpp|2. (5.35)

One may rewrite LN(α) as

LN(α) = Tr
(
HU∗

k WkUk

)
,

where H is the k × k Hermitian matrix defined by

Hpq = αqp if p > q and Hpp = 2αpp.

Hence using

E
[
(Wk)ji(Wk)qp

] = δjpδiqσ 2

it is easy to see that

E
[
LN(α)2] = σ 2 Tr

[(
UkHU∗

k

)2]
= σ 2 TrH 2.

Then (5.35) readily follows. In the following, we let const = ∑Kj
2

m=1 β2
m,N .

Since |C(N)
n | ≤ const max

K2
j

m=1 |βm,N |n−2|Cn(μ)|, C
(N)
n converges to zero for each n ≥ 3. Thus we can de-

duce from Janson’s theorem [15] that LN(α) converges to a centered Gaussian distribution with variance σ 2 ×
(2

∑
1≤p<q≤kj

|αpq |2 + 4
∑

1≤p≤kj
|αpp|2) and the proof of Lemma 5.8 is complete in the complex case.

Dealing with symmetric matrices, one needs to consider the random variable

LN(α) :=
∑

1≤p<q≤kj

αpq

(
Ut

kWkUk

)
pq

+
∑

1≤p≤kj

αpp

(
Ut

kWkUk

)
pp

for any real numbers αpq,p ≤ q . One can similarly prove that LN(α) converges to a centered Gaussian distribution
with variance σ 2(2

∑
1≤p<q≤kj

α2
pq + 2

∑
1≤p≤kj

α2
pp). �
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Remark 5.1. Note that Lemma 5.8 is true under the assumption of the existence of a fourth moment. This can be
shown by using a Taylor development of the Fourier transform of LN(α).

Lemma 5.9. If max
kj

p=1 max
Kj

i=1 |(Uk)ip| converges to zero when N goes to infinity then the kj × kj matrix
1√
N

U∗
Kj ×kj

[(Y Ĝ(ρθj
)Y ∗ − (N − k)σ 2

θj
Ik)]↖Kj

UKj ×kj
converges towards a GU(O)E(kj × kj ,

σ 4

θ2
j −σ 2 ).

Proof. We shall apply a slightly modified version of Theorem A.2 (see Theorem 7.1 in [5]) but requiring the finiteness
of sixth (instead of fourth) moments. Let K = kj (kj + 1)/2. The set {1, . . . ,K} is indexed by l = (p, q) with 1 ≤ p ≤
q ≤ kj , taking the lexicographic order. We define a sequence of i.i.d. centered vectors (xi, yi)i≤N−k in C

K × C
K by

xli = Uip and yli = Uiq for l = (p, q) where U is defined in Lemma 5.2. The matrix A of size N − k is the matrix
Ĝ(ρθj

) and is independent of U . Note that we are not exactly in the context of Theorem 7.1 of [5] since the i.i.d.
vectors (xi, yi)i depend on N (and should be rather denoted by (xi,N , yi,N )i ) but their distribution satisfies:

1. ρ(l) = E[x̄l1yl1] = δp,qσ 2 for l = (p, q) is independent of N .
2. E[x̄l1yl′1] = δp,q ′σ 2 if l = (p, q), l′ = (p′, q ′) (see B2 in (A.2)).
3. Complex case: E[x̄l1x̄l′1] = E[yl1yl′1] = 0 if l = (p, q), l′ = (p′, q ′) (see B3 in (A.2)).

Real case: E[x̄l1x̄l′1] = σ 2δp,p′ and E[yl1yl′1] = σ 2δq,q ′ if l = (p, q), l′ = (p′, q ′).
4. (see B1 in (A.2))⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E[x̄l1yl1x̄l′1yl′1] = σ 4(δp,qδp′,q ′ + δp,q ′δp′,q )

+ [
E

(|W12|4
) − 2σ 4

]∑Kj

i=1(Uk)i,q(Uk)i,p(Uk)i,q ′(Uk)i,p′ in the complex case,

E[x̄l1yl1x̄l′1yl′1] = σ 4(δp,qδp′,q ′ + δp,q ′δp′,q + δp,p′δq,q ′)

+ [
E

(|W12|4
) − 3σ 4

]∑Kj

i=1(Uk)i,q(Uk)i,p(Uk)i,q ′(Uk)i,p′ in the real case.

