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Abstract. Let W be a sum of independent random variables. We apply the zero bias transformation to deduce recursive asymptotic
expansions for E[h(W)] in terms of normal expectations, or of Poisson expectations for integer-valued random variables. We also
discuss the estimates of remaining errors.

Résumé. Soit W une somme de variables aléatoires indépendants. On applique la transformation zéro biais pour obtenir de façon
recursive des développements asymptotiques de E[h(W)] en terme d’espérances par rapport à la loi normale, ou à la loi de Poisson
si les variables aléatoires sont à valeurs entières. On discute aussi les bornes des termes d’erreur.
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1. Introduction

The zero bias transformation has been introduced by Goldstein and Reinert [15] in the framework of Stein’s method.
By the fundamental works of Stein [24,25], we know that a random variable (r.v.) Z with mean zero follows the
normal distribution N(0, σ 2) if and only if E[Zf (Z)] = σ 2

E[f ′(Z)] for any Borel function f such that both sides of
the equality are well defined. More generally, for any r.v. X with mean zero and finite variance σ 2 > 0, a r.v. X∗ is
said to have the zero biased distribution of X if the equality

E
[
Xf (X)

] = σ 2
E

[
f ′(X∗)] (1)

holds for any differentiable function f such that (1) is well defined. By Stein’s equation

xf (x) − σ 2f ′(x) = h(x) − Φσ (h), (2)

where h is a given function and Φσ (h) denotes the expectation of h under the distribution N(0, σ 2),

E
[
h(X)

] − Φσ (h) = E
[
Xfh(X) − σ 2f ′

h(X)
] = σ 2

E
[
f ′

h

(
X∗) − f ′

h(X)
]
, (3)

where fh is the solution of Stein’s equation and is given by

fh = 1

σ 2φσ (x)

∫ ∞

x

(
h(t) − Φσ (h)

)
φσ (t)dt. (4)

An important remark is that X∗ needs not be independent of X ([15], see also [13]). Let W = X1 +· · ·+Xn where Xi

(i = 1, . . . , n) are independent random variables with mean zero and variance σi > 0, σ 2
W := Var[W ] = σ 2

1 +· · ·+σ 2
n .

Goldstein and Reinert have proposed the construction W ∗ = W(I) + X∗
I where W(i) := W − Xi , X∗

i is independent
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of W(i), and I is a random index taking values in {1, . . . , n} and independent of (X1, . . . ,Xn,X
∗
1, . . . ,X∗

n) such that
P(I = i) = σ 2

i /σ 2
W . This construction of the zero bias transformation is similar to Lindeberg’s method except that we

here consider an average of punctual substitutions of Xi by X∗
i , while in Lindeberg’s method, Xi ’s are progressively

substituted by a central normal r.v. with the same variance.
The asymptotic expansion of E[h(W)] is a classical topic related to the central limit theorems. Using Stein’s

method, Barbour [2,3] has obtained a full expansion of E[h(W)] for sufficiently regular functions. Compared to the
classical Edgeworth expansion (see [21], Chapter V, also [22]), the results of [2] do not require that the distributions
of Xi ’s be smooth. However, as a price paid, we need some regularity conditions on the function h. The result of
[2] can also be compared to those in [17,18] using Fourier transform. The key point of Barbour’s method is a Taylor
type formula with cumulant coefficients, which allows to write the difference E[Wf (W)] − σ 2

W E[f ′(W)] as a series
containing the cumulants of W . The W -expectations are then replaced by the normal expectations in an iterative way
until the desired order. It has been pointed out in [22] that the key formula of Barbour can also be obtained by Fourier
transform.

The zero bias transformation has been used in [11] to obtain a first-order correction term for the normal approxi-
mation of E[h(W)], where the motivation was to find a rapid numerical method for large-sized credit derivatives. The
function of interest is the so-called call function in finance: h(x) = (x − k)+ where k is a real number. Since such h

is only absolutely continuous, the function fh is not regular enough to have a third-order derivative. To achieve the
estimates, we used a conditional expectation technique, together with a concentration inequality due to Chen and Shao
[8,9].

The difficulty for generalizing the result in [11] to obtain a full expansion of E[h(W)] is that W and W ∗ − W are
not independent. If we consider the Taylor expansion of f ′

h(W
∗) at W and then take the expectation, the terms of

the form E[f (l)
h (W)(W ∗ − W)k] appear, where f (l) denotes the lth derivative of f . For the first-order expansion in

[11], a conditional expectation argument allowed us to replace E[f ′′
h (W)(W ∗ − W)] by E[f ′′

h (W)]E[W ∗ − W ] and
to put the covariance in the error term. However, in the higher-order expansions, the error term can no longer contain
such covariances. An alternative way is to consider the Taylor expansion of E[f ′

h(W
∗) − f ′

h(W)] at W(i). Since X∗
i

is independent of W(i), there is no crossing term. However, the expectations of the form E[f (l)
h (W(i))] appear, which

makes it difficult to apply the recurrence procedure. To overcome this difficulty, we shall propose a so-called reverse
Taylor formula which will enable us to replace E[f (l)

h (W(i))] by E[f (l)
h (W)] up to an error term.

The main result of this paper is an expansion formula E[h(W)] = CN(h) + eN(h), CN(h) being the principal term
of the N th-order expansion and eN(h) being the remaining error. We shall precise the conditions under which the
expansion formula is well defined. In particular, in order to include some irregular functions, we shall consider the
continuous and the jump parts of h separately. Moreover, we also need to show that eN(h) is “small” enough as an
error term. In our results, eN(h) is given in a recursive way so that it is actually a linear combination of the remaining
terms of Taylor and reverse Taylor expansions and can be thus estimated. A key ingredient for the estimates is a
concentration inequality which provides an upper bound for P(a ≤ W ≤ b) involving some power (b − a)α of the
interval length (b − a) with 0 < α ≤ 1. This allows to obtain estimates under relatively mild moment conditions on
Xi ’s. It is interesting to point out that the same method can be used in a discrete setting to obtain a Poisson asymptotic
expansion for integer-valued summand random variables.

The rest of the paper is organized as follows. In Section 2, we give the normal expansion by using the reverse
Taylor formula and we discuss the conditions on h and on Xi ’s. Section 3 is devoted to error estimates. We present
the Poisson case in Section 4. Finally, some technical proofs are left in Appendix.

2. Expansions in normal case

2.1. Reverse Taylor formula

Let N be a positive integer, X and Y be two independent random variables such that Y has up to N th moments,
and f be an N times differentiable function such that f (k)(X) and f (k)(X + Y) are integrable for any k = 0, . . . ,N .
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We use the notation m
(k)
Y := E[Y k]/k!. Denote by δN(f,X,Y ) the error term in the N th-order Taylor expansion of

E[f (X + Y)] centered at X, i.e.

δN(f,X,Y ) := E
[
f (X + Y)

] −
N∑

k=0

m
(k)
Y E

[
f (k)(X)

]
. (5)

Recall that for any N ≥ 1,

δN(f,X,Y ) = 1

(N − 1)!
∫ 1

0
(1 − t)N−1

E
[(

f (N)(X + tY ) − f (N)(X)
)
YN

]
dt (6)

provided that the right-hand side is well defined.
The so-called reverse Taylor formula gives an expansion of E[f (X)] using the expectations of functions of X + Y

and the moments of Y . We specify some notation and conventions. First of all, N∗ := N \ {0} denotes the set of
strictly positive integers. For any integer d ≥ 1 and any J = (jl)

d
l=1 ∈ N

d∗ , |J| is defined as j1 + · · · + jd , and m
(J)
Y :=

m
(j1)
Y · · ·m(jd)

Y . By convention, N
0∗ denotes the set {∅} of the empty vector, |∅| = 0 and m

(∅)
Y = 1. We note that in the

right–hand side of the expansion formula (7), the variables X + Y and Y are not independent.

Proposition 2.1 (Reverse Taylor formula). With the above notation, the equality

E
[
f (X)

] =
∑
d≥0

(−1)d
∑

J∈N
d∗ ,|J|≤N

m
(J)
Y E

[
f (|J|)(X + Y)

] + εN(f,X,Y ) (7)

holds, where εN(f,X,Y ) is defined as

εN(f,X,Y ) = −
∑
d≥0

(−1)d
∑

J∈N
d∗ ,|J|≤N

m
(J)
Y δN−|J|

(
f (|J|),X,Y

)
. (8)

Proof. We replace E[f (|J|)(X + Y)] on the right-hand side of (7) by

N−|J|∑
k=0

m
(k)
Y E

[
f (|J|+k)(X)

] + δN−|J|
(
f (|J|),X,Y

)
and observe that the sum of terms containing δ vanishes with εN(f,X,Y ). Hence the right-hand side of (7) equals

∑
d≥0

(−1)d
∑

J∈N
d∗ ,|J|≤N

m
(J)
Y

N−|J|∑
k=0

m
(k)
Y E

[
f (|J|+k)(X)

]
.

If we split the terms where k = 0 and where 1 ≤ k ≤ N − |J|, the above formula can be written as

∑
d≥0

(−1)d
∑

J∈N
d∗ ,|J|≤N

m
(J)
Y E

[
f (|J|)(X)

] +
∑
d≥0

(−1)d
∑

J∈N
d∗ ,|J|≤N

m
(J)
Y

N−|J|∑
k=1

m
(k)
Y E

[
f (|J|+k)(X)

]
. (9)

We make the index changes J′ = (J, k) and u = d + 1 in the second part, and observe that it is just∑
u≥1

(−1)u−1
∑

J′∈N
u∗,|J′|≤N

m
(J′)
Y E

[
f (|J′|)(X)

]
.

