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Modeling space-time data using stochastic
differential equations

Jason A. Duan∗, Alan E. Gelfand† and C. F. Sirmans‡

Abstract. This paper demonstrates the use and value of stochastic differential
equations for modeling space-time data in two common settings. The first consists
of point-referenced or geostatistical data where observations are collected at fixed
locations and times. The second considers random point pattern data where the
emergence of locations and times is random. For both cases, we employ stochas-
tic differential equations to describe a latent process within a hierarchical model
for the data. The intent is to view this latent process mechanistically and endow
it with appropriate simple features and interpretable parameters. A motivating
problem for the second setting is to model urban development through observed
locations and times of new home construction; this gives rise to a space-time point
pattern. We show that a spatio-temporal Cox process whose intensity is driven
by a stochastic logistic equation is a viable mechanistic model that affords mean-
ingful interpretation for the results of statistical inference. Other applications of
stochastic logistic differential equations with space-time varying parameters in-
clude modeling population growth and product diffusion, which motivate our first,
point-referenced data application. We propose a method to discretize both time
and space in order to fit the model. We demonstrate the inference for the geosta-
tistical model through a simulated dataset. Then, we fit the Cox process model
to a real dataset taken from the greater Dallas metropolitan area.

Keywords: geostatistical data, point pattern, hierarchical model, stochastic logistic
equation, Markov chain Monte Carlo, urban development

1 Introduction

The contribution of this paper is to demonstrate the use and value of stochastic dif-
ferential equations (SDE) to yield mechanistic and physically interpretable models for
space-time data. We consider two common settings: (i) real-valued and point-referenced
geostatistical data where observations are taken at non-random locations s and times
t and (ii) spatio-temporal point patterns where the locations and times themselves are
random. In either case, we assume s ∈ D ⊂ R2 where D is a fixed compact region and
t ∈ (0, T ] where T is specified.

Examples of spatio-temporal geostatistical data abound in the literature. Examples
appropriate to our objectives include ecological process models such as photosynthesis,
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transpiration, and soil moisture; diffusion models for populations, products or technolo-
gies; financial processes such as house price and/or land values over time. Here, we
employ a customary geostatistical modeling specification, i.e., noisy space-time data
are modeled by

Y (s, t) = Λ(s, t) + ε(s, t) (1)
where ε(s, t) is a space-time noise/error process (contributing the “nugget”) and the
process of interest is Λ(s, t). For us, Λ(s, t) is a realization of a space-time stochastic
process generated by a stochastic differential equation.

Space-time point patterns also arise in many settings, e.g., ecology where we might
seek the evolution of the range of a species over time by observing the locations of its
presences; disease incidence examining the pattern of cases over time; urban develop-
ment explained using say the pattern of single family homes constructed over time. The
random locations and times of these events are customarily modeled with an inhomo-
geneous intensity surface denoted again by Λ(s, t). Here, the theory of point processes
provides convenient tools; the most commonly used and easily interpretable model is
the spatio-temporal Poisson process: for any region in the area under study and any
specified time interval, the total number of observed points is a Poisson random variable
with mean equal to the integrated intensity over that region and time interval.

There is a substantial literature on modeling point-referenced space-time data. The
most common approach is the introduction of spatio-temporal random effects described
through a Gaussian process with a suitable space-time covariance function (e.g., Brown
et al. 2000; Gneiting 2002; Stein 2005). If time is discretized, we can employ dynamic
models as in Gelfand et al. (2005). If locations are on a lattice (or are projected to
a lattice), we can employ Gaussian Markov random fields (Rue and Held 2005). For
general discussion of such space-time modeling see Banerjee et al. (2004).

There is much less statistical literature on space-time point patterns. However, the
mathematical theory of point process on a general carrying space is well established
(Daley and Vere-Jones 1988; Karr 1991). Cressie (1993) and Møller and Waagepetersen
(2004) focus primarily on two-dimensional spatial point processes. Recent developments
in spatio-temporal point process modeling include Ogata (1998) with application to
statistical seismology and Brix and Møller (2001) with application in modeling weeds.
Brix and Diggle (2001), in modeling a plant disease, extend the log Gaussian Cox process
(Møller et al. 1998) to a space-time version by using a stochastic differential equation
model. See Diggle (2005) for a comprehensive review of this literature.

In either of the settings (i) and (ii) above, we propose to work with stochastic dif-
ferential equation models. That is, we intentionally specify Λ (s, t) through a stochastic
differential equation rather than a spatio-temporal process (see, e.g., Banerjee et al.
2004 and references therein). We specifically introduce a mechanistic modeling scheme
where we are directly interested in the parameters that convey physical meanings in the
mechanism described by a stochastic differential equation. For example, the prototype
of our study is the logistic equation

∂Λ (s, t)
∂t

= r(s, t)Λ (s, t)
[
1− Λ (s, t)

K (s)

]
,
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where K (s) is the “carrying capacity” (assuming it is time-invariant) and r (s, t) is
the “growth rate”. Spatially and/or temporally varying parameters, such as growth
rate and carrying capacity, can be modeled by spatio-temporal processes. In practice,
the logistic equation finds various applications, e.g., population growth in ecology (Kot
2001), product and technology diffusion in economics (Mahajan and Wind 1986), and
urban development (see Section 4.2).