Under the assumption that max
kj

p=1 max
Kj

i=1 |(Uk)i,p| converges to zero when k goes to infinity, the last term in the
r.h.s. of the two above equations tends to 0.

It can be seen that the proof of Theorem 7.1 still holds in this case once we verify that for ε > 0 and for z = x or y,
for any l,

E
[|zl1|41(|zl1|≥εN1/4)

] −→ 0 as N → ∞. (5.36)

We postpone the proof of (5.36) to the end of the proof. Assuming that (5.36) holds true, we obtain the CLT Theo-
rem 7.1 ([5]): the Hermitian matrix ZN = (ZN(p,q)) of size kj defined by

ZN(p,q) = 1√
N − k

[ ∑
i,i′=1,...,N−k

ŪipĜ(ρθj
)ii′ Ui′q − δp,qσ 2 Tr

(
Ĝ(ρθj

)
)]

converges to an Hermitian Gaussian matrix G. The Laplace transform of G (considered as a vector of C
K , that is of

{Gpq,1 ≤ p ≤ q ≤ kj }) is given for any c ∈ C
K by

E
[
exp

(
cT G

)] = exp

[
1

2
cT Bc

]
,

where the K × K matrix B = (B(l, l′)) is given by: B = limN B1(N) + B2 + B3 with

B1(N)
(
l, l′

) = ω
(
E[x̄l1yl1x̄l′1yl′1] − ρ(l)ρ

(
l′
))

,

B2
(
l, l′

) = (θ − ω)E[x̄l1yl′1]E[x̄l′1yl1],
B3

(
l, l′

) = (τ − ω)E[x̄l1x̄l′1]E[yl1yl′1]
and the coefficients ω,θ, τ are defined in Theorem A.2. Here A = Ĝ(ρθj

) so that ω = 1/θ2
j and θ = 1/(θ2

j − σ 2) (see
the Appendix).
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From Lemma 5.2,

B2
(
l, l′

) = (θ − ω)σ 4δp,q ′δp′,q = (θ − ω)σ 41p=q=p′=q ′ .

Moreover in the complex case, B3 ≡ 0 and in the real case,

B3
(
l, l′

) = (θ − ω)σ 4δl,l′ .

From 4., in the real case,

lim
N→∞B1(N)

(
l, l′

) = δl,l′ωσ 4(1 + δp,q),

and in the complex case,

lim
N→∞B1(N)

(
l, l′

) = δl,l′ωσ 4δp,q .

It follows that B is a diagonal matrix given by:⎧⎪⎨
⎪⎩

B(l, l) = (1 + δp,q)θσ 4 = (1 + δp,q) σ 4

θ2
j −σ 2 in the real case,

B(l, l) = δp,qθσ 4 = δp,q
σ 4

θ2
j −σ 2 in the complex case.

In the real case, the matrix B is exactly the covariance of the limiting Gaussian distribution G. It follows that G is the
distribution of the GOE(k+σ × k+σ , σ 4/(θ2

j − σ 2)).
In the complex case, from the form of B , we can conclude that the coordinates of G are independent (B diagonal),

Gpp has variance σ 4/(θ2
j − σ 2) and for p �= q , �e(Gpq) and �m(Gpq) are independent with the same variance (since

B(l, l) = 0 for p �= q). It remains to compute the variance of �e(Gpq). Since the Laplace transform of �e(ZN(p,q))

and �m(ZN(p,q)) can be expressed as a Laplace transform of ZN(p,q) and ZN(p,q), we shall apply Theorem 7.1 to
(ZN(p,q),ZN(p,q)) that is to the vectors xi = (Uip, Uiq ) and yi = (Uiq , Uip) in C

2. We denote by B̃ the associated

“covariance” matrix of size 2. The variance of �e(Gpq) is given by 1
2 limN→∞ B̃12 (since B̃11 = B̃22 = 0 from the

previous computations) with

B̃12 = B̃12(1) + B̃12(2) + B̃12(3),

where here B̃12(3) = 0,

B̃12(1) = ωE
[|U1p|2|U1q |2] → ωσ 4 and B̃12(2) = (θ − ω)E

[|U1p|2]E[|U1q |2] = (θ − ω)σ 4.