Thus, the terms in the first and the second parts of (9) cancel out except the one where d = 0 in the first part. So (9)
equals E[f (X)], which proves the proposition. �
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2.2. Admissible function space

In this subsection, we precise the functions for which we can make the N th-order expansion. We need conditions on
both the regularity and the increasing speed at infinity of the function.

Recall ([20], Chapter VI) that any function g on R which is locally of finite variation can be uniquely decomposed
into the sum of a function of pure jump and a continuous function locally of finite variation and vanishing at the origin.
That is, g = gc + gd where gc is called the continuous part of g and gd is the purely discontinuous part.

Let α ∈ (0,1] and p ≥ 0 be two real numbers. For any function f on R, the following quantity has been defined
by Barbour in [2]:

‖f ‖α,p := sup
x 	=y

|f (x) − f (y)|
|x − y|α(1 + |x|p + |y|p)

. (10)

The finiteness of ‖f ‖α,p implies that the function f is locally α-Lipschitz, and that the increasing speed of f at
infinity is at most of order |x|α+p . All functions f such that ‖f ‖α,p < +∞ form a vector space over R, and ‖ · ‖α,p

is a norm on it. We list below several properties of ‖ · ‖α,p and we leave the proofs in Appendix A.

Lemma 2.2. Let f be a function on R, α,β ∈ (0,1] and p,q ≥ 0.

(1) If p ≤ q , then ‖f ‖α,p < +∞ implies ‖f ‖α,q < +∞.
(2) If α ≤ β , then ‖f ‖β,p < +∞ implies ‖f ‖α,p+β−α < +∞.
(3) If P is a polynomial of degree d , then ‖f ‖α,p < +∞ implies ‖Pf ‖α,p+d < +∞.
(4) Assume that F is a primitive function of f , then ‖f ‖α,p < +∞ implies ‖F‖1,p+α < +∞. (Hence ‖F‖α,p+1 <

+∞ by 2.)

Inspired by [2], we introduce the following function space.

Definition 2.3. Let N ≥ 0 be an integer, and α ∈ (0,1], p ≥ 0 be two real numbers. Denote by HN
α,p the vector space

of all Borel functions h on R verifying the following conditions:

(a) h has N th derivative which is locally of finite variation and has finitely many jumps,
(b) the continuous part of h(N) satisfies ‖h(N)

c ‖α,p < +∞.

Condition (a) implies that the pure jump part of h(N) is bounded. Condition (b) implies that h
(N)
c has at most

polynomial increasing speed at infinity, and so does h. These conditions allow us to include some irregular functions
such as the indicator functions. Let k be a real number and Ik(x) = 1{x≤k}. Then ‖Ik‖α,p is clearly not finite. However,
‖Ik,c‖α,p = 0, which means that for any α ∈ (0,1] and any p ≥ 0, Ik(x) ∈ H0

α,p . Note that any function h in H0
α,p

can be decomposed as h = hc + hd , where hc satisfies ‖hc‖α,p < +∞ and hd is a linear combination of indicator
functions of the form 1{x≤k} plus a constant (so that hc(0) = 0).

Proposition 2.4. Let N ≥ 0 be an integer, α,β ∈ (0,1] and p,q ≥ 0 be real numbers. Then the following assertions
hold:

(1) when N ≥ 1, h ∈ HN
α,p if and only if h′ ∈ HN−1

α,p ;

(2) if p ≤ q , then HN
α,p ⊂ HN

α,q ; if α ≤ β , then HN
β,p ⊂ HN

α,p+β−α ;

(3) when N ≥ 1, HN
α,p ⊂ HN−1

1,α+p ⊂ HN−1
α,p+1;

(4) if h ∈ HN
α,p and if P is a polynomial of degree d , then Ph ∈ HN

α,p+d .

Proof. Assertion (1) results from the definition. Assertions (2)–(4) are consequences of Lemma 2.2. �

The following result is important and its proof which is rather technical is postponed to Appendix B.

Proposition 2.5. If h ∈ HN
α,p , then the solution of Stein’s equation satisfies fh ∈ HN+1

α,p .
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2.3. Normal expansion

We consider a family of independent random variables Xi (i = 1, . . . , n) with mean zero and finite variance σ 2
i > 0.

Let W = X1 +· · ·+Xn and σ 2
W = Var(W). Denote by X∗

i a random variable which follows the zero-biased distribution
of Xi and is independent of W(i) := W − Xi .

Theorem 2.6. Let N ≥ 0 be an integer, α ∈ (0,1] and p ≥ 0. Assume that h ∈ HN
α,p . Let X1, . . . ,Xn be independent

random variables with mean zero and up to (N +max(α+p,2))th moments. Then E[h(W)] can be written as the sum
of two terms CN(h) and eN(h) where C0(h) = ΦσW

(h) and e0(h) = E[h(W)] − ΦσW
(h), and recursively for N ≥ 1,

CN(h) = C0(h) +
n∑

i=1

σ 2
i

∑
d≥1

(−1)d−1
∑

J∈N
d∗ ,|J|≤N

m
(J◦)
Xi

(
m

(J†)

X∗
i

− m
(J†)
Xi

)
CN−|J|

(
f

(|J|+1)
h

)
, (11)

eN(h) =
n∑

i=1

σ 2
i

[∑
d≥1

(−1)d−1
∑

J∈N
d∗ ,|J|≤N

m
(J◦)
Xi

(
m

(J†)

X∗
i

− m
(J†)
Xi

)
eN−|J|

(
f

(|J|+1)
h

)

+
N∑

k=0

εN−k

(
f

(k+1)
h ,W(i),Xi

)
m

(k)

X∗
i
+ δN

(
f ′

h,W
(i),X∗

i

)]
, (12)

where for any integer d ≥ 1, and any J ∈ N
d∗ , J† ∈ N∗ denotes the last coordinate of J, and J◦ denotes the vector in

N
d−1∗ obtained from J by omitting the last coordinate.

Remark 2.7. The moments of X∗
i in (11) and (12) can be written as moments of Xi . By definition of the zero bias

transformation, for any k ∈ N such that X∗
i has kth moment, one has

E
[(

X∗
i

)k] = E[Xk+2
i ]

σ 2
i (k + 1)

.

Hence m
(J†)

X∗
i

= σ−2
i (J† + 2)m

(J†+2)
Xi

where J† is the strictly positive integer figuring in the last coordinate of J.

Proof. We first prove that all terms in (11) and (12) are well defined. When N = 0, h ∈ H0
α,p and h(x) = O(|x|α+p).

Hence E[h(W)] and ΦσW
(h) are well defined. Assume that we have proved for 0, . . . ,N − 1. Let h ∈ HN

α,p .

Then by Proposition 2.4, h(x) ∈ HN
α,p ⊂ HN−1

α,p+1 ⊂ · · · ⊂ H0
α,p+N , so h(x) = O(|x|α+p+N). By Proposition 2.5,

fh ∈ HN+1
α,p and by Proposition 2.4(1), for any |J| = 1, . . . ,N , f

(|J|+1)
h ∈ HN−|J|

α,p . So the induction hypothesis implies

that CN−|J|(f (|J|+1)
h ) and eN−|J|(f (|J|+1)

h ) are well defined. Furthermore, since f
(k+1)
h (x) = O(|x|α+p+N−k) for any

k = 0, . . . ,N , the terms εN−k and δN in (12) are well defined. Finally, all moments figuring in (11) and (12) exist.
We then prove the equality E[h(W)] = CN(h) + eN(h). In the case N = 0, the equality holds by definition. In

the following, we assume that the equality E[h(W)] = Ck(h) + ek(h) has been verified for any k = 0, . . . ,N − 1. By
Stein’s equation (3), E[h(W)] − C0(h) is equal to

σ 2
W E

[
f ′

h

(
W ∗) − f ′

h(W)
] =

n∑
i=1

σ 2
i

(
E

[
f ′

h

(
W(i) + X∗

i

)] − E
[
f ′

h(W)
])

. (13)

Consider the following Taylor expansion

E
[
f ′

h

(
W(i) + X∗

i

)] =
N∑

k=0

m
(k)

X∗
i
E

[
f

(k+1)
h

(
W(i)

)] + δN

(
f ′

h,W
(i),X∗

i

)
.
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By replacing E[f (k+1)
h (W(i))] in the above formula by its (N − k)th reverse Taylor expansion, we obtain that

E[f ′
h(W

(i) + X∗
i )] equals

N∑
k=0

m
(k)

X∗
i

[∑
d≥0

(−1)d
∑

J∈N
d∗ |J|≤N−k

m
(J)
Xi

E
[
f

(|J|+k+1)
h (W)

] + εN−k

(
f

(k+1)
h ,W(i),Xi

)] + δN

(
f ′

h,W
(i),X∗

i

)
.

Note that the term with indexes k = d = 0 in the sum inside the bracket is E[f ′
h(W)]. Therefore E[f ′

h(W
(i) + X∗

i )] −
E[f ′

h(W)] can be written as the sum of the following three parts

n∑
k=1

m
(k)

X∗
i

∑
d≥0

(−1)d
∑

J∈N
d∗ ,|J|≤N−k

m
(J)
Xi

E
[
f

(|J|+k+1)
h (W)

]
, (14)

∑
d≥1

(−1)d
∑

J∈N
d∗ ,|J|≤N

m
(J)
Xi

E
[
f

(|J|+1)
h (W)

]
, (15)

N∑
k=0

m
(k)

X∗
i
εN−k

(
f

(k+1)
h ,W(i),Xi

) + δN

(
f ′

h,W
(i),X∗

i

)
. (16)

By interchanging summations and then making the index changes K = (J, k) and u = d + 1, we obtain

(14) =
∑
u≥1

(−1)u−1
∑

K∈N
u∗,|K|≤N

m
(K◦)
Xi

m
(K†)

X∗
i

E
[
f

(|K|+1)
h (W)

]
.