We recognize the flexibility that comes with a “purely empirical” model such as a
realization of a stationary or nonstationary space-time Gaussian process or smoothing
splines and that such specifications can be made to fit a given dataset at least as well
as a specification limited to a given class of stochastic differential equations. However,
for space-time data collected from physical systems it may be preferable to view them
as generated by appropriate simple mechanisms with necessary randomness. That is,
we particularly seek to incorporate the features of the mechanistic process into the
model for the space-time data enabling interpretation of the spatio-temporal parameter
processes that is more natural and intuitive. We also demonstrate, through a simulation
example, that, when such differential equations generate the data (up to noise), the
data can inform about the parameters in these equations and that model performance
is preferable to that of a customary model employing a random process realization.

In this regard, we must resort to discretization of time to work with these models,
i.e., we actually fit stochastic finite difference models. In other words, the continuous-
time specification describes the process we seek to capture but to fit this specification
with observed data, we employ first order (Euler) approximation. Evidently, this raises
questions regarding the effect of discretization. Theoretical discussion in terms of weak
convergence is presented, for instance, in Kloeden and Platen (1992) while practical
refinements through latent variables have been proposed in, e.g., Elerian et al. (2001).
In any event, Euler approximation is widely applied in the literature and it is beyond our
contribution here to explore its impact. Moreover, the results of our simulation example
in Section 3.3 reveal that we recover the true parameters of the stochastic PDE quite
well under the discretization.

Indeed, the real issue for us is how to introduce randomness into a selected differential
equation specification. Section 2 is devoted to a brief review of available options and
their associated properties. Section 3 develops the geostatistical setting and provides
the aforementioned simulation illustration.

An early motivating problem for our research was the modeling of new home con-
structions in a fixed region, e.g., within a city boundary. Mathematically and concep-
tually, the continuous trend that drives the construction of new houses can be captured
by the logistic equation, where there is a rate for the growth of the number of houses
and a carrying capacity that limits the total number. When new houses can be built at
any locations and times, yielding a space-time point pattern, a spatio-temporal point
process governed by a version of the stochastic logistic equation becomes an appealing
mechanistic model. However, we also acknowledge its limitations, suggesting possible
extensions at the end of the paper.

Section 4.1 details the modeling for space-time point patterns and addresses formal
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modeling and computational issues. Section 4.2 provides a careful analysis of the house
construction dataset. Finally, in Section 5, we conclude with a summary and some
future directions.

2 SDE models for spatio-temporal data

Ignoring location for the moment, a usual nonlinear (non-autonomous) differential equa-
tion subject to the initial condition takes the form

dΛ(t) = g(Λ(t), t, r (t))dt and Λ (0) = Λ0. (2)

A natural way to add randomness is to model the random parameter r (t) with a
SDE:

dr (t) = a(r(t), t, β)dt + b (r (t) , t) dB (t)

where B(t) is an independent-increment process on R1.1

Analytic solutions of SDE’s are rarely available so we usually employ a first order
Euler approximation of the form,

Λ (t + ∆t) = Λ (t) + g(Λ (t) , t, r (t))∆t

and r (t + ∆t) = r (t) + a(r(t), t, β)∆t + b (r (t) , t) [B (t + ∆t)−B (t)]

where ∆t is the interval between time points and B (t + ∆t)−B (t) ∼ N(0, ∆t) if B(t)
is a Brownian motion process. Higher order (Runge-Kutta) approximations can be
introduced but these do not seem to be employed in the statistics literature. Rather,
recent work introduces latent variables Λ(t′)’s between Λ(t) and Λ(t + ∆t). See, e.g.,
Elerian et al. (2001); Golightly and Wilkinson (2008) and Stramer and Roberts (2007).

Our prototype is the logistic equation

dΛ (t) = r(t)Λ (t)
[
1− Λ (t)

K

]
dt and Λ (0) = Λ0. (3)

To introduce systematic randomness into this model, we specify a mean-reverting
Ornstein-Uhlenbeck process for r (t):

dr (t) = −α (µr − r (t)) dt + σζdB (t) . (4)

Under Brownian motion it is known that r (t) is a stationary Gaussian process with
cov(r (t) , r (t′)) = (σ2

ζ/α) exp (−α|t− t′|).
To extend model (3) to a spatio-temporal setting, we can model Λ (s, t) at every

location s with a SDE
∂Λ (s, t)

∂t
= r(s, t)Λ (s, t)

[
1− Λ (s, t)

K (s)

]
(5)

1This is a very general specification. For example, a common SDE model is dΛ(t) = f(Λ(t), t)dt +
h(Λ(t), t)dB(t) where B(t) is Brownian motion over R1 with f and h the “drift” and “volatility” respec-
tively. This model can be considered as model (2) with g (Λ (t) , t, r (t)) = f (Λ (t) , t) + r (t) h (Λ (t) , t)
and dr (t) = r (t) dt = dB (t), which implies dΛ(t) = f(Λ(t), t)dt + h (Λ (t) , t) dB(t).
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subject to the initial conditions Λ (s, 0) = Λ0 (s). Expression (5) is derived directly from
(3) as follows. Assume model (3) for the aggregate Λ (D, t) =

∫
D

Λ (s, t) ds:

∂Λ (D, t)
∂t

= r(D, t)Λ (D, t)
[
1− Λ (D, t)

K (D)

]
. (6)

Here r (D, t) is the average growth rate of Λ (D, t), i.e., r (D, t) = (
∫

D
r (s, t) ds)/|D|

where |D| is the area of D. K(D) is the aggregate carrying capacity, i.e., K (D) =∫
D

K (s) ds.

