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Let {Lx
t ; (x, t) ∈ R1 × R1+} denote the local time of Brownian motion,

and

αt :=
∫ ∞
−∞

(Lx
t )2 dx.

Let η = N(0,1) be independent of αt . For each fixed t ,∫ ∞−∞(Lx+h
t − Lx

t )2 dx − 4ht

h3/2
L→

(
64

3

)1/2√
αtη

as h → 0. Equivalently,∫ ∞−∞(Lx+1
t − Lx

t )2 dx − 4t

t3/4
L→

(
64

3

)1/2√
α1η

as t → ∞.

1. Introduction. In [10] almost sure limits are obtained for the Lp moduli of
continuity of local times of a very wide class of symmetric Lévy processes. For
Brownian motion the result is as follows: Let {Lx

t ; (x, t) ∈ R1 × R1+} denote the
local time of Brownian motion. Then for all p ≥ 1, and all t ∈ R+,

lim
h↓0

∫ b

a

∣∣∣∣Lx+h
t − Lx

t√
h

∣∣∣∣p dx = 2pE(|η|p)

∫ b

a
|Lx

t |p/2 dx(1.1)

for all a, b in the extended real line almost surely, and also in Lm, m ≥ 1. (Here η

is a normal random variable with mean zero and variance one.) When p = 2 and
a = −∞, b = ∞ we can write (1.1) in the form,

lim
h↓0

∫ ∞
−∞

(Lx+h
t − Lx

t )
2

h
dx = 4t a.s.(1.2)

This result in (1.1) uses the Eisenbaum Isomorphism theorem (see, e.g., [9], The-
orem 8.1.1), and is a consequence of a similar result for the Ornstein–Uhlenbeck
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process [the stationary Gaussian process {G(x), x ∈ R1}, with E(G(x) −
G(y))2 = 2(1 − e−|x−y|)], which is that, for all p ≥ 1,

lim
h→0

∫ b

a

∣∣∣∣G(x + h) − G(x)√
h

∣∣∣∣p dx = E|η|p(b − a) ∀a, b ∈ R1 a.s.(1.3)

This is also obtained in [10], in which this question is considered for a very large
class of Gaussian processes. The right-hand side of (1.3) is the expected value of
the left-hand side. Consequently, (1.3) can be thought of as a law of large numbers.
In [11] we consider the central limit theorem for the left-hand side of (1.3). For the
Ornstein–Uhlenbeck, when p = 2, we get

lim
h↓0

∫ b
a (G(x + h) − G(x))2 dx − 2h(b − a)

h3/2
L= (16/3)1/2(b − a)η.(1.4)

The argument involving the Eisenbaum Isomorphism theorem that is used in
[10] to show that (1.3) implies (1.1) does not work to show that (1.4) implies a
similar result for the local times of Brownian motion. In this paper we obtain a
central limit theorem corresponding to (1.1) by considering moments of∫

(Lx+1
t − Lx

t )
2 dx.(1.5)

(An integral sign without limits is to be read as
∫ ∞
−∞.)

Let

αt =
∫

(Lx
t )

2 dx,(1.6)

and let η = N(0,1) be independent of αt . We have the following weak convergence
results.

THEOREM 1.1. For each fixed t ,∫
(Lx+h

t − Lx
t )

2 dx − 4ht

h3/2
L→ c

√
αtη(1.7)

as h → 0, where c = (64/3)1/2.
Equivalently, ∫

(Lx+1
t − Lx

t )
2 dx − 4t

t3/4
L→ c

√
α1η(1.8)

as t → ∞.

The equivalence of (1.7) and (1.8) follows from the scaling relationship

{Lx
h−2t

; (x, t) ∈ R1 × R1+} L= {h−1Lhx
t ; (x, t) ∈ R1 × R1+}(1.9)
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(see, e.g., [9], Lemma 10.5.2), which implies that∫
(Lx+h

t − Lx
t )

2 dx
L= h3

∫
(Lx+1

t/h2 − Lx
t/h2)

2 dx.(1.10)

Using this, and (1.7) with t = 1, and the change of variables h2 = 1/t gives (1.8).
We show in Lemma 8.1 that

E

(∫
(Lx+1

t − Lx
t )

2 dx

)
= 4t + O(t1/2).(1.11)

Consequently, (1.8) can be written as∫
(Lx+1

t − Lx
t )

2 dx − E(
∫
(Lx+1

t − Lx
t )

2 dx)

t3/4
L→ c

√
α1η.(1.12)

The weak law (1.7) can be written similarly.
Consider the limit in (1.7), and note that

√
αtη

L=
∫ ∞
−∞

Lx
t dWx,(1.13)

where {Wx,x ∈ R1} is a new two-sided Brownian motion independent of
{Lx

t ; (x, t) ∈ R1 × R1+}. The process {∫ ∞
−∞ Lx

t dWx, t ∈ R+} is often referred to
as Brownian motion in Brownian scenery. It appeared first in the work of Kesten
and Spitzer [8]. Let {Sk}∞k=0 be a simple symmetric random walk and let {σ(x)}x∈Z

be independent identically distributed symmetric random variables, with variance
one, that are independent of {Sk}. The process

Kn =
n∑

k=0

σ(Sk), n ≥ 1,(1.14)

was introduced in [8] as a model of a self-interacting process. Kn is called a ran-
dom walk in random scenery. In [8] it is shown that under certain moment condi-
tions

n−3/4K[nt]
L→

∫ ∞
−∞

Lx
t dWx, as n → ∞,(1.15)

in the space of bounded functions on [0,1] with the uniform topology.
More recently, the random variable

∫ ∞
−∞ Lx

1 dWx has appeared as the limit in a
model for charged polymers [2]. Let {ωk}∞k=1 be independent identically distrib-
uted symmetric random variables, with variance one, that satisfy certain integra-
bility conditions and let {Sk}∞k=1 be a simple symmetric random walk independent
of {ωk}. Consider the stochastic process

Hn = ∑
1≤j<k≤n

ωjωk1{Sj=Sk}, n ≥ 1.(1.16)

Hn is referred to as the polymer energy of {S1, S2, . . . , Sn}. To understand the phys-
ical intuition behind this, think of assigning an electrical charge ωk to the random
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site Sk , for all k = 1,2, . . . . Assume that whenever Sj = Sk , we have an electrical
interaction ωjωk . In this case Hn represents the total electrical interaction of the
polymer {S1, S2, . . . , Sn}. In [2] it is shown that

n−3/4Hn
L→ 2−1/2

∫ ∞
−∞

Lx
1 dWx.(1.17)

Furthermore, Chen and Khoshnevisan ([3], Theorem 1.2) show that Kn and Hn are
close in distribution.

In the proof of Theorem 1.1 we use the following result which is of independent
interest: let {Lx

t , L̃
x
t ; (x, t) ∈ R1 × R1+} denote the local times of two independent

Brownian motions and let

βs,t =
∫

Lx
s L̃

x
t dx(1.18)

denote their intersection local time.

THEOREM 1.2. For each fixed s, t ,∫
(Lx+h

s − Lx
s )(L̃

x+h
t − L̃x

t ) dx

h3/2
L→ C̃

√
βs,tη(1.19)

as h → 0 where C̃ = (32/3)1/2. Consequently,∫
(Lx+1

t − Lx
t )(L̃

x+1
t − L̃x

t ) dx

t3/4
L→ C̃

√
β1,1η(1.20)

as t → ∞.

We were motivated to try to find a central limit theorem for
∫
(Lx+h

t − Lx
t )

2 dx

by our interest in the expression

Hn =
n∑

i,j=1,i 
=j

1{Si=Sj } − 1

2

n∑
i,j=1,i 
=j

1{|Si−Sj |=1}(1.21)

which appears as the Hamiltonian in a model for a polymer in a repulsive medium
[6]. Here S := {Sn;n = 0,1,2, . . .} is a simple random walk on Z1. Note that

Hn = 1

2

∑
x∈Z1

(lxn − lx+1
n )2,(1.22)

where lxn = ∑n
i=1 1{Si=x} is the local time for S.

Theorems 1.1 and 1.2 are proved by the method of moments. In Section 2
we show that Theorem 1.2 follows immediately from moment estimates in
Lemma 2.1. Lemma 2.1 itself follows from Lemma 2.2, which obtains the mo-
ments of an expression analogous to the one in Lemma 2.1, except that the fixed
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time t is replaced by independent exponential times. Lemma 2.2 is proved in Sec-
tion 4. Lemma 2.1 also requires Lemma 2.3 which allows us to use Laplace trans-
form methods. Lemma 2.3 is proved in Section 5. In Section 3 we derive some
estimates on the potential densities of Brownian motion that are used throughout
this paper. In Section 6 we show that Theorem 1.1 follows from Lemma 6.2, on
the moments of an expression analogous to the left-hand side of (1.7), in which t

is replaced by an independent exponential time. Lemma 6.2 is proved in Section 7.
In Section 8 we obtain (1.11).

The basic tool we use for studying moments of local times is Kac’s moment
formula. We use exponential times to make Kac’s moment formula manageable.
Moments at exponential times correspond to the Laplace transforms of the mo-
ments at fixed times. Since the left-hand side of (1.7) has no obvious monotonicity
properties, an important part of our proof involves showing how to derive limit
results for the moments of (1.7) from limit results for their Laplace transforms.

An alternate approach to proving Theorems 1.1 and 1.2 would be to use
Tanaka’s formula and martingale methods (see [14, 15]). For the results in this
paper this would involve establishing results about the differentiability of triple in-
tersection local times, as is done in [12] for ordinary intersection local times. We
plan to return to this at a later date.

2. Proof of Theorem 1.2. We derive Theorem 1.2 from the next lemma which
is proved in this section.

LEMMA 2.1. For all s, t ≥ 0 and all integers m ≥ 0,

lim
h→0

E

((∫
(Lx+h

s − Lx
s )(L̃

x+h
t − L̃x

t ) dx

h3/2

)m)
(2.1)

=
⎧⎨⎩

(2n)!
2nn!

(
32

3

)n

E

{(∫
Lx

s L̃
x
t dx

)n}
, if m = 2n,

0, otherwise.

PROOF OF THEOREM 1.2. It follows from [4], formula (6.12), that

E

{(∫
(Lx

s )
2 dx

)n}
≤ Cn

s ((2n)!)1/4.(2.2)

Therefore, the right-hand side of (2.1), which is the 2nth moment of c
√

βs,tη is
less than or equal to Cn

s,t ((2n)!)3/4. This implies that c
√

βs,tη is determined by its
moments (see [5], pages 227–228). Thus (1.19) follows from [1], Theorem 30.2,
which is often referred to as the method of moments. We then get (1.20) by using
the scaling relationship (1.9). �

The next two lemmas are used in the proof of Lemma 2.1. Lemma 2.2 is proved
in Section 4 and Lemma 2.3 is proved in Section 5.
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Let λζ and λ̃ζ ′ be independent exponential times with means 1/ζ and 1/ζ ′,
respectively.

LEMMA 2.2. For each integer m ≥ 0, and any ζ, ζ ′ > 0,

lim
h→0

E

((∫
(Lx+h

λζ
− Lx

λζ
)(L̃x+h

λ̃ζ ′ − L̃x
λ̃ζ ′ ) dx

h3/2

)m)
= am,(2.3)

where

am =
⎧⎨⎩

(2n)!
2nn!

(
32

3

)n

E

{(∫
Lx

λζ
L̃x

λ̃ζ ′ dx

)n}
, if m = 2n,

0, otherwise.
(2.4)

We write the statement of Lemma 2.2 in the form,

lim
h→0

∫ ∞
0

∫ ∞
0

e−ζ s−ζ ′tE
((∫

(Lx+h
s − Lx

s )(L̃
x+h
t − L̃x

t ) dx

h3/2

)m)
ds dt

(2.5)

=
∫ ∞

0

∫ ∞
0

e−ζ s−ζ ′tE
{
ηm

(
32

3

∫
Lx

s L̃
x
t dx

)m/2}
ds dt.