As the equality m
(J)
Xi

= m
(J◦)
Xi

m
(J†)
Xi

holds for any J, (14) + (15) equals∑
d≥1

(−1)d−1
∑

J∈N
d∗ ,|J|≤N

m
(J◦)
Xi

(
m

(J†)

X∗
i

− m
(J†)
Xi

)
E

[
f

(|J|+1)
h (W)

]
.

By the hypothesis of induction, we have E[f (|J|+1)
h (W)] = CN−|J|(f (|J|+1)

h ) + eN−|J|(f (|J|+1)
h ). So the equality

E[h(W)] = CN(h) + eN(h) follows. �

Denote by μ
(k)
i the kth moment of Xi . We give the first few explicit expansion formulas below:

C1(h) = ΦσW
(h) + C0

(
f

(2)
h

) n∑
i=1

μ
(3)
i

2
;

C2(h) = ΦσW
(h) + C1

(
f

(2)
h

) n∑
i=1

μ
(3)
i

2
+ C0

(
f

(3)
h

) n∑
i=1

(
μ

(4)
i

6
− (μ

(2)
i )2

2

)
;

C3(h) = ΦσW
(h) + C2

(
f

(2)
h

) n∑
i=1

μ
(3)
i

2
+ C1

(
f

(3)
h

) n∑
i=1

(
μ

(4)
i

6
− (μ

(2)
i )2

2

)
+ C0

(
f

(4)
h

) n∑
i=1

(
μ

(5)
i

24
− 5μ

(2)
i μ

(3)
i

12

)
.

Note that in CN(h), there appear normal expectations of the operators which are of the form h �→ f
(l)
h . As pointed out

by Barbour [2], p. 294, such expectations can be expressed as those of h multiplied by a Hermite polynomial, see also
remark below.

Remark 2.8. Let us compare our result with Barbour’s. In the main theorem of [2], the condition on the function h for
the N th-order expansion is: h is N times differentiable and ‖h(N)‖α,p < ∞. The condition h ∈ HN

α,p in Theorem 2.6

is weaker since we separate the continuous and the jump parts of h. An example in H1
α,p which does not satisfy the
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condition of [2] is h(x) = (x − k)+ since ‖h′‖α,p is infinite. Concerning the summand variables, up to (N + max(α +
p,2))th moments of Xi ’s are needed for the N th expansion and up to (N + α + p + 2)th moments, which are similar
to [2], are required to achieve the error estimates (see Section 3.2 for details). We consider now the expansion formula.
Let r ≥ 1 be an integer. By Remark 2.7 and the fact that Xi ’s are with mean zero, the moment term figuring in (11)
satisfies

σ 2
i

∑
d≥1

(−1)d−1
∑

J∈N
d∗ ,|J|=r

m
(J◦)
Xi

(
m

(J†)

X∗
i

− m
(J†)
Xi

)
=

∑
d≥1

(−1)d−1
∑

J∈N
d∗ ,|J|=r

m
(J◦)
Xi

((
J† + 2

)
m

(J†+2)
Xi

− 2m
(J†)
Xi

m
(2)
Xi

)
=

∑
d≥1

(−1)d−1
∑

J∈N
d∗ ,|J|=r

(
J† + 2

)
m

(J◦)
Xi

m
(J†+2)
Xi

−
∑
d≥1

(−1)d−1
∑

J∈N
d∗ ,|J|=r

2m
(J◦)
Xi

m
(J†)
Xi

m
(2)
Xi

=
∑
d≥1

(−1)d−1
∑

K∈N
d∗ ,|K|=r+2
K†≥3

K†m
(K)
Xi

+
∑
d ′≥1

(−1)d
′−1

∑
K∈N

d′
∗ ,|K|=r+2

K†=2

K†m
(K)
Xi

=
∑

K∈⋃
d≥1 N

d∗
|K|=r+2

(−1)	(K)−1K†m
(K)
Xi

,

where in the third equality, we use the index changes K = (J◦, J† + 2) for the first term and K = (J,2), d ′ = d + 1 for
the second term, and in the last equality, 	(K) denotes the length of the vector K. Denote by κ

(r)
i the r th cumulant of

Xi . By the recurrence formula which relates cumulants and moments (e.g., [23]):

κ
(r)
i = μ

(r)
i −

r−1∑
j=1

(
r − 1

j

)
μ

(j)
i κ

(r−j)
i , (17)

we obtain

σ 2
i

∑
d≥1

(−1)d−1
∑

J∈N
d∗ ,|J|=r

m
(J◦)
Xi

(
m

(J†)

X∗
i

− m
(J†)
Xi

) = κ
(r+2)
i

(r + 1)! . (18)

In fact, the formula (17) can also be written as

κ
(r)
i

(r − 1)! = rm
(r)
Xi

−
r−1∑
j=1

m
(j)
Xi

κ
(r−j)
i

(r − j − 1)! .

Denote by η
(r)
i the sum

∑
|K|=r (−1)	(K)−1K†m

(K)
Xi

. A direct verification shows η
(1)
i = κ

(1)
i = 0 and for any r ≥ 2,

rm
(r)
Xi

−
r−1∑
j=1

m
(j)
Xi

η
(r−j)
i = rm

(r)
Xi

−
r−1∑
j=1

m
(j)
Xi

∑
|K|=r−j

(−1)	(K)−1K†m
(K)
Xi

= rm
(r)
Xi

−
r−1∑
j=1

∑
|K|=r−j

(−1)	(K)−1K†m
(j,K)
Xi

= rm
(r)
Xi

+
∑

|J|=r,	(J)≥2

(−1)	(J)−1J†m
(J)
Xi

= η
(r)
i ,
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where J = (j,K) in the third equality. By induction, we obtain η
(r)
i = κ

(r)
i /(r − 1)! for any r ∈ N∗ and hence (18). So

the expansion formula (11) becomes

CN(h) = C0(h) +
N∑

r=1

CN−r

(
f

(r+1)
h

)κ(r+2)(W)

(r + 1)! , (19)

where κ(r)(W) denotes the r th cumulant of W . We thus recover the result of Barbour.

3. Estimates of remaining errors

3.1. Concentration inequalities

We shall prove a concentration inequality which gives an upper bound for P(a ≤ W ≤ b), a and b being two real
numbers. The special point here is to consider a parameter α ≤ 1 and to give a bound depending sub-linearly on b−a.
The case where α = 1 has been studied in [8,9,11,14]. The following result, measuring the nearness between X and
X∗, is useful to prove the concentration inequality.

Lemma 3.1. Let α ∈ (0,1] and X be a r.v. with mean zero, finite variance σ 2 > 0 and up to (α + 2)th moments. Let
X∗ have the zero biased distribution of X and be independent of X. Then, for any ε > 0,

P
(∣∣X − X∗∣∣ > ε

) ≤ 1

2εα(α + 1)σ 2
E

[∣∣Xs
∣∣α+2]

,

where Xs = X − X̃ and X̃ is an independent copy of X.

Proof. Similarly to the Markov inequality, the following inequality holds:

P
(∣∣X − X∗∣∣ > ε

) ≤ 1

εα
E

[∣∣X − X∗∣∣α]
.

For any locally integrable even function f , by definition of the zero bias transformation and the fact that X and X∗
are independent,

E
[
f

(
X∗ − X

)] = 1

2σ 2
E

[
XsF

(
Xs

)]
,

where F(x) = ∫ x

0 f (t)dt . In particular,

E
[∣∣X − X∗∣∣α] = 1

2(α + 1)σ 2
E

[∣∣Xs
∣∣α+2]

,

which implies the lemma. �

Lemma 3.2. We keep the notation of Theorem 2.6 and suppose that f : R → R and g : R2 → R are two functions
such that the variance of f (W) and g(Xi,X

∗
i ) exist for i = 1, . . . , n. Then

∣∣Cov
[
f (W),g

(
XI ,X

∗
I

)]∣∣ ≤ Var[f (W)]1/2

σ 2
W

(
n∑

i=1

σ 4
i Var

[
g
(
Xi,X

∗
i

)])1/2

. (20)

In particular, for any ε ≥ 0,

∣∣Cov[1{a≤W≤b},1{|XI −X∗
I |≤ε}]

∣∣ ≤ 1

4

(
n∑

i=1

σ 4
i

σ 4
W

)1/2

. (21)



266 Y. Jiao

Proof. Denote by (
−→
X ,

−→
X

∗
) = (X1, . . . ,Xn,X

∗
1, . . . ,X∗

n). Note that

Cov
[
f (W),g

(
XI ,X

∗
I

)] = Cov
[
f (W),E

[
g
(
XI ,X

∗
I

)∣∣(−→X ,
−→
X

∗)]]
.

Since (Xi,X
∗
i ) are mutually independent, we have

Cov
[
f (W),E

[
g
(
XI ,X

∗
I

)∣∣(−→X ,
−→
X

∗)]] ≤ Var
[
f (W)

]1/2 Var
[
E

[
g
(
XI ,X

∗
I

)∣∣(−→X ,
−→
X

∗)]]1/2

≤ 1

σ 2
W

Var
[
f (W)

]1/2

(
n∑

i=1

σ 4
i Var

[
g
(
Xi,X

∗
i

)])1/2

.

At last, it remains to observe that Var[1{a≤W≤b}] ≤ 1
4 and Var[1{|Xi−X∗

i |≤ε}] ≤ 1
4 . �

We present below the concentration inequality. One of the referees has pointed out that (22) can also be deduced,
up to some constant, from the inequality (5.2) (with a suitable choice of δ) of Chen and Shao [10].

