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Comment on Article by Jensen et al.

Mark E. Glickman∗

I offer my congratulations to Jensen, McShane and Wyner (hereafter JMW) on
their paper modeling home run frequencies of Major League Baseball (MLB) players.
It is always refreshing to read such a clearly written, well-organized paper on a topic
of interest to a broad audience and one that illustrates cutting edge modeling and
computational tools in Bayesian Statistics. It is also worth noting that the first author
is becoming an accomplished researcher in quantitative aspects of baseball, most recently
having developed complex statistical models for evaluating fielding (Jensen et al. 2009).
The current paper adds to his accruing and impressive list of work on Statistics in
sports.

In the current paper, the authors develop and investigate a model for home run
frequencies for MLB seasons from 1990 through 2005 based on publicly available data.
The data contains player performance information aggregated by season, so examining
within-season variation is not possible. Home run frequencies for a player within a
season are modeled as binomial counts (out of the total number of at-bats, appropriately
defined), and the probability of a home run during a season is a function of the player’s
position, team, and age. The authors make some interesting specific assumptions that
result in a unique model. First, they posit that the effect of age on the log-odds of
the probability of a home run follows a cubic B-spline relationship for a given field
position. Second, they assume a latent categorization of each player in a given season
as elite versus non-elite, essentially treating a player’s home run frequency as a mixture
of two binomial components with different probabilities. Third, the latent elite status
for each player is assumed to follow a Markov process with transition probabilities that
are common for all players at the given field position. The authors also investigate
a generalization of their basic model in which the transition probabilities can vary
by player through model components specific to players at that position. The entire
model is fit via MCMC simulation from the posterior distribution, and performance
of their approach is evaluated through measures that compare model predictions in
2006 to observed home run frequencies. They conclude that their basic model fares
well against existing competitor approaches that are not nearly as sophisticated. The
authors deserve credit for constructing a model that is competitive with one that makes
use of data obtained on a daily basis. It is also particularly impressive that their model
predicts well given the paucity of covariate information.

One can raise minor quibbles with the authors’ approach, but many of the concerns
are an artifact of the constraints on the data available to them. For example, the ability
to account for within-season variation strikes me as a clear deficiency in modeling home
run probabilities. Given that players are generally improving from year to year in their
twenties, it is not unreasonable to speculate that some of this improvement is occurring
within a season rather than between seasons. Because the data JMW use is aggregated
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by season, it is impossible to infer such changes. The authors also incorporate a team
indicator in their model, which ostensibly is a proxy for playing half of the time in their
own ballpark, though this does not account for minor artifacts such as within-season
player trades. As JMW note, this team parameter may be difficult to interpret when
it applies to a whole season of games. If individual game-specific data were available,
then the impact of the actual ballpark could be incorporated into the model which
may have a profound effect on inferences. My own bias is to wonder whether modeling
and predicting home run frequencies is a question that baseball front office staff or
other professionals really want answered. While forecasting home run probabilities
seems like an interesting theoretical question, various metrics to measure hitting rates
might be of greater practical utility. The authors do mention at the conclusion of the
paper their interest in pursuing such activities. I also found curious that the expanded
model involving Markov transition probabilities that varied by player produced worse
predictions than the simpler model in which the transition probabilities were constrained
to vary only by player-position. This may suggest some combination of a model not
sufficiently capturing important features of the data, or an expanded model that is too
highly parameterized.

To me, the most interesting aspect of the paper is the decision to incorporate a latent
indicator of elite status into the model, and the accompanying stochastic process. On
the one hand, JMW are able to account for variation in home run rates and improve
predictions by introducing a 2-state hidden Markov model (HMM). One clear benefit of
incorporating this model component is that it allows answering questions about when
certain players can be considered elite versus non-elite. On the other hand, I wonder
whether a 2-state Markov model is the most appropriate and most flexible for predicting
home run frequencies. The authors consider a HMM in which players at the same
position share the same transition probabilities, and another in which the transition
probabilities vary by player but are centered at position-specific distributions. In both
cases, the size of the effect of being elite for all players at the specified position is the
same. I realize that JMW are focused on keeping the model as simply parameterized as
possible, but the question arises whether accuracy (especially predictive accuracy, one
of the main implied goals of the paper) is being sacrificed. Given that all the parameters
of the HMM are integrated out of the posterior distribution in making predictions, it
is the structure of the HMM that is most crucial, and not inferences about any of the
HMM parameters.

The authors’ HMM assumes that players at any given time are in one of two states,
once accounting for age, position and team. However, it strikes me that player effects
(beyond the effect of age, position and team) more justifiably fall on a continuum. A
natural way to modify JMW’s model is to assume

logit θijkb = αk + βb + fk(Aij) + δijk (1)

where θijkb is the home run probability for player i with home ballpark b in season j
at position k; αk, βb and fk(Aij) are as defined in JMW; and δijk is a player-specific
effect following a stochastic process with a continuous state-space, such as

δijk ∼ N(δi,j−1,k, ψ2), (2)
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where initial player effects may be assumed drawn from a common distribution centered
at a position-specific model component,

δi1k ∼ N(ηk, φ2) (3)

with position-specific effects ηk. This model assumes that, beyond the effects of ball-
park, position and age, an individual player effect in a given season is drawn from a
distribution centered at last season’s mean, thus inducing a time-correlation particular
to that player. Such an approach can represent trajectories of not only elite players, but
also better-than-average players as well as worse-than-average players. Similar models
for binomial data in a game/sports context have been examined by Fahrmeir and Tutz
(1994) and Glickman (1999), among others, though these approaches do not include an
additive spline component for age. Various changes to the assumptions in (2) and (3)
could be considered, such as having the innovation variance, ψ2, depend on player po-
sition (that is, ψ2

k), the transition model could be heavy-tailed, such as a t-distribution
instead of normal (which would account for occasional bursts of improvement in home
run probability), or having the prior variance, φ2, depend on the player position (that
is, φ2

k).

An advantage to a continuous state-space compared to a 2-state system is that it
recognizes varying degrees of improvement and worsening over time beyond what is
captured by age-specific effects. Substituting the HMM in the authors’ framework with
that in (2) should involve straightforward modifications to the MCMC algorithm, so
the computational details ought to involve tractable calculations. Again, because the
parameters of a continuous state-space model are integrated out of the posterior distri-
bution to obtain predictive inferences, or even age-curve estimates, the richer structure
compared to the 2-state HMM may result in more reliable inferences. The richer struc-
ture may also more appropriately calibrate the levels of uncertainty in predictions which
appear overly conservative as evidenced in Table 1 of their paper. Of course, one needs
to fit such a model to the data to be convinced of such speculation.

Notwithstanding some of my suggestions for alternative directions the authors could
take in further refining their model, I think that their approach makes an important
contribution to a growing literature on sophisticated methods in analyzing sports data.
Modeling the effect of age through a cubic B-spline is a nice feature of their approach,
and accounting for time dependence in home run rates through a hidden Markov model
is a novel addition, even though my feeling is that a continuous state-space Markov
model may be more promising. I look forward to the continued success and insightful
work from this productive group of researchers.
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