Therefore, var(�e(Gpq)) = θσ 4/2 = σ 4/(2(θ2
j − σ 2)).

We thus obtain Lemma 5.9 by using that Tr(Ĝ(ρθj
)) = (N − k) trN−k(Ĝ(ρθj

)) and trN−k(Ĝ(ρθj
)) → 1/θj .

It remains to prove (5.36). The variable αN := |zl1|41(|zl1|≥εN1/4) tends to 0 in probability. It is thus enough to prove

uniform integrability of the sequence αN , a sufficient condition is given by supN E[α6/4
N ] < ∞. It is easy to see that

for any 1 ≤ p ≤ kj , supN E[|U1p|6] < ∞ since the Wigner matrix WN has finite sixth moment and Uk is unitary. This
proves (5.36) and finishes the proof of Lemma 5.9. �

Assume now that the matrix Vkj ,N = U∗
Kj ×kj

[Bk,N ]↖Kj
UKj ×kj

converges in distribution towards a GU(O)E(kj ×
kj ,

θ2
j σ 2

θ2
j −σ 2 ) whereas max

kj

p=1 max
Kj

i=1 |(Uk)ip| does not converge to zero when N goes to infinity. There exists p0 ∈
{1, . . . , kj } such that max

Kj

i=1 |(Uk)ip| does not converge to zero. Let iN be such that max
Kj

i=1 |(Uk)ip0 | = |(Uk)iNp0 |.
Now we have

(Vkj ,N )p0p0 = ∣∣(Uk)iNp0

∣∣2
WiNiN + XN,
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where XN is a random variable which is independent with |(Uk)iNp0 |2WiNiN . One can find a subsequence such that
|(Uk)iφ(N)p0 |2Wiφ(N)iφ(N)

converges in distribution towards cξ where c > 0 and ξ is μ-distributed. This leads to a
contradiction using Cramer–Lévy’s Theorem since (Vkj ,φ(N))p0p0 converges towards a Gaussian variable. The proof
of Proposition 5.4 is complete. �

In the Case (a), condition of Proposition 5.4 are obviously not satisfied and we have the following asymptotic
result.

Proposition 5.5. In Case (a), the Hermitian (resp. symmetric) matrix Vkj ,N converges in distribution towards the law

of Vkj ×kj
of size kj defined in the following way. Let W

K̃j
be a Wigner matrix of size K̃j with distribution given by

μ (cf. (i)) and H
K̃j

be a centered Hermitian (resp. symmetric) Gaussian matrix of size K̃j independent of W
K̃j

with
independent entries Hpl , p ≤ l, with variance⎧⎪⎨

⎪⎩
vpp = E

(
H 2

pp

) = t
4

(
m4−3σ 4

θ2
j

) + t
2

σ 4

θ2
j −σ 2 , p = 1, . . . , K̃j ,

vpl = E
(|Hpl |2

) = σ 4

θ2
j −σ 2 , 1 ≤ p < l ≤ K̃j .

(5.37)

Then, Vkj ×kj
is the kj × kj matrix defined by

Vkj ×kj
= Ũ∗

K̃j ×kj
(W

K̃j
+ H

K̃j
)Ũ

K̃j ×kj
. (5.38)

The proof follows from Theorem A.2 and is omitted since we have detailed the similar proof of Lemma 5.9.

Step 4: We are now in position to prove that

(
ξN

(
λ

k̂j−1+1(MN)
)
, . . . , ξN

(
λ

k̂j−1+kj
(MN)

)) L−→ (
λ1(Vkj ×kj

), . . . , λkj
(Vkj ×kj

)
)
. (5.39)

To prove (5.39), our strategy will be indirect: we start from the matrix Vkj ,N and its eigenvalues (λi(Vkj ,N );1 ≤ i ≤
kj ) and we will reverse the previous reasoning to raise to the normalized eigenvalues ξN(λ

k̂j−1+i
(MN)),1 ≤ i ≤ kj .