Proposition 3.3. Let α ∈ (0,1]. For real numbers a, b such that a ≤ b,

P(a ≤ W ≤ b) ≤ 2

(
b − a

2σW

)α

+ 2

α + 1

n∑
i=1

E

[∣∣∣∣ Xs
i

σW

∣∣∣∣α+2]
+ 1

2σ 2
W

(
n∑

i=1

σ 4
i

)1/2

. (22)

Proof. Consider the indicator function I[a,b](x) = 1 if x ∈ [a, b] and I[a,b](x) = 0 otherwise. Its primitive function
f (x) := ∫ x

(a+b)/2 I[a,b](t)dt satisfies |f (x)| ≤ (b − a)/2. Then

E
[
I[a,b]

(
W ∗)] = 1

σ 2
W

E
[
Wf (W)

] ≤ min

(
b − a

2σW

,1

)
.

Note that for any u ≥ 0 and any α ∈ (0,1], min(u,1) ≤ uα . Then for any ε > 0,

P
(
a − ε ≤ W ∗ ≤ b + ε

) ≤
(

b − a + 2ε

2σW

)α

≤
(

b − a

2σW

)α

+
(

ε

σW

)α

,

where the last inequality is because (u + v)α ≤ uα + vα for any u and v positive. On the other hand, by Lemma 3.2,

P
(
a − ε ≤ W ∗ ≤ b + ε

) ≥ P
(
a ≤ W ≤ b,

∣∣XI − X∗
I

∣∣ ≤ ε
)

≥ P(a ≤ W ≤ b)P
(∣∣X∗

I − XI

∣∣ ≤ ε
) − 1

4

(
n∑

i=1

σ 4
i

σ 4
W

)1/2

.

In this proof, we assume exceptionally that X∗
i is also independent of Xi . By Lemma 3.1,

P
(∣∣X∗

I − XI

∣∣ ≤ ε
) = 1 −

n∑
i=1

σ 2
i

σ 2
W

P
(∣∣X∗

i − Xi

∣∣ > ε
)

≥ 1 − 1

2σ 2
W(α + 1)εα

n∑
i=1

E
[∣∣Xs

i

∣∣α+2]
.

Finally, the inequality (22) follows by taking

ε =
(

1

σ 2
W(α + 1)

n∑
i=1

E
[∣∣Xs

i

∣∣α+2])1/α

.
�
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Corollary 3.4. Let α ∈ (0,1]. For a, b ∈ R such that a ≤ b and i = 1, . . . , n,

P
(
a ≤ W(i) ≤ b

) ≤ 4

(
b − a

2σW

)α

+ 4

α + 1

n∑
j=1

E

[∣∣∣∣ Xs
j

σW

∣∣∣∣α+2]
+ 1

σ 2
W

(
n∑

j=1

σj
4

)1/2

+ 4

(
2σi

σW

)α

.

Proof. Let ε > 0 be a real number, then

P
(
a ≤ W(i) ≤ b, |Xi | ≤ ε

) ≤ P(a − ε ≤ W ≤ b + ε).

Note that W(i) and Xi are independent and

P
(|Xi | ≤ ε

) = 1 − P
(|Xi | > ε

) ≥ 1 − E[|Xi |]
ε

.

By Proposition 3.3 and taking ε = 2E[|Xi |], we obtain the inequality. �

3.2. Error estimates

In this section, we shall estimate the error term eN(h) in Theorem 2.6. The recursive formulas (12) and (8) allow us
to reduce the problem to estimating the classical Taylor expansion errors.

For any positive random variable Y and any real number β ≥ 0, we introduce the notation m
(β)
Y := E[Yβ ]/�(β+1),

where � is the Gamma function

�(x) =
∫ ∞

0
tx−1e−t dt.

This notation generalizes the one introduced in Section 2.1 since when β ∈ N, �(β + 1) = β!.

Proposition 3.5. Let N ≥ 0 be an integer, α ∈ (0,1] and p ≥ 0. Suppose that X is a r.v. having up to (N + α + p)th
moments and satisfying the concentration inequality

P(a ≤ X ≤ b) ≤ c(b − a)α + r ∀a, b ∈ R, a ≤ b,

where c and r are two constants. Let Y be a r.v. independent of X and having up to (N + α + p)th moments. Then,
for any function g ∈ HN

α,p and any k = 0, . . . ,N ,∣∣δN−k

(
g(k),X,Y

)∣∣ ≤ V
(
g

(N)
d

)(
cm

(N−k+α)
|Y | + rm

(N−k)
|Y |

)
+ ∥∥g(N)

c

∥∥
α,p

(
uα,p,Xm

(N−k+α)
|Y | + vα,pm

(N−k+α+p)
|Y |

)
, (23)

where V (g
(N)
d ) denotes the total variation of g

(N)
d , the coefficients uα,p,X and vα,p are defined by uα,p,X = (1 + (1 +

2p)E[|X|p])�(α + 1) and vα,p = 2p�(α + p + 1).

Proof. By (6), when k < N ,

δN−k

(
g(k),X,Y

) = 1

(N − k − 1)!
∫ 1

0
(1 − t)N−k−1

E
[(

g(N)(X + tY ) − g(N)(X)
)
YN−k

]
dt.

Since g ∈ HN
α,p , there exist M , εj and Kj (1 ≤ j ≤ M) such that the function g

(N)
d can be written as

g
(N)
d (x) = g

(N)
d (0) +

∑
1≤j≤M

εj1x≤Kj
−

∑
1≤j≤M

Kj ≥0

εj .
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Therefore, g
(N)
d (X + tY ) − g

(N)
d (X) = ∑M

j=1 εj1Kj −tY+<X≤Kj −tY− , where Y+ = max(Y,0) and Y− = min(Y,0). So
the concentration inequality hypothesis implies

E
[∣∣g(N)

d (X + tY ) − g
(N)
d (X)

∣∣|Y ] ≤
M∑

j=1

|εj |
(
ctα|Y |α + r

)
.

Moreover,∫ 1

0

(1 − t)N−k−1

(N − k − 1)! E

[
M∑

j=1

|εj |
(
ctα|Y |α + r

)|Y |N−k

]
dt ≤

M∑
j=1

|εj |
(
cm

(N−k+α)
|Y | + rm

(N−k)
|Y |

)
by using the following equality concerning the Beta function

B(x, y) :=
∫ 1

0
tx−1(1 − t)y−1 dt = �(x)�(y)

�(x + y)
, x, y > 0.

By definition of the norm ‖ · ‖α,p ,∣∣g(N)
c (X + tY ) − g(N)

c (X)
∣∣ ≤ ∥∥g(N)

c

∥∥
α,p

|tY |α(
1 + |X + tY |p + |X|p)

≤ ∥∥g(N)
c

∥∥
α,p

|tY |α(
1 + (

2p + 1
)|X|p + 2p|tY |p)

,

where the last inequality results from (a + b)p ≤ 2p(ap + bp). Note that∫ 1

0

(1 − t)N−k−1

(N − k − 1)! E
[|tY |α(

1 + (
2p + 1

)|X|p + 2p|tY |p)|Y |N−k
]

dt

= uα,p,Xm
(N−k+α)
|Y | + vα,pm

(N−k+α+p)
|Y | .

Thus we obtain (23). Finally, it remains to check the case k = N . Consider the continuous and the discontinuous parts
of g(N)(X + Y) − g(N)(X), respectively. By a similar method as above,

E
[∣∣g(N)

d (X + Y) − g
(N)
d (X)

∣∣] ≤ V
(
g

(N)
d

)(
cm

(1)
|Y | + r

)
and

E
[∣∣g(N)

c (X + Y) − g(N)
c (X)

∣∣] ≤ ∥∥g(N)
c

∥∥
α,p

(
E

[|Y |α](
1 + (

2p + 1
)
E

[|X|p]) + 2p
E

[|Y |α+p
])

,

which ends the proof. �

By Propositions 2.1 and 3.5, we obtain the error estimates for the reverse Taylor expansion.

Corollary 3.6. With the previous notation,∣∣εN−k

(
g(k),X,Y

)∣∣
≤

∑
d≥0

∑
J∈N

d∗ ,|J|≤N−k

m
(J)
|Y |

[
V

(
g

(N)
d

)(
cm

(N−k−|J|+α)
|Y | + rm

(N−k−|J|)
|Y |

)
+ ∥∥g(N)

c

∥∥
α,p

(
uα,p,Xm

(N−k−|J|+α)
|Y | + vα,pm

(N−k−|J|+α+p)
|Y |

)]
. (24)

The above estimates allow us to obtain an upper bound for eN(h) by using the recursive formula (12) and the
concentration inequality in Corollary 3.4. In particular, we give the order estimate of eN(h) when X1, . . . ,Xn are in
addition i.i.d. random variables.
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Proposition 3.7. Suppose that X1, . . . ,Xn are i.i.d. random variables with mean zero and up to (N + 2 + α + p)th
moments and having the same distribution as X/

√
n where X is a given r.v. with mean zero and finite variance σ 2 > 0.

Then for any g ∈ HN
α,p and any k = 0, . . . ,N ,

δN−k

(
g(k),W(i),X∗

i

) = O

((
1√
n

)N−k+α)
, (25)

εN−k

(
g(k),W(i),Xi

) = O

((
1√
n

)N−k+α)
, (26)

where the implied constants depend on V (g
(N)
d ), ‖g(N)

c ‖α,p and up to (N − k + 2 + α + p)th moments of X.

Proof. By Corollary 3.4, for a ≤ b and α ∈ (0,1],
P
(
a ≤ W(i) ≤ b

) ≤ c(b − a)α + r(n),

where the coefficients are given by

c = 22−α

σα
, r(n) = 4

σ 2+α(α + 1)

E[|Xs |α+2]√
nα

+ 1√
n

+ 22+α

√
nα

.