For h > 0, let

Fh(s, t;m) := E

((∫
(Lx+h

s − Lx
s )(L̃

x+h
t − L̃x

t ) dx

h3/2

)m)
(2.6)

and

F0(s, t;m) = E

{
ηm

(
32

3

∫
Lx

s L̃
x
t dx

)m/2}
.

In this notation Lemma 2.2 states that for any ζ, ζ ′ > 0,

lim
h→0

∫ ∞
0

∫ ∞
0

e−ζ s−ζ ′tFh(s, t;m)ds dt

(2.7)
=

∫ ∞
0

∫ ∞
0

e−ζ s−ζ ′tF0(s, t;m)ds dt.

[Note that F0(s, t;m) = 0 when m is odd.]

LEMMA 2.3. For all integers m ≥ 0, and 0 ≤ h ≤ 1, Fh(s, t;m) is a non-
negative, polynomially bounded, continuous increasing function of (s, t).

PROOF OF LEMMA 2.1. It follows from Lemma 2.3 that Fh(s, t;m) is the
distribution function of a measure μh,m on R2+; that is,

Fh(s, t;m) =
∫ s

0

∫ t

0
dμh,m(u, v).(2.8)
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For any 0 ≤ h ≤ 1, consider∫ ∞
0

∫ ∞
0

e−ζ s−ζ ′tFh(s, t;m)ds dt.(2.9)

Since Fh(0, t;m) = Fh(s,0;m) = 0, it follows from integrating by parts (in which
we use Lemma 2.3), that for all ζ, ζ ′ > 0,

ζ ζ ′
∫ ∞

0

∫ ∞
0

e−ζ s−ζ ′tFh(s, t;m)ds dt =
∫ ∞

0

∫ ∞
0

e−ζ s−ζ ′t dμh,m(s, t).(2.10)

We see from (2.7) and (2.10) that for any ζ, ζ ′ > 0,

lim
h→0

∫ ∞
0

∫ ∞
0

e−ζ s−ζ ′t dμh,m(s, t) =
∫ ∞

0

∫ ∞
0

e−ζ s−ζ ′t dμ0,m(s, t).(2.11)

It then follows from (2.11) and the extended continuity theorem [7], Theo-
rem 5.22, that μh,m

w→ μ0,m. Using this and Lemma 2.3 we see that

lim
h→0

Fh(s, t) = F0(s, t) ∀s, t(2.12)

which gives (2.1). (Actually [7], Theorem 5.22, is stated for probability measures
on Rd+. The case of general measures on Rd+ can be derived as in the proof of [5],
Chapter XIII, Section 1, Theorem 2a. Unfortunately [5], Chapter XIII, Section 1,
Theorem 2a, only considers measures on R1+. Its extension to Rd+ is routine.) �

3. Estimates for the potential density of Brownian motion. The α-potential
density of Brownian motion,

uα(x) =
∫ ∞

0
e−αtpt (x) dt = e−√

2α|x|
√

2α
.(3.1)

Let λα be an independent exponential random variable with mean 1/α.
Kac’s moment formula [9], Theorem 3.10.1, states that

Ex0

(
n∏

j=1

L
xj

λα

)
= ∑

π

n∏
j=1

uα(
xπ(j) − xπ(j−1)

)
,(3.2)

where the sum runs over all permutations π of {1, . . . , n} and π(0) = 0.

Let 
h
x denote the finite difference operator on the variable x, that is,


h
xf (x) = f (x + h) − f (x).(3.3)

We write 
h for 
h
x when the variable x is clear.

The next lemma collects some facts about uα(x) that are used in this paper.
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LEMMA 3.1. Fix α,β > 0. For 0 < h ≤ 1,


h
x


h
yu

α(x − y)|y=x = 2
(

1 − e−√
2αh

√
2α

)
= 2h + O(h2),(3.4)

|
huα(x)| ≤ Chuα(x),(3.5)

|
h
−huα(x)| ≤ Chuα(x),(3.6)

|
h
−huα(x)| ≤ Ch2uα(x) ∀|x| ≥ h.(3.7)

In addition, ∫
(
h
−huα(x))(
h
−huβ(x)) dx = (

8/3 + O(h)
)
h3,(3.8) ∫

|x|≥h
(
h
−huα(x))2 dx = O(h4),(3.9) ∫
|
h
−huα(x)|dx = O(h2).(3.10)

In all these statements the constants C and the terms O(h) may depend on α

and β .

PROOF. Since


h
x


h
yu

α(x − y) = {uα(x − y) − uα(x − y − h)}
(3.11)

− {uα(x − y + h) − uα(x − y)},
we have


h
x


h
yu

α(x − y)|y=x = {uα(0) − uα(−h)} − {uα(h) − uα(0)}
(3.12)

= 2
(
uα(0) − uα(h)

) = 2
(

1 − e−√
2αh

√
2α

)
which gives (3.4).

To obtain (3.5) we note that


h
xu

α(x) =
(

e−√
2α|x+h| − e−√

2α|x|
√

2α

)
.(3.13)

Therefore,

|
h
xu

α(x)| = e−√
2α|x|

√
2α

∣∣e√
2α(|x|−|x+h|) − 1

∣∣
(3.14)

≤ e−√
2α|x|(∣∣|x| − |x + h|∣∣ + O

(∣∣|x| − |x + h|∣∣2))
which gives (3.5) (since we allow C to depend on α).
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To obtain (3.6) we note that

|
h
−huα(x)| = |2uα(x) − uα(x + h) − uα(x − h)|
(3.15)

≤ |
huα(x)| + |
huα(x − h)|
and use (3.5).

To obtain (3.7) we simply note that when |x| ≥ h,


h
−huα(x) = 2uα(x) − uα(x + h) − uα(x − h)
(3.16)

= uα(x)
(
2 − e−√

2αh − e
√

2αh)
.

The statement in (3.9) follows trivially from (3.7).
For (3.8) we note that for |x| ≤ h,


h
−huα(x)

= 2uα(x) − uα(x + h) − uα(x − h)
(3.17)

= (
uα(0) − uα(x + h)

) + (
uα(0) − uα(x − h)

) − 2
(
uα(0) − uα(x)

)
= |x + h| + |x − h| − 2|x| + O(h2).

Therefore when 0 ≤ x ≤ h, we have


h
−huα(x) = x + h + h − x − 2x + O(h2) = (
2 + O(h)

)
(h − x)(3.18)

and similarly for 
h
−huβ(x). Consequently,∫ h

0
(
h
−huα(x))(
h
−huβ(x)) dx = (

4 + O(h)
) ∫ h

0
(h − x)2 dx

(3.19)
= (

4/3 + O(h)
)
h3.

Similarly, when −h ≤ x ≤ 0, it follows from (3.17) that


h
−huα(x) = h − x + x + h + 2x + O(h2) = (
2 + O(h)

)
(h + x)(3.20)

and similarly for 
h
−huβ(x). Consequently,∫ 0

−h
(
h
−huα(x))(
h
−huβ(x)) dx = (

4 + O(h)
) ∫ 0

−h
(h + x)2 dx

(3.21)
= (

4/3 + O(h)
)
h3.

Using (3.19), (3.21) and (3.9) we get (3.8).
To obtain (3.10) we write∫

|
h
−huα(y)|dy =
∫
|y|≤h

|
h
−huα(y)|dy +
∫
|y|≥h

|
h
−huα(y)|dy

(3.22)
≤ Ch

∫
|y|≤h

1dy + Ch2
∫
|y|≥h

uα(y) dy = O(h2),

where for the last line we use (3.6) and (3.7). �
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4. Proof of Lemma 2.2. Let Xt, X̃t be two independent Brownian motions in
R1. Let Lx

t , L̃
x
t denote their local times, and let λζ , λ̃ζ ′ be independent exponential

times of mean 1/ζ,1/ζ ′, respectively. Set

β2 =
∫

Lx
λζ

L̃x
λ̃ζ ′ dx.(4.1)

It follows from (3.2), the Kac moment formula, that

E

(
m∏

i=1

L
xi

λζ
L̃

yi

λ̃ζ ′

)
= E

(
m∏

i=1

L
xi

λζ

)
E

(
m∏

i=1

L̃
yi

ζ̃

)

= ∑
π

m∏
j=1

uζ (
xπ(j) − xπ(j−1)

)
drj(4.2)

× ∑
π ′

m∏
j=1

uζ ′(
yπ ′(j) − yπ ′(j−1)

)
,

where the sums run over all permutations π and π ′ of {1, . . . ,m}, π(0) = π ′(0) = 0
and x0 = 0. Consequently, by setting each yi equal to xi , we see that

E

((∫
Lx

λζ
L̃x

λ̃ζ ′ dx

)m)

= E

(
m∏

i=1

∫
L

xi

λζ
L̃

xi

λ̃ζ ′ dxi

)
(4.3)

= ∑
π,π ′

∫ (
m∏

j=1

uζ (
xπ(j) − xπ(j−1)

) m∏
j=1

uζ ′(
xπ ′(j) − xπ ′(j−1)

)) m∏
i=1

dxi.

Similarly,

E

(
m∏

i=1

(L
xi+h
λζ

− L
xi

λζ
)(L̃

yi+h

λ̃ζ ′ − L̃
yi

λ̃ζ ′ )

)

=
(

m∏
i=1


h
xi


h
yi

)
E

(
m∏

i=1

L
xi

λζ
L̃

yi

λ̃ζ ′

)

=
(

m∏
i=1


h
xi


h
yi

)
E

(
m∏

i=1

L
xi

λζ

)
E

(
m∏

i=1

L̃
yi

λ̃ζ ′

)
(4.4)

=
(

m∏
i=1


h
xi

)∑
π

m∏
j=1

uζ (
xπ(j) − xπ(j−1)

)

×
(

m∏
i=1


h
yi

)∑
π ′

m∏
j=1

uζ ′(
yπ ′(j) − yπ ′(j−1)

)
.
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Using the product rule for finite differences,


h(fg)(x) = (
hf (x))g(x + h) + f (x)
hg(x),(4.5)

we can write(
m∏

i=1


h
xi

)∑
π

m∏
j=1

uζ (
xπ(j) − xπ(j−1)

)
(4.6)

= ∑
π,a

m∏
j=1

((

h

xπ(j)

)a1(j)(

h

xπ(j−1)

)a2(j)
uζ,�(xπ(j) − xπ(j−1)

))
,

where the sum runs over π and all a = (a1, a2) : [1, . . . ,m] �→ {0,1} × {0,1}, with
the restriction that for each i there is exactly one factor of the form 
h

xi
. [Here

we define (
h
xi

)0 = 1 and (
h
0) = 1.] In this formula, uζ,�(x) can take any of the

values uζ (x), uζ (x + h) or uζ (x − h). (We consider all three possibilities in the
subsequent proofs.) It is important to recognize that in (4.6) each of the difference
operators is applied to only one of the terms uζ,�(·).

Using (4.6) we see that if we set xi = yi , i = 0, . . . ,m, in (4.4) we get

E

((∫
(Lx+h

λζ
− Lx

λζ
)(L̃x+h

λ̃ζ ′ − L̃x
λ̃ζ ′ ) dx

)m)
(4.7)

= ∑
π,π ′,a,a′

∫
T ′

h(x;π,π ′, a, a′) dx,

where x = (x1, . . . , xm), and

T ′
h(x;π,π ′, a, a′)

=
m∏

j=1

((

h

xπ(j)

)a1(j)(

h

xπ(j−1)

)a2(j)
uζ,�(xπ(j) − xπ(j−1)

))
(4.8)

×
m∏

k=1

((

h

xπ ′(k)

)a′
1(k)(


h
xπ ′(k−1)

)a′
2(k)

uζ ′,�(xπ ′(k) − xπ ′(k−1)

))
,

and where the sum runs over all permutations π and π ′ of {1, . . . ,m} and all
a = (a1, a2) : [1, . . . ,m] �→ {0,1}×{0,1} and a′ = (a′

1, a
′
2) : [1, . . . ,m] �→ {0,1}×

{0,1} with the restriction that, for each i, there is exactly one factor of the form

h

xi
in the second line of (4.8), and, similarly, in the third line of (4.8).

