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SEMI-CLASSICAL ANALYSIS OF A RANDOM
WALK ON A MANIFOLD

BY GILLES LEBEAU AND LAURENT MICHEL

Université de Nice Sophia-Antipolis

We prove a sharp rate of convergence to stationarity for a natural ran-
dom walk on a compact Riemannian manifold (M,g). The proof includes a
detailed study of the spectral theory of the associated operator.

1. Introduction. This paper has two main aims. First, we study the spectral
theory of a Markov chain associated to a natural “ball walk” on a compact, con-
nected Riemannian manifold. From x, the walk moves to a uniformly chosen point
in a ball of radius h around x. Here h is a small parameter. We prove a precise
Weyl-type estimate on the number of eigenvalues close to 1, and convergence of
the spectrum near 1 (when h → 0) to the Laplace–Beltrami spectrum. This walk
does not have, in general, the Riemannian area distribution as stationary distribu-
tion. The second aim is to analyse the Metropolis algorithm as a way to achieve
uniformity. Sharp rates of convergence for the Metropolized chain are given. In the
Appendix, we prove that under appropriate scaling, the modified Metropolis chain
converges to the Brownian motion.

Let (M,g) be a smooth, compact, connected Riemannian manifold of dimen-
sion d , equipped with its canonical volume form dgx. Let dg(x, y) be the Rie-
mannian distance on M ×M . For x ∈ M and h > 0, let B(x,h) = {y, dg(x, y) ≤ h}
be the ball of radius h centered at x, and let |B(x,h)| = ∫

B(x,h) dgy be its Rie-
mannian volume. For any given h > 0, let Th be the operator acting on continuous
functions on M ,

(Thf )(x) = 1

|B(x,h)|
∫
B(x,h)

f (y) dgy.(1.1)

We denote by Kh the kernel of Th, which is given by

Kh(x, y) dgy = 1{dg(x,y)≤h}
|B(x,h)| dgy.(1.2)

Obviously, for any x ∈ M , Kh(x, y) dgy is a probability measure on M , and there-
fore Kh is a Markov kernel. It is associated with the following natural random walk
on M : if the walk is at x, then it moves to a point y ∈ B(x,h) with a probability
given by Kh(x, y) dgy.
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Let t Th be the transpose operator acting on Borel measures on M , defined as
usual by 〈t Th(μ), f 〉 = 〈μ,Th(f )〉. Let cd be the volume of the unit ball of the
Euclidean space R

d . For h small, h−d |B(x,h)| is a smooth function on M which
converges uniformly on M to cd when h → 0. Let dνh be the probability measure
on M ,

dνh = |B(x,h)|
Zhcdhd

dgx,(1.3)

where the normalizing constant Zh is such that dνh(M) = 1. Then for h small, dνh

is close to dgx/Vol(M) and Zh is close to Vol(M). One verifies easily that Th is
self-adjoint on the space L2(M,dνh), and that tTh(dνh) = dνh.

The first goal of this paper is to analyze the spectral theory of the self-adjoint op-
erator Th acting on L2(M,dνh). Let us recall some basic facts. One has Th(1) = 1,
and by the Markov property, the norm of Th acting on the space L∞ is equal to 1;
by self-adjointness, the norm of Th acting on the space L1(M,dνh) is equal to 1
and thus the norm of Th acting on the space L2(M,dνh) is also equal to 1. Ob-
serve that for any given h > 0, the operator Th is compact. Thus the spectrum
of Th, Spec(Th), is a closed subset of [−1,1] which is discrete in [−1,1] \ {0}
with 0 as accumulation point, and each μ ∈ Spec(Th) \ {0} is an eigenvalue of
finite multiplicity.

We denote by �g the (negative) Laplace–Beltrami operator on (M,g), and by
0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · the spectrum of the self-adjoint operator −�g

on L2(M,dgx). We will denote by Gd(ξ) the following function of ξ ∈ R
d :

Gd(ξ) = 1

cd

∫
|y|≤1

eiyξ dy.(1.4)

Up to the factor 1
cd

, the function Gd is the Fourier transform of the characteristic

function of the unit ball in R
d , and depends only on |ξ |2. We shall also use the

function �d(s) on [0,∞[ defined by

Gd(ξ) = �d(|ξ |2).(1.5)

The function �d is real analytic, |�d(s)| ≤ 1, and lims→∞ �d(s) = 0, since Gd(ξ)

is the Fourier transform of a compactly supported, real and even L1 function of
total mass 1. One has near s = 0,

�d(s) = 1 − s

2(d + 2)
+ O(s2).(1.6)

Moreover, there exists γ0 < 1 such that �d(s) ∈ [−γ0,1] for all s, and one has
�d(s) = 1 iff s = 0. To see this point, just observe that if |Gd(ξ)| = 1, then one
has Gd(ξ) = eiθ for some real θ , hence

∫
|y|≤1(e

iyξ−iθ − 1) dy = 0 which implies
yξ − θ ∈ 2πZ for all |y| ≤ 1, and therefore ξ = 0 and θ ∈ 2πZ.
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THEOREM 1. Let h0 > 0 be small. There exist γ < 1 such that for any h ∈
]0, h0], one has Spec(Th) ⊂ [−γ,1], and 1 is a simple eigenvalue of Th. Let

0 < · · · ≤ μk+1(h) ≤ μk(h) ≤ · · · ≤ μ1(h) < μ0(h) = 1(1.7)

be the decreasing sequence of positive eigenvalues of Th. For any given L > 0,
there exists C such that for all h ∈]0, h0] and all k ≤ L, one has∣∣∣∣1 − μk(h)

h2 − λk

2(d + 2)

∣∣∣∣ ≤ Ch2.(1.8)

Let N(a,h) be the number of eigenvalues of Th in the interval [a,1]. For any given
δ ∈]0,1[, there exist Cδ,i independent of h ∈]0, h0], such that the following holds
true:

For any τ ∈ [0, (1 − δ)h−2], N(1 − τh2, h) satisfies the Weyl law,∣∣∣∣N(1 − τh2, h) − (2πh)−d
∫
�d(|ξ |2x)∈[1−τh2,1]

dx dξ

∣∣∣∣
(1.9)

≤ Cδ,1(1 + τ)(d−1)/2,

where dx dξ is the canonical volume form on the symplectic manifold T ∗M , and
|ξ |x is the Riemannian length of the co-vector ξ at x. In particular, one has

N(1 − τh2, h) ≤ Cδ,2(1 + τ)d/2.(1.10)

Moreover, for any eigenfunction eh
k of Th associated with the eigenvalue μk(h) ∈

[δ,1], the following inequality holds true with τk(h) = h−2(1 − μk(h)),

‖eh
k‖L∞ ≤ Cδ,3

(
1 + τk(h)

)d/4‖eh
k‖L2 .(1.11)

Let |�h| be the positive, bounded, self-adjoint operator on L2(M,dνh) defined
by

1 − Th = h2

2(d + 2)
|�h|.(1.12)

By (1.8), the two operators |�h| and −�g have almost the same eigenvalues in any
interval [0,L] independent of h, for h small enough. Our next result gives more
precise information on the difference of their resolvents for h small. Observe that
as vector spaces, the two Hilbert spaces L2(M,dνh) and L2(M,dgx) are equal,
and that their norms are uniformly in h equivalent. We set L2 = L2(M,dνh) =
L2(M,dgx), ‖f ‖L2 = ‖f ‖L2(M,dgx/Vol(M)), and if A is a bounded operator on L2,
we denote by ‖A‖L2 its norm.

Let F1 and F2 be the two closed subsets of C, F1 = {z,dist(z, spec(−�g)) ≤ ε},
F2 = {z,Re(z) ≥ A, | Im(z)| ≤ ε Re(z)} with ε > 0 small and A > 0 large. Let
F = F1 ∪ F2 and U = C \ F .
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THEOREM 2. There exists C,h0 > 0 such that for all h ∈]0, h0], and all z ∈ U,

‖(z − |�h|)−1 − (z + �g)
−1‖L2 ≤ Ch2.(1.13)

REMARK 1. The error term O(h2) in the estimate (1.13) is of the same type
than the error one gets for the difference between discrete and continuous Lapla-
cian on R

d . However, in our geometric setting, the Ricci curvature of M con-
tributes also to the error term (see Lemma 3 below), and to get a true discrete
Laplacian on the manifold M , one will have to discretize the integration process
in formula (1.1). Although this is clearly a question of practical interest [as well
as modification of |�h| to improve the convergence in (1.13)], we will not discuss
this point in the present paper.

Observe that when M = (R/2πZ)d is the flat d-dimensional torus with g equal
to the Euclidean metric, one has the equality,

Th = �d(−h2�g).(1.14)

Thus, in that case, the operators Th and �g have exactly the same eigenvec-
tors eikx , and the results of Theorems 1 and 2 can be proved by a simple com-
putational verification. For a general compact Riemannian manifold (M,g), the
two operators Th and �g do not commute, and the formula (1.14) is untrue. In
Section 2, we will use a suitable h-pseudo-differential calculus in order to show
that formula (1.14) remains almost true (in a proper sense), modulo lower order
terms involving the curvature of M . Then, using the results of Section 2, we will
prove Theorems 1 and 2 in Section 3. Observe that the L∞ bound (1.11) on the
eigenfunctions of |�h| is the exact analogue of what one gets from Sobolev in-
equalities for the eigenfunctions of �g ; in particular, this is certainly not optimal,
and it will be of interest to know if the Sogge estimates (see [14]) for the eigen-
functions of �g are true for the eigenfunctions of |�h|. However, (1.11) will be
sufficient for us in the proof of Theorem 3.