By Proposition 3.5, we obtain an upper bound of δN−k(g
(k),W(i),X∗

i ) which is determined by a linear combination
of terms (with coefficient not depending on n):

m
(N−k+α)

|X∗
i | , r(n)m

(N−k)

|X∗
i | , E

[∣∣W(i)
∣∣p]

m
(N−k+α)

|X∗
i | and m

(N−k+α+p)

|X∗
i | . (27)

Note that r(n) = O((1/
√

n)α). For any k = 0, . . . ,N , E[|X∗
i |k] equals E[|Xi |k+2]/(σ 2

i (k + 1)) and is of order
(1/

√
n)k . So the first three terms in (27) are of order (1/

√
n)N−k+α and the last term is of order (1/

√
n)N−k+α+p ,

which implies (25). Then (26) follows similarly by Corollary 3.6. �

Proposition 3.8. Let N ≥ 0 be an integer, α ∈ (0,1] and p ≥ 0. Let h ∈ HN
α,p . Assume that X1, . . . ,Xn are i.i.d.

random variables having up to (N + 2 + α + p)th moments and the same distribution as X/
√

n, X being a given r.v.
with mean zero and finite variance. Then

eN(h) = O

((
1√
n

)N+α)
, (28)

where the implied constant depends on up to (N + 2 + α + p)th moments of X.

Proof. We prove the proposition by induction on N . When N = 0,

e0(h) =
n∑

i=1

σ 2
i

(
δ0

(
f ′

h,W
(i),X∗

i

) + ε0
(
f ′

h,W
(i),Xi

))
.

Since h ∈ H0
α,p , fh ∈ H1

α,p . Then by Proposition 3.7, e0(h) = O((1/
√

n)α). Assume that we have already proved
the proposition for 0, . . . ,N − 1. Consider h ∈ HN

α,p and eN(h) defined in (12). For any J such that 1 ≤ |J| ≤
N , eN−|J| = O((1/

√
n)N−|J|+α). In addition, since |J◦| + |J†| = |J|, m

(J◦)
Xi

(m
(J†)

X∗
i

− m
(J†)
Xi

) is of order (1/
√

n)|J|.

Since fh ∈ HN+1
α,p , f ′

h ∈ HN
α,p , so δN(f ′

h,W
(i),X∗

i ) = O((1/
√

n)N+α). For any k = 0, . . . ,N , f
(k+1)
h ∈ HN−k

α,p ,

so εN−k(f
(k+1)
h ,W(i),X∗

i ) = O((1/
√

n)N−k+α). Finally we have m
(k)

X∗
i

= O((1/
√

n)k). The proposition is hence

proved. �
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In Barbour [2], the N th-order error estimates depend also on the (N + α)th moments of the summand variables.
However, one needs more regularity on the function h. Consider now an example. Let Ik(x) = 1{x≤k} be the indicator
function. Then Ik ∈ H0

α,0. By Proposition 3.8, if X1, . . . ,Xn are i.i.d. random variables having (2 + α)th moment,
then e0(h) = O((1/

√
n)α) and the coefficient depends on up to (2 + α)th moments of Xi ’s. This recovers the error

estimates of [21], Theorem V.3.6.

4. The Poisson case

In this section, we show that the same method can be applied to obtain a Poisson expansion formula. We note in the
first place that with a slight abuse of notation, we shall use the similar notation in this section as in the previous ones
for the normal case. However, the meaning is different since we here are concerned with discrete random variables.

4.1. Some reminders

Stein’s method for Poisson approximation has been introduced by Chen [7], and then developed in a series of papers
such as [1,4,5] among many others, one can also consult the monograph [6] and the survey paper [12]. In particular,
Barbour [3] has developed, in parallel with the normal case [2], asymptotic expansions for the sum of independent
integer-valued random variables and for polynomially growing functions. The extension of the zero bias transfor-
mation in [15] for the normal case was extended in [16] to apply to distributions more generally; in particular, the
transformation considered here for the Poisson is essentially the simplest special case of biasing with respect to the
Charlier polynomials. To distinguish it from the normal version, we refer to it as the Poisson zero bias transformation.

Let Z be an N-valued random variable (N-r.v.), then Z follows the Poisson distribution with parameter λ if and
only if the equality E[Zf (Z)] = λE[f (Z + 1)] holds for any function f : N → R such that both sides of the equality
are well defined. Based on this observation, Chen has proposed the following discrete Stein’s equation:

xf (x) − λf (x + 1) = h(x) − Pλ(h), x ∈ N, (29)

where Pλ(h) denotes the expectation of h under the λ-Poisson distribution. If X is an N-r.v. with mean λ, then
E[h(X)] − Pλ(h) = E[Xfh(X) − fh(X + 1)] where fh is the solution of (29) given by

fh(x) = (x − 1)!
λx

∞∑
i=x

λi

i!
(
h(i) − Pλ(h)

)
. (30)

The value fh(0) can be arbitrary and is not used in calculations in general.
We say that an N-r.v. X∗ has Poisson X-zero biased distribution if the equality

E
[
Xf (X)

] = λE
[
f

(
X∗ + 1

)]
(31)

holds for any function f : N → R such that the left-hand side of (31) is well defined. The distribution of X∗ is unique:
one has P(X∗ = x) = (x + 1)P(X = x + 1)/λ. By Stein’s equation (29) and the zero bias transformation (31),

E
[
h(X)

] − Pλ(h) = λE
[
fh

(
X∗ + 1

) − fh(X + 1)
]
. (32)

Recall the Newton’s expansion [4], Theorem 5.1. For all x, y ∈ N and N ∈ N,

f (x + y) =
N∑

j=0

(
y

j

)
�jf (x) +

∑
0≤j1<···<jN+1<y

�N+1f (x + j1),

where �f (x) = f (x + 1) − f (x). Let us introduce, for any N-r.v. Y and any k ∈ N such that E[|Y |k] < +∞, the
following quantity

m
(k)
Y := E

[(
Y

k

)]
.
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By (31), if Y ∗ has kth moment and E[Y ] = λ, then E[(Y ∗)k] = 1
λ
E[Y(Y − 1)k] and

m
(k)
Y ∗ = k + 1

λ
m

(k+1)
Y .

Let X and Y be two independent N-r.v.’s and f : N → R such that �kf (X) and �kf (X + Y) are integrable, then

E
[
f (X + Y)

] =
N∑

k=0

m
(k)
Y E

[
�kf (X)

] + δN(f,X,Y ),

where

δN(f,X,Y ) = E

[ ∑
0≤j1<···<jN+1<Y

�N+1f (X + j1)

]
. (33)

Remark 4.1. With the above notation, we can verify that the reverse Taylor formula still holds in this discrete setting
if we replace f (|J|) by �|J|f in Proposition 2.1, the proof is the same.

Consider a family of independent N-r.v.’s Xi(i = 1, . . . , n) with mean λi . Let W = X1 + · · · + Xn and λW :=
E[W ] = λ1 +· · ·+λn. Let W(i) = W −Xi and X∗

i be an N-r.v. having the Poisson Xi -zero biased distribution and in-
dependent of W(i). Finally, let I be a random index valued in {1, . . . , n} and independent of (X1, . . . ,Xn,X

∗
1, . . . ,X∗

n)

such that P(I = i) = λi/λW . Then, similar as in [15] and [16], the random variable W ∗ := W(I) + X∗
I follows the

Poisson W -zero biased distribution.

4.2. Poisson expansion

We shall give the asymptotic expansion of E[h(W)] in terms of Poisson expectations and we begin by specifying the
conditions on the function h. Compared to the normal case, the differentiability conditions on h are no more needed
and we shall concentrate on its increasing speed at infinity. This makes the study much simpler.

Let Hp,p ≥ 0 be the space of functions h : N → R such that h(x) = O(xp) when x → ∞. Then it’s easy to verify
that �h ∈ Hp and that fh is well defined. The following result can be compared to Proposition 2.5.

Proposition 4.2. Let p ≥ 0. If h ∈ Hp , then fh ∈ Hp−1.

Proof. Without loss of generality, we consider a function h with Poisson mean zero and the corresponding Stein’s
equation on N∗:

xf (x) − λf (x + 1) = h(x), (34)

whose particular solution is given by

fh(x) := (x − 1)!
λx

∞∑
i=x

λi

i! h(i).

A general solution of (34) can be written as fh(x) + C(x − 1)!/λx , where C is an arbitrary constant. However, if
h ∈ Hp , fh is the only solution of (34) which has polynomial increasing speed at infinity. We shall prove fh(x) =
O(xp−1).

Notice that

0 ≤ x!
λx

∑
i≥x

λi

i! =
∑
i≥x

λi−x

i!/x! ≤
∑
i≥x

λi−x

(i − x)! = e−λ.
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Therefore, when p ≤ 0, one has

xfh(x) = x!
λx

∞∑
i=x

λi

i! h(i) = O
(
xp

)
since ip ≤ xp if x ≤ i. Hence fh(x) = O(xp−1). The general case follows by induction on p by using the equality

fτ(h)(x) = fh(x + 1)/x,

where τ(h) : N → R is defined by τ(h)(x) = h(x + 1)/(x + 1). �

The asymptotic expansion formula in the Poisson case is similar to the one given in Theorem 2.6.