The model for Λ (s, t) at any location s can be considered as the infinitesimal limit
of the model (6) when D is a neighborhood, δs of s whose area goes to zero. Then,

lim
|δs|→0

Λ (δs, t) / |δs| = lim
|δs|→0

(
∫

δs

Λ (s′, t) ds′)/ |δs| = Λ (s, t) ;

lim
|δs|→0

K (δs) / |δs| = lim
|δs|→0

(
∫

δs

K (s′) ds′)/ |δs| = K(s);

lim
|δs|→0

r(δs, t) = lim
|δs|→0

∫

δs

r (s′, t) ds′/|δs| = r (s, t) .

Plugging δs into (6) and passing to the limit, we obtain our local model (5).

Model (5) specifies an infinite-dimensional SDE model for the random field Λ (s, t) ,
s ∈ D. Similar to (4), we can add randomness to (5) by extending the Ornstein-
Uhlenbeck process to the case of infinite dimension,

∂r (s, t)
∂t

= L (µr (s)− r(s, t)) +
∂B (s, t)

∂t
, (7)

where L (s) is a spatial linear operator given by

L (s) = a (s) +
2∑

l=1

bl (s)
∂

∂sl
− 1

2

2∑

l=1

cl (s)
∂2

∂s2
l

(8)

where a (s), bl (s) and cl (s) are positive deterministic functions with s1 and s2 the
coordinates of location s. B (s, t) is a spatially correlated Brownian motion. Here,
equation (5) and (7) define a spatio-temporal model with a nonstationary and non-
Gaussian Λ (s, t) and a latent stationary Gaussian r (s, t). Note that a well-specified
CB will guarantee mean-square continuity and differentiability of r (s, t), s ∈ D. Be-
cause the logistic equation is Lipschitz, Λ (s, t) will also be mean-square continuous and
differentiable.

The simplest Ornstein-Uhlenbeck process model for r (s, t) sets bl and cl to zero (see
Brix and Diggle 2001); the resulting covariance is separable in space and time. For
example, with the Matérn spatial covariance function, we have

Cr(s− s′, t− t′) = σ2 exp (−a |t− t′|) (φζ |s− s′|)ν
κν (φζ |s− s′|) , (9)



738 Space-time SDE models

where κν (·) is the modified Bessel function of the second kind. When bl and cl are not
equal to zero, r (s, t) defined by equation (7) is a blur-generated process in Brown et al.
(2000) with a nonseparable non-explicit spatio-temporal covariance function. Whittle
(1963) and Jones and Zhang (1997) propose other stochastic partial differential equation
models, which are shown by Brown et al. (2000) to be special examples of the Ornstein-
Uhlenbeck process model above.

Returning to the discussion in the Introduction, conceptually, Λ (s, tj) is generated
by the continuous-time process defined by (5) and (7). However, the exact solution of
this infinite-dimensional SDE and the transition probability of the resulting Markov pro-
cess for Λ (s, tj) are not generally known in closed-form given the error process B (s, t).
Hence, for handling these models, time-discretization is usually required to compute
Λ (s, t) in simulation and estimation. So, we use Euler approximation to discretize the
SDE model for Λ (s, tj) . The Euler scheme is broadly employed in simulating SDE’s
because it the simplest method that is proven to generate a stochastic process that has
both strong convergence of order 1/2 and weak convergence of order 1 (see Kloeden
and Platen 1992 for theoretical discussions). That is the stochastic difference equation
resulting from the Euler discretization scheme generates a process that will converge to
the process defined by the stochastic differential equation when the length of time steps
goes to zero.

3 Geostatistical models using SDE

3.1 A discretized space-time model with white noise

We assume time is discretized to small, equally spaced intervals of length ∆t, indexed as
tj , j = 0, 1, ..., J . The data is considered to be Y (si, tj), i.e., an observation at location
s and any t ∈ (tj , tj + ∆t) is labeled as Y (s, tj). Then, we assume

Y (s, tj) = Λ (s, tj) + ε (s, tj) ,

where ε (s, tj) models either sampling or measure errors because a researcher cannot
directly observe Λ (s, tj).

The dynamics of the discretized Λ (s, tj) is therefore modeled by a difference equation
using Euler’s approximation applied to (5):

∆Λ (s, tj) = r(s, tj−1)Λ (s, tj−1)
[
1− Λ (s, tj−1)

K (s)

]
∆t, (10)

Λ (s, tj) ≈ Λ (s, 0) +
j∑

l=1

∆Λ(s, tj−1) . (11)

We do not have to discretize the space-time model for r (s, t) if the stationary spatio-
temporal Gaussian process ζ (s, t) allows direct evaluation of its covariance function.
For example, the model (7) with constant L (s) = ar has the closed-form separable
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covariance function given in (9) which can be directly used in modeling and can be
estimated. Using this form saves one approximation step.