Let us now discuss the second goal of this paper. For any n ≥ 1, let Kn
h(x, y) dgy

be the kernel of (Th)
n. Then

∫
A Kn

h(x, y) dgy is the probability that the random
walk associated to Th starting at x is in the set A after n steps of the walk. When
n → ∞, the sequence of probabilities Kn

h(x, y) dgy will converge to the stationary
probability dνh(y), but this is not quite satisfactory, since on a general manifold M ,
dνh(y) depends on h. Thus, in order to get a Markov chain with the fixed stationary
probability dμM = dgx/Vol(M), we modified the kernel Kh(x, y) dgy, according
to the strategy of the Metropolis algorithm, in the following way. Let

Mh(x, dy) = mh(x)δy=x + Kh(x, y) dgy,(1.15)

where the functions mh and Kh are defined by

Kh(x, y) = Kh(x, y)min
( |B(x,h)|

|B(y,h)| ,1
)
,

(1.16)
mh(x) = 1 −

∫
M

Kh(x, y) dgy.
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Then, Mh(x, dy) is still a Markov kernel, but now, the operator

Mh(f )(x) =
∫
M

f (y)Mh(x, dy)(1.17)

is self-adjoint on the space L2(M,dgx), and therefore one has tMh(dgx) = dgx

for all h. Let Mn
h(x, dy) be the kernel of (Mh)

n. Our purpose is to get an es-
timate uniform with respect to the small parameter h, on the speed of conver-
gence, when n → ∞, of the probability Mn

h(x, dy) toward the invariant measure
dμM = dgx/Vol(M). Let us recall that if p,q are two probabilities, their total
variation distance is defined by

‖p − q‖TV = sup
A

|p(A) − q(A)|,
where the sup is over all Borel sets A. The following theorem tells us that this
speed of convergence is estimated for h small, as expected, by the first nonzero
eigenvalue λ1 of the Laplace–Beltrami operator-�g .

THEOREM 3. Let h0 > 0 small. There exists A such that for all h ∈]0, h0] the
following holds true:

e−γ ′(h)nh2 ≤ 2 sup
x∈M

‖Mn
h(x, dy) − dμM‖TV,

(1.18)
sup
x∈M

‖Mn
h(x, dy) − dμM‖TV ≤ Ae−γ hnh2

for all n.

Here γ (h), γ ′(h) are two positive functions such that γ (h) � γ ′(h) � λ1
2(d+2)

when
h → 0.

Of course, the analogue of this result is also valid if one replaces Mh by Th and
dμM by dνh, with a simple proof. Theorem 3 will be proved in Section 4. We
will verify that Mh is a sufficiently small perturbation of Th, and, in particular, that
estimates (1.11) and (1.10) remains true for its eigenfunctions. Finally, in Theo-
rem 4 of the Appendix, we will answer a question of one of the referees of the
paper, about the convergence of the Metropolis chain to the Brownian motion on
the Riemannian manifold (M,g).

Perhaps the main contribution of this paper is the introduction of micro-local
analysis as a tool for analyzing rates of convergence for Markov chains. These
result in a fairly general picture; the top of the spectrum of the Metropolis chain
converges to a Laplace spectrum. Because of the holding, the Metropolis chain
has a continuous spectrum but this is bound from ±1 and does not enter the final
result. This picture was found in a simple case in [4] and for the Metropolis algo-
rithm in Lipschitz domains, including the random placement of N hard discs in the
unit square, in [5]. The present paper shows that the picture holds fairly generally.
Throughout this paper, we will use basic techniques in semi-classical analysis, for
which we refer to [13] and [7].
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For an introduction to the well-developed area of probability theory on Rie-
mannian manifolds we refer to [11]. For the analysis of the Metropolis algorithm,
we refer to [6] and references therein. There are also emerging applications to sta-
tistics on Riemannian manifolds (see [1–3, 10] for examples and references). All
of these applications lead to the problem of drawing random samples from the uni-
form distribution. This topic has not been widely addressed. Some algorithms are
suggested in [3]. The present paper is a contribution to a rigorous treatment, giving
reasonably sharp bounds on rates of convergence.

2. The symbolic calculus of Th. We first recall some basic facts on the classi-
cal h-pseudo-differential calculus. For m ∈ R, let Sm the set of functions a(x, ξ, h)

smooth in (x, ξ) ∈ R
2d , with parameter h ∈]0,1] such that for any α,β , there ex-

ists Cα,β such that for all (x, ξ) ∈ R
2d and all h ∈]0,1] one has

|∂α
x ∂

β
ξ a(x, ξ, h)| ≤ Cα,β(1 + |ξ |)m−|β|.(2.1)

For a ∈ Sm, we denote by Op(a) the h-pseudo-differential operator acting on the
Schwartz space S(Rd),

Op(a)(f )(x) = (2πh)−d
∫

ei(x−y)ξ/ha(x, ξ, h)f (y) dy dξ.(2.2)

Let us recall that for a ∈ S0, the operator Op(a) is uniformly bounded in h on the
space L2(Rd), and that for a ∈ Sm,b ∈ Sk , one has Op(a)Op(b) = Op(c) where
c = a�b ∈ Sm+k is given by the oscillatory integral

c(x, ξ, h) = (2πh)−d
∫

e−izθ/ha(x, ξ + θ,h)b(x + z, ξ, h) dz dθ,(2.3)

and admits the asymptotic expansion

c(x, ξ, h) = ∑
|α|<N

h|α|

i|α|α! ∂α
ξ a(x, ξ, h) ∂α

x b(x, ξ, h)

(2.4)
+ hNrN(x, ξ, h), rN ∈ Sm+l−N.

The subset Sm
cl of Sm is the set of a(x, ξ, h) ∈ Sm such that there exists a sequence

an(x, ξ) ∈ Sm−n, n ≥ 0, such that for all N , one has

a(x, ξ, h) = ∑
0≤n<N

(h/i)nan(x, ξ) + hNrN(x, ξ, h), rn ∈ Sm−N.(2.5)

From (2.4), one has a�b ∈ Sm+k
cl for a ∈ Sm

cl and b ∈ Sk
cl .

Let (M,g) be a compact smooth Riemannian manifold, and let ej (x) ∈
C∞(M), j ≥ 0, be an orthonormal basis in L2(M,dgx) of real eigenvectors of
−�g with −�gej = λjej . For any distribution f ∈ D′(M), the Fourier coeffi-
cients of f are defined by fj = ∫

f ej dgx and one has f (x) = ∑
j fj ej (x) where
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the series is convergent in D′(M). For s ∈ R, let Hs(M) = (1 − �g)
−s/2L2(M,

dgx) be the usual Sobolev space on M . For f ∈ D′(M) one has f ∈ Hs(M) iff
‖f ‖2

Hs(M) = ∑
j (1 + λj )

s |fj |2 < ∞. We shall also use the semi-classical Hs

norms defined by

‖f ‖2
h,s = ∑

j

(1 + h2λj )
s |fj |2.(2.6)

A family of operators Rh, h ∈]0,1], acting on the space of distributions D′(M)

is said to be smoothing iff for any s, t,N , Rh maps Hs(M) in Ht(M) and there
exists Cs,t,N such that for all h ∈]0,1] one has

‖Rh(f )‖Ht(M) ≤ Cs,t,NhN‖Rh(f )‖Hs(M).(2.7)

A family of operators Ah, h ∈]0,1] acting on the space of distributions D′(M),
belongs to the set E m

cl of classical h-pseudo-differential operators of order m,
iff for any x0 ∈ M , there exists an open chart U centered at x0 and two func-
tions ϕ,ψ ∈ C∞

0 (U) equal to 1 near x0 with ψ equal to 1 near the support
of ϕ such that Ahϕ = ψAhϕ + Rh, with Rh smoothing and there exists a �∑

n≥0(h/i)nan(x, ξ) ∈ Sm
cl , such that in the local chart U , one has ψAhϕ = Op(a).