Theorem 4.3. Let N ∈ N and p ≥ 0. Assume that h ∈ Hp and that Xi (i = 1, . . . , n) are independent N-r.v.’s with
mean λi and up to (N + max(p,1))th moments. Let W = X1 + · · · + Xn and λW = E[W ]. Then E[h(W)] can be
written as the sum of CN(h) and eN(h) such that C0(h) = PλW

(h) and e0(h) = E[h(W)] − PλW
(h), and recursively

for any N ≥ 1,

CN(h) = C0(h) +
n∑

i=1

λi

∑
d≥1

(−1)d−1
∑

J∈N
d∗ ,|J|≤N

m
(J◦)
Xi

(
m

(J†)

X∗
i

− m
(J†)
Xi

)
CN−|J|

(
�|J|fh(x + 1)

)
, (35)

eN(h) =
n∑

i=1

λi

[∑
d≥1

(−1)d−1
∑

J∈N
d∗ ,|J|≤N

m
(J◦)
Xi

(
m

(J†)
X∗

i
− m

(J†)
Xi

)
eN−|J|

(
�|J|fh(x + 1)

)

+
N∑

k=0

m
(k)

X∗
i
εN−k

(
�kfh(x + 1),W(i),Xi

) + δN

(
fh(x + 1),W(i),X∗

i

)]
, (36)

where for any integer d ≥ 1 and any J ∈ N
d∗ , J† ∈ N∗ denotes the last coordinate of J, and J◦ denotes the element in

N
d−1∗ obtained from J by omitting the last coordinate.

Proof. We shall verify that all terms in (35) and (36) are well defined. When N = 0, Xi has max(p,1)th moment
and h = O(xp), so PλW

(h) exists. Suppose that the assertion holds for 1, . . . ,N − 1. Consider now the case of N . By
Proposition 4.2, fh ∈ Hp−1, so �|J|(fh(x + 1)) ∈ Hp−1. Then CN−|J|(�|J|fh(x + 1)) and eN−|J|(�|J|fh(x + 1)) are
well defined. In addition, all the moment terms exist. The proof of the equality E[h(W)] = CN(h) + eN(h) is similar
to the second part of the proof of Theorem 2.6, which we omit. �

Remark 4.4. We have m
(J†)

X∗
i

= λ−1
i (J† +1)m

(J†+1)
Xi

where J† is the strictly positive integer figuring in the last coordinate

of J. By an argument similar to Remark 2.8,

λi

∑
d≥1

(−1)d−1
∑

J∈N
d∗ ,|J|=r

m
(J◦)
Xi

(
m

(J†)

X∗
i

− m
(J†)
Xi

) =
∑

K∈⋃
d≥1 N

d∗
|K|=r+1

(−1)	(K)−1K†m
(K)
Xi

=: η(r+1)
i .

One has η
(1)
i = λi and η

(r)
i = rm

(r)
Xi

− ∑r−1
j=1 m

(j)
Xi

η
(r−j)
i for any r ≥ 2. Note that η

(r)
i /r is just the coefficient of t r in

the series logE[(1 + t)Xi ] and
∑

i η
(r)
i /r is the coefficient of t r in the series logE[(1 + t)W ]. We hence recover the

result of Barbour [3].
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4.3. Error estimates

We finally concentrate on the remaining term eN(h) in (36). The following quantity will be useful:

‖h‖N,p := sup
x∈N∗

|�N+1h(x)|
xp

, (37)

which is finite for any h ∈ Hp .

Lemma 4.5. Let N ∈ N, k = 0, . . . ,N and p ≥ 0. Let f ∈ Hp , X be an N-r.v. with pth moment, Y be an N-r.v.
independent of X and having (N − k + 1 + p)th moment. Then∣∣δN−k

(
�kf (x + 1),X,Y

)∣∣
≤ max

(
2p−1,1

)‖f ‖N,p

(
E

[
Xp

]
m

(N−k+1)
Y + m

(N−k+1),p
Y

)
, (38)

where

m
(N−k+1),p
Y := E

[(
Y

N − k + 1

)
Yp

]
,

and ∣∣εN−k

(
�kf (x + 1),X,Y

)∣∣
≤ max

(
2p−1,1

)‖f ‖N,p

∑
d≥0

∑
J∈N

d∗
|J|≤N−k

m
(J)
Y

(
E

[
Xp

]
m

(N−k−|J|+1)
Y + m

(N−k−|J|+1),p
Y

)
. (39)

Proof. By definitions (33) and (37),∣∣δN−k

(
�kf (x + 1),X,Y

)∣∣
≤ E

[ ∑
0≤j1<···<jN−k+1<Y

∣∣�N+1f (X + 1 + j1)
∣∣]

≤ ‖f ‖N,pE

[ ∑
0≤j1<···<jN−k+1<Y

(X + j1 + 1)p
]

≤ ‖f ‖N,pE

[(
Y

N − k + 1

)
(X + Y)p

]
≤ max

(
2p−1,1

)‖f ‖N,p

(
E

[
Xp

]
m

(N−k+1)
Y + m

(N−k+1),p
Y

)
,

where we have used in the last inequality the estimations (X + Y)p ≤ 2p−1(Xp + Yp) if p > 1 and (X + Y)p ≤
Xp + Yp if p ≤ 1. Thus (38) is proved. The inequality (39) follows from (8) and (38). �

Proposition 4.6. Let N ∈ N, p ≥ 0 and h ∈ Hp . Suppose that Xi (i = 1, . . . , n) are independent N-r.v.’s with mean
λi and up to (N + p + 2)th moments. Let W = X1 + · · · + Xn and X∗

i be an N-r.v. having Poisson Xi -zero biased
distribution and independent of W(i) := W − Xi . Then

∣∣e0(h)
∣∣ ≤ max

(
2p−1,1

)‖fh‖0,p

n∑
i=1

λi

(
E

[(
W(i)

)p](
m

(1)

X∗
i
+ m

(1)
Xi

) + (
m

(1),p

X∗
i

+ m
(1),p
Xi

))
. (40)
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When N ≥ 1,

∣∣eN(h)
∣∣ ≤

n∑
i=1

λi

[∑
d≥1

∑
J∈N

d∗
|J|≤N

m
(J◦)
Xi

(
m

(J†)

X∗
i

+ m
(J†)
Xi

)∣∣eN−|J|
(
�|J|fh(x + 1)

)∣∣

+ max
(
2p−1,1

)‖fh‖N,p

N∑
k=0

m
(k)

X∗
i

∑
d≥0

∑
J∈N

d∗
|J|≤N−k

m
(J)
Xi

(
E

[(
W(i)

)p]
m

(N−k−|J|+1)
Xi

+ m
(N−k−|J|+1),p
Xi

)

+ max
(
2p−1,1

)‖fh‖N,p

(
E

[(
W(i)

)p]
m

(N+1)

X∗
i

+ m
(N+1),p

X∗
i

)]
. (41)

Proof. We begin by the case when N = 0. By (32),

e0(h) =
n∑

i=1

λi

(
E

[
fh

(
W(i) + X∗

i + 1
)] − E

[
fh

(
W(i) + Xi + 1

)])
=

n∑
i=1

λi

(
δ0

(
fh(x + 1),W(i),X∗

i

) + ε0
(
fh(x + 1),W(i),Xi

))
≤ max

(
2p−1,1

)‖fh‖0,p

n∑
i=1

λi

{
E

[(
W(i)

)p](
m

(1)

X∗
i
+ m

(1)
Xi

) + (
m

(1),p

X∗
i

+ m
(1),p
Xi

)}
,

where the last inequality is by Lemma 4.5, so (40) follows. We obtain the estimates for N ≥ 1 by applying the recursive
formula (36). �

Proposition 4.7. Let N ∈ N, p ≥ 0 and h ∈ Hp . Suppose that Xi (i = 1, . . . , n) are i.i.d. N-r.v.’s having the same
distribution as X/n where X is a given N-r.v. with up to (N + p + 2)th moments. Then eN(h) defined in (36) satisfies

eN(h) = O

((
1

n

)N+1)
, (42)

where the implied constant depends on up to (N + p + 2)th moments of X.

Proof. For any k = 0, . . . ,N + 1 and any i = 1, . . . , n,

m
(k)
Xi

≤ 1

k!E
[
Xk

i

] = O
(
n−k

)
and m

(k)

X∗
i
= k + 1

λi

m
(k+1)
Xi

= O
(
n−k

)
.

Similarly m
(k),p
Xi

= O(n−k−p) and m
(k),p

X∗
i

= O(n−k−p), where the implied constants depend on up to (N + p + 2)th

moments of X. Hence by induction on N from (40) and (41), we obtain the estimate (42). �

Appendix A: Proof of Lemma 2.2

Proof. For the first two assertions, it suffices to prove respectively the boundless of the following two functions

1 + |x|p + |y|p
1 + |x|q + |y|q , |x − y|β−α 1 + |x|p + |y|p

1 + |x|p+β−α + |y|p+β−α
.
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These functions are both continuous on R
2, therefore are bounded on any compact subset of R

2. Thus we may assume
without loss of generality that r = √

x2 + y2 ≥ 1. In this case, max{|x|, |y|} ≥ r/
√

2, so

1 + |x|p + |y|p
1 + |x|q + |y|q ≤ 1 + 2rp

1 + (r/
√

2)q
≤ 3 · 2q/2,

|x − y|β−α 1 + |x|p + |y|p
1 + |x|p+β−α + |y|p+β−α

≤ (2r)β−α 1 + 2rp

1 + (r/
√

2)p+β−α
≤ 3 · 2(p+3β−3α)/2,

thus proving (1) and (2). For (3), we have

|P(x)f (x) − P(y)f (y)|
|x − y|α(1 + |x|p+d + |y|p+d)

≤ (1 + |x|p + |y|p)P (x)

1 + |x|p+d + |y|p+d
‖f ‖α,p + |f (y)| · |P(x) − P(y)|

|x − y|α(1 + |x|p+d + |y|p+d)
.