This approach works in both Cases (a) and (b) as we now explain.
First, for any 1 ≤ i ≤ kj , we define Λ

(i)
N such that

ξN

(
Λ

(i)
N

) = λi(Vkj ,N ),

that is Λ
(i)
N = ρθj

+ λi(Vkj ,N )/cθj

√
N .

Since Vkj ,N converges in distribution towards Vkj ×kj
, λi(Vkj ,N ) also converges in distribution towards λi(Vkj ×kj

).

Hence ξN(Λ
(i)
N ) converges in distribution and Λ

(i)
N converges in probability towards ρθj

. Let X̌
(i)
kj

≡ X̌kj ,N (Λ
(i)
N ) =

Vkj ,N + oP(1) as defined in Proposition 5.3. This fit choice of Λ
(i)
N gives that

λi

(
X̌

(i)
kj

) = ξN

(
Λ

(i)
N

) + εi with εi = oP(1).

Hence, ξN(Λ
(i)
N ) is an eigenvalue of X̃

(i)
kj

− εiIkj
.

According to Propositions 5.1 and 5.3, on an event Ω̌N whose probability goes to one as N goes to infinity, there
exists some li such that

Λ
(i)
N = λli

(
MN − εi√

N
diag(Ikj

,0N−kj
)

)
.

The following lines hold on Ω̌N . By using Weyl’s inequalities (Lemma A.1), one has for all i ∈ {1, . . . , kj } that∣∣∣∣λli

(
MN − εi√

N
diag(Ikj

,0N−kj
)

)
− λli (MN)

∣∣∣∣ ≤ |εi |√
N

.
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We then deduce that(
ξN

(
λl1(MN)

)
, . . . , ξN

(
λlkj

(MN)
)) = (

λ1(Vkj ,N ), . . . , λkj
(Vkj ,N )

) + oP(1) (5.40)

and thus

(
ξN

(
λl1(MN)

)
, . . . , ξN

(
λlkj

(MN)
)) L−→ (

λ1(Vkj ×kj
), . . . , λkj

(Vkj ×kj
)
)
. (5.41)

Now, to get (5.39), it is sufficient to prove that

P(li = k̂j−1 + i; i = 1, . . . , kj ) → 1 as N → ∞. (5.42)

Indeed, one can notice that on the event {li = k̂j−1 + i; i = 1, . . . , kj } the following equality holds true(
ξN

(
λ

k̂j−1+1(MN)
)
, . . . , ξN

(
λ

k̂j−1+kj
(MN)

)) = (
ξN

(
λl1(MN)

)
, . . . , ξN

(
λlkj

(MN)
))

. (5.43)

Hence, if (5.42) is satisfied then (5.43) combined with (5.41) imply (5.39).
We turn now to the proof of (5.42). The key point is to notice that the kj eigenvalues of Vkj ×kj

have a joint density.
This fact is well-known if Vkj ×kj

is a matrix from the GU(O)E and so when Kj is infinite (Case (b)). When Kj is

bounded (Case (a)), we call on the following arguments. One can decompose the matrix Ũ∗
K̃j ×kj

H
K̃j

ŨK̃j ×kj
appearing

in the definition (5.38) of Vkj ×kj
in the following way

Ũ∗
K̃j ×kj

H
K̃j

ŨK̃j ×kj
= Qkj

+ Ȟkj

with Ȟkj
distributed as GU(O)E (using the fact that Ũ∗

K̃j ×kj
ŨK̃j ×kj

= Ikj
) and Qkj

independent from Ȟkj
. Hence, the

law of Vkj ×kj
is that of the sum of two random independent matrices: the first one being the matrix Ȟkj

distributed
as GU(O)E associated to a Gaussian measure with some variance τ and the second one being a matrix Zkj

of the

form Ũ∗
K̃j ×kj

W
K̃j

Ũ
K̃j ×kj

+ Qkj
. Using the density of the GU(O)E matrix Ȟkj

with respect to the Lebesgue measure

dM on Hermitian (resp. symmetric) matrices, decomposing dM on UN × (RN)≤ (denoting by UN the unitary (resp.
orthogonal) group), one can easily see that the distribution of the eigenvalues of Ȟkj