The principal symbol of Ah, σ0(Ah)(x, ξ), is by definition the first term a0(x, ξ)

in the asymptotic expansion of a(x, ξ, h). It is a well-defined function on T ∗M ,
and for any smooth function ϕ ∈ C∞(M), one has

e−iϕ(x)/hAh

(
eiϕ(x)/h) = σ0(Ah)(x, dϕ(x)) + O(h).(2.8)

Then Ecl = ⋃
m E m

cl is the algebra of classical h-pseudo-differential operators on
M . For Ah ∈ E m

cl and Bh ∈ E k
cl , one has AhBh ∈ E m+k

cl , σ0(AhBh) = σ0(Ah)σ0(Bh)

and the commutator [Ah,Bh] = AhBh − BhAh satisfies [Ah,Bh] ∈ hE m+k−1
cl ,

σ0(
i
h
[Ah,Bh]) = {σ0(Ah), σ0(Bh)} where {f,g} is the Poisson bracket. Moreover,

for any Ah ∈ E m
cl , one has A∗

h ∈ E m
cl , σ0(A

∗
h) = σ0(Ah), and for any s ∈ R, there

exist Cs independent of h ∈]0,1] such that

‖Ahf ‖h,s−m ≤ Cs‖f ‖h,s ∀f ∈ Hs(M).(2.9)

Let us recall that for any � ∈ C∞
0 ([0,∞[), the operator �(−h2�g) defined by

�(−h2�g)(f ) = ∑
j

�(h2λj )fj ej (x)(2.10)

belongs to E −∞
cl = ⋂

m E m
cl , and its principal symbol is equal to

σ0(�(−h2�g)) = �(|ξ |2x),(2.11)

where |ξ |x is the Riemannian length of the co-vector ξ at x. For a proof of this
fact, we refer to [7].
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DEFINITION 1. A family of operators Ch, h ∈]0,1], acting on the space of
distributions D′(M), belongs to the class Ẽ 0

cl if and only if Ch is bounded uniformly
in h on L2(M) and for any �0 ∈ C∞

0 ([0,∞[), one has

�0(−h2�g)Ch and Ch�0(−h2�g) belongs to E −∞
cl .(2.12)

Let �d,h be the operator �d,h = �d(−h2�g), so that

�d,h(f )(x) = ∑
j

�d(h2λj )fj ej (x).(2.13)

Since �0�d ∈ C∞
0 ([0,∞[), one has obviously �d,h ∈ Ẽ 0

cl .
Let U ⊂ M be an open chart with local coordinates x = (x1, . . . , xd) ∈ R

d . Then
for x ∈ U and r > 0 small, the geodesic ball of radius r centered at x is given by

B(x, r) =
{
x + u,

∑
ki,j (x, u)uiuj ≤ r2

}
,(2.14)

where (ki,j (x, u)) is a smooth and symmetric matrix in (x, u) such that ki,j (x,0) =
gi,j (x). For any function f compactly supported in U and h small, Thf is sup-
ported in U and given in these local coordinates by

Thf (x) = 1

|B(x,h)|
∫

t uk(x,u)u≤h2
f (x + u)

√
det

(
g(x + u)

)
du.(2.15)

Using the new integration variable hv = w = k1/2(x, u)u in (2.15), we get

Thf (x) = hd

|B(x,h)|
∫
|v|≤1

f
(
x + hm(x,hv)v

)
ρ(x,hv) dv,(2.16)

where m(x,w) is the smooth, symmetric and positive matrix, such that near u = 0
one has w = k1/2(x, u)u ⇔ u = m(x,w)w, so m(x,0) = g−1/2(x), and ρ(x,w) =√

det(g(x + u))|det ∂u
∂w

| is smooth in (x,w) and ρ(x,0) = 1.

LEMMA 1. For h0 > 0 small and any k, Th is a bounded operator on Ck(M)

uniformly in h ∈]0, h0]. Moreover, there exists C independent of h such that, with
|�h| defined in (1.12), one has for all f ∈ C2(M),

‖|�h|f ‖L∞ ≤ C‖f ‖C2 .(2.17)

PROOF. The first assertion is obvious from (2.16) since hd

|B(x,h| is a smooth
function of x,h ∈ [0, h0]. From (2.16) and the Taylor formula f (x + y) = f (x) +
∇f (x)y + O(y2‖f ‖C2), one gets easily that (2.17) holds true. �

In the above open chart U , we define the symbol of Th, σ(Th) by

σ(Th)(x, ξ, h) = e−ixξ/hTh(e
ixξ/h).(2.18)
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For any compact set K ⊂ U , there exists hK > 0 such that σ(Th)(x, ξ, h) is well
defined for x ∈ K,ξ ∈ R

d and h ∈]0, hK ]. From (2.18), one has

σ(Th)(x, ξ, h) = hd

|B(x,h)|
∫
|v|≤1

eit ξ.m(x,hv)vρ(x,hv) dv,(2.19)

and therefore, for any α,β , there exists Cα,β independent of h such that

|∂α
x ∂

β
ξ σ (Th)(x, ξ, h)| ≤ Cα,β(1 + |ξ |)|α|.(2.20)

Observe also that, since m(x,0) = g−1/2(x) and ρ(x,0) = 1, one has

σ(Th)(x, ξ,0) = �d(|ξ |2x).(2.21)

LEMMA 2. Let h0 small. For h ∈]0, h0], the operator Th belongs to the
class Ẽ 0

cl .

PROOF. Let M = ⋃
k Uk be a finite covering of M by local charts Uk , and

1 = ∑
k ϕk(x) a partition of unity with ϕk ∈ C∞

0 (Uk). Let ψk ∈ C∞
0 (Uk) equal to 1

near the support of ϕk . Then for h small enough, one has

Th(f )(x) = ∑
k

ψkTh(ϕkf )(x).(2.22)

Let Th,k = ψkThϕk ; we reduce to show that for any k, Th,k ∈ Ẽ 0
cl . Let �0 ∈

C∞
0 [0,∞[; there exists ψ ∈ C∞

0 (Uk) and a compact set K ⊂ Uk such that
ϕk�0(−h2�g) = Op(a)ψ + Rh with a(x, ξ, h) ∈ S−∞

cl with support in x ∈ K ,
and Rh smoothing. By Lemma 1, ThRh is smoothing, and thus we are reduce to
show that in the local chart Uk , one has ThOp(a) ∈ S−∞

cl . From (2.2) and (2.16),
one has

ThOp(a)(f )(x) = (2πh)−d
∫

ei(x−y)ξ/hb(x, ξ, h)f (y) dy dξ,

b(x, ξ, h) = hd

|B(x,h|
∫
|v|≤1

eit ξ.m(x,hv)va
(
x + hm(x,hv)v, ξ, h

)
(2.23)

× ρ(x,hv) dv.

From (2.23) and a ∈ S−∞, it is clear that b ∈ S−∞. Using the Taylor expansion
in h in (2.23) and a ∈ S−∞

cl , one gets easily b ∈ S−∞
cl . Thus Th�0(−h2�g) ∈ E −∞

cl ,
and since Th is self-adjoint for the volume form dνh given by (1.3), one has also
�0(−h2�g)Th ∈ E −∞

cl . The proof of our lemma is complete �

Using the Taylor expansion a(x + hmv, ξ,h) = ∑ (hmv)α

α! ∂α
x a(x, ξ, h) and

(mv)αeit ξ.mv = (∂ξ /i)αeit ξ.mv , we get from (2.23) that the symbol b admits the
usual asymptotic development,

b(x, ξ, h) � ∑
α

(h/i)α
1

α! ∂α
ξ σ (Th)(x, ξ, h) ∂α

x a(x, ξ, h).(2.24)
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The following lemma will be crucial in our analysis.

LEMMA 3. Let �0 ∈ C∞
0 ([0,∞[), and Ah = h−2(Th − �d,h)�0(−h2�g).

Then Ah belongs to E −∞
cl . Its principal symbol, σ0(Ah), satisfies near ξ = 0,

σ0(Ah)(x, ξ) =
(

S(x)

3
|ξ |2x

(
�′′

d (0) − �′
d(0)2)

(2.25)

+ �′′
d (0)

3
Ric(x)(ξ, ξ)

)
�0(|ξ |2x) + O(ξ3),

where Ric(x) and S(x) are the Ricci tensor and the scalar curvature at x. More-
over, let U be a local chart, K a compact subset of U and ϕ ∈ C∞

0 (U) such that
ϕ(x) = 1 in a neighborhood of K ; let a(x, ξ, h) � ∑

(h/i)kak(x, ξ) ∈ S−∞
cl be

such that in this local chart one has Ahϕ = Op(a)+Rh with Rh smoothing. Then,
for all k and all x ∈ K one has ak(x,0) = 0.

PROOF. Let x0 ∈ M and let e1, . . . , ed be an orthonormal basis of the tan-
gent space Tx0M . For x = (x1, . . . , xd) ∈ R

d , we identify x with
∑

xj ej ∈ Tx0M .
Let s �→ expx0

(sx) be the geodesic curve starting at x0 with speed x. Then, for
r > 0 small, the map φx0 :x �→ expx0

(x) is a diffeomorphism of the Euclidean
ball |x| < r on an open neighborhood U of x0, and the coordinates xj in U

are called geodesics coordinates centered at x0. In these coordinates, one has
x0 = 0, and (gi,j (0)) = Id. Let R be the Riemann curvature tensor at x = 0 and
R(j,k)(l,m) = (R( ∂

∂xl
, ∂

∂xm
) ∂
∂xk

| ∂
∂xj

). Then the Ricci tensor and the scalar curvature
at x = 0 are given by

Ric
(

∂

∂xj

,
∂

∂xk

)
= Ricj,k = ∑

i

R(i,j)(i,k), S = ∑
j

Ricj,j .(2.26)

Moreover, one has in these geodesic coordinates (see [15], page 474)

∂jgl,m(0) = 0, ∂j ∂kgl,m(0) = −1
3R(l,j)(m,k) − 1

3R(l,k)(m,j)(2.27)

or, equivalently,

gi,j (x) = δi,j + 1
3(R(x, ei)x|ej ) + O(x3).(2.28)

Consequently, one has√
det(g)(x) = 1 − 1

6Ric(x, x) + O(x3).(2.29)

From this formula, parity arguments, and 2cd�′
d(0) = − ∫

|y|≤1 y2
j dy, we get

|B(0, h)| = hdcd

(
1 + �′

d(0)

3
Sh2 + O(h3)

)
.(2.30)
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Moreover, in geodesic coordinates, one has k(0, u) = Id = m(0,w) and ρ(0, v) =√
det(g)(v), and thus from (2.19), (2.29), (2.30) and (1.4), we get

σ(Th)(0, ξ, h) = hd

|B(0, h)|
∫
|v|≤1

eiξ.v
√

det(g)(hv) dv

= �d(|ξ |2)
(

1 − �′
d(0)

3
Sh2

)
− h2

6cd

∫
|v|≤1

eiξ.vRic(v, v) dv

+ O(h3)(2.31)

= �d(|ξ |2) + h2
(
−�d(|ξ |2)�

′
d(0)

3
S + 1

6

∑
Ricj,k

∂2Gd

∂ξj ∂ξk

(ξ)

)

+ O(h3).