By the argument in the proof of (1) and (2), the first term in the right-hand side is bounded. Since P is a polynomial
of degree d , there exists a polynomial Q(x,y) in two variables and of degree d − 1, such that Q(x,y) = (P (x) −
P(y))/(x − y). Therefore, the second term equals

|Q(x,y)| · |x − y|1−α · |f (y)|
1 + |x|p+d + |y|p+d

which is bounded by a similar argument as for proving (1) and (2).
(4) Since ‖f ‖α,p < +∞, |f (t)| � 1 + |t |α+p for t ∈ R where � is the Vinogradov’s symbol.1 Therefore, for

x, y ∈ R, x ≤ y,∣∣F(x) − F(y)
∣∣ ≤

∫ y

x

∣∣f (t)
∣∣dt �

∫ y

x

(
1 + |t |α+p

)
dt ≤ (

1 + |x|α+p + |y|α+p
)|y − x|.

Hence

|F(x) − F(y)|
|x − y|(1 + |x|p+α + |y|p+α)

is bounded. �

Appendix B: Proof of Proposition 2.5

We now prove Proposition 2.5. Let h ∈ HN
α,p . Then the function fh is N + 1 times differentiable by (4). Taking the

N th derivative on both sides of Stein’s equation (2), we get(
xfh(x)

)(N) − σ 2f
(N+1)
h (x) = h(N)(x). (43)

The function (xfh(x))(N) is continuous, so f
(N+1)
h is locally of finite variation and has finitely many jumps as h(N)

does. It remains to prove ‖f (N+1)
h,c ‖α,p < +∞.

Let A be an interval in R and f be a Borel function on A. We define for any α ∈ (0,1] and any p ≥ 0,

‖f ‖A
α,p := sup

x 	=y

x,y∈A

|f (x) − f (y)|
|x − y|α(1 + |x|p + |y|p)

, (44)

which is analogous to (10) restricted to an interval A.

1Let F and G be two real functions defined on a set Ω , and Ω0 be a subset of Ω . The expression “F(x) � G(x) for x ∈ Ω0” signifies that there
exists a constant C > 0 (which may depend on Ω0) such that |F(x)| ≤ C|G(x)| holds for any x ∈ Ω0.



276 Y. Jiao

Lemma B.1. If h ∈ HN
α,p , then ‖f (N+1)

h,c ‖A
α,p < +∞ for any bounded interval A.

Proof. Firstly, for any bounded interval A and any Borel function g, ‖g‖A
α,p < +∞ if and only if g is α-Lipschitz

on A. We examine f
(N+1)
h,c using (43). Since h ∈ HN

α,p , h
(N)
c is locally α-Lipschitz. The function (xfh(x))(N+1) =

xf
(N+1)
h (x)+(N +1)f

(N)
h (x) has finitely many jumps. Hence (xfh(x))(N) is a primitive function of a locally bounded

function, thus is locally 1-Lipschitz. So f
(N+1)
h,c is locally α-Lipschitz, which implies the lemma. �

Lemma B.2. If A = A1 ∪ A2 where A1 and A2 are two intervals such that A1 ∩ A2 	= ∅, then

sup
{‖f ‖A1

α,p,‖f ‖A2
α,p

} ≤ ‖f ‖A
α,p ≤ 2

(‖f ‖A1
α,p + ‖f ‖A2

α,p

)
. (45)

Proof. The first inequality of (45) is obvious. For the second one, we only need to prove for any x ∈ A1 and any
y ∈ A2 that

|f (x) − f (y)|
|x − y|α(1 + |x|p + |y|p)

≤ 2
(‖f ‖A1

α,p + ‖f ‖A2
α,p

)
.

Without loss of generality, we may suppose that A1 ∩ A2 contains a single point z. Then |f (x) − f (y)| ≤ |f (x) −
f (z)| + |f (y) − f (z)|. In addition, since z is between x and y, we have |x − y| ≥ max(|x − z|, |y − z|) and |x|p +
|y|p ≥ 1

2 max(|x|p + |z|p, |y|p + |z|p). So

|f (x) − f (y)|
|x − y|α(1 + |x|p + |y|p)

≤ 2

( |f (x) − f (z)|
|x − z|α(1 + |x|p + |z|p)

+ |f (z) − f (y)|
|z − y|α(1 + |z|p + |y|p)

)
,

which implies the second inequality. �

Combining Lemmas B.1 and B.2, we obtain the following proposition.

Proposition B.3. Let A = R \ (−1,1). Then ‖f (N+1)
h,c ‖α,p < ∞ if ‖f (N+1)

h,c ‖A
α,p < ∞.

When A avoids an open neighborhood of 0, the finiteness of ‖f ‖A
α,p is equivalent to that of

sup
x 	=y

x,y∈A

|f (x) − f (y)|
|x − y|α(|x|p + |y|p)

.

This property does not hold for the norm ‖ · ‖α,p defined in (10). As a consequence, we have the following result.

Lemma B.4. Let A ⊂ (−∞,−1] ∪ [1,+∞) be an interval, α ∈ (0,1] and p ≥ 0. Let q be a real number such that
0 ≤ q ≤ p. Then for any Borel function f defined on A, ‖f ‖A

α,p < +∞ if and only if ‖f (x)/xp−q‖A
α,q < +∞.

Proof. If ‖f (x)/xp−q‖A
α,q < +∞, then by similar arguments as for proving Lemma 2.2, we have ‖f ‖A

α,p < +∞. We
now consider the converse assertion. Firstly, there exists a constant C > 0 such that |f (x)| � C|x|α+p for any x ∈ A.
For any x, y ∈ A, |x| < |y|,

|f (x)xq−p − f (y)yq−p|
|x − y|α(1 + |x|q + |y|q)

≤ ∣∣f (x)
∣∣ |xq−p − yq−p|
|x − y|α(1 + |x|q + |y|q)

+ |y|q−p |f (x) − f (y)|
|x − y|α(1 + |x|q + |y|q)

.

The second term is finite since

|f (x) − f (y)|
|x − y|α(|y|p−q + |x|q |y|p−q + |y|p)

≤ |f (x) − f (y)|
|x − y|α(1 + |x|p + |y|p)

= ‖f ‖A
α,p.
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By the mean value theorem, the first term is bounded by

C|x|α+p |x − y| · |q − p| · |x|q−p−1

|x − y|α(1 + |x|q + |y|q)

and thus by C|q − p| if we assume in addition that |y| < 2|x|. When |y| � 2|x|, one has

∣∣f (x)
∣∣ |xq−p − yq−p|
|x − y|α(1 + |x|q + |y|q)

� C
|x|α+p|x|q−p

|x|α+q
� C.

�

We shall study f
(N+1)
h,c on the set R \ (−1,1). Without loss of generality, we consider in the following a function h

with normal mean zero and the corresponding Stein’s equation

xfh(x) − σ 2f ′
h(x) = h(x). (46)

The particular solution of (46) is the restriction of the standard solution (4) to the complement of (−1,1) and is given
by

fh(x) :=
{ 1

σ 2φσ (x)

∫ ∞
x

h(t)φσ (t)dt, x ≥ 1,
1

σ 2φσ (x)

∫ x

−∞ h(t)φσ (t)dt, x ≤ −1.
(47)

For any σ > 0, let Eσ be the space of all Borel functions h on R \ (−1,1) such that
∫
|x|≥1 |h(x)P (x)|φσ (x)dx < ∞

for any polynomial P . The vector space Eσ contains all Laurent polynomials (that is, polynomials in x and x−1) and
is stable by multiplication by Laurent polynomials. Furthermore, as shown by the lemma below, it is invariant by the
operator h → fh.

Lemma B.5. Let h ∈ Eσ . Then fh is well defined and fh ∈ Eσ . Furthermore, if H is a primitive function of h, then
H ∈ Eσ .

Proof. Let P be an arbitrary polynomial on R. Then∫ ∞

1

∣∣P(x)fh(x)
∣∣φσ (x)dx ≤ 1

σ 2

∫ ∞

1
dx

∣∣P(x)
∣∣ ∫ ∞

x

∣∣h(t)
∣∣φσ (t)dt

= 1

σ 2

∫ ∞

1
dt

∣∣h(t)
∣∣φσ (t)

∫ t

1

∣∣P(x)
∣∣dx.

There exists a polynomial Q such that
∫ t

1 |P(x)|dx ≤ Q(t) for any t ≥ 0. Therefore, the fact that h ∈ Eσ implies that∫ ∞
1 |P(x)fh(x)|φσ (x)dx < +∞. The finiteness of the integral on (−∞,1] is similar. The second assertion can be

proved by integration by part. �

If h ∈ Eσ , then fh is the only solution of (46) in Eσ . For the derivatives of fh, we consider, for any integer N ≥ 1,
the set E N

σ which contains all functions h such that h is N times differentiable on R \ (−1,1) and that h(N) ∈ Eσ . It
is not difficult to observe that h ∈ E N

σ if and only if it is a primitive function of an element in E N−1
σ . The relationship

between E N
σ and HN

α,p is as follows.

Lemma B.6. If h ∈ HN
α,p , then the restriction of h on R \ (−1,1) is in E N

σ .

Proof. It suffices to show that the restriction of h(N) on R \ (−1,1) is in Eσ . This is obvious since h
(N)
c has at most

polynomial increasing speed at infinity. �
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For any differentiable function h on R \ (−1,1), define

Λ(h)(x) :=
(

h(x)

x

)′
. (48)

Lemma B.7. If h ∈ E 1
σ , then Λ(h) ∈ Eσ . Furthermore,

f ′
h(x) = xfΛ(h)(x). (49)

Proof. By definition, Λ(h)(x) = h′(x)/x −h(x)/x2, so Λ(h) ∈ Eσ . To prove the equality, it suffices to verify that the
function u(x) := x−1f ′

h(x) satisfies the Eq. (46) for Λ(h). In fact, if we divide both sides of the equation xfh(x) −
σ 2f ′

h(x) = h(x) by x and then take the derivative, we obtain xu(x) − σ 2u′(x) = Λ(h)(x). �

Lemma B.8. If h ∈ Eσ and h(x) = O(|x|l ) where l is a real number, then fh(x) = O(|x|l−1).