+ Zkj
is absolutely continuous

with respect to the Lebesgue measure dλ on R
n with a density given by:

f (λ1, . . . , λN) = exp

(
−N

τt

N∑
i=1

λ2
i

)∏
i<j

(λi − λj )
4/t

E

(
exp

{
−N

τt
TrZ2

kj

}
I
(
(λ1, . . . , λN),Zkj

))
dλ,

where I ((λ1, . . . , λN),Zkj
) = ∫

exp( 2
τ t

N Tr(U diag(λ1, . . . , λN)U∗Zkj
))m(dU) denoting by m the Haar measure on

the unitary (resp. orthogonal) group.
Thus, we deduce that the kj eigenvalues of Vkj ×kj

are distinct (with probability one). Using Portmanteau’s Lemma
with (5.41) then implies that the event

Ω̌ ′
N := {

ξN

(
λl1(MN)

)
> · · · > ξN

(
λlkj

(MN)
)} ∩ Ω̌N

is such that limN P(Ω̌ ′
N) = 1. By Theorem 3.1, we notice that the event

Ω̃ ′
N := {

λ
k̂j−1

(MN) > ρθj
+ δ > λl1(MN)

} ∩ Ω̌ ′
N ∩ {

λlkj
(MN) > ρθj

− δ > λ
k̂j−1+kj +1(MN)

}
also satisfies limN P(Ω̃ ′

N) = 1, for δ small enough. This leads to (5.42) since Ω̃ ′
N ⊂ {li = i + k̂j−1, i = 1, . . . , kj }.

The proof of Theorems 3.2 and 3.3 is complete. �
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According to Theorem 3.3, in order to establish Theorem 3.4, we only need to prove that the condition (3.6)

is actually necessary for universality of the fluctuations. Hence assume that
√

N(λk1+···+kj−1+1(MN) − ρθj
)

L−→
N (0, t

2σ 2
θj

). Propositions 5.1 and 5.3 lead to

cθj

√
N

(
λk1+···+kj−1+1(MN) − ρθj

) = V1,N + oP(1),

where

V1,N = U∗
Kj ×1[Bk,N ]↖Kj

UKj ×1.

It follows that V1,N converges towards the Gaussian distribution N (0, t
2

θ2
j σ 2

θ2
j −σ 2 ) and then according to Proposition 5.4,

max
Kj

i=1 |(Uk)i1| converges to zero when N goes to infinity. �

Let θj such that θj > σ and kj = 1. Let us prove now the description given in Section 3.2 of the fluctuations of
λk1+···+kj−1+1(MN) for some intermediate situations between Cases (a) and (b). Let m be a fixed integer number.
Assume that for any l = 1, . . . ,m (Uk)l1 is independent of N , whereas maxm<l≤Kj

|(Uk)l1| → 0 when N goes to
infinity. Following the proofs of Lemmas 5.8 and 5.9, one can check that V1,N converges in distribution towards∑m

i,l=1 ailξil + N in the complex case,
∑

1≤l≤i≤m ailξil + N in the real case, where ξil, (i, l) ∈ {1, . . . ,m}2, N are
independent random variables such that

• for any (i, l) ∈ {1, . . . ,m}2, the distribution of ξil is μ;

• ail =

⎧⎪⎪⎨
⎪⎪⎩

√
2�(

(Uk)l1(Uk)i1
)

if i < l,√
t�(

(Uk)l1(Uk)i1
)

if i > l,√
t
2

∣∣(Uk)l1
∣∣2 if i = l;

• N is a centered Gaussian variable with variance

t

4

[m4 − 3σ 4]∑m
l=1 |(Uk)l1|4

θ2
j

+ t

2

σ 4

θ2
j − σ 2

+ t

2

[
1 −

(
m∑

l=1

∣∣(Uk)l1
∣∣2

)2]
σ 2.

Now, following the lines of Step 4 (using the results of Steps 1 and 2), we can conclude that

cθj

√
N

(
λk1+···+kj−1+1(MN) − ρθj

)
converges in distribution towards the mixture of μ-distributed or Gaussian random variables

∑m
i,l=1 ailξil + N in the

complex case,
∑

1≤l≤i≤m ailξil + N in the real case. �

Appendix

In this section, we recall some basic facts on matrices and some results on random sesquilinear forms needed for the
proofs of Theorems 3.2 and 3.3.