Let

Th(x;π,π ′, a, a′)

=
m∏

j=1

((

h

xπ(j)

)a1(j)(

h

xπ(j−1)

)a2(j)
uζ (

xπ(j) − xπ(j−1)

))
(4.9)

×
m∏

k=1

((

h

xπ ′(k)

)a′
1(k)(


h
xπ ′(k−1)

)a′
2(k)

uζ ′(
xπ ′(k) − xπ ′(k−1)

))
.
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The difference between (4.8) and (4.9) is that uζ,� is replaced by uζ and similarly
for uζ ′,�. To simplify the computations, we first obtain

lim
h→0

1

h3m/2

∑
π,π ′,a,a′

∫
Th(x;π,π ′, a, a′) dx(4.10)

and then explain why (4.10) is unchanged when Th is replaced by T ′
h .

Recall that 
hf (u) = f (u + h) − f (h) so that


h
−hf (u − v) = 2f (u − v) − f (u − v − h) − f (u − v + h).(4.11)

Consequently,


h
u


h
vf (u − v) = 
h
−hf (u − v).(4.12)

We proceed to evaluate (4.10) based on the different ways the difference opera-
tors in (4.9) are distributed. We examine these in three subsections. The reader will
see that the only limits in (4.10), that are not zero, come from the case considered
in Section 4.1.

Let e = (e(1), . . . , e(2n)) where e(2j) = (1,1), e(2j − 1) = (0,0), j =
1, . . . , n.

4.1. a = a′ = e and compatible permutations. Let m = 2n and let P =
{(l2i−1, l2i ),1 ≤ i ≤ n} be a pairing of the integers [1,2n]. Let π and π ′ be
two permutations of [1,2n] such that for each 1 ≤ j ≤ n, {π(2j − 1),π(2j)} =
{l2i−1, l2i} for some, necessarily unique, 1 ≤ i ≤ n and similarly for π ′, that
is, for each 1 ≤ j ≤ n, {π ′(2j − 1),π ′(2j)} = {l2k−1, l2k} for some, necessar-
ily unique, 1 ≤ k ≤ n. In this case we say that π and π ′ are compatible with
the pairing P and write this as (π,π ′) ∼ P . [Note that {π(2j − 1),π(2j)}
is not necessarily equal to {π ′(2j − 1),π ′(2j)}. Furthermore, when we write
{π(2j − 1),π(2j)} = {l2i−1, l2i} we mean as two sets, so, according to what π

is, we may have π(2j −1) = l2i−1, π(2j) = l2i or π(2j −1) = l2i , π(2j) = l2i−1.
A similar situation exist for π ′.] We write π ∼ π ′ to mean that (π,π ′) ∼ P for
some pairing P . In this subsection we show that

∑
π∼π ′

∫
Th(x;π,π ′, e, e)

2n∏
j=1

dxj

(4.13)

= (2n)!
2nn!

(
32h3

3

)n

E

{(∫
Lx

λζ
L̃x

λ̃ζ ′ dx

)n}
+ O(h3n+1).

In Sections 4.2 and 4.3 we show that

∑
π 
∼π ′ or (a,a′) 
=(e,e)

∣∣∣∣∣
∫

Th(x;π,π ′, a, a′)
2n∏

j=1

dxj

∣∣∣∣∣ = O(h3n+1).(4.14)
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Together these estimates give (2.1).
When π and π ′ are compatible it follows from (4.9) and (4.12) that

Th(x;π,π ′, e, e)

=
n∏

j=1

(

h
−huζ (

xπ(2j) − xπ(2j−1)

))

×
n∏

j=1

uζ (
xπ(2j−1) − xπ(2j−2)

)
(4.15)

×
n∏

k=1

(

h
−huζ ′(

xπ ′(2k) − xπ ′(2k−1)

))

×
n∏

k=1

uζ ′(
xπ ′(2k−1) − xπ ′(2k−2)

)
.

We would like to integrate Th(x;π,π ′, e, e) with respect to x, but this is not
easy because the variables,{

xπ(2j) − xπ(2j−1), xπ ′(2j) − xπ ′(2j−1), j ∈ [1, n]}
and {

xπ(2j−1) − xπ(2j−2), xπ ′(2j−1) − xπ ′(2j−2), j ∈ [1, n]},
are not independent. To get around this difficulty we first write

1 =
n∏

i=1

(
1{|xl2i

−xl2i−1 |≤h} + 1{|xl2i
−xl2i−1 |≥h}

) = ∑
A⊆[1,...,n]

1DA
,(4.16)

where

DA = {|xl2i
− xl2i−1 | ≤ h, i ∈ A} ∩ {|xl2i

− xl2i−1 | > h, i ∈ Ac};(4.17)

and use it to write∫
Th(x;π,π ′, e, e)

2n∏
j=1

dxj

(4.18)

=
∫ n∏

i=1

(
1{|xl2i

−xl2i−1 |≤√
h}

)
Th(x;π,π ′, e, e)

2n∏
j=1

dxj + E1,h,

where

E1,h = ∑
Ac 
=φ

∫
DA

Th(x;π,π ′, e, e)
2n∏

j=1

dxj .(4.19)
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Let

wζ (x) = |
h
−huζ (x)|.(4.20)

We have∣∣∣∣∣
∫
DA

Th(x;π,π ′, e, e)
2n∏

j=1

dxj

∣∣∣∣∣
≤

∫
DA

n∏
j=1

uζ (
xπ(2j−1) − xπ(2j−2)

)
wζ (

xπ(2j) − xπ(2j−1)

)
(4.21)

×
n∏

k=1

uζ ′(
xπ ′(2k−1) − xπ ′(2k−2)

)
wζ ′(

xπ ′(2k) − xπ ′(2k−1)

) 2n∏
j=1

dxj .

Let

D̃A = {|x2j−1 − x2j−2| ≤ h, j ≤ |A|} ∩ {|x2j−1 − x2j−2| > h, j > |A|}.(4.22)

Applying the Cauchy–Schwarz inequality in (4.21) to separate the terms in π from
the terms in π ′, and then relabeling, we get∣∣∣∣∣

∫
DA

Th(x;π,π ′, e, e)
2n∏

j=1

dxj

∣∣∣∣∣
2

≤
∫
D̃A

n∏
j=1

(
uζ (x2j−1 − x2j−2)

)2(
wζ (x2j − x2j−1)

)2
2n∏

j=1

dxj

×
∫
D̃A

n∏
j=1

(
uζ ′

(x2j−1 − x2j−2)
)2(

wζ ′
(x2j − x2j−1)

)2
2n∏

j=1

dxj

(4.23)

≤
( |A|∏

j=1

∫
(wζ (x2j ))

2 dx2j

)(
n∏

j=|A|+1

∫
1{|x2j |≥h}(wζ (x2j ))

2 dx2j

)

×
( |A|∏

j=1

∫
(wζ ′

(x2j ))
2 dx2j

)(
n∏

j=|A|+1

∫
1{|x2j |≥h}(wζ ′

(x2j ))
2 dx2j

)

≤ (
Cnh3n+|Ac|)2

,

where the last inequality comes from (3.8) and (3.9). Combining this with (4.19)
we see that

|E1,h| = O(h3n+1).(4.24)
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We now study

B̃h(π,π ′, e, e) :=
∫ n∏

i=1

(
1{|xl2i

−xl2i−1 |≤h}
)

Th(x;π,π ′, e, e)
2n∏

j=1

dxj .(4.25)

Recall that for each 1 ≤ j ≤ n, {π(2j − 1),π(2j)} = {l2i−1, l2i}, for some 1 ≤
i ≤ n. We identify these relationships by setting i = σ(j) when {π(2j −
1),π(2j)} = {l2i−1, l2i}. We write

n∏
j=1

uζ (
xπ(2j−1) − xπ(2j−2)

)
(4.26)

=
n∏

j=1

(
uζ (

xl2σ(j)−1 − xl2σ(j−1)−1

) + 
hj uζ (
xl2σ(j)−1 − xl2σ(j−1)−1

))
,

where hj = (xπ(2j−1) − xl2σ(j)−1) + (xl2σ(j−1)−1 − xπ(2j−2)). Note that because of
the presence of the term

∏n
i=1(1{|xl2i

−xl2i−1 |≤h}) in the integral in (4.25) we need
only be concerned with values of |hj | ≤ 2h, 1 ≤ j ≤ n.

Similarly we set i = σ ′(j) when {π ′(2j − 1),π ′(2j)} = {l2i−1, l2i}, and write
n∏

j=1

uζ ′(
xπ ′(2j−1) − xπ ′(2j−2)

)
(4.27)

=
n∏

j=1

(
uζ ′(

xl2σ ′(j)−1
− xl2σ ′(j−1)−1

) + 

h′

j uζ ′(
xl2σ ′(j)−1

− xl2σ ′(j−1)−1

))
,

where h′
j = (xπ ′(2j−1) − xl2σ ′(j)−1

) + (xl2σ ′(j−1)−1
− xπ ′(2j−2)). As above we need

only be concerned with values of |h′
j | ≤ 2h, 1 ≤ j ≤ n.

We substitute (4.26) and (4.27) into the term Th(x;π,π ′, e, e) in (4.25) and
expand the products so that we can write B̃h(π,π ′, e, e) as a sum of many terms
to get

B̃h(π,π ′, e, e)
(4.28)

:=
∫ n∏

i=1

(
1{|xl2i

−xl2i−1 |≤h}
)

T̃h(x;π,π ′, e, e)
2n∏

j=1

dxj + E2,h,

where

T̃h(x;π,π ′, e, e)

=
n∏

i=1


h
−huζ (xl2i
− xl2i−1) ×

n∏
j=1

uζ (
xl2σ(j)−1 − xl2σ(j−1)−1

)
(4.29)

×
n∏

i=1


h
−huζ ′
(xl2i

− xl2i−1) ×
n∏

j=1

uζ ′(
xl2σ ′(j)−1

− xl2σ ′(j−1)−1

)
,
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and

E2,h = ∑
A,A′⊆[1,...,n]

E2,h;A,A′,(4.30)

where

E2,h;A,A′ :=
∫ n∏

i=1

(
1{|xl2i

−xl2i−1 |≤h}
) n∏
j=1


h
−huζ (
xπ(2j) − xπ(2j−1)

)
× ∏

j∈A

uζ (
xl2σ(j)−1 − xl2σ(j−1)−1

) ∏
j∈Ac


hj uζ (
xl2σ(j)−1 − xl2σ(j−1)−1

)

×
n∏

k=1


h
−huζ ′(
xπ ′(2k) − xπ ′(2k−1)

)
(4.31)

× ∏
k∈A′

uζ ′(
xl2σ ′(k)−1

− xl2σ ′(k−1)−1

)

× ∏
k∈A′c


h′
kuζ ′(

xl2σ ′(k)−1
− xl2σ ′(k−1)−1

) 2n∏
j=1

dxj ,

and Ac and A′c are not both empty.
Using (3.5) we see that

|E2,h;A,A′ | ≤ Cnh|Ac|+|A′c|

×
∫ n∏

i=1

(
1{|xl2i

−xl2i−1 |≤h}
) n∏
j=1

wζ (
xπ(2j) − xπ(2j−1)

)
(4.32)

×
n∏

j=1

uζ (
xl2σ(j)−1 − xl2σ(j−1)−1

) n∏
k=1

wζ ′(
xπ ′(2k) − xπ ′(2k−1)

)

×
n∏

k=1

uζ ′(
xl2σ(k)−1 − xl2σ(k−1)−1

)
dxj .