Since Gd(ξ) = �d(|ξ |2), one has

∂2Gd

∂ξj ∂ξk

(ξ) = 2δj,k

(
�′

d(0) + |ξ |2�′′
d (0)

) + 4ξj ξk�
′′
d (0) + O(|ξ |4),

and from �d(|ξ |2) = 1 + �′
d(0)|ξ |2 + O(|ξ |4), we get from (2.31),

σ(Th)(0, ξ, h)

= �d(|ξ |2)
(2.32)

+ h2
(

S|ξ |2
3

(
�′′

d (0) − �′
d(0)2) + 2�′′

d (0)

3
Ric(ξ, ξ) + O(|ξ |4)

)

+ O(h3).

Let us now compute the symbol of the operator �d,h�0(−h2�g). Until the end
of the proof we use the Einstein summation convention. First we remark that in
local coordinates the symbol of the operator −h2�g is given by p = p0 + hp1
with p0(x, ξ) = gjk(x)ξj ξk = |ξ |2x and p1(x, ξ) = −ig̃kξk . Here (gjk) denotes
the inverse matrix of the matrix (gjk) and g̃k = ∂xj

gjk + 1
2g

gjk∂xj
g where g is

the determinant of the matrix (gjk). Let F = �0�d and F̃ be an almost analytic
extension of F . Then

F(−h2�g) = 1

π

∫
C

∂F (z)(−h2�g − z)−1L(dz),(2.33)

where L(dz) = dx dy is the Lebesgue measure on C and ∂ = 1
2(∂x + i∂y). Let

ϕ ∈ C∞
0 be equal to 1 near x = 0. For any z ∈ C \ R there exist symbols a0, a1, a2

such that in local geodesic coordinates we have

(−h2�g − z)Op(a0 + ha1 + h2a2) = ϕ(x) + h3Rh(2.34)
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with Rh ∈ E 0
cl . From the symbolic calculus it suffices to set

a0 = ϕ(x)

p0 − z
, a1 = −i

p0 − z
∂ξj

p1 ∂xj
a0,

(2.35)

a2 = −1

p0 − z
(p0�1a1 + p0�2a0 + p1a1 + p1�1a0),

where for two symbols f,g we define f �jg(x, ξ) = ∑
|α|=j

1
ij α! ∂

α
ξ f (x, ξ) ∂α

x g(x,

ξ). It follows that

F(−h2�g)ϕ(x) = Op(b0 + hb1 + h2b2) + h3R̃h(2.36)

with bj (x, ξ) = 1
π

∫
C

∂F (z)aj (z, x, ξ)L(dz) and R̃h ∈ E 0
cl . In particular we have

b0 = ϕ(x)F (|ξ |2x), and as a1(z,0, ξ) = 0; we get also b1(0, ξ) = 0. Let us com-
pute a2(z,0, ξ). First, we observe that p1(0, ξ) = 0. Moreover, as ∂xk

p0(0, ξ) = 0,

for all k we have also (p1�1a0)(z,0, ξ) = 0, p0�1a1(z,0, ξ) = O(
|ξ |3

| Im z|3 ) and

p0�2a0(z,0, ξ) = �glm(0)ξlξm

(|ξ |2−z)2 . Therefore, from (2.27) we get

b2(0, ξ) = −1

π

∫
C

∂F (z)
1

(|ξ |2 − z)3 L(dz)�glm(0)ξlξm + O(|ξ |3)

= −1

2
F ′′(|ξ |2)�glm(0)ξlξm + O(|ξ |3)(2.37)

= 1

3
F ′′(0)Riclmξlξm + O(|ξ |3).

Therefore, we conclude that in geodesic coordinates, the symbol of F(−h2�g)

satisfies

σ(F (−h2�g))(0, ξ, h)
(2.38)

= F(|ξ |2) + h2
(

F ′′(0)

3
Ric(ξ, ξ) + O(ξ3)

)
+ O(h3).

Then, from (2.32), (2.38) and the rule of symbolic calculus, which are valid for
Th by (2.24), we conclude that Ah belongs to E −∞

cl and that (2.25) holds true.
Finally, since Th(1) = 1 = �d(−h2�g)(1) and �0(−h2�g)(1) = �0(0), one

has Ah(1) = 0; therefore Ahϕ(x) = O(h∞) for any x ∈ K , and therefore,
Op(a)(1)(x) = a(x,0, h) = O(h∞) for any x ∈ K . The proof of Lemma 3 is
complete. �

The following lemma will be used in the sequel to handle the very high frequen-
cies.
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LEMMA 4. Let χ ∈ C∞
0 (R) be equal to 1 near 0. There exists h0 > 0,C0 such

that for all p ∈ [1,∞], all h ∈]0, h0] and all s ≥ 1, one has∥∥∥∥Th(1 − χ)

(−h2�g

s

)∥∥∥∥
Lp

≤ C0√
s
.(2.39)

PROOF. Set � = h/
√

s. Then χ(
−h2�g

s
) is a � classical pseudo-differential

operator, and belongs to the class E −∞
cl . Let R�(x, y) dgy be the kernel of the

operator χ(
−h2�g

s
). Then R�(x, y) is a smooth function of (x, y) ∈ M × M , and

for any α, there exists a nonincreasing function ψα with rapid decay such that for
all � ∈]0,1], one has

|∇α
x,yR�(x, y)| ≤ �

−d−|α|ψα

(
dg(x, y)

�

)
.(2.40)

Let �h,s(x, y) dgy be the kernel of the operator Th(1 − χ)(
−h2�g

s
). Then one has

�h,s(x, y) = 1{dg(x,y)≤h}
|B(x,h)| − 1

|B(x,h)|
∫
B(x,h)

R�(z, y) dgz.(2.41)

By the Shur lemma, it is sufficient to prove that there exists h0 > 0,C0 such that

sup
x∈M,h∈]0,h0]

∫
|�h,s(x, y)|dgy ≤ C0/

√
s,

(2.42)
sup

y∈M,h∈]0,h0]

∫
|�h,s(x, y)|dgx ≤ C0/

√
s.

We shall prove the first line in (2.42), the proof of the second line being the same.
One has � ≤ h for s ≥ 1, and from (2.41) and (2.40), we get that for any given
c0 > 0, one has for all h ∈]0, c0/2],

dg(x, y) ≥ c0
(2.43)

�⇒ |�h,s(x, y)| ≤ �
−dψ0(c0/2�) ∈ O(�∞) ⊂ O(s−∞).

Thus we may work in a local chart U centered at a given x0 ∈ M , with local
coordinates x = (x1, . . . , xd) ∈ R

d , and we are reduced to prove in this local chart,
for some C0 > 0 independent of x0, h ∈]0, h0], s ≥ 1,

sup
h∈]0,h0]

∫
|y|≤2c0

|�h,s(x0 = 0, y)|dgy ≤ C0/
√

s.(2.44)

Let fx(y) = 1{dg(x,y)≤h}
|B(x,h)| . One has

�h,s(x0, y) = fx0(y) −
∫

tR�(y, z)fx0(z) dgz.(2.45)
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Let r�(y, ξ,�) � ∑
k �

kr�,k(y, ξ) ∈ S−∞
cl be the symbol of tR� = χ(−�

2�g) ∈
E −∞

cl in the local chart U . Then all the r�,k(y, ξ) are smooth functions of (y, ξ)

with support in |ξ |2y ≤ r0 if χ(r) is supported in r ≤ r0. Moreover, by (2.11), one
has r�,0(y,0) = 1. Therefore, we get with b0(y, u) smooth in y and in the Schwartz
class in u, and for some ψ with rapid decay,

tR�(y, z)
√

detg(z) = �
−db0

(
y,

y − z

�

)
+ q�(y, z),

(2.46) ∫
b0(y, u) du = 1, |q�(y, z)| ≤ �

−d+1ψ

( |y − z|
�

)
.