We still need to model the initial Λ (s, 0) and K (s) if they are not known. For
example, because Λ (s, 0) and K (s) are positive in the logistic equation, we can model
them by the log-Gaussian spatial processes with regression forms for the means,

log Λ (s, 0) = µΛ (XΛ (s) , βΛ) + θΛ (s) , θΛ (s) ∼ GP(0, CΛ (s− s′; ϕΛ)) ;
log K (s) = µK (XK (s) , βK) + θK (s) , θK (s) ∼ GP(0, CK (s− s′; ϕK)) .

Similarly, µr(s) below (7) can be modeled as µr (Xr (s) , βr).

Conditioned on Λ (s, tj), the Y (s, tj) are mutually independent. With data Y (si, tj)
at locations {si, i = 1, . . . , n} ⊂D, we can provide a hierarchical model based on the
evolution of Λ (s, t) and the space-time parameters. We fit this model within a Bayesian
framework so completion of the model specification requires introduction of suitable
priors on the hyper-parameters.

For simplicity, we suppress the indices t and s and let our observations at time tj be
yj = {yj1, . . . , yjn} at the corresponding s1, . . . , sn locations. Accordingly, we let Λj ,
∆Λj , rj , K, µΛ (βΛ), µK (βK), µr (βr), θΛ, θK and ζ be the vectors of the corresponding
functions and processes in our continuous model evaluated at si ∈ {s1, . . . , sn}. Note
that we begin with the initial observations y0. The hierarchical model for y0, . . . , yJ

becomes
yj |Λj ∼ N

(
Λj , σ

2
εIn

)
, j = 0, . . . , J,

∆Λj = rj−1Λj−1

[
1− Λj−1

K

]
∆t,

Λj = Λ0 +
j−1∑

l=1

∆Λl,

log Λ0 = µΛ (βΛ) + θΛ, θΛ ∼ N (0, CΛ (s− s′; ϕΛ)) ,

log K = µK (βK) + θK , θK ∼ N (0, CK (s− s′; ϕK)) ,

r = µr (βr) + ζ, ζ ∼ N (0, Cr(s− s′, t− t′; ϕr)) ,

βΛ, βr, βK , ϕΛ, ϕK , ϕr ∼ priors,

(12)

where β(·) are the parameters in the mean surface function; CΛ, CK and Cr
2 are the

covariance matrices. In this model, Λ0, r and K are latent variables. Note that the
Λj ’s are deterministic functions of Λ0, r and K. The joint likelihood for the J + 1
conditionally independent observations and latent variables is

J∏

j=0

{
N

(
yj |Λj (Λj−1, rj ,K) , σ2

εIn

)}
N (log Λ0|µΛ, CΛ) N (log K|µK , CK) N (r|µr, Cr) ,

(13)
where we let r = {r0, . . . , rJ−1}.

2We will write µΛ (βΛ), µK (βK),
{

µ
(j)
r (βr) ; j = 1, . . . , J

}
, CΛ (ϕΛ), CK (ϕK) and Cr (ϕr) as µΛ,

µK , µr, CΛ, CK and Cr when there is no ambiguity.
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3.2 Bayesian inference and prediction

With regard to inference for the model in (12), there are three latent vectors: r, K and
Λ0. The hyper-parameters in this model include the βr, βK and βΛ in the parametric
trend surfaces, the spatial random effects ζ, θK , θΛ and the hyper-parameters ϕr, ϕK ,
ϕΛ in the covariance functions.

The priors for the hyper-parameters are assumed to have the form

βr, βK , βΛ ∼ π (βr) · π (βK) · π (βΛ) ; ϕr, ϕK , ϕΛ ∼ π (ϕr) · π (ϕK) · π (ϕΛ) (14)

where each of βr, βK , βΛ, ϕr, ϕK , ϕΛ may represent multiple parameters. For example,
we have ϕr =

{
αr, φr, σ

2
r , ν

}
in the Matérn class covariance function for the separable

model (9). Exact specifications of the priors for the β’s and ϕ’s depend on the particular
application. For example, if we take µr(s; βr) =X (s)βr, we adopt a weak normal prior
N (0, Σβ) for βr. The parameter σ2

r receives the usual Inverse-Gamma prior. Note that
∆Λj in the likelihood (13) for the discretized model are deterministic functions of r, K
and Λ0 defined by (10) and (11). Therefore the joint posterior is proportional to

J∏

j=0

{
N

(
yj |Λj (Λj−1, rj ,K) , σ2

εIn

)}
N (log Λ0|µΛ, CΛ) N (log K|µK , CK) N (r|µr, Cr) ·

π (βr)π (βK) π (βΛ)π (ϕr) π (ϕK)π (ϕΛ) .

(15)

We simulate the posterior distributions of the model parameters and latent variables
in (15) using a Markov Chain Monte Carlo algorithm. Because the intensities in the
likelihood function are irregular recursive and nonlinear functions of the model param-
eters and latent variables, it is very difficult to obtain derivatives for an MCMC with
directional moves, such as the Langevin method. So, instead we use a random-walk
Metropolis-Hastings algorithm in the posterior simulation. Each parameter is updated
in turn in every iteration of the simulation.