Using the Cauchy–Schwarz inequality as in (4.23), we see that

|E2,h;A,A′ | ≤ Ch3n+|Ac|+|A′c|.(4.33)

It now follows from (4.30) that

E2,h = O(h3n+1).(4.34)

We now consider

Bh(π,π ′, e, e) :=
∫ n∏

i=1

(
1{|xl2i

−xl2i−1 |≤h}
)

T̃h(x;π,π ′, e, e)
2n∏

j=1

dxj .(4.35)
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Using (4.18) and (4.24) we see that

Bh(π,π ′, e, e) =
∫

T̃h(x;π,π ′, e, e)
2n∏

j=1

dxj + O(h3n+1).(4.36)

Using (4.29) we see that

∫
T̃h(x;π,π ′, e, e)

2n∏
j=1

dxj

=
∫ n∏

i=1


h
−huζ (
xl2i

− xl2i−1

)
(4.37)

×
n∏

j=1

uζ (
xl2σ(j)−1 − xl2σ(j−1)−1

) n∏
i=1


h
−huζ ′
(xl2i

− xl2i−1)

×
n∏

j=1

uζ ′(
xl2σ ′(j)−1

− xl2σ ′(j−1)−1

) 2n∏
i=1

dxi.

We make the change of variables xl2i
→ xl2i

+ xl2i−1 , i = 1, . . . , n and write this
as ∫ n∏

i=1


h
−huζ (xl2i
)

n∏
j=1

uζ (
xl2σ(j)−1 − xl2σ(j−1)−1

)

×
n∏

i=1


h
−huζ ′
(xl2i

)

n∏
j=1

uζ ′(
xl2σ ′(j)−1

− xl2σ ′(j−1)−1

) 2n∏
i=1

dxi.

We now rearrange the integrals with respect to xl2, xl4, . . . , xl2n
and get

∫
T̃h(x;π,π ′, e, e)

2n∏
j=1

dxj

=
(∫

(
h
−huζ (x))(
h
−huζ ′
(x)) dx

)n

(4.38)

×
∫ n∏

j=1

uζ (
xl2σ(j)−1 − xl2σ(j−1)−1

)
uζ ′(

xl2σ ′(j)−1
− xl2σ ′(j−1)−1

)

×
n∏

i=1

dxl2i−1 .
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Writing yσ(j) = xl2σ(j)−1, yσ ′(j) = xl2σ ′(j)−1
and using (3.8), we can write this as

∫
T̃h(x;π,π ′, e, e)

2n∏
j=1

dxj

=
(

8h3(1 + O(h))

3

)n

(4.39)

×
∫ n∏

j=1

uζ (
yσ(j) − yσ(j−1)

)
uζ ′(

yσ ′(j) − yσ ′(j−1)

) n∏
i=1

dyi.

Considering (4.28), (4.34) and (4.39) we see that∫
Th(x;π,π ′, e, e)

2n∏
j=1

dxj

=
(

8h3

3

)n ∫ n∏
j=1

uζ (
yσ(j) − yσ(j−1)

)
uζ ′(

yσ ′(j) − yσ ′(j−1)

)
(4.40)

×
n∏

i=1

dyi + O(h3n+1).

In the first paragraph of this subsection we explain what we mean by (π,π ′) ∼
P , for a pairing P = {(l2i−1, l2i),1 ≤ i ≤ n} of the integers [1,2n] and permu-
tations π,π ′ of [1,2n] that are compatible with P . Obviously, there are many
such pairs. There are 22n ways we can interchange the two elements of each pair
π(2j − 1),π(2j), and π ′(2j − 1),π ′(2j) without changing (4.40). Furthermore,
by permuting the pairs {π(2j − 1),π(2j)} we give rise to all possible permuta-
tions σ of [1, n], and similarly for π ′. Consequently,

∑
(π,π ′)∼P

∫
Th(x;π,π ′, e, e)

2n∏
j=1

dxj

=
(

32h3

3

)n ∑
σ,σ ′

∫ n∏
j=1

uζ (
yσ(j) − yσ(j−1)

)
uζ ′(

yσ ′(j) − yσ ′(j−1)

) n∏
i=1

dyi

(4.41)
+ O(h3n+1)

=
(

32h3

3

)n

E

{(∫
Lx

λζ
L̃x

λ̃ζ ′ dx

)n}
+ O(h3n+1).

Here the sum in the second line runs over all permutations σ,σ ′ of {1, . . . , n}
and σ(0) = σ ′(0) = 0. The final line of (4.41) follows from the Kac moment for-
mula (4.3).
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Since there are (2n)!/(2nn!) pairings of the 2n elements {1, . . . ,2n} we obtain
(4.13).

In the next two subsections we obtain (4.14).

4.2. a = a′ = e without compatible permutations. Consider the multigraph
Gπ,π ′ whose vertices consist of {1, . . . ,2n} and assign an edge between the ver-
tices π(2j − 1) and π(2j) for each j = 1, . . . , n and similarly between π ′(2j − 1)

and π ′(2j) for each j = 1, . . . , n. Each vertex is connected to two edges, and it
is possible to have two edges between any two vertices i, j . Note that the con-
nected components Cj , j = 1, . . . , k of Gπ,π ′ consist of cycles. (For example, in
Section 4.1, all the cycles are of order two.)

Let Cj = {j1, . . . , jl(j)} be written in cyclic order where l(j) = |Cj |. Clearly∑k
j=1 l(j) = 2n. We show that when all the cycles are not of order two, as they are

in the case of compatible permutations considered in Section 4.1, then∣∣∣∣∣
∫

Th(x;π,π ′, e, e)
2n∏

j=1

dxj

∣∣∣∣∣ ≤ Ch3n+1.(4.42)

Since we only need an upper bound, we take absolute values in the integrand
and get∣∣∣∣∣

∫
Th(x;π,π ′, e, e)

2n∏
j=1

dxj

∣∣∣∣∣
≤

∫ k∏
j=1

(
w(xj2 − xj1) · · ·w(

xjl(j)
− xjl(j)−1

)
w

(
xj1 − xjl(j)

))
(4.43)

×
n∏

j=1

u
(
xπ(2j−1) − xπ(2j−2)

)
u
(
xπ ′(2j−1) − xπ ′(2j−2)

) 2n∏
j=1

dxj ,

where we use the notation u(x) to denote either uζ (x) or uζ ′
(x), and w(x) to

denote either wζ (x) or wζ ′
(x). [wζ (x) is defined in (4.20).] Note that we group

the functions w according to the cycles.
For each j = 1, . . . , k we set yji

= xji
− xji−1 , i = 2, . . . , l(j), and note

that
∑l(j)

i=2 yji
= −(xj1 − xjl(j)

). It is easy to see that the 2n − k variables
{yji

| j = 1, . . . , k; i = 2, . . . , l(j)} are linearly independent. We then choose
additional k variables zl; l = 1, . . . , k from amongst the variables {xπ(2j−1) −
xπ(2j−2), xπ ′(2j−1) − xπ ′(2j−2);1 ≤ j ≤ n} so that {yji

| j = 1, . . . , k; i = 2, . . . ,

l(j)} ∪ {zl | l = 1, . . . , k} are linearly independent and generate {x1, . . . , x2n}. We
make this change of variables and use the fact that u(x) is bounded and integrable,
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followed by (3.6) and (3.10), to see that∣∣∣∣∣
∫

Th(x;π,π ′, e, e)
2n∏

j=1

dxj

∣∣∣∣∣
≤ C

k∏
j=1

(∫
w(yj2) · · ·w(

yjl(j)

)
w

(l(j)∑
i=2

yji

) l(j)∏
i=2

dyji

)
(4.44)

≤ C

k∏
j=1

sup
x

|w(x)|
(∫

w(y)dy

)l(j)−1

≤ C

k∏
j=1

h1+2(l(j)−1) = C

k∏
j=1

h2l(j)−1.

(Note that the only dependence on ζ and ζ ′ is in the constant C.)
Since

∑k
j=1 l(j) = 2n, we see from (4.44) that∣∣∣∣∣

∫
Th(x;π,π ′, e, e)

2n∏
j=1

dxj

∣∣∣∣∣ ≤ Ch4n−k = Ch3nhn−k.(4.45)

It is easily seen that for noncompatible permutations we have k < n, which
proves (4.42).

4.3. When a = a′ = e does not hold. We now consider all partitions π and π ′
when a = a′ = e does not hold. Consider the basic formula (4.9). Since we only
need an upper bound, we take absolute values in the integrand as in (4.43). Since
a = a′ = e does not hold there are terms in which only one 
h is applied to a uζ

or uζ ′
.

We use the notation u and w defined right after (4.43). If there are k < 2n factors
of the type w, then there are 2(2n − k) factors of the type 
±hu. We use (3.5) to
pull out a factor of

h2(2n−k)(4.46)

from the basic formula (4.9), and are left with an integral like the one on the right-
hand side of (4.43) except that there are k factors of the form w which may be
linked in chains as well as in cycles, and there are 4n − k factors of type u. We
denote this integral by Jh.

As in (4.43), we arrange the w factors into cycles and chains. We then change
variables and integrate the w factors. As in (4.44) a cycle of length l gives a con-
tribution that is bounded by Ch1+2(l−1) = Ch2l−1. In addition, by (3.10), chain of
length l′ gives a contribution that is bounded by Ch2l′ .
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If there are j cycles of lengths l(i), i = 1, . . . , j and j ′ chains of lengths
l′(i), i = 1, . . . , j ′ we have

j∑
i=1

l(i) +
j ′∑

i=1

l′(i) = k.(4.47)

Therefore,

Jh ≤ Ch(2
∑j

i=1 l(i))−jh2
∑j ′

i=1 l′(i) ≤ Ch2k−j .(4.48)

Together with (4.46) this shows that∣∣∣∣∣
∫

Th(x;π,π ′, a, a′)
2n∏

j=1

dxj

∣∣∣∣∣ ≤ Ch4n−j = Ch3nhn−j .(4.49)

As in (4.45) we see that∣∣∣∣∣
∫

Th(x;π,π ′, a, a′)
2n∏

j=1

dxj

∣∣∣∣∣ ≤ Ch3n+1.(4.50)

We have established (4.13) when m is even. We now show that we get the same
estimates when uζ and uζ ′

are replaced by uζ,� and uζ ′,� [see (4.8) and (4.9)].
The key observation that explains this is that in applying the product for-

mula (4.5), the only terms of the form uζ (x − y) that may have x replaced by
x + h are those to which 
h

x is not applied. Similarly y may be replaced by y + h

only if 
h
y is not applied to a term of the form uζ (x − y). Consequently, in eval-

uating (4.10) with Th replaced by T ′
h we still have 
h
−huζ,� = 
h
−huζ and

similarly for 
h
−huζ ′,�.
It is easy to see that the presence of the terms in uζ.� or 
±huζ,�, or in uζ ′.� or


±huζ ′,� have no effect on the integrals that are O(h3n+1/2) as h → 0. [That is, the
terms that are equal to 0 in (4.10).] This is because in evaluating these expressions
we either integrate over all of R1 or else use bounds that hold on all of R1.

They do have an effect on the terms for which the limit in (4.10) are not zero.
For example, instead of the right-hand side of (4.40), we now have

(
8h3

3

)n ∫ n∏
j=1

uζ,�(yσ(j) − yσ(j−1)

)
uζ ′,�(yσ ′(j) − yσ ′(j−1)

)
(4.51)

×
n∏

i=1

dyi + O(h3n+1).

Suppose that uζ,�(yσ(i) − yσ(i−1)) = uζ (yσ(i) − yσ(i−1) ± h). We write this term
as

uζ,�(yσ(i) − yσ(i−1)

) = uζ (
yσ(i) − yσ(i−1)

) + 
±huζ (
yσ(i) − yσ(i−1)

)
(4.52)
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and similarly for uζ ′,�. Substituting these expressions into (4.51) and using (3.5),
it is easy to see that (4.51) is asymptotically equivalent to the right-hand side of
(4.13) when m is even. (The error term may be different.) Thus we see that replac-
ing uζ and uζ ′

by uζ,� and uζ ′,� does not change (4.10) when m is even.
It is rather obvious that the limit in (4.10) is zero when m is odd because in this

case we can not construct a graph with all cycles of order 2. The extension of this
limit when uζ and uζ ′

are replaced by uζ,� and uζ ′,� follows as above.