Set y = hŷ, z = hẑ and �̂h,s(0, ŷ) = hd�h,s(x0, y). Then (2.44) becomes

sup
h∈]0,h0]

∫
|ŷ|≤2c0h

−1
|�̂h,s(0, ŷ)|

√
detg(x0 + hŷ) dŷ ≤ C0/

√
s.(2.47)

One has by (2.46),∣∣∣∣
∫

q�(y, z)fx0(z) dgz

∣∣∣∣ ≤ C

∫
�

−d+1ψ

( |y − z|
�

)1{dg(x0,z)≤h}
|B(x0, h)| dz

(2.48)
≤ C�

−d+1
∫
dg(0,hẑ)≤h

ψ
(√

s|ŷ − ẑ|)dẑ

and

fx0(y) −
∫

�
−db0

(
y,

y − z

�

)
fx0(z) dz

(2.49)

=
∫

�
−db0

(
y,

y − z

�

)(
fx0(y) − fx0(z)

)
dz.

From (2.48) and (2.49), we get for some ψ with rapid decay,

|�̂h,s(0, ŷ)| ≤ C

∫
sd/2ψ

(√
s|ŷ − ẑ|)

(2.50)
× (

�1{dg(0,hẑ)≤h} + ∣∣1{dg(0,hẑ)≤h} − 1{dg(0,hŷ)≤h}
∣∣)dẑ.

This implies∫
|ŷ|≤2c0h

−1
|�̂h,s(0, ŷ)|

√
detg(x0 + hŷ) dŷ

≤ C

∫ ∫
sd/2ψ

(√
s|ŷ − ẑ|)

(2.51)
× (

�1{dg(0,hẑ)≤h} + |1{dg(0,hẑ)≤h} − 1{dg(0,hŷ)≤h}|
)
dẑ dŷ

≤ C

(
� +

∫ 1

0

∫ ∞
u
√

s

dv

1 + v4 du

)
≤ C0/

√
s.

The proof of our lemma is complete. �
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3. The spectral theory of Th.

3.1. Estimates on eigenfunctions. In this section, we prove estimates on the
eigenfunctions of Th. Let us recall that ‖f ‖Hs(M) denotes the usual Sobolev norm,
and that the semi-classical Sobolev norm ‖f ‖h,s is defined by (2.6). For a fam-
ily fh ∈ L2(M), we shall write fh ∈ OC∞(h∞) iff there exists h0 > 0, such that
for any s,N there exists Cs,N such that one has ‖fh‖Hs(M) ≤ Cs,NhN for all
h ∈]0, h0]. If fh = ∑

fj,hej is the Fourier expansion of fh in the basis of eigen-
functions of �g , this is equivalent to

∃h0 > 0,∀k ∀N ∃Ck,N |fj,h| ≤ Ck,NhN(1 + λj )
−k

(3.1)
∀j,∀h ∈]0, h0].

Let 0 < δ < 1 and h0 > 0. For h ∈]0, h0], let eh be an eigenfunction of Th with
‖eh‖L2 = 1, associated to an eigenvalue zh ∈ [δ,1], so (Th − zh)e

h = 0.

LEMMA 5. There exists h0 > 0, and for all j ∈ N there exists Cj > 0, such
that, the following inequality holds true

sup
h∈]0,h0]

‖eh‖h,j ≤ Cj .(3.2)

PROOF. We use the notation of Lemma 2 and we set Th,k = ψkThϕk . One
has for h small enough Th = ∑

k Th,k . For any given k, we denote by x =
(x1, . . . , xd) local coordinates in Uk , and we choose a partition of unity in R

d

of the form

1 = ∑
α∈Zd

θα, θα(x) = θ

(
x − αh

h

)
,(3.3)

with θ ∈ C∞
0 . Then, for any integer m, there exists Dm independent of h such that

for any u ∈ Hm(Rd) with compact support, one has

D−1
m

∑
α

‖θαu‖2
h,m ≤ ‖u‖2

h,m ≤ Dm

∑
α

‖θαu‖2
h,m.(3.4)

If θ ′ ∈ C∞
0 is equal to 1 on the set {X,dist(X, support(θ)) ≤ 2}, one has

for h ∈]0, h0] with h0 > 0 small enough, θαTh = θαThθ
′
α for all α. For any

given α, we perform the change of variable x = h(α + X). Let Sα be the
rescaled operator acting on functions of the variable X defined by [with f (x) =
F(x−αh

h
)]

θαTh,kθ
′
α(f )

(
h(α + X)

) = Sα(F )(X).(3.5)

Let us first show that Sα is the sum of two quantized canonical transformations
of degree −(1 + d)/2 ≤ −1. From the definition (3.5) of Sα and (2.16), one
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has

Sα(F )(X) = (2π)−d hdθ(X)

|B(h(α + X),h)|
×

∫
ei(X−Y )ξq

(
h(α + X), ξ,h

)
θ ′(Y )F (Y )dY dξ,(3.6)

q
(
h(α + X), ξ,h

) =
∫
|v|≤1

eiξ.m(h(α+X),hv)vρ
(
h(α + X),hv

)
dv.

Let us compute the integral which defined q(x, ξ, h) for |ξ | large. The phase
v → ξ.m(x,hv)v as no critical points in v, so if χ(r) ∈ C∞

0 ]0,2[ is equal to 1
near r = 1, one has

q(x, ξ, h) =
∫ 1

0
χ(r)rd−1

(∫
|ω|=1

eiξ.rm(x,hrω)ωρ((x,hrω)) dω

)
dr

(3.7)
+ n(x, ξ, h),

where n is a symbol in S−∞. The phase ω → ξ.rm(x,hrω)ω has two non-

degenerate critical points on the sphere |ω| = 1, ω±
c = ± g−1/2(x)ξ

|g−1/2(x)ξ | + O(h),

since ± g−1/2(x)ξ

|g−1/2(x)ξ | are the two nondegenerate critical points of the phase ω →
ξ.rm(x,0)ω, and the critical values (homogeneous in ξ of degree 1) are �±(x, r,

ξ, h) = ±r|ξ |x + O(h) since |g−1/2(x)ξ | = |ξ |x . Using the stationary phase theo-
rem, we get

q(x, ξ, h) =
∫ 1

0
χ(r)rd−1(

ei�+(x,r,ξ,h)σ+(x, r, ξ, h)

(3.8)
+ ei�−(x,r,ξ,h)σ−(x, r, ξ, h)

)
dr + n(x, ξ, h),

where σ± are two symbols of degree −(d − 1)/2. By integration in r , we thus
get

q(x, ξ, h) = ei�+(x,1,ξ,h)τ+(x, ξ, h) + ei�−(x,1,ξ,h)τ−(x, ξ, h)
(3.9)

+ n(x, ξ, h),

where τ± are two symbols of degree −(d + 1)/2. From (3.9) and (3.6), we get
that Sα is (uniformly in α,h for h ∈]0, h0] with h0 > 0 small), the sum of two
quantized canonical transformations of degree −(d + 1)/2, with canonical rela-
tions closed to the ones associated to the phases (X − Y)ξ ± |ξ |h(α+X), that is, of
the form (Y, η) �→ (X = Y ± η/|η|hα + O(h), ξ = η + O(h)).

Since Th is (in the variable X) the sum of two quantized canonical transforma-
tions of degree −(1 +d)/2, and since eh = 1

zh
Th(e

h), and zh ≥ δ, we get that there
exists c and for all m, Cm, independent of h,α, such that∥∥θ(X)eh(

h(α + X)
)∥∥

Hm
X

≤ Cm

∥∥θ ′(X)eh(
h(α + X)

)∥∥
Hm−1

X
,(3.10)
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where Hm
X denotes the Sobolev space in variable X, as soon as θ ′(X) is equal

to 1 at each point X whose distance to support(θ) is less than c. From (3.10) with
m = 1, (3.4), and h∂x = ∂X , we get for χ(x) ∈ C∞

0 (Uk) and h ∈]0, h0] with h0 > 0
small,

‖χ(x)eh(x)‖h,1 ≤ C‖eh(x)‖L2(Uk)
.(3.11)

Therefore, since (Uk) is a covering of M , we get ‖eh‖h,1 ≤ C‖eh‖L2 . We can now
iterate this argument from (3.10), and we get for any j ,

‖eh‖h,j ≤ Cj‖eh‖L2 .(3.12)

The proof of our lemma is complete. �

Remark that there exists s1 > 1 such that |�d(s)| ≤ δ
2 for all s ≥ s1 − 1. Let

χ ∈ C∞
0 (R+) be equal to 1 on [0, s1] and equal to 0 on [s1 + 1,∞[.

LEMMA 6. Let eh as in Lemma 5. Then

χ(−h2�g)e
h − eh = OC∞(h∞).(3.13)

PROOF. Let (ej )j∈N be an Hilbertian basis of L2(M,dgx) such that −�gej =
λjej and consider �s the orthogonal projector on span{ej , h

2λj ≥ s}. By
Lemma 4, there exist s0, h0 such that

∀s ≥ s0 sup
h∈]0,h0]

‖�sTh�s‖L2 ≤ δ/2.(3.14)

Let s2 > max(s1 + 1, s0) and let χ2, χ3 be smooth functions such that 1R+ = χ +
χ2 + χ3, χ3(s) = 0 for s ≤ s2 − 1 and χ3(s) = 1 for s ≥ s2. Let χ̃2 ∈ C∞

0 (R+)

equal to 1 near [s1, s2] and equal to 0 on [0, s1 − 1] ∪ [s2 + 1,∞[. On supp(χ̃2(s))

we have zh − �d(s) ≥ δ
2 . Hence it follows from Lemma 3 that there exist E ∈ E 0

such that E(Th − zh) = χ̃2(−h2�g) + R with R ∈ h∞E −∞. As (Th − zh)e
h = 0,

we get

χ̃2(−h2�g)e
h ∈ OC∞(h∞).(3.15)

Set eh = ∑
j xh

j ej . Then

�s2e
h − χ3(−h2�g)e

h = ∑
h2λj≥s2

xh
j ej − ∑

j

χ3(h
2λj )x

h
j ej

(3.16)
= − ∑

s1≤h2λj<s2

χ3(h
2λj )x

h
j ej .