A.1. Linear algebra

For Hermitian matrices, denoting by λi the decreasing ordered eigenvalues, we have the Weyl’s inequalities:

Lemma A.1 (cf. Theorem 4.3.7 of [14]). Let B and C be two N × N Hermitian matrices. For any pair of integers
j, k such that 1 ≤ j, k ≤ N and j + k ≤ N + 1, we have

λj+k−1(B + C) ≤ λj (B) + λk(C).
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For any pair of integers j, k such that 1 ≤ j, k ≤ N and j + k ≥ N + 1, we have

λj (B) + λk(C) ≤ λj+k−N(B + C).

In the computation of determinants, we shall use the following formula.

Lemma A.2 (cf. Theorem A.3 in [3]). Let A ∈ Mk(C) and D be a non-singular matrix of order N − k. Let also B

and tC be two matrices of size k × (N − k). Then

det

(
A B

C D

)
= det(D)det

(
A − BD−1C

)
. (A.1)

A.2. CLT for random sesquilinear forms

In the following, a complex random variable x will be said standardized if E(x) = 0 and E(|x|2) = 1.

Theorem A.1 (Lemma 2.7 of [2]). Let B = (bij ) be a N × N Hermitian matrix and YN be a vector of size N which
contains i.i.d. standardized entries with bounded fourth moment. Then there is a constant K > 0 such that

E
∣∣Y ∗

NBYN − TrB
∣∣2 ≤ KTr

(
BB∗).

This theorem is still valid if the i.i.d. standardized coordinates Y(i) of YN have a distribution depending on N such
that supN E(|Y(i)|4) < ∞.

Theorem A.2 (cf. [5] or Appendix by J. Baik and J. Silverstein in [8] in the scalar case). Let A = (aij ) be a
N × N Hermitian matrix and {(xi, yi), i ≤ N} a sequence of i.i.d. centered vectors in C

K × C
K with finite fourth

moment. We write xi = (xli) ∈ C
K and X(l) = (xl1, . . . , xlN )T for 1 ≤ l ≤ K and a similar definition for the vectors

{Y(l),1 ≤ l ≤ K}. Set ρ(l) = E[x̄l1yl1]. Assume that the following limits exist:

(i) ω = limN→∞ 1
N

∑N
i=1 a2

ii ,

(ii) θ = limN→∞ 1
N

TrA2 = limN→∞ 1
N

∑N
i,j=1 |aij |2,

(iii) τ = limN→∞ 1
N

TrAAT = limN→∞ 1
N

∑N
i,j=1 a2

ij .

Then the K-dimensional random vector 1√
N

(X(l)∗AY(l) − ρ(l)TrA) converges in distribution to a Gaussian

complex-valued vector G with mean zero. The Laplace transform of G is given by

∀c ∈ C
K, E

[
exp

(
cT G

)] = exp

(
1

2
cT Bc

)
,

where the K × K matrix B = (B(l, l′)) is given by B = B1 + B2 + B3 with:

B1
(
l, l′

) = ω
(
E[x̄l1yl1x̄l′1yl′1] − ρ(l)ρ

(
l′
))

,

B2
(
l, l′

) = (θ − ω)E[x̄l1yl′1]E[x̄l′1yl1], (A.2)

B3
(
l, l′

) = (τ − ω)E[x̄l1x̄l′1]E[yl1yl′1].

A.3. CLT for the empirical distribution of a Wigner matrix and applications

Theorem A.3 (Theorem 1.1 in [4]). Let f be an analytic function on an open set of the complex plane including
[−2σ,2σ ]. If the entries ((WN)il)1≤i≤l≤N of a general Wigner matrix WN of variance σ 2 satisfy the conditions

(i) for i �= l, E(|(WN)il |4) = const,
(ii) for any η > 0, limN→+∞ 1

η4n2

∑
i,l E

[∣∣(WN)il
∣∣41{|(WN)il |≥η

√
N}

] = 0,
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then N(trN(f ( 1√
N

WN)) − ∫
f dμsc) converges in distribution towards a Gaussian variable, where μsc is the semi-

circle distribution of variance σ 2.

We now prove some convergence results of the resolvent Ĝ used in the previous proofs.
Let 1 ≤ j ≤ J+σ and k such that k√

N
→ 0.