5. Proof of Lemma 2.3. For h = 0 it suffices to show that

G0(s, t) := E

{(∫
Lx

s L̃
x
t dx

)n}
is a nonnegative, polynomially-bounded, continuous, increasing function of (s, t).
The fact that G0(s, t) is a nonnegative, increasing function of (s, t) follows imme-
diately from the fact that the local times Lx

s and L̃x
t have these properties.

To prove continuity we note that for all |r|, |r ′| ≤ r0,
∫

Lx
s+r L̃

x
t+r ′ dx ≤∫

Lx
s+r0

L̃x
t+r0

dx. Therefore continuity follows from the Dominated Convergence
theorem and the continuity of local times once we show that for all s, t ,∫

Lx
s L̃

x
t dx(5.1)

has all moments. It follows from the Cauchy–Schwarz inequality, the scaling rela-
tionship (1.9) and (2.2), that

E

{(∫
Lx

s L̃
x
t dx

)n}
≤ E

{(∫
(Lx

s )
2 dx

)n/2}
E

{(∫
(L̃x

t )
2 dx

)n/2}

≤ (st)3n/4E

{(∫
(Lx

1)2 dx

)n/2}
E

{(∫
(L̃x

1)2 dx

)n/2}
(5.2)

≤ C(st)3n/4.

In addition to showing that (5.1) has all moments, this also shows that G0(s, t) is
a polynomially bounded function of (s, t).

We now consider Fh(s, t) for h > 0. It suffices to show that

Gh(s, t) := E

((∫
(Lx+h

s − Lx
s )(L̃

x+h
t − L̃x

t ) dx

)m)
(5.3)

is a nonnegative, polynomially-bounded, continuous, increasing function of (s, t).
Let Wt denote Brownian motion and let f ∈ S(R1) be a positive symmet-

ric function supported on [−1,1] with
∫

f (x) dx = 1. Set fε(x) = f (x/ε)/ε
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and

Lx
s,ε =

∫ s

0
fε(Wr − x)dr.(5.4)

It follows from [9], Lemma 2.4.1, that

E

(
m∏

j=1

(L
xj+h
s − L

xj
s )(L̃

xj+h
t − L̃

xj

t )

)

= lim
ε→0

E

(
m∏

j=1

(L
xj+h
s,ε − L

xj
s,ε)(L̃

xj+h
t,ε − L̃

xj
t,ε)

)
(5.5)

= lim
ε→0

E

(
m∏

j=1

(L
xj+h
s,ε − L

xj
s,ε)

)
E

(
m∏

j=1

(L̃
xj+h
t,ε − L̃

xj

t,ε)

)
.

Using the Fourier transform,

Lx+h
s,ε − Lx

s,ε =
∫

e−ipx(e−iph − 1)f̂ (εp)

∫ s

0
eipWr dr dp,(5.6)

we have

E

(
m∏

j=1

(L
xj+h
s,ε − L

xj
s,ε)

)
=

∫
Rm

m∏
j=1

e−ipj xj (e−ipj h − 1)f̂ (εpj )

(5.7)

×
∫
[0,s]m

E

(
m∏

j=1

e
ipjWrj

)
m∏

j=1

drj dpj .

Note that∫
[0,s]m

E

(
m∏

j=1

e
ipjWrj

)
m∏

j=1

drj

= ∑
π

∫
{0≤r1≤···≤rm≤s}

E

(
m∏

j=1

e
ipπ(j)Wrj

)
m∏

j=1

drj

(5.8)

= ∑
π

∫
{0≤r1≤···≤rm≤s}

E

(
m∏

j=1

e
i(

∑m
k=j pπ(k))(Wrj

−Wrj−1 )

)
m∏

j=1

drj

= ∑
π

∫
{0≤r1≤···≤rm≤s}

m∏
j=1

e
−(

∑m
k=j pπ(k))

2(rj−rj−1)
m∏

j=1

drj .

Since this is bounded and integrable in p1, . . . , pm and f̂ (εp) ≤ C, we can take
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the limit as ε goes to zero in (5.7) and hence in (5.5), to see that

E

(
m∏

j=1

(L
xj+h
s − L

xj
s )(L̃

xj+h
t − L̃

xj

t )

)

=
∫
R2m

m∏
j=1

e
−i(pj+p′

j )xj (e−ipj h − 1)(e
−ip′

j h − 1)

(5.9)

×
∫
[0,s]m

E

(
m∏

j=1

e
ipjWrj

)

×
∫
[0,t]m

E

(
m∏

j=1

e
ip′

jWr′
j

)
m∏

j=1

dr ′
j drj dpj dp′

j .

It now follows from Parseval’s theorem that

Gh(s, t) =
∫

E

(
m∏

j=1

(L
xj+h
s − L

xj
s )(L̃

xj+h
t − L̃

xj

t )

)
m∏

j=1

dxj

= 1

(2π)m

∫
Rm

m∏
j=1

|e−ipj h − 1|2

(5.10)

×
∫
[0,s]m

E

(
m∏

j=1

e
ipjWrj

)

×
∫
[0,t]m

E

(
m∏

j=1

e
ipjWr′

j

)
m∏

j=1

dr ′
j drj dpj .

The fact that Gh(s, t) is a nonnegative, increasing function of (s, t) follows from
this and (5.8). The fact that Gh(s, t) is a polynomially-bounded, continuous func-
tion of (s, t), follows, as in the proof for G0(s, t), if we note that by translation
invariance

∫
(Lx+h

s )2 dx = ∫
(Lx

s )
2 dx so that, as in (5.2),

E

{(∫
Lx+h

s L̃x
t dx

)n}
≤ E

{(∫
(Lx+h

s )2 dx

)n/2}
E

{(∫
(L̃x

t )
2 dx

)n/2}

≤ E

{(∫
(Lx

s )
2 dx

)n/2}
E

{(∫
(L̃x

t )
2 dx

)n/2}
(5.11)

≤ C(st)3n/4.

6. Proof of Theorem 1.1. The proof of Theorem 1.1 follows from the next
lemma exactly as in the proof of Theorem 1.2 on page 400.
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LEMMA 6.1. For each integer m ≥ 0 and t ∈ R+,

lim
h→0

E

((∫
(Lx+h

t − Lx
t )

2 dx − 4h

h3/2

)m)
(6.1)

=
⎧⎨⎩

(2n)!
2nn!

(
64

3

)n

E

{(∫
(Lx

t )
2 dx

)n}
, if m = 2n,

0, otherwise.

We use the next lemma in the proof of Lemma 6.1. It is proved in Section 7.

LEMMA 6.2. Let λζ be an exponential random variable with mean 1/ζ . For
each integer m ≥ 0,

lim
h→0

E

((∫
(Lx+h

λζ
− Lx

λζ
)2 dx − 4hλζ

h3/2

)m)
(6.2)

=
⎧⎨⎩

(2n)!
2nn!

(
64

3

)n

E

{(∫
(Lx

λζ
)2 dx

)n}
, if m = 2n,

0, otherwise.

PROOF OF LEMMA 6.1. We write (6.2) as

lim
h→0

∫ ∞
0

e−ζ sE

((∫
(Lx+h

s − Lx
s )

2 dx − 4hs

h3/2

)m)
ds

(6.3)

=
∫ ∞

0
e−ζ sE

{
ηm

(
64

3

∫
(Lx

s )
2 dx

)m/2}
ds.

Let

F̂m,h(s) := E

((∫
(Lx+h

s − Lx
s )

2 dx − 4hs

h3/2

)m)
, h > 0,(6.4)

and

F̂m,0(s) := E

{
ηm

(
64

3

∫
(Lx

s )
2 dx

)m/2}
.

Then (6.3) can be written as

lim
h→0

∫ ∞
0

e−ζ sF̂m,h(s) ds =
∫ ∞

0
e−ζ sF̂m,0(s) ds.(6.5)

We consider first the case when m is even and write m = 2n. In this case
F̂2n,h(s) ≥ 0 and the extended continuity theorem [5], Chapter XIII, Section 1,
Theorem 2a, applied to (6.5) implies that

lim
h→0

∫ t

0
F̂2n,h(s) ds =

∫ t

0
F̂2n,0(s) ds(6.6)
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for all t . In particular,

lim
h→0

∫ t+δ

t
F̂2n,h(s) ds =

∫ t+δ

t
F̂2n,0(s) ds.(6.7)

It follows from the proof of Lemma 5 that F̂2n,0(t) is continuous in t . Conse-
quently,

lim
δ→0

lim
h→0

1

δ

∫ t+δ

t
F̂2n,h(s) ds = F̂2n,0(t).(6.8)

When t = 0 we get

lim
δ→0+ lim

h→0+
1

δ

∫ δ

0
F̂2n,h(s) ds = 0.(6.9)

To obtain (6.1) when m is even we must show that

lim
h→0

F̂2n,h(t) = F̂2n,0(t).(6.10)

This follows from (6.8) once we show that

lim
δ→0

lim
h→0

1

δ

∫ t+δ

t
F̂2n,h(s) ds = lim

h→0
F̂2n,h(t).(6.11)

We proceed to obtain (6.11).
For s ≥ t , we write∫

(Lx+h
s − Lx

s )
2 dx − 4hs

=
{∫

(Lx+h
t − Lx

t )
2 dx − 4ht

}
(6.12)

+
{∫

[(Lx+h
s − Lx

s ) − (Lx+h
t − Lx

t )]2 dx − 4h(s − t)

}
+ 2

{∫
(Lx+h

t − Lx
t )[(Lx+h

s − Lx
s ) − (Lx+h

t − Lx
t )]dx

}
.

We use the triangle inequality with respect to the norm ‖ · ‖2n to see that

F̂
1/(2n)
2n,h (s)

≤ F̂
1/(2n)
2n,h (t) +

{
E

[
1

h3/2

{∫
[(Lx+h

s − Lx
s ) − (Lx+h

t − Lx
t )]2 dx

− 4h(s − t)

}]2n}1/(2n)

(6.13)

+ 2
{
E

[
1

h3/2

{∫
(Lx+h

t − Lx
t )[(Lx+h

s − Lx
s )

− (Lx+h
t − Lx

t )]dx

}]2n}1/(2n)

.
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Note that ∫
[(Lx+h

s − Lx
s ) − (Lx+h

t − Lx
t )]2 dx

L=
∫

(Lx+h
s−t − Lx

s−t )
2 dx(6.14)

and ∫
[Lx+h

t − Lx
t ][(Lx+h

s − Lx
s ) − (Lx+h

t − Lx
t )]dx

(6.15)
L=

∫
[Lx+h

t − Lx
t ][L̃x+h

s−t − L̃x
s−t ]dx.

Hence we can write (6.13) as

F̂
1/(2n)
2n,h (s) ≤ F̂

1/(2n)
2n,h (t) + F̂

1/(2n)
2n,h (s − t)

(6.16)

+ 2
{
E

[
1

h3/2

∫
[Lx+h

t − Lx
t ][L̃x+h

s−t − L̃x
s−t ]dx

]2n}1/(2n)

.

We now use the triangle inequality with respect to the norm in L2n([t, t +
δ], δ−1 ds) to see that{

1

δ

∫ t+δ

t
F̂2n,h(s) ds

}1/(2n)

≤ F̂
1/(2n)
2n,h (t) +

{
1

δ

∫ t+δ

t
F̂2n,h(s − t) ds

}1/(2n)

(6.17)

+ 2
{

1

δ

∫ t+δ

t
E

[
1

h3/2

∫
[Lx+h

t − Lx
t ][L̃x+h

s−t − L̃x
s−t ]dx

]2n

ds

}1/(2n)

.