As χ̃2 = 1 on [s1, s2], it follows from (3.15) and (3.1) that one has �s2e
h −

χ3(−h2�g)e
h ∈ OC∞(h∞). Therefore we get

eh = χ(−h2�g)e
h + �s2e

h + OC∞(h∞).(3.17)
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Since �s2 is bounded by 1 on L2, applying �s2(Th − zh) to this equality, we get

�s2(Th − zh)�s2e
h = −�s2(Th − zh)χ(−h2�g)e

h + OL2(h
∞).(3.18)

Let χ̃ ∈ C∞
0 ([0,∞[) be supported in [0, s2[ and equal to 1 near the support of χ .

Then, thanks to Lemma 2, we have

(Th − zh)χ(−h2�g) = χ̃(−h2�g)(Th − zh)χ(−h2�g) + h∞E −∞
cl .(3.19)

From (3.18), (3.19) and �s2 χ̃(−h2�g) = 0, we get �s2(Th − zh)�s2e
h ∈

OL2(h∞). Since s2 > s0, the operator �s2(Th − zh)�s2 is invertible on the space
�s2(L

2(M)). Consequently, �s2e
h is O(h∞) in L2(M). On the other hand, from

Lemma 5, (3.2), one has for any integer j , ‖�j/2
g �s2e

h‖L2 = ‖�s2�
j/2
g eh‖L2 ≤

Cjh
−j . By interpolation it follows that for all j , one has ‖�j/2

g �s2e
h‖L2 ∈

O(h∞), that is, one has �s2e
h ∈ OC∞(h∞). Then (3.13) follows from (3.17).

The proof of our lemma is complete. �

For zh ∈ [δ,1], set zh = 1 − h2τh, so that eh satisfies The
h = (1 − h2τh)e

h.
The next lemma is a refinement of Lemma 5.

LEMMA 7. For all j ∈ N, there exists Cj such that for all h ∈]0, h0], the
following inequality holds true:

‖eh‖Hj (M) ≤ Cj(1 + τh)
j/2.(3.20)

PROOF. By Lemma 6, we have eh −χ(−h2�g)e
h ∈ OC∞(h∞), and therefore

using also Lemma 1, we get ((Th − 1)χ(−h2�g) + h2τh)e
h ∈ OC∞(h∞) and it

follows from Lemma 3 and (�d − 1)(1 − χ)(−h2�g)e
h ∈ OC∞(h∞) that

(
(�d − 1)(−h2�g) + h2Ah + h2τh

)
eh ∈ OC∞(h∞)(3.21)

with Ah ∈ E −∞
cl . One has (�d −1)(s) = −sFd(s) with Fd smooth, and from (3.21),

we get

−�gFd(−h2�g)e
h = (Ah + τh)e

h + OC∞(h∞).(3.22)

Since Ah is uniformly in h bounded on all Hj(M), and ‖eh‖L2 = 1, we get from
(3.22) for all j ∈ N, with Cj independent of h,

‖Fd(−h2�g)e
h‖Hj+2(M) ≤ Cj(1 + τh)‖eh‖Hj (M).(3.23)

Since Fd(s) �= 0 on [0, s1 + 2], we get (3.20) by induction on j from (3.23)
and (3.13). The proof of our lemma is complete. �
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3.2. Proof of Theorem 1. Let us recall that there exists γ0 < 1 such that
�d(s) ∈ [−γ0,1] for all s ∈ R. Let ε ∈]0, (1 − γ0)/2[ and χ(t) ∈ C∞

0 ([0,∞[)
equal to 1 near t = 0 and such that χ(t) ∈ [0,1] for all t . Thanks to Lemma 4,
there exists s > 0 such that∥∥∥∥Th(1 − χ)

(−h2�g

s

)∥∥∥∥
L2(M,dνh)

≤ ε.(3.24)

On the other hand, thanks to Lemma 3 we can apply the Garding inequality to the

pseudo-differential operator Thχ(
−h2�g

s
) to get for h > 0 small enough,

〈
Thχ

(−h2�g

s

)
f,f

〉
L2(M,dνh)

≥ (−γ0 − ε)‖f ‖L2(M,dνh),(3.25)

where we have used the fact that supf �=0 ‖f ‖L2/‖f ‖L2(M,dνh) goes to 1 when h

goes to 0. Combining equations (3.24) and (3.25), we obtain

〈Thf,f 〉L2(M,dνh) ≥ (−γ0 − 2ε)‖f ‖2
L2(M,dνh)

(3.26)

which proves the first statement of Theorem 1 as Th is self-adjoint on L2(M,dνh).
Let us now prove (1.8). Set |�h| = 2(d +2)1−Th

h2 . For k ≤ L, we denote by mk =
dim(Ker(�g +λk)) the multiplicity of λk . Let ρ0 ∈ C∞

0 (R) be equal to 1 near zero.
Then there exists h0 > 0 such that for h ∈]0, h0], one has e = ρ0(−h2�g)e for any
e ∈ Ker(�g +λk) with k ≤ L. Thus, if (Uj ) is a finite covering of M by local charts
and 1 = ∑

ϕj a partition of unity with ϕj ∈ C∞
0 (Uj ), one has

(Th − �d,h)(e) = ∑
j

(Th − �d,h)ρ0(−h2�g)ϕj (e).(3.27)

From Lemma 3 one has for each j , (Th − �d,h)ρ0(−h2�g)ϕj = h2Op(a) + Rh,
with a = a2 + ha3 + · · · ∈ S−∞

cl compactly supported in x ∈ Uj , Rh smoothing,
a2(x, ξ) = O(ξ2) near ξ = 0 and a3(x,0) = 0. As e is smooth and does not depend
on h, it follows that ((Th − �d,h)ρ0(−h2�g)ϕj (e) ∈ OL2(h4). Therefore,

‖(Th − �d,h)(e)‖L2(M,dνh) = O(h4).(3.28)

Moreover, �d,he = �d(h2λk)e = (1+h2�′
d(0)λk +O(h4))e. Combining this with

(3.28) we obtain ‖(|�h| − λk)e‖L2(M,dνh) = O(h2) for all e ∈ Ker(�g + λk), and
since |�h| is self-adjoint on L2(M,dνh), we get that there exists C0 such that

∀h ∈]0, h0],∀0 ≤ k ≤ L
(3.29)

card
(
Spec(|�h|) ∩ [λk − C0h

2, λk + C0h
2]) ≥ mk.

Now, if eh is a normalized eigenfunction of |�h|, |�h|eh = τhe
h, with τh bounded,

one has, by Lemma 6, eh − ρ0(−h2�g)e
h ∈ OC∞(h∞), and also by Lemma 7
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since τh is bounded, ‖eh‖Hj (M) ≤ Cj for all j , with Cj independent of h. Thus
the same argument as above shows that there exists C independent of h such that

‖(τh + �g)(e
h)‖L2(M,dνh) ≤ Ch2,(3.30)

and thus dist(τh,Spec(−�g)) ≤ Ch2. It remains to prove that for h small, we have
equality in the right-hand side of (3.29). Let p ≥ mk and let e1(h), . . . , ep(h) be
a family of eigenfunctions of |�h| associated to the eigenvalues τj (h) ∈ [λk −
C0h

2, λk +C0h
2], orthonormal for the scalar product 〈·, ·〉L2(M,dνh). By Lemma 7,

there exists a sequence (hn) going to zero as n → ∞ such that el(hn) converges
in H 2. Denoting fl its limit we get from (3.30), −�gfl = λkfl for all l = 1, . . . , p

and the functions fl are orthogonal for the scalar product 〈·, ·〉L2(M,dgx). This
proves that mk ≥ p, and completes the proof of (1.8). (In particular, this implies
that 1 is a simple eigenvalue of Th.)

Let us now prove the Weyl estimate (1.9).
Let δ ∈]0,1[ be given. Let τ ∈ [0, (1 − δ)h−2]. Observe that N(1 − τh2, h) is

the number of eigenvalues of |�h| in the interval [0,2(d + 2)τ ]. We denote by
N0(a,h) the number of eigenvalues of �d(−h2�g) in the interval [a,1]. Let us
define the function �h(s) and the operator |�0

h| by the formulas,

�h(s) = 2(d + 2)
1 − �d(s)

h2 ,

(3.31)
|�0

h| = �h(−h2�g).