The prediction problem concerns (i) interpolating the past at new locations and (ii)
forecasting the future at current and new locations. Indeed, we can hold out the ob-
served data at new locations or in a future time period to validate our model. For the
logistic growth function, conditioning on the posterior samples of Λ0, K, r and βr, βK ,
βΛ, ϕr, ϕK , ϕΛ, we can use spatio-temporal interpolation and temporal extrapolation
to obtain ∆ΛJ+∆J (s) in period J + ∆J at any new location s ∈ D by calculating
µr (s, βr), µK (s, βK), µΛ (s, βΛ) and obtaining ζ(t, s), t = 1, . . . , J + ∆J , θK (s) and
θΛ (s) by spatio-temporal prediction, and then using (10) and (11) recursively. Because
we can obtain a predictive sample for ∆ΛJ+∆J (s) from the posterior samples of the
model fitting, we can infer on any feature of interest associated with the predictive
distribution of ∆ΛJ+∆J (s). The spatial interpolation of past observations at new loca-
tions is demonstrated in the subsection below using a simulated example. We will also
demonstrate temporal prediction when we apply a Cox-process version of our model to
the house construction data in Section 4.
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3.3 A simulated data example

In order to see how well we can learn about the true process, we illustrate the fitting of
the models in (12) with a simulated data set. In a study region D of 10×10 square units
shown as the block in Figure 1, we simulate 44 locations at which spatial observations are
collected over 30 periods. Therefore our observed spatio-temporal data that constitute
a 44×30 matrix. The data are sampled using (12) where we fix the carrying capacity to
be one at all locations. We may envision that the data simulate the household adoption
rates for a certain durable product (e.g., air conditioners, motorcycles) in 44 cities
over 30 months. A capacity of one means 100% adoption. Household adoption rates are
collected by surveys with measurement errors. The initial condition Λ0 is simulated as a
log-Gaussian process with a constant mean surface µΛ and the Matérn class covariance
whose smoothness parameter ν is set to be 3/2. The spatio-temporal growth rate
r is simulated using a constant mean µr and the separable covariance function (9),
where the Matérn smoothness parameter ν is also set to be 3/2. This separable model
induces a convenient covariance matrix as the Kronecker product of the temporal and
spatial correlation matrices: σ2

rΣt⊗Σs. The values of the fixed parameters in our data
simulation are presented in Table 1.

Model Parameters True Value Posterior Mean 95% Equal-tail Interval
µΛ -4.2 -4.14 (-4.88, -3.33)
σΛ 1.0 0.91 (0.62, 1.46)
φΛ 0.7 0.77 (0.50, 1.20)
σε 0.05 0.049 (0.047, 0.052)
µr 0.24 0.24 (0.22, 0.26)
σr 0.08 0.088 (0.077, 0.097)
φr 0.7 0.78 (0.60, 1.10)
αr 0.6 0.64 (0.51, 0.98)

Table 1: Parameters and their posterior inference for the simulated example

We use the simulated r and Λ0 and the transition equation (10) recursively to obtain
∆Λj and Λj for each of the 30 periods. The observed data yj are sampled as mutually
independent given Λj with the random noise εj . The data at four selected locations
(marked as 1, 2, 3, and 4 in Figure 1) are shown as small circles in Figure 2. We leave
out the data at four randomly chosen locations (shown in diamond shape and marked
as A, B, C and D in Figure 1) for spatial prediction and out-of-sample validation for
our model.

We fit the same model (12) to the data at the remaining 40 locations (hence a
40×30 spatio-temporal data set). We use very vague priors for the constant means:
π(µΛ) ∼ N

(
0, 108

)
and π (µr) ∼ N

(
0, 108

)
. We use natural conjugate priors for the

precision parameters (inverse of variances) of r and Λ0: π
(
1/σ2

r

) ∼ Gamma(1, 1) and
π

(
1/σ2

Λ

) ∼ Gamma(1, 1). The positive parameter for the temporal correlation of r

also has a vague log-normal prior: π (αr) ∼ log-N
(
0, 108

)
. Because the spatial range

parameters φr and φΛ are only weakly identified (Zhang 2004), we only use informative
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and discrete prior for them. Indeed we have chosen 20 values (from 0.1 to 2.0) and
assume uniform priors on them for both φr and φΛ.

We use the random-walk Metropolis-Hastings algorithm to simulate posterior sam-
ples of r and Λ0. We draw the entire vector of Λ0 for all forty locations as a single block
in every iteration. Because r is very high-dimensional (r being a 40×30 matrix), we
cannot draw the entire matrix of r as one block and have satisfactory acceptance rate
(between 20% to 40%). Our algorithm divides r into 40 row blocks (location-wise) in
every odd-numbered iteration and 30 column blocks (period-wise) in every even num-
bered iteration. Each block is drawn in one Metropolis step. We find the posterior
samples start to converge after about 30,000 iterations. Given the sampled r and Λ0,
the mean parameters µr, µΛ and the precision parameters 1/σ2

r and 1/σ2
Λ all have con-

jugate priors, and therefore their posterior samples are drawn with Gibbs samplers. φr

and φΛ have discrete priors and therefore discrete Gibbs samplers too. We also use the
random-walk Metropolis-Hastings algorithm to draw αr.