A similar argument starting with (6.12) shows that{
1

δ

∫ t+δ

t
F̂2n,h(s) ds

}1/(2n)

≥ F̂
1/(2n)
2n,h (t) −

{
1

δ

∫ t+δ

t
F̂2n,h(s − t) ds

}1/(2n)

(6.18)

− 2
{

1

δ

∫ t+δ

t
E

[
1

h3/2

∫
[Lx+h

t − Lx
t ][L̃x+h

s−t − L̃x
s−t ]dx

]2n

ds

}1/(2n)

.

Since

1

δ

∫ t+δ

t
F̂2n,h(s − t) ds = 1

δ

∫ δ

0
F̂2n,h(s) ds,(6.19)

we see from (6.9) that to prove (6.11), it only remains to show that

lim
δ→0+ lim sup

h→0

1

δ

∫ t+δ

t
E

[
1

h3/2

∫
[Lx+h

t − Lx
t ][L̃x+h

s−t − L̃x
s−t ]dx

]2n

ds = 0.(6.20)
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By the monotonicity property of Fh(s, t;m) given in Lemma 2.3,

1

δ

∫ t+δ

t
E

[
1

h3/2

∫
[Lx+h

t − Lx
t ][L̃x+h

s−t − L̃x
s−t ]dx

]2n

ds

(6.21)

≤ E

[
1

h3/2

∫ ∞
−∞

[Lx+h
t − Lx

t ][L̃x+h
δ − L̃x

δ ]dx

]2n

.

Thus (6.20) follows from the fact that

lim
δ→0+ lim sup

h→0+
E

[
1

h3/2

∫
(Lx+h

t − Lx
t )(L̃

x+h
δ − L̃x

δ ) dx

]2n

= 0(6.22)

which, itself, is a simple consequence of (2.12) and Lemma 2.3. Thus we obtain
(6.10) and hence (6.1) when m is even.

In order to obtain (6.10) when m is odd we first show that

sup
h>0

F̂2n,h(t) ≤ Ct3n/2.(6.23)

To see this we observe that by first changing variables and then using the scaling
relationship (1.9) with h = √

t , we have∫
(Lx+h

t − Lx
t )

2 dx = √
t

∫ (
L

√
t(x+ht−1/2)

t − L
√

tx
t

)2
dx

(6.24)
= t3/2

∫
(Lx+ht−1/2

1 − Lx
1)2 dx.

Therefore,∫
(Lx+h

t − Lx
t )

2 dx − 4ht

h3/2
L= t3/2(

∫
(Lx+ht−1/2

1 − Lx
1)2 dx − 4ht−1/2)

h3/2
(6.25)

= t3/4 (
∫
(Lx+ht−1/2

1 − Lx
1)2 dx − 4ht−1/2)

(ht−1/2)3/2

so that for any integer m,

F̂m,h(t) = t3m/4F̂m,ht−1/2(1).(6.26)

Therefore to prove (6.23) we need only show that

sup
t

sup
h>0

F̂2n,ht−1/2(1) ≤ C.(6.27)

It follows from (6.10) that for some δ > 0,

sup
{t,h|ht−1/2≤δ}

F̂2n,ht−1/2(1) ≤ C.(6.28)
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On the other hand, for ht−1/2 ≥ δ,∣∣∣∣(
∫
(Lx+ht−1/2

1 − Lx
1)2 dx − 4ht−1/2)

(ht−1/2)3/2

∣∣∣∣
≤ δ−3/2

∫
(Lx+ht−1/2

1 − Lx
1)2 dx + 4δ−1/2(6.29)

≤ 4δ−3/2
∫

(Lx
1)2 dx + 4δ−1/2 < ∞

since
∫
(Lx

1)2 dx has finite moments [see (2.2)]. Using (6.28) and (6.29) we get
(6.27) and hence (6.23). It then follows from the Cauchy–Schwarz inequality that

sup
h>0

|F̂m,h(t)| ≤ Ct3m/4(6.30)

for all integers m.
We next show that for any integer m, the family of functions {F̂m,h(t);h} is

equicontinuous in t , that is, for each t and ε > 0 we can find a δ > 0 such that

sup
{s||s−t |≤δ}

sup
h>0

|F̂m,h(t) − F̂m,h(s)| ≤ ε.(6.31)

Let

�h(t) :=
∫
(Lx+h

t − Lx
t )

2 dx − 4ht

h3/2 .(6.32)

Applying the identity Am−Bm = ∑m−1
j=0 Aj(A−B)Bm−j−1 with A = �h(t),B =

�h(s) gives

F̂m,h(t) − F̂m,h(s) =
m−1∑
j=0

�h(t)
j (

�h(t) − �h(s)
)
�h(s)

m−j−1.(6.33)

Consequently by using the Cauchy–Schwarz inequality twice and (6.30), we see
that

sup
{s||s−t |≤δ}

sup
h>0

|F̂m,h(t) − F̂m,h(s)|
(6.34)

≤ Ct,m sup
{s||s−t |≤δ}

sup
h>0

‖�h(t) − �h(s)‖2.

Using (6.12)–(6.15), we see that to obtain (6.31) it suffices to show that for some
δ > 0,

sup
{s|s≤δ}

sup
h>0

F̂2,h(s) ≤ ε,(6.35)

and for any T < ∞,

sup
{t≤T }

sup
{s≤δ}

sup
h>0

E

[
1

h3/2

∫
(Lx+h

t − Lx
t )(L̃

x+h
s − L̃x

s ) dx

]2

≤ ε.(6.36)
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By (6.23),

sup
h>0

F2,h(s) ≤ Cs3/2(6.37)

which immediately gives (6.35). Furthermore, applying the Cauchy–Schwarz in-
equality in (5.10) and using (5.8) to see that∫

[0,t]m
E

(
m∏

j=1

e
ipjWrj

)
m∏

j=1

drj(6.38)

is positive and increasing in t , we see that for all t ≤ T ,

E

[
1

h3/2

∫
(Lx+h

t − Lx
t )(L̃

x+h
s − L̃x

s ) dx

]2

≤
(
E

[
1

h3/2

∫
(Lx+h

t − Lx
t )(L̃

x+h
t − L̃x

t ) dx

]2)1/2

×
(
E

[
1

h3/2

∫
(Lx+h

s − Lx
s )(L̃

x+h
s − L̃x

s ) dx

]2)1/2

(6.39)

≤
(
E

[
1

h3/2

∫
(Lx+h

T − Lx
T )(L̃x+h

T − L̃x
T ) dx

]2)1/2

×
(
E

[
1

h3/2

∫
(Lx+h

s − Lx
s )(L̃

x+h
s − L̃x

s ) dx

]2)1/2

.

Using the scaling relationship, as in (6.25), we see that

E

[
1

h3/2

∫
(Lx+h

s − Lx
s )(L̃

x+h
s − L̃x

s ) dx

]2

(6.40)

= s3/4E

[
1

(hs−1/2)3/2

∫
(Lx+hs−1/2

1 − Lx
1)(L̃x+hs−1/2

1 − L̃x
1) dx

]2

.

Following the proof of (6.27) we see that the expectation is bounded in s and h.
Therefore, by taking δ sufficiently small we get (6.36). This establishes (6.31).

We now obtain (6.1) when m is odd. By equicontinuity, for any sequence
hn → 0, we can find a subsequence hnj

→ 0, such that

lim
j→∞ F̂m,hnj

(t)(6.41)

converges to a continuous function which we denote by Fm(t). It remains to show
that

Fm(t) ≡ 0.(6.42)

Let

Gm,h(t) := e−t F̂m,h(t) and Gm(t) := e−tFm(t).(6.43)
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By (6.30),

sup
h>0

sup
t

|Gm,h(t)| ≤ C and lim
t→∞ sup

h>0
Gm,h(t) = 0.(6.44)

It then follows from (6.5) and the Dominated Convergence Theorem that for all
ζ > 0, ∫ ∞

0
e−ζ sGm(s) ds = 0.(6.45)

We obtain (6.42) by showing that Gm(s) ≡ 0.
It follows from (6.44) that Gm(t) is a continuous, bounded function on R+ that

goes to zero as t → ∞. By the Stone–Weierstrass theorem (see [7], Lemma 5.4),
for any ε > 0, we can find a finite linear combination of the form

∑n
i=1 cie

−ζi s

such that

sup
t

∣∣∣∣∣Gm(t) −
n∑

i=1

cie
−ζi t

∣∣∣∣∣ ≤ ε.(6.46)

Therefore, by (6.45),∫ ∞
0

e−sG
2
m(s) ds =

∫ ∞
0

e−s

(
n∑

i=1

cie
−ζi s

)
Gm(s) ds

+
∫ ∞

0
e−s

(
Gm(s) −

n∑
i=1

cie
−ζis

)
Gm(s) ds

(6.47)

=
∫ ∞

0
e−s

(
Gm(s) −

n∑
i=1

cie
−ζi s

)
Gm(s) ds

≤ 2ε

(∫ ∞
0

e−sG
2
m(s) ds

)1/2

by the Cauchy–Schwarz inequality and (6.46). Thus
∫ ∞

0 e−sG
2
m(s) ds = 0 which

implies that Gm(s) ≡ 0. �

7. Proof of Lemma 6.2. Our goal is to obtain the asymptotic behavior of the
mth moment of ∫

(Lx+h
λζ

− Lx
λζ

)2 dx − 4hλζ

h3/2(7.1)

as h → 0. In the numerator we have the term 4hλζ . Note that by Lemma 8.1, this
is necessary in order that the expected value of the numerator goes to 0. Since we
have h3/2 in the denominator in (7.1), and O(h/h3/2) = O(h−1/2), we must show
that in the expansion of the expectation of the mth moment of (7.1), the terms that
would cause it to blow up are canceled. We do this in the first part of this proof.
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Note that ∫
Lx

λζ
dx = λζ .(7.2)

Using this and (3.4), we write the left-hand side of (6.2) as

lim
h→0

E

((∫
(Lx+h

λζ
− Lx

λζ
)2 dx − 2
h
−huζ (0)

∫
Lx

λζ
dx

h3/2

)m)
.(7.3)

For any integer m we have

E

((∫
(Lx+h

λζ
− Lx

λζ
)2 dx − 2
h
−huζ (0)

∫
Lx

λζ
dx

)m)

= E

(
m∏

i=1

(∫
(L

xi+h
λζ

− L
xi

λζ
)2 dxi − 2
h
−huζ (0)

∫
L

xi

λζ
dxi

))
(7.4)

= ∑
A⊆{1,...,m}

(−1)|Ac|E
((∏

i∈A

∫
(L

xi+h
λζ

− L
xi

λζ
)2 dxi

)

×
( ∏

i∈Ac

2
h
−huζ (0)

∫
L

xi

λζ
dxi

))
.

We now show that there are many cancelations in the final equation in (7.4) that
eliminate the problematical terms we discussed in the beginning of this proof, and
also significantly simplifies it.