Then N0(1 − τh2, h) is the number of eigenvalues of |�0
h| in the interval [0,2(d +

2)τ ]. Let us first show that N0 satisfies the Weyl estimate (1.9), that is, there exists
C such that for all h ∈]0, h0] and all τ ∈ [0, (1 − δ)h−2], one has∣∣∣∣N0(1 − τh2, h) − (2πh)−d

∫
�d(|ξ |2x)∈[1−τh2,1]

dx dξ

∣∣∣∣
(3.32)

≤ C(1 + τ)(d−1)/2.

To prove this point, let n+(λ) [resp. n−(λ)] be the number of eigenvalues λj of
−�g in the interval [0, λ] (resp. [0, λ[). By the classical Weyl estimate with accu-
rate remainder (see [7]), one has

n±(λ) = (2π)−d
∫
|ξ |2x≤λ

dx dξ + O
(
λ(d−1)/2)

.(3.33)

By (3.31), N0(1 − τh2, h) is the number of eigenvalues λj of −�g such that
1 − �d(h2λj ) ≤ τh2. Since τ ≤ (1 − δ)h−2, the set {s ≥ 0;1 − �d(s) ≤ τh2}
is a finite union of disjoint intervals I0 ∪ · · · ∪ Ik with I0 = [0, s0(τh2)], Ij =
[s−

j (τh2), s+
j (τh2)] for 1 ≤ j ≤ k, and such that c0 ≤ s−

1 ≤ s+
1 < s−

2 ≤ s+
2 < · · · ≤

s+
k ≤ c1 with c0 > 0 independent of h, δ and c1 independent of h. Thus we get

N0(1 − τh2, h) = n+(s0h
−2) +

j=k∑
j=1

n+(s+
j h−2) − n−(s−

j h−2).(3.34)
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Observe that k = 0 when τ ≤ ch−2 with c small enough, and in that case one has
by (1.6), s0h

−2 � 2(d + 2)τ , and therefore (3.32) is consequence of (3.33). On the
other hand, in the case τ ≥ ch−2, then both (s±

j h−2)(d−1)/2 and (s0h
−2)(d−1)/2 are

of order τ (d−1)/2, and thus we get (3.32) from (3.33) and (3.34).
Let Eτ be the finite dimension space spanned by the eigenfunctions ej of −�g

with �h(h
2λj ) ≤ 2τ(d + 2). Then by (3.31), one has dim(Eτ ) = N0(1 − τh2, h).

By (2.30) and ‖|�h|‖L2 ≤ Ch−2, one has for all f ∈ L2,∣∣(|�h|f |f )L2(M,Zhdνh) − (|�h|f |f )L2(M,dgx)

∣∣ ≤ C′‖f ‖2
L2 .(3.35)

Let χ ∈ C∞
0 ([0,∞[) equal to 1 near the compact set {s ≥ 0;1 − �d(s) ≤ 1 − δ}.

Then f = χ(−h2�g)f for all f ∈ Eτ , and from Lemma 3, one has (|�h| −
|�0

h|)χ(−h2�g) = −2(d + 2)Ah. Thus, since Ah is bounded on L2, from (3.35)
we get that there exists C− = C−(δ) independent of τ,h, such that for all f ∈ Eτ ,
one has

(|�h|f |f )L2(M,Zhdνh) ≤ 2(τ + C−)(d + 2)‖f ‖2
L2(M,Zhdνh)

,(3.36)

and this implies, by the min–max,

N0(1 − τh2, h) = dim(Eτ ) ≤ N
(
1 − (τ + C−)h2, h

)
.(3.37)

Let Fτ be the orthogonal complement of Eτ in L2(M,dgx). Let θ ∈ C∞
0 such

that ‖Th(1 − θ)(−h2�g)‖L2 ≤ δ. Let χ ∈ C∞
0 with values in [0,1], equal to 1

near [0,1 − δ] ∪ support(θ). Let ψ = 1 − χ , so that (1 − θ)ψ = ψ . Let Ah =
(|�h| − |�0

h|)χ(−h2�g) ∈ E −∞
cl and Bh = χ(−h2�g)(|�h| − |�0

h|) ∈ E −∞
cl be

given by Lemma 3. Then, one has

|�h| = χ |�0
h|χ + ψ |�0

h|χ + χ |�0
h|ψ + ψ |�h|ψ + Ah + Bhψ.(3.38)

The operator Ah +Bhψ is bounded on L2 by a constant C(δ) uniformly in h. From
ψ(1 − Th)ψ = ψ2 − ψTh(1 − θ)ψ , we get

(ψ |�h|ψf |f )L2(M,dgx) ≥ 2(1 − δ)
d + 2

h2 ‖ψf ‖2
L2(M,dgx)

.(3.39)

Therefore, from (3.35) we get that there exists C+ = C+(δ) > 0 independent of
τ,h, such that for all f = ∑

λj>τ xj ej ∈ Fτ , one has

(|�h|f |f )L2(M,Zhdνh) + (d + 2)C+‖f ‖2
L2(M,Zhdνh)

≥ ∑
λj>τ

�h(h
2λj )(χ

2 + 2χψ)(h2λj )|xj |2

(3.40)

+ 2(1 − δ)
d + 2

h2

∑
λj>τ

ψ2(h2λj )|xj |2

≥ 2τ(d + 2)
∑

λj>τ

|xj |2 ≥ (
2τ(d + 2) − Ch2)‖f ‖2

L2(M,Zhdνh)
,
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and this implies by the min–max for τ large enough, and h ∈]0, h0] with h0 small,

N0(1 − τh2, h) = codim(Fτ ) ≥ N
(
1 − (τ − C+)h2, h

)
.(3.41)

Then we obtain the Weyl estimate (1.9) from (3.32), (3.37) and (3.41). Finally, the
estimate (1.11) is an easy byproduct of the estimates (3.20) of Lemma 7. The proof
of Theorem 1 is complete.

3.3. Proof of Theorem 2. Let us recall that �h(s) and |�0
h| are defined

in (3.31).
One has 2(d + 2)(1 − �d(s)) ≥ c1 min(s,1) with c1 > 0, and, therefore,

�h(h
2λj ) ≥ c1 min(λj , h

−2).(3.42)

Observe that there exists h0, c0 > 0 such that for all z ∈ U , all h ∈]0, h0], and all
j ∈ N, one has

|z − �h(h
2λj )| ≥ c0

(
1 + |z| + min(λj , h

−2)
)
.(3.43)

To see this fact, just observe that by (3.42), for c1 min(λj , h
−2) ≥ A + 1, (3.43)

holds true, since z ∈ U . Now, c1 min(λj , h
−2) ≤ A + 1 implies if h0 is small,

λj ≤ (A + 1)/c1, and therefore, |�h(h
2λj ) − λj | ≤ c2h

2, and (3.43) holds true
also in that case since z ∈ U . Since for h2λj ≤ c3 with c3 > 0 small, one has
|�h(h

2λj )−λj | ≤ c4h
2λ2

j , we get from (3.43), that there exists C such that for all
z ∈ U and all h ∈]0, h0], one has

sup
j∈N

∣∣∣∣ 1

z − �h(h2λj )
− 1

z − λj

∣∣∣∣ ≤ Ch2,(3.44)

and this implies, obviously,

‖(z − |�0
h|)−1 − (z + �g)

−1‖L2 ≤ Ch2,(3.45)

and thus we are reduced to prove the estimate

‖(z − |�h|)−1 − (z − |�0
h|)−1‖L2 ≤ Ch2.(3.46)

Observe that, as a straightforward consequence of Theorem 1 and of the self-
adjointness of |�h| and |�0

h|, respectively, on L2(M,dνh) and L2(M,dgx), there
exists C > 0 and h0 > 0 such that for all z ∈ U and all h ∈]0, h0],

‖(z − |�h|)−1‖L2 + ‖(z − |�0
h|)−1‖L2 ≤ C

1 + |z| .(3.47)

Therefore, in order to prove (3.46), we may, and will assume that z satisfies
h2|z| ≤ α, with α > 0 small. Using Lemma 4, we then choose χ0 ∈ C∞

0 equal
to 1 on [0, s0], with support in [0,2s0], and, such that,

‖2(d + 2)Th(1 − χ0)(−h2�g)‖L2 ≤ d + 2 − α/2.(3.48)
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Let χ ∈ C∞
0 equal to 1 near [0,3s0], and set Rh = (z − |�|h)−1 − (z − |�|0h)−1.

Then since |�0
h| commutes with �g , one has

Rhχ(−h2�g)
(3.49)

= (z − |�h|)−1(|�h| − |�0
h|)χ(−h2�g)(z − |�0

h|)−1.