We obtain 200,000 samples from the algorithm and discard the first 100,000 as burn-
in. For the posterior inference, we use 4,000 subsamples from the remaining 100,000
samples, with a thinning equal to 25. It takes about 15 hours to finish the computation
using the R statistical software on an Intel Pentium 4 3.4GHz computer with 2GB of
memory. The posterior means and 95% equal-tail Bayesian posterior predictive intervals
for the model parameters are presented in Table 1. Evidently we are recovering the true
parameter values very well. Figure 2 displays the posterior mean of the growth curves
and 95% Bayesian predictive intervals for the four locations (1, 2, 3 and 4), compared
with the actual latent growth curve Λ (t, s) and observed data. Up to the uncertainty
in the model we approximate the actual curves very well. The fitted mean growth
curves almost perfectly overlap with the actual simulated growth curves. The empirical
coverage rate of the Bayesian predictive bounds is 93.4%.

We use the Bayesian spatial interpolation in Section 3.2 to obtain the predictive
growth curve for four new locations (A, B, C and D). In Figure 3 we display the means
of the predicted curves and 95% Bayesian predictive intervals, together with the hold-
out data. We can see the spatial prediction captures the patterns of the hold-out data
very well. The predicted mean growth curves overlap with the actual simulated growth
curves very well except for location D, because location D is rather far from all the
observed locations. The empirical coverage rate of the Bayesian predictive intervals is
95.8%.

We also fit the following customary process realization model with space-time ran-
dom effects to the simulated data set

yj = µ + ξj + εj ; εj ∼ N
(
0, σ2

εIn

)
, j = 0, . . . , J (16)

where the random effects ξ = [ξ0, . . . , ξj ] come from a Gaussian process with a separable
spatio-temporal correlation of the form:

Cξ(t− t′, s− s′) = σ2
ξ exp (−αξ |t− t′|) (φξ |s− s′|)ν

κν (φξ |s− s′|) , ν =
3
2

. (17)
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Comparison of model performance between our model in (12) and the model in
(16) is conducted using spatial prediction at the 4 new locations in Figure 1. The
computational cost of the model in (16) is, of course, much lower; this model can be
fitted with a Gibbs sampler and requires one hour for 100,000 iterations. After we
discard 20,000 as burn-in and thin the remaining samples to 4,000, we conduct the
prediction on the four new sites (A, B, C and D). In Figure 4 we display the means of
the predicted curves and 95% Bayesian predictive intervals, together with the hold-out
data. For the four hold-out sites, the average mean square error of the model (12) is
1.75×10−3 versus 3.34×10−3 of the model (16); the average length of the 95% predictive
intervals for the model (12) is 0.29 versus 0.72 for the model (16). It is evident that
the prediction results under the benchmark model are substantially worse than those
under our model (12); the mean growth curves are less accurate and less smooth, and
the 95% predictive intervals are much wider.

4 Space-time Cox process models using SDE

4.1 The model

Here, we turn to the use of a SDE to provide a Cox process model for space-time point
patterns. Let D again be a fixed region and let XT denote an observed space-time
point pattern within D over the time interval [0, T ]. The Cox process model assumes
a positive space-time intensity that is a realization of a stochastic process. Denote the
stochastic intensity by Ω (s, t) , s ∈ D, t ∈ [0, T ]. In practice, we may only know the
spatial coordinates of all the points whereas the time coordinates are only known to be
in the time interval [0, T ]. For example, in our house construction data, for Irving, TX,
we only have the geo-coded locations of the newly constructed houses within a year. The
exact time when the construction of a new house starts is not available. The integrated
process Λ (s, T ) =

∫ T

0
Ω(s, t) dt, provided that Ω (s, t) is integrable over [0, T ], is the

intensity for this kind of point patterns. We may also know multiple subintervals of
[0, T ]: [t1 = 0, t2), . . . , [tJ−1, tJ = T ], and observe a point pattern in each subinterval.
These data constitute a series of discrete-time spatio-temporal point patterns, which are
denote by X[t1=0,t2), . . . , X[tj−1,tN=T ]. The integrated process also provides stochastic
intensities for these point patterns

∆Λj (s) = Λ (s, tj)− Λ (s, tj−1) =
∫ tj

tj−1

Ω(s, τ) dτ.

In this paper, we will model the dynamics of these point patterns by an infinite di-
mensional SDE subject to the initial condition for Λ (s, t). Note an equivalent infinite
dimensional SDE for Ω (s, t) can also be derived from the equation for Λ (s, t).

If we observed the complete space-time data XT (s, t), temporally dependent X[t1=0,t2)

,...,X[tj−1,tN=T ] will still provide a good approximation to XT (s, t), when the time in-
tervals are sufficiently small (Brix and Diggle 2001). Moreover, this will also facilitate
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the use of the approximated intensity

∆Λj (s) = Λ (s, tj)− Λ (s, tj−1) =
∫ tj

tj−1

Ω(s, τ) dτ ≈ Ω(s, tj−1) (tj − tj−1) .