Proof. Recall that [11], Lemma 1, if |h(x)| ≤ g(x) and if g(x)/|x| is decreasing when x > 0 and is increasing when
x < 0, then |fh(x)| ≤ g(x)/|x|. Hence, we prove the lemma for the cases where l < 1. By Lemma B.7, one has

f|x|l (x) = x−1(|x|l + σ 2f ′
|x|l (x)

) = sgn(x)|x|l−1 + σ 2fΛ(|x|l )(x)

= sgn(x)|x|l−1 + σ 2(l − 1)f|x|l−2(x).

Thus, f|x|l−2 = O(|x|l−3) implies f|x|l = O(|x|l−1). Hence by induction on l, we obtain the result. �

Remark B.9. With the notation of Barbour [2], the equivalent expectation form of fh is given by

fh(x) =
{ √

2π
σ

E
[
h(Z + x)e−Zx/σ 2

1{Z>0}
]
, x ≥ 1,

−
√

2π
σ

E
[
h(Z + x)e−Zx/σ 2

1{Z<0}
]
, x ≤ −1,

(50)

where Z ∼ N(0, σ 2). So Lemma B.8 implies that the function

1

xl
E

[
1{Z>0}(Z + x)l+1e−Zx/σ 2]

is bounded on [1,+∞). Then, for all l ∈ R and m ∈ R+,

1

xl
E

[
1{Z>0}(Zx)m(Z + x)l+1e−Zx/σ 2]

is also bounded on [1,+∞) by the fact that ume−u/(2σ 2) is bounded on [0,∞).

The following lemma shows the relationship between the derivatives of fh and those of h. The proof is by induction,
which we omit in this article (interest readers may refer to [19], pp. 144–145). We only remind that the first formula
is a generalization of (49).

Lemma B.10. If h ∈ E N
σ with N being a strictly positive integer, then

f
(N)
h (x) =

�N/2�∑
k=0

(
N

2k

)
(2k − 1)!!xN−2kfΛN−k(h)(x); (51)

ΛN(h)(x) =
N∑

k=0

(−1)k(2k − 1)!!
(

N + k

2k

)
h(N−k)(x)

xN+k
, (52)

where we use the convention (−1)!! = 1 and �N/2� denotes the largest integer not exceeding N/2.
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Remark B.11.

(1) For h ∈ E N
σ , Lemma B.10 also holds for f

(m)
h (x) and Λm(h) where 1 ≤ m ≤ N . Since the operator h → fh

is linear on h, we can write the derivatives of fh as a linear combination of those of h with Laurent polynomial
coefficients. This will allow us to deduce the increasing speed at infinity.

(2) The derivative f
(N+1)
h has to be treated differently. In fact, we can no longer apply (52) to ΛN+1(h) since

h(N+1) does not necessarily exist. The idea is to separate the first term where k = 0 in (51) from the others and then
take the derivative

f
(N+1)
h = xNf ′

ΛN(h)
(x) +

�N/2�∑
k=0

(
N

2k

)
(2k − 1)!!(N − 2k)xN−2k−1fΛN−k(h)(x)

+
�N/2�∑
k=1

(
N

2k

)
(2k − 1)!!xN−2kf ′

ΛN−k(h)
(x)

= xNf ′
ΛN(h)

(x) +
�(N+1)/2�∑

k=1

(
N + 1

2k

)
(2k − 1)!!xN+1−2kfΛN+1−k(h)(x).

This is the key point in the proof of Proposition B.13.

Lemma B.12. Let h be a Borel function on R \ (−1,1) and let A = (−∞,−1] or [1,∞). If ‖h‖A
α,p < +∞, then, for

any n ∈ N,

∥∥xn+1fh/xn

∥∥A

α,p
< +∞,

∥∥xnf ′
h/xn

∥∥A

α,p
< +∞.

Proof. We only prove for A = [1,∞) and the case for (−∞,−1] is by symmetry. Let g(x) = h(x)/xn. Assume that
x and y are two real numbers such that 1 � x < y. Then one has

|xn+1fg(x) − yn+1fg(y)|
|x − y|α(1 + |x|p + |y|p)

=
√

2π

σ
E

[
I{Z>0}

|(h(Z + x)xn+1/(Z + x)n)e−Zx/σ 2 − (h(Z + y)yn+1/(Z + y)n)e−Zy/σ 2 |
|x − y|α(1 + |x|p + |y|p)

]
,

which can be bounded from above by the sum of the following two terms:

√
2π

σ
E

[
I{Z>0}

|h(Z + x) − h(Z + y)|
|x − y|α(1 + |x|p + |y|p)

· yn+1

(Z + y)n
e−Zy/σ 2

]
, (53)

√
2π

σ
E

[
I{Z>0}

∣∣h(Z + x)
∣∣ |(xn+1/(Z + x)n)e−Zx/σ 2 − (yn+1/(Z + y)n)e−Zy/σ 2 |

|x − y|α(1 + |x|p + |y|p)

]
. (54)

Note that (53) is bounded from above by

‖h‖A
α,p

√
2π

σ
yn+1

E

[
I{Z>0}

1

(Z + y)n
e−Zy/σ 2

]
= ‖h‖A

α,pyn+1f1/|x|n(y).

By Lemma B.8, this quantity is bounded. We then consider the upper bound of (54) under thesupplementary condition
y � 2x. As ‖h‖A

α,p < +∞, there exists a constant C > 0 such that h(x) � C|x|α+p . By applying the mean value
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theorem on the function xn+1

(Z+x)n
e−Zx/σ 2

and the fact that |x − y|α−1(1 + |x|p + |y|p) ≥ |x|α−1+p where α < 1,

(54) �
√

2π

σ
|x|1−α−p

E

[
I{Z>0}C(Z + x)α+pe−Zx/σ 2

(
(n + 1)(2x)n

(Z + x)n
+ n(2x)n+1

(Z + x)n+1
+ Z(2x)n+1

σ 2(Z + x)n

)]

� C

√
2π

σ
|x|1−α−p

{(
2n · (n + 1) + 2n+1 · n)

E
[
I{Z>0}(Z + x)α+pe−Zx/σ 2]

+ 2n+1
E

[
I{Z>0}

Zx

σ 2
(Z + x)α+pe−Zx/σ 2

]}
� |x|1−α−p

{
E

[
I{Z>0}(Z + x)α+pe−Zx/σ 2] + E

[
I{Z>0}

Zx

σ 2
(Z + x)α+pe−Zx/σ 2

]}
,

which is bounded (see Remark B.9). In the case where y > 2x, one has xn+1/(Z + x)n ≤ x when Z ≥ 0, and |x −
y|α(1 + |x|p + |y|p) ≥ max(|x|α+p, (

y
2 )α · yp), so

(54) � C

√
2π

σ

{
1

2|x|α+p−1
E

[
I{Z>0}(Z + x)α+pe−Zx/σ 2] + 2α

|y|α+p−1
E

[
I{Z>0}(Z + y)α+pe−Zy/σ 2]}

,

which is bounded. �

We now summarize the above arguments and the following proposition allows to conclude the proof of Proposi-
tion 2.5.

Proposition B.13. Let N ∈ N, α ∈ (0,1] and p � 0. Let h be an N times differentiable function defined on R\ (−1,1)

such that h(N) is locally of finite variation, having finitely many jumps and verifying ‖h(N)
c ‖A

α,p < +∞ with A =
(−∞,−1] or [1,∞). Then fh is N + 1 times differentiable, f

(N+1)
h is locally of finite variation, having finitely many

jumps and verifying ‖f (N+1)
h,c ‖A

α,p < +∞.

Proof. The function fh is N + 1 times differentiable by (43), f
(N+1)
h is locally of finite variation, having only finitely

many jumps. By Lemmas B.1 and B.2, it suffices to prove

max
{∥∥f

(N+1)
h,c

∥∥(−∞,−b]
α,p

,
∥∥f

(N+1)
h,c

∥∥[b,+∞)

α,p

}
< +∞

for sufficiently positive number b. Therefore, without loss of generality, we may assume that h(N) is continuous and
hence f

(N+1)
h is also continuous.

By Remark B.11(2), the function f
(N+1)
h can be written as a linear combination of xNf ′

ΛN(h)
and terms of

the form xN+1−2kfΛN+1−k(h)(x) where k = 1, . . . , �N+1
2 �. By (52), xNf ′

ΛN(h)
itself is also a linear combination of

xNf ′
h(N−i)/xN+i where i = 0, . . . ,N . As ‖h(N)‖A

α,p < ∞, we have, similar as in Lemma 2.2(4), that ‖h(N−i)‖A
α,p+i <

+∞. Hence ‖h(N−i)/xi‖A
α,p < ∞ by Lemma B.4 and Lemma B.12 then implies that ‖xNf ′

h(N−i)/xN+i ‖A
α,p < ∞.

The terms xN+1−2kfΛN+1−k(h)(x) are also, by (52) again, linear combinations of the functions of the form
xN+1−2kfh(N+1−k−i)/xN+1−k+i . By a similar argument as above using Lemma B.4, ‖h(N+1−k−i)/x1+k+i‖A

α,p < ∞. Fi-

nally, we apply Lemma B.12 to obtain ‖xN+1−2kfh(N+1−k−i)/xN+1−k+i ‖A
α,p < ∞, which completes the proof. �
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