Consider a generic term in the final equation in (7.4) without the integrals. To
clarify what is going on, we calculate

E

(∏
i∈A

(L
xi+h
λζ

− L
xi

λζ
)(L

yi+h
λζ

− L
yi

λζ
)

∏
i∈Ac

2
h
−huζ (0)L
xi

λζ

)
,(7.5)

keeping in mind that yi = xi for all 1 ≤ i ≤ m. Using the Kac moment formula
(3.2), we have

E

(∏
i∈A

(L
xi+h
λζ

− L
xi

λζ
)(L

yi+h
λζ

− L
yi

λζ
)

∏
i∈Ac

2
h
−huζ (0)L
xi

λζ

)

=
(∏

i∈A


h
xi


h
yi

)
E

(∏
i∈A

L
xi

λζ
L

yi

λζ

∏
i∈Ac

2
h
−huζ (0)L
xi

λζ

)
(7.6)

= (2
h
−huζ (0))|Ac|
(∏

i∈A


h
xi


h
yi

) ∑
σ∈BA

m+|A|∏
j=1

uζ (
σ(j) − σ(j − 1)

)
,

where the sum runs over BA, the set of all bijections,

σ : [1, . . . ,m + |A|] �→ {xi, yi, i ∈ A} ∪ {xi, i ∈ Ac}.(7.7)
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As we did in the beginning of Section 4 we use the product rule,


h
x{f (x)g(x)} = {
h

xf (x)}g(x + h) + f (x){
h
xg(x)},(7.8)

to expand the last line of (7.6) into a sum of many terms, over all σ ∈ BA, and
all ways to allocate each difference operator, 
h

xi
and 
h

yj
, i, j ∈ A, to the terms

uζ (σ (j) − σ(j − 1)) in which σ(j − 1) and/or σ(j) are contained in A. After
setting all yi = xi we can then write (7.6) as

(2
h
−huζ (0))|Ac| ∑
σ∈BA,a

m+|A|∏
j=1

(

h

σ(j)

)a1(j)(

h

σ(j−1)

)a2(j)

(7.9)
× uζ,�(σ(j) − σ(j − 1)

)∣∣
yi=xi ,∀i ,

where the sum runs over σ ∈ BA and all a = (a1, a2) : [1, . . . ,m + |A|] �→ {0,1} ×
{0,1} with the restriction that for each i ∈ A there is exactly one factor of the form

h

xi
and one factor of the form 
h

yi
, and there are no such factors for i ∈ Ac. [Here

we define (
h
xi

)0 = 1 and (
h
0) = 1.] In this formula, uζ,�(x) can take any of the

values uζ (x), uζ (x + h) or uζ (x − h). [This is because we use (7.8) to pass from
the last line of (7.6) to (7.9). We consider all three possibilities in the subsequent
proofs.] It is important to recognize that in (7.9) each of the difference operators is
applied to only one of the terms uζ,�(·).

We get the simplification of the final equation in (7.4) because many terms in
the expansion of (7.6) for different sets A and σ ∈ BA are the same, and when they
are added, as they are in the final equation in (7.4), they cancel. We now make this
precise.

Fix A ⊆ {1, . . . ,m} and consider a particular bijection σ ∈ BA. Consider (7.9)
for this A and σ . For i ∈ A we say that xi is a bound variable, if xi and yi are
adjacent, that is, if either (xi, yi) = (σ (j −1), σ (j)) or (yi, xi) = (σ (j −1), σ (j))

for some j . Furthermore, for a given σ ∈ BA that contains bound variables, and a
given a, we say that a bound variable xi is a singular variable if both 
h

xi
and 
h

yi

are applied to the factor uζ (xi − yi).
Note that by (7.8) an h is not added to x in any uζ (·) to which 
h

x is applied.
Consequently,


h
xi


h
yi

uζ,�(xi − yi)|yi=xi
= 
h
−huζ (0).(7.10)

Continuing, we emphasize that the property that xi is a bound variable depends
only on σ . The property that xi is a a singular variable depends on the pair σ, a.
Let

S(σ, a) = {i|xi is a singular variable for σ, a}.(7.11)

Consider a term in (7.9), with S(σ, a) = J ⊆ A. Then for each i ∈ J we have a
unique ki ∈ [1,m + |A|] such that {σ(ki − 1), σ (ki)} = {xi, yi}. Let K = {ki, i ∈
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J }. Using (7.10), we see that the contribution of σ, a in the second line in (7.9) is

V (σ, a) :=
m+|A|∏
j=1

(

h

σ(j)

)a1(j)(

h

σ(j−1)

)a2(j)
uζ,�(σ(j) − σ(j − 1)

)∣∣
yi=xi ,∀i

= (
h
−huζ (0))|J |
m+|A|∏

j=1,j /∈K

(

h

σ(j)

)a1(j)(

h

σ(j−1)

)a2(j)(7.12)

× uζ,�(σ(j) − σ(j − 1)
)∣∣

yi=xi ,∀i .

Let I(σ ) denote the set of all σ ′ ∈ BA which can be obtained from σ by in-
terchanging σ(ki − 1) and σ(ki) for some set of the elements i ∈ J . Clearly
V (σ ′, a) = V (σ, a) for all σ ′ ∈ I(σ ). Since |I(σ )| = 2|J | we see that the con-
tribution in the second line in (7.9) obtained by summing over all σ ′ ∈ I(σ ) is

V (I(σ ), a) = (2
h
−huζ (0))|J |
m+|A|∏

j=1,j /∈K

(

h

σ(j)

)a1(j)(

h

σ(j−1)

)a2(j)

(7.13)
× uζ,�(σ(j) − σ(j − 1)

)∣∣
yi=xi ,∀i .

In what follows, given σ ∈ BA, we write it as a vector (σ (1), . . . , σ (m+|A|)) ∈
Rm+|A|. For any J ⊆ A we define σA−J ∈ BA−J , by deleting the components yi ,
i ∈ J from (σ (1), . . . , σ (m + |A|)). We only use this latter notation when J is
contained in the set of singular variables of some σ, a.

As an example of the relationship between σ and I(σ ), let m = 3, A = {1,2,3},
σ = (x1, x2, y2, y3, x3, y1) and J = {2,3}. Then I(σ ) consists of the four bijec-
tions

σ = σ1 = (x1, x2, y2, y3, x3, y1),

σ2 = (x1, y2, x2, y3, x3, y1),
(7.14)

σ3 = (x1, x2, y2, x3, y3, y1),

σ4 = (x1, y2, x2, x3, y3, y1).

Also, in the notation just defined, σ{1,3} = (x1, x2, y3, x3, y1), σ{1,2} = (x1, x2, y2,

x3, y1) and σ{1} = (x1, x2, x3, y1).
In the notation just defined, we write (7.13) as

V (I(σ ), a) = (2
h
−huζ (0))|J |

×
m+|A−J |∏

j=1

(

h

σA−J (j)

)a′
1(j)(


h
σA−J (j−1)

)a′
2(j)(7.15)

× uζ,�(σA−J (j) − σA−J (j − 1)
)∣∣

yi=xi ,∀i ,
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where a′ is obtained from a = {(a1(j), a2(j))}m+|A|
j=1 by deleting from a the pairs

(a1(j), a2(j)) for j ∈ K , and renumbering the remaining terms in increasing order.
Note that in applying the product formula for difference operators (7.8) we can

choose which function plays the role of f , and which the role of g. When xi is a
bound variable, that is both xi, yi appear in the same uζ (·), and we apply (7.8) to
expand 
h

xi
, we take g to be uζ (yi − xi). That is, we take


h
xi

uζ (xi − a)uζ (xi − yi)
(7.16)

= 
h
x1

uζ (xi − a)uζ (xi + h − yi) + uζ (xi − a)
h
x1

uζ (xi − yi),

and similarly when we apply (7.8) to expand 
h
yi

. Thus if xi is a singular variable
and we apply 
h

xi

h

yi
by the above rule, and then set yi = xi , the term that contains


h
−huζ (0) is

uζ (xi − a)
h
−huζ (0)uζ (b − xi).(7.17)

Note that there are no ±h terms added to the yi or xi . Because of this we see that∑
{a|S(σ,a)=J⊆A}

V (I(σ ), a)

= (2
h
−huζ (0))|J |(7.18)

×
{( ∏

i∈A−J

′

h

xi

h

yi

)
uζ (

σA−J (j) − σA−J (j − 1)
)}∣∣∣∣

yi=xi ,∀i

,

where the notation
∏′ indicates that when we use (7.8) to expand the second line

of (7.18), we do not apply both 
h
xi


h
yi

to the same factor uζ (·). This is because
all the singular variables have been removed from the S(σ, a). The significance of
this representation is that it does not contain any ambiguous terms uζ,�(·).

For J ⊆ A, let ψ ∈ BA−J . We write ψ as a vector in Rm+|A−J | whose compo-
nents consist of a permutation of the m + |A − J | elements {xi, yi, i ∈ A − J } ∪
{xi, i ∈ (A − J )c}. Let σ be obtained from this vector by inserting a component
yi , following xi , for each i ∈ J . Considering the way σA−J was obtained from σ

[see the paragraph following the one containing (7.14)], it clear that for this σ , we
have σA−J = ψ . It then follows from this and (7.18) that we can rewrite (7.9) as∑

J⊆A

(2
h
−huζ (0))|Ac|(2
h
−huζ (0))|J |

×
{( ∏

i∈A−J

′

h

xi

h

yi

) ∑
σ∈BA−J

m+|A−J |∏
j=1

uζ (
σ(j) − σ(j − 1)

)}∣∣∣∣
yi=xi ,∀i

= ∑
J⊆A

(2
h
−huζ (0))|(A−J )c|(7.19)
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×
{( ∏

i∈A−J

′

h

xi

h

yi

)

× ∑
σ∈BA−J

m+|A−J |∏
j=1

uζ (
σ(j) − σ(j − 1)

)}∣∣∣∣
yi=xi ,∀i

.

Hence by (7.4)–(7.9), for any integer m, we have

E

((∫
(Lx+h

λζ
− Lx

λζ
)2 dx − 2
h
−huζ (0)

∫
Lx

λζ
dx

)m)
(7.20)

= ∑
A⊆{1,...,m}

(−1)|Ac| ∑
J⊆A

∫
φ(A − J )dx,

where the set function φ is defined by

φ(D) := (2
h
−huζ (0))|Dc|
(7.21)

×
{(∏

i∈D

′

h

xi

h

yi

) ∑
σ∈BD

m+|D|∏
j=1

uζ (
σ(j) − σ(j − 1)

)}∣∣∣∣
yi=xi ,∀i

.

It follows from Principle of Inclusion–Exclusion ([13], page 66, formula (8)) that∑
A⊆{1,...,m}

(−1)|Ac| ∑
J⊆A

φ(A − J ) = φ({1, . . . ,m}).(7.22)

Referring to (7.20)–(7.22) we see that to estimate (7.4) we need only consider
A = {1, . . . ,m} and those cases in which each of the 2m difference operators 
h

are assigned either to a unique factor uζ (·), or if two difference operators are as-
signed to the same factor uζ (·), it is not of the form uζ (0). Therefore, we see that

E

((∫
(Lx+h

λζ
− Lx

λζ
)2 dx − 2
h
−huζ (0)

∫
Lx

λζ
dx

)m)
(7.23)

= 2m
∑

π∈D,a

∫
T �

h (x;π,a)dx,

where

T �
h (x;π,a) =

2m∏
j=1

(

h

xπ(j)

)a1(j)(

h

xπ(j−1)

)a2(j)
uζ,�(xπ(j) − xπ(j−1)

)
,(7.24)

and the sum runs over D, the set of all maps π : [1, . . . ,2m] �→ [1, . . . ,m] with
|π−1(i)| = 2 for each i, and all a = (a1, a2) : [1, . . . ,2m] �→ {0,1} × {0,1} with
the property that for each i there are exactly two factors of the form 
h

xi
in (7.24),

and if a(j) = (1,1) for any j , then xπ(j) 
= xπ(j−1). The factor 2m in (7.23) comes
from the fact that |π−1(i)| = 2 for each i.



432 CHEN, LI, MARCUS AND ROSEN

It follows from (1.4), (7.3) and (7.23) that to obtain (6.2) it suffices to show that

lim
h→0

h−3/22m
∑

π∈D,a

∫
T �

h (x;π,a)dx(7.25)

is equal to the right-hand side of (6.2). To simplify the proof we first show this
with T �

h (x;π,a) replaced by

Th(x;π,a) =
2m∏
j=1

(

h

xπ(j)

)a1(j)(

h

xπ(j−1)

)a2(j)
uζ (

xπ(j) − xπ(j−1)

)
.(7.26)

At the conclusion of this proof we explain why we have the same limits when Th(·)
is replaced by T �

h (·).
From this point on, the proof is very similar to the proof of Lemma 2.2. Let

m = 2n. Consider the multigraph Gπ whose vertices consist of {1, . . . ,2n} and we
assign an edge between the vertices π(2j − 1) and π(2j) for each j = 1, . . . ,2n.
Each vertex is connected to two edges, and it is possible to have two edges between
any two vertices i, j . Note that the connected components Cj , j = 1, . . . , k of Gπ

consist of cycles.