As a concrete example, we return to the house construction dataset mentioned in
Section 1. Let Xj = X[tj−1,tj) = xj be the observed set of locations of new houses built
in region D and period j=[tj−1, tj). We can apply the Cox process model to Xj and
assume that the stochastic intensity Λ (s, t) follows the logistic equation model (5). We
can also apply the discretized version (10) to ∆Λj (s).

Let our initial point pattern be x0 and the intensity be Λ0 (s) =
∫ 0

−∞ Ω (s, τ) dτ .
The hierarchical model for the space-time point patterns is merely the model (12) with
the first stage of the hierarchy replaced by the following

xj |∆Λj ∼ Poisson Process (D,∆Λj) , j = 1, . . . , J

x0|Λ0 ∼ Poisson Process (D,Λ0) ,
(18)

where we suppress the indices t and s again for the periods t1, . . . , tJ . Note that, unlike
in (12), the intensity ∆Λj for xj must be positive. Therefore, we model the log growth
rate, that is

log r (s, t) = µr (s;βr) + ζ (s, t) , ζ ∼ GP(0, Cζ(s− s′, t− t′;ϕr)) . (19)

The J spatial point patterns are conditionally independent given the space-time
intensity, so the likelihood is

J∏

j=1

{
exp

(
−

∫

D

∆Λj (s) ds

) nj∏

i=1

∆Λj (xji)

}
· exp

(
−

∫

D

Λ0 (s) ds

) n0∏

i=1

Λ0 (x0i) . (20)

This likelihood is more difficult to work with than that in (13). There is a stochastic
integral in (20),

∫
D

∆Λj (s) ds, which must be approximated in model fitting by a Rie-
mann sum. To do this, we divide the geographical region D into M cells and assume the
intensity is homogeneous within each cell. Let ∆Λj (m) and Λ0 (m) denote this average
intensity in cell m. Let the area of cell m be A (m). Then, the likelihood becomes

J∏

j=1

[
exp

(
−

M∑
m=1

∆Λj (m)A (m)

)
M∏

m=1

∆Λj (m)njm

]

· exp

(
−

M∑
m=1

Λ0 (m)A (m)

)
M∏

m=1

Λ0 (m)n0m

(21)

where njm is the number of points in cell m in period j. Our parameter processes
r (s, tj) and K (s) are also approximated accordingly as rj (m) and K (m), which are
constant in each cell m.
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4.2 Modeling house construction data for Irving, TX

Our house construction dataset consists of the geo-coded locations and years of the
newly constructed residential houses in Irving, TX from 1901 to 2002. Figure 5 shows
how the city grows from the early 1950’s to the late 1960’s. Irving started to develop in
the early 1950’s and the outline of the city was already in its current shape by the late
1960’s. The city became almost fully developed by the early 1970’s with much fewer
new constructions after that era. Therefore, for our data analysis, we select the period
from 1951 through 1969 when there was rapid urban development. In our analysis, we
use the data from year 1951–1966 to fit our model and hold out the last three years
(1967, 1968 and 1969) for prediction and model validation.

As shown in the central block of Figure 6, our study region D in this example
is a square of 5.6×5.6 square miles with Irving, TX in the middle. This region is
geographically disconnected from other major urban areas in Dallas County, which
enables us to isolate Irving for analysis. We divide the region into 100 (10×10) equally
spaced grid cells shown in Figure 6. Within each cell, we model the point pattern with
a homogeneous Poisson process given ∆Λj (m). The corresponding Λ0 (m), K (m) and
rj (m) are collected into vectors Λ0,K, and r which are modeled as follows.

log Λ0 = µΛ + θΛ, θΛ ∼ N (0, CΛ)
log K = µK + θK , θK ∼ N (0, CK)
log r = µr + ζ, ζ ∼ N (0, Cr)

where the spatial covariance matrix CΛ and CK are constructed using the Matérn class
covariance function with distances between the centroids of the cells. The smoothness
parameter ν is set to be 3/2. The variances σ2

Λ, σ2
K and range parameters φΛ and

φK are to be estimated. The spatio-temporal log growth rate r is assumed to have a
separable covariance matrix Cr = σ2

rΣt ⊗ Σs, where the spatial correlation Σs is also
constructed as a Matérn class function of the distances between cell centroids with
smoothness parameter ν being set to 3/2. The temporal correlation Σt is of exponential
form as in (9). The variance σ2

r , spatial and temporal correlation parameters φr and αr

are to be estimated.

We use very vague priors for the parameters in the mean function: π(µΛ), π (µK),
π (µr)

ind∼ N
(
0, 108

)
. We use natural conjugate priors for the precision parameters

(inverse of variances) of r and Λ0: π
(
1/σ2

Λ

)
, π

(
1/σ2

K

)
, π

(
1/σ2

r

) ind∼ Gamma(1, 1). The
temporal correlation parameter of r also has a vague log-normal prior: π (αr) ∼ log-
N

(
0, 108

)
. Again, the spatial range parameters φΛ φK and φr are only weakly identified

(Zhang 2004), so we use informative, discrete priors for them. Indeed we have chosen
40 values (from 1.1 to 5.0) and assume uniform priors on them for φΛ φK and φr.