Lemma A.3. Each of the following convergence holds in probability as N → ∞:

(i)
√

N(trN−k Ĝ(ρθj
) − 1/θj ) −→ 0,

(ii) trN−k Ĝ2(ρθj
) −→ ∫ 1

(ρθj
−x)2 dμsc(x) = 1/(θ2

j − σ 2),

(iii) 1
N−k

∑N−k
i=1 (Ĝ(ρθj

)ii )
2 −→ (

∫ dμsc(x)
ρθj

−x
)2 = 1/θ2

j .

Proof. We denote by G the resolvent of the non-deformed Wigner matrix WN−k/
√

N .
(i) By Theorem A.3, one knows that

√
N(trN−k G(ρθj

) − ∫ dμsc(x)
ρθj

−x
) converges in probability towards 0. Now, we

have
∫ dμsc(x)

ρθj
−x

= 1
θj

(see [13], p. 94). It is thus enough to show that

trN−k Ĝ(ρθj
) − trN−k G(ρθj

) = oP

(
1/

√
N

)
.

Let then UN−k := U (resp. DN−k) be a unitary (resp. diagonal) matrix such that AN−k = U∗DN−kU . Then, one has∣∣trN−k Ĝ(ρθj
) − trN−k G(ρθj

)
∣∣ = ∣∣trN−k

(
Ĝ(ρθj

)AN−kG(ρθj
)
)∣∣

= ∣∣trN−k

(
DN−kU

∗G(ρθj
)Ĝ(ρθj

)U
)∣∣

:= ∣∣trN−k

(
DN−kΛ(ρθj

)
)∣∣ ≤ (

r/(N − k)
)‖DN−k‖

∥∥Λ(ρθj
)
∥∥,

where r is the finite rank of the perturbed matrix AN−k .
One has ‖DN−k‖ ≤ ‖AN‖ := c (with c = max(θ1, |θJ |) independent from N ). Moreover on the event Ω̃N :=

Ω
(2)
N ∩ {‖WN−k/

√
N‖ < 2σ + δ}, ‖Λ(ρθj

)‖ ≤ (ρθj
− 2σ − δ)−2 (use (5.1)) so that we deduce that

∣∣trN−k

(
Ĝ(ρθj

)
) − trN−k

(
G(ρθj

)
)∣∣1Ω̃N

≤ rc

N − k
(ρθj

− 2σ − δ)−2 → 0.

Using Theorem A.3 and the fact that P(Ω̃N) → 1, we obtain the announced result.
(ii) It is sufficient to show that trN−k Ĝ2(ρθj

) − trN−k G2(ρθj
) → 0 in probability since, by Theorem A.3, one

knows that trN−k G2(ρθ ) converges in probability towards
∫ 1

(ρθj
−x)2 dμsc(x).

Using the fact that Tr(BC) = Tr(CB), it is not hard to see that

trN−k Ĝ2(ρθj
) − trN−k G2(ρθj

) = trN−k

((
Ĝ(ρθj

) + G(ρθj
)
)(

Ĝ(ρθj
) − G(ρθj

)
))

= trN−k

(
Ĝ(ρθj

)AN−kG(ρθj
)
(
G(ρθj

) + Ĝ(ρθj
)
))

= trN−k

(
DN−kUG(ρθj

)
(
G(ρθj

) + Ĝ(ρθj
)
)
Ĝ(ρθj

)U∗)
:= trN−k

(
DN−kΛ

′(ρθj
)
)
,

where the matrices DN−k and U have been defined in (i). We then conclude in a similar way as before since on the
event Ω̃N , ‖Λ′(ρθj

)‖ ≤ 2(ρθj
− 2σ − δ)−3.

For point (iii), we refer the reader [8]. Indeed, it was shown in Section 5.2 of [8] that the announced conver-
gence holds in the case k = 1 and for G instead of Ĝ. It is easy to adapt the arguments of [8] which mainly follow
from the fact that, for any z ∈ C such that �m(z) > 0, 1

N−k

∑N−k
i=1 (Ĝ(z)ii )

2 converges towards g2
σ (z). But this latter

convergence was proved in Section 4.1.4 of [8]. �
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