7.1. a = e and all cycles are of order two. When a = e (defined just before
Section 4.1), we have

Th(x;π, e) =
2n∏

j=1

uζ (
xπ(2j−1) −xπ(2j−2)

)

h
−huζ (

xπ(2j) −xπ(2j−1)

)
.(7.27)

Assume now that, in addition, all cycles are of order two.
Let P = {(l2i−1, l2i ),1 ≤ i ≤ n} be a pairing of the integers [1,2n]. Let π ∈ D

[defined just after (7.24)] be such that for each 1 ≤ j ≤ 2n, {π(2j − 1),π(2j)} =
{l2i−1, l2i} for some, necessarily unique, 1 ≤ i ≤ n. In this case we say that π is
compatible with the pairing P and write this as π ∼ P . [Note that when we write
{π(2j − 1),π(2j)} = {l2i−1, l2i} we mean as two sets, so, according to what π is,
we may have π(2j − 1) = l2i−1, π(2j) = l2i or π(2j − 1) = l2i , π(2j) = l2i−1.]
Whenever π ∈ D is such that Gπ consists only of cycles of order two, π ∼ P , for
some pairing P of the integers [1,2n]. In this case we have

Th(x;π, e) =
n∏

i=1

(

h
−huζ (xl2i

−xl2i−1)
)2

2n∏
j=1

uζ (
xπ(2j−1) −xπ(2j−2)

)
.(7.28)

Following the proof of Lemma 2.2 we first show that∫
Th(x;π, e)

2n∏
j=1

dxj =
∫

T1,h(x;π,a)

2n∏
j=1

dxj + O(h3n+1),(7.29)
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where

T1,h(x;π, e) =
n∏

i=1

(
1{|xl2i

−xl2i−1 |≤h}
)(


h
−huζ (xl2i
− xl2i−1)

)2

(7.30)

×
2n∏

j=1

uζ (
xπ(2j−1) − xπ(2j−2)

)
.

To prove (7.29) we proceed as in (4.16)–(4.19), and see that it suffices to show
that for A ⊆ [1, . . . , n] and |Ac| ≥ 1,∫ ∏

i∈A

1{|xl2i
−xl2i−1 |≤h}

∏
i∈Ac

1{|xl2i
−xl2i−1 |≥h}

(

h
−huζ (xl2i

− xl2i−1)
)2

(7.31)

×
2n∏

j=1

uζ (
xπ(2j−1) − xπ(2j−2)

) 2n∏
j=1

dxj = O(h3n+1).

To show this we first choose jk , k = 1, . . . , n, so that{
xπ(2jk−1) − xπ(2jk−2), k = 1, . . . , n

} ∪ {xl2i
− xl2i−1, i = 1, . . . , n}(7.32)

spans R2n. Let yi , i = 1, . . . ,2n, denote the 2n variables in (7.32). We make
the change of variables in (7.31) to {y1, . . . , y2n}. We then bound those terms in
uζ (xπ(2j−1) − xπ(2j−2)), j = 1, . . . ,2n, that do not map into uζ (yi), for some
i = 1, . . . ,2n [see (3.1)]. We are then left with an easy integral and using (3.8),
and (3.9) and the fact that uζ (·) is integrable, we get (7.31).

Analogous to (4.25) and (4.26), we now study∫
T1,h(x;π, e)

2n∏
j=1

dxj .(7.33)

Recall that for each 1 ≤ j ≤ 2n, {π(2j − 1),π(2j)} = {l2i−1, l2i}, for some
1 ≤ i ≤ n. We identify these relationships by setting i = σ(j) when {π(2j −
1),π(2j)} = {l2i−1, l2i}. In the present situation, in which all cycles are of or-
der two, we have σ : [1,2n] �→ [1, n], with |σ−1(i)| = 2, for each 1 ≤ i ≤ n. We
write

2n∏
j=1

uζ (
xπ(2j−1) − xπ(2j−2)

)
(7.34)

=
2n∏

j=1

(
uζ (

xl2σ(j)−1 − xl2σ(j−1)−1

) + 
hj uζ (
xl2σ(j)−1 − xl2σ(j−1)−1

))
,

where hj = (xπ(2j−1) − xl2σ(j)−1) + (xl2σ(j−1)−1 − xπ(2j−2)). Note that because of
the presence of the term

∏n
i=1(1{|xl2i

−xl2i−1 |≤h}) in the integral in (7.33), we need
only be concerned with values of |hj | ≤ 2h, 1 ≤ j ≤ 2n.
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Following (4.28)–(4.33), we see that∫
T1,h(x;π, e)

2n∏
j=1

dxj

=
∫ n∏

i=1

(

h
−huζ (xl2i

− xl2i−1)
)2

2n∏
j=1

uζ (
xl2σ(j)−1 − xl2σ(j−1)−1

) 2n∏
j=1

dxj(7.35)

+ O(h3n+1),

where x−1 = 0.
We now estimate the integral in (7.35). Using translation invariance and then

(3.8), we have∫ n∏
i=1

(

h
−huζ (xl2i

− xl2i−1)
)2

2n∏
j=1

uζ (
xl2σ(j)−1 − xl2σ(j−1)−1

) 2n∏
j=1

dxj

=
∫ n∏

i=1

(

h
−huζ (xl2i

)
)2

2n∏
j=1

uζ (
xl2σ(j)−1 − xl2σ(j−1)−1

) 2n∏
k=1

dxlk(7.36)

= (
8/3 + O(h)

)n
h3n

∫ 2n∏
j=1

uζ (
xl2σ(j)−1 − xl2σ(j−1)−1

) n∏
k=1

dxl2k−1 .

We set yk = xl2k−1 and write the last line of (7.36) as

(8/3)nh3n
∫ 2n∏

j=1

uζ (
yσ(j) − yσ(j−1)

) n∏
k=1

dyk + O(h3n+1).(7.37)

It follows from (7.29) and (7.35)–(7.37) that∫
Th(x;π, e)

2n∏
j=1

dxj

(7.38)

= (8/3)nh3n
∫ 2n∏

j=1

uζ (
yσ(j) − yσ(j−1)

) n∏
k=1

dyk + O(h3n+1),

where y0 = 0.
Let M denote the set of maps σ from [1, . . . ,2n] to [1, . . . , n] such that

|σ−1(i)| = 2 for all i. For each pairing P of [1, . . . ,2n], any π ∈ D that is compat-
ible with P (i.e. π ∼ P ) gives rise to such a map σ ∈ M. Furthermore, any of the
22n maps in D obtained from π by permuting the 2 elements in any of the 2n pairs
{π(2j − 1),π(2j)}, give rise to the same map σ . In addition, for any σ ′ ∈ M, we
can reorder the 2n pairs of π to obtain a new π ′ ∼ P which gives rise to σ ′. Thus
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we have shown that∑
π∼P

∫
Th(x;π, e)

2n∏
j=1

dxj

=
(

32

3
h3

)n ∑
σ∈M

∫ 2n∏
j=1

uζ (
yσ(j) − yσ(j−1)

) n∏
k=1

dyk + O(h3n+1)(7.39)

=
(

16

3
h3

)n

E

{(∫
(Lx

λζ
)2 dx

)n}
+ O(h3n+1),

where the last line follows from Kac’s moment formula. The factor 2−n that ap-
pears in the transition from the second to the third line in (7.39) is due to the fact
that |σ−1(i)| = 2 for each i [see (7.23)].

Let G2 denote the set of π ∈ D such that all cycles of the graph Gπ have order
two. Since every such π is compatible with some pairing P , and there are (2n)!

2nn!
such pairings, we see that∑

π∈G2

∫
Th(x;π, e)

2n∏
j=1

dxj = (2n)!
2nn!

(
16

3
h3

)n

E

{(∫
(Lx

λζ
)2 dx

)n}
(7.40)

+ O(h3n+1).

7.2. a = e and all cycles are not of order two and a 
= e. We follow closely
the argument in Section 4.2 to show that∑

π /∈G2

∣∣∣∣∣
∫

T (x;π, e)

2n∏
j=1

dxj

∣∣∣∣∣ = O(h3n+1).(7.41)

Let the cycles Cj = {j1, . . . , jl(j)} of Gπ be written in cyclic order where l(j) =
|Cj |. Note that

∑k
j=1 l(j) = 2n.

Since we only need an upper bound, we take absolute values in the integrand to
see that∣∣∣∣∣

∫
Th(x;π, e)

2n∏
j=1

dxj

∣∣∣∣∣
≤

∫ k∏
j=1

(
wζ (xj2 − xj1) · · ·wζ (

xjl(j)
− xjl(j)−1

)
wζ (

xj1 − xjl(j)

))
(7.42)

×
2n∏

j=1

uζ (
xπ(2j−1) − xπ(2j−2)

) 2n∏
j=1

dxj ,

where wζ (x) is defined in (4.20). Note that we group the functions w according to
the cycles.
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We now follow the paragraph containing (4.44) verbatim until the end of Sec-
tion 4.2, except that we replace u and w by uζ and wζ , to get (7.41).

When a 
= e,

∑
π

∑
a 
=e

∣∣∣∣∣
∫

Th(x;π,a)

2n∏
j=1

dxj

∣∣∣∣∣ = O(h3n+1).(7.43)

This follows easily by obvious modifications of the proof in Section 4.3, similar to
the modifications of the proof in Section 4.2 that gives (7.41).

We now note that it follows from the arguments in the final three paragraphs of
the proof of Lemma 2.2 on page 416, that for m even we obtain the same asymp-
totic behavior when we replace Th(x;π,a) by T �

h (x;π,a), and also, that we get
the right-hand side of (6.2) for odd moments.

Summing up, we have shown that the only nonzero limits in (7.25) come from
(7.40) when m is even. Using this in (7.25), in which we multiply by 22n, we see
that (7.25) is equal to the right-hand side of (6.2).

8. Expectation.

LEMMA 8.1. For h ≥ 0,

E

(∫
(Lx+h

1 − Lx
1)2 dx

)
= 4h + O(h2)(8.1)

as h → 0. Equivalently,

E

(∫
(Lx+1

t − Lx
t )

2 dx

)
= 4t + O(t1/2)(8.2)

as t → ∞.

PROOF. By the Kac moment formula,

E

(∫
(Lx+h

1 − Lx
1)2 dx

)
= 2

∫ ∫
{∑2

i=1 ri≤1}

hpr1(x)
hpr2(0) dr1 dr2 dx(8.3)

+ 2
∫ ∫

{∑2
i=1 ri≤1}

pr1(x)
h
−hpr2(0) dr1 dr2 dx.

When we integrate with respect to x, we get zero in the first integral and one in the
second. Consequently,

E

(∫
(Lx+h

1 − Lx
1)2 dx

)
= 2

∫
{∑2

i=1 ri≤1}

h
−hpr2(0) dr1 dr2

(8.4)

= 4
∫ 1

0
(1 − r)

(
pr(0) − pr(h)

)
dr.
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Since ∫ 1

0
r

1 − e−h2/2r

√
r

dr ≤
∫ 1

0
r
h2/2r√

r
dr = O(h2)(8.5)

and ∫ ∞
1

1 − e−h2/2r

√
r

dr ≤
∫ ∞

1

h2/2r√
r

dr = O(h2),(8.6)

we see that to prove (8.1) it suffices to show that∫ ∞
0

(
pr(0) − pr(h)

)
dr = h + O(h2).(8.7)

This follows from (3.1) since∫ ∞
0

(
pr(0) − pr(h)

)
dr = lim

α→0

∫ ∞
0

e−αr(pr(0) − pr(h)
)
dr.(8.8)

Thus we get (8.1); (8.2) follows from the scaling property (1.9). �
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