We use the same random-walk Metropolis-Hastings algorithm as in the simulation
example to simulate posterior samples with the same tuning of acceptance rates. As
a production run we obtain 200,000 samples from the algorithm and discard the first
100,000 as burn-in. For the posterior inference, we use 4,000 subsamples from the
remaining 100,000 samples, with a thinning equal to 25. The posterior means and 95%
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equal-tail posterior intervals for the model parameters are presented in Table 2.

Model Parameters Posterior Mean 95% Equal-tail Interval
µΛ 2.78 (2.15, 3.40)
σΛ 1.77 (1.49, 2.11)
φΛ 3.03 (2.70, 3.20)
µr -2.76 (-3.24, -2.29)
σr 2.48 (2.32, 2.68)
φr 4.09 (3.70, 4.30)
αr 0.52 (0.43, 0.62)
µK 6.49 (5.93, 7.01)
σK 1.17 (1.02, 1.44)
φK 1.91 (1.60, 2.20)

Table 2: Posterior inference for the house construction data

Figure 7 shows the posterior mean growth curves and 95% Bayesian predictive in-
tervals for the intensity in the four blocks (marked as block 1, 2, 3 and 4) in Figure 6.
Comparing with the observed number of houses in the four blocks from 1951 to 1966,
we can see the estimated curves fit the data very well.3

In Figure 8 we display the posterior mean intensity surface for year 1966 and the
predictive mean intensity surfaces for years 1967, 1968 and 1969. We also overlay the
actual point patterns of the new homes construct in those four years on the intensity
surfaces. Figure 8 shows that our model can forecast the major areas of high intensity,
hence high growth very well. For example, in the upper left corner, the intensity contin-
ues rising from 1966 to 1968 and starts to wane in 1969. We can see increasing numbers
of houses are built from 1966 to 1968 and much fewer are built in 1969. In the lower
left part of the plots near the bottom, we can see areas of high intensity gradually shift
down to the south and the house construction pattern confirms this trend too.

5 Discussion

We have illustrated the use of stochastic differential equations to model both geostatis-
tical and point pattern space-time data. Our examples demonstrate that the proposed
hierarchical modeling can accommodate the complicated model structure and achieve
good estimation and prediction. The major challenges in fitting our proposed models
are: (i) the evaluation of a likelihood that involves discretization of the SDE in time and
stochastic integrals and (ii) a likelihood that does not allow an easy formulation of an ef-
ficient Metropolis-Hastings algorithm. In dealing with the first challenge, we utilize the
Euler approximation and the space discretization method in Benes et al. (2002). Though
the simulation results are encouraging, further investigation of these approximations or

3The growth curves for the house construction data are much smoother than those in our simulated
data example in Section 3.3. Although our fitted mean growth curves seem to match the data too
perfectly, we do not think we overfit because our hold-out prediction results are very accurate as well.
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alternatives would be of interest. For the second, we apply the random-walk Metropolis
algorithm to the posterior simulation, which is liable to create large auto-correlation in
the sampling chain. The nonlinear and recursive structure of our likelihood makes most
of the current Metropolis methods inapplicable, encouraging future research for a more
efficient Metropolis-Hastings algorithm for this class of problems.

Our application to the house construction data is really only a first attempt to
incorporate a structured growth model into a spatio-temporal point process to afford
insight into the mechanism of urban development. However, if it is plausible to assume
that the damping effect of growth is controlled by the carrying capacity of a logistic
model, then it is not unreasonable to assume the growth rate is mean-reverting. Of
course, we can envision several ways to make the model more realistic and these suggest
directions for future work. We might have additional information at the locations to
enable a so-called marked point process. For instance, we might assign the house to a
group according to its size. Fitting the resultant multivariate Cox process can clarify
the intensity of development. We could also have useful covariate information on zoning
or introduction of roads which could be incorporated into the modeling for the rates.
We can expect “holes” in the region - parks, lakes, etc. - where no construction can
occur. For locations in these regions, we should impose zero growth. Finally, it may be
that growth triggers more growth so that so-called self exciting process specifications
might be worth exploring.
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Figure 1: Locations for the simulated data example in Section 3.3.
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Figure 2: Observed space-time geostatistical data at 4 locations, actual (dashed line) and
fitted mean growth curves (solid line), and 95% predictive intervals (dotted line) by our model
(12) for the simulated data example.
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Figure 3: Hold-out space-time geostatistical data at 4 locations, actual (dashed line) and
predicted mean growth curves (solid line) and 95% predictive intervals (dotted line) by our
model (12) for the simulated data example.
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Figure 4: Hold-out space-time geostatistical data at 4 locations, actual (dashed line) and
predicted mean growth curves (solid line) and 95% predictive intervals (dotted line) by the
benchmark model (16) for the simulated data example.
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Figure 5: Growth of residential houses in Irving, TX.
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Figure 6: The gridded study region encompassing Irving, TX.
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Figure 7: Mean growth curves (solid line) and their corresponding 95% predictive intervals
(dotted lines) for the intensity for the four blocks marked in Figure 6.



758 Space-time SDE models

Figure 8: Posterior and predictive mean intensity surfaces for the years 1966, 1967, 1968 and
1969