From Lemma 3, one has (|�h|− |�0
h|)χ(−h2�g) = Ahχ

′(−h2�g), with χ ′ equal
to 1 near the support of χ , and the operator Ah ∈ E −∞

cl satisfies

‖Ahf ‖L2(M) ≤ Ch2‖f ‖H 2(M).(3.50)

On the other hand, from (3.43), we get

‖χ ′(−h2�g)(z − |�0
h|)−1f ‖H 2(M) ≤ C‖f ‖L2(M).(3.51)

From (3.47), (3.49), (3.50) and (3.51), we get

‖Rhχ(−h2�g)‖L2 ≤ Ch2.(3.52)

It remains to estimate Rh(1 − χ)(−h2�g), and it is obviously sufficient to prove
the two estimates

‖(z − |�h|)−1(1 − χ)(−h2�g)‖L2 ≤ Ch2,(3.53)

‖(z − |�0
h|)−1(1 − χ)(−h2�g)‖L2 ≤ Ch2.(3.54)

Since χ(s) = 1 near s = 0, (3.54) is a consequence of (3.43). Let g ∈ L2(M) with
‖g‖L2 = 1 and let f = (z − |�h|)−1(1 − χ)(−h2�g)g. Then(

h2z − 2(d + 2)(1 − Th)
)
f = h2(1 − χ)(−h2�g)g.(3.55)

Let χ1, χ2 ∈ C∞
0 with support in [0,3s0[, with χ2 equal to 1 near the support

of χ1. One has χ1(1 − χ) = 0, and thus, multiplying (3.55) by χ1(−h2�g) and
using Lemma 3, we obtain

h2(z − |�0
h|)χ1(−h2�g)f = h2Ahχ2(−h2�g)f + OC∞(h∞).(3.56)

Since on the support of χ1, one has h2λj ≤ 3s0, we get from (3.43), (3.47)
and (3.56) that one has ‖χ1(−h2�g)f ‖H 2 ≤ C; thus, since χ1 is arbitrary,
‖χ2(−h2�g)f ‖H 2 ≤ C, and from (3.56) and (3.50), we thus get

‖χ1(−h2�g)f ‖L2 ≤ Ch2.(3.57)

Then, we deduce from (3.55) and (3.57)(
h2z − 2(d + 2) + 2(d + 2)Th

(
1 − χ0(−h2�g)

))
f ∈ OL2(h

2),(3.58)

and from (3.48), we get ‖f ‖L2 ≤ Ch2. The proof of Theorem 2 is com-
plete.
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4. Proof of Theorem 3.

4.1. The spectral theory of the Metropolis kernel. In this section, we will de-
duce from the results of Section 3, useful properties on the spectral theory of the
Metropolis operator Mh. Let us write

Mh = Th + Rh.(4.1)

Then from (1.16) and (1.17), one has

Rh(f )(x) = mh(x)f (x)
(4.2)

+
∫
dg(x,y)≤h

min
(

1

|B(y,h| − 1

|B(x,h| ,0
)
f (y) dgy.

Let a(x, y,h) ≤ 0 be the function

a(x, y,h) = hd−2 min
(

1

|B(y,h| − 1

|B(x,h| ,0
)
.(4.3)

Then a is a Lipschitz function in x and y, and from (2.30), we get that there exists
C independent of x, y,h such that

|a(x, y,h)| ≤ Cdg(x, y), |∇xa(x, y,h)| + |∇ya(x, y,h)| ≤ C.(4.4)

Since Rh(1) = 0, one has mh(x) = −h2−d
∫
dg(x,y)≤h a(x, y,h) dgy, and therefore

the function mh is Lipschitz and satisfies ‖mh‖L∞ ≤ Ch3 and ‖∇mh‖L∞ ≤ Ch2.
From these facts, one easily gets that there exists C independent of p ∈ [1,∞] and
h such that

‖Rh‖Lp ≤ Ch3,
(4.5)

‖Rh‖W 1,p ≤ Ch2,

where W 1,p = {f ∈ Lp,∇f ∈ Lp} is the usual Sobolev space. Therefore, Mh is a
small perturbation of Th. In particular, there still exist h0 > 0 and γ < 1 such that
the spectrum of Mh is a subset of [−γ,1], 1 is a simple eigenvalue of Mh and since
‖mh‖L∞ ≤ Ch3 and mh(x) ≥ 0, the spectrum of Mh is discrete outside [0,Ch3].
Let

Ch3 < · · · ≤ μ̃k+1(h) ≤ μ̃k(h) ≤ · · · ≤ μ̃1(h) < μ̃0(h) = 1(4.6)

be the decreasing sequence of positive eigenvalues of Mh. Set

1 − Mh = h2

2(d + 2)
|�̃h|.(4.7)

Then from (4.5), one has ∥∥|�̃h| − |�h|
∥∥
L2 ≤ Ch.(4.8)
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From Theorem 1 and (4.8) we get that for any given L > 0, there exists C such
that for all h ∈]0, h0] and all k ≤ L, one has∣∣∣∣1 − μ̃k(h)

h2 − λk

2(d + 2)

∣∣∣∣ ≤ Ch.(4.9)

Moreover, since ‖Th − Mh‖L2 ≤ Ch3, the Weyl estimate (1.9) remains valid for
the number Ñ(a,h) of eigenvalues of Mh in the interval [a,1]: for δ ∈]0,1[, one
has ∣∣∣∣Ñ(1 − τh2, h) − (2πh)−d

∫
�d(|ξ |2x)∈[1−τh2,1]

dx dξ

∣∣∣∣
(4.10)

≤ Cδ,1(1 + τ)(d−1)/2

for any τ ∈ [0, (1 − δ)h−2], and therefore, the estimate (1.10) is still valid; for any
τ ∈ [0, (1 − δ)h−2], one has

Ñ(1 − τh2, h) ≤ Cδ(1 + τ)d/2.(4.11)

The main result of this section is to prove that there exist Cδ such that for any
eigenfunction ẽh

k of Mh associated to the eigenvalue μ̃k(h) ∈ [δ,1], the inequality
(1.11) still holds true, that is, with τ̃k(h) = h−2(1 − μ̃k(h)), one has

‖ẽ h
k ‖L∞ ≤ Cδ

(
1 + τ̃k(h)

)d/4‖ẽ h
k ‖L2 .(4.12)

We will obtain this estimate as a consequence of (4.5), using Sobolev inequalities
and the following lemma.

LEMMA 8. Let N ≥ 1, p ∈ [1,∞] and δ ∈]0,1[. Let s0 > 0 such that
|�d(s)| ≤ δ/2 for s ≥ s0. Let χ0 ∈ C∞

0 such that χ0(s) = 1 on [0, s0]. There exist
C,CN,h0, and for all z ∈ K = {z ∈ C, |z| ∈ [δ,2]} and all h ∈]0, h0], operators
Ez,h, Nz,h which satisfy

Ez,h(Th − z) = 1 − χ0(−h2�g) + Nz,h,(4.13)

and such that the following estimates holds true:

‖Ez,h‖Lp ≤ C, ‖Ez,h‖W 1,p ≤ C,
(4.14)

‖Nz,h‖Lp ≤ CNhN, ‖Nz,h‖W 1,p ≤ CNhN.

PROOF. Let χ ∈ C∞
0 ([0,2[) equal to 1 on [0,1], and set χs(t) = χ(t/s). By

Lemma 4, there exist s0 such that for all s ≥ s0, one has ‖Th(1−χs(−h2�g))‖Lp ≤
δ/2. We then take s ≥ s0 such that χs = 1 near the support of χ0, and we set
ψ = 1 − χs and ψ ′ = 1 − χ4s . For z ∈ K , Thψ − z is then invertible on Lp . Set

E1 = ψ ′(Thψ − z)−1.(4.15)
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Then, there exists C,h0 such that for all h ∈]0, h0] and all z ∈ K one has

‖E1‖Lp + ‖E1‖W 1,p ≤ C.(4.16)

The Lp bound is obvious since operators in E −∞
cl are bounded on Lp and ψ ′ =

1−χ4s ; let us prove the W 1,p bound in (4.16). We denote by B any operator which
is, uniformly in h > 0 small, and z ∈ K , bounded on Lp . Let X be a vector field
on M . Then by (2.16), one has [Th,X] = hB1X + B2. Thus, with L = Thψ − z,
we get [L,X] = hB3X + B4 and [X,L−1] = hB5XL−1 + B6. Since for h small,
1 − hB5 is invertible on Lp , we obtain XL−1 = B7X + B8, and thus (4.16) holds
true, since E1 = ψ ′L−1. Let φ ∈ C∞

0 ([0,3s[); from ψ ′φ = 0, we get E1Lφ = 0,
and therefore

E1φ = E1[φ,L]L−1.(4.17)

By Lemma 3, one has [φ,L] ∈ hE −∞
cl . Thus (4.17) implies ‖E1φ‖Lp +

‖E1φ‖W 1,p ≤ Ch, and since φ is arbitrary, by an easy induction from (4.17), we
get ‖E1φ‖Lp + ‖E1φ‖W 1,p ≤ CNhN for all N . Thus one has

E1(Th − z) = ψ ′ + N1(4.18)

with N1 = E1Th(1 − ψ) = E1(φThχs + O(h∞E −∞
cl )) if φ = 1 near [0,2s]. Thus

N1 satisfies for all N ,

‖N1‖Lp + ‖N1‖W 1,p ≤ CNhN.(4.19)

Now, by the symbolic calculus, there exist E2 ∈ E −∞
cl and N2 ∈ h∞E −∞

cl such that

E2(Th − z) = χ4s − χ0 + N2.(4.20)

Here we use Lemma 4 and the fact that Th − z is elliptic near the support of
χ4s − χ0. Then Ez,h = E1 + E2 and Nz,h = N1 + N2 satisfies (4.13) and (4.14).
The proof of our lemma is complete. �

Let us now achieve the proof of (4.12). Let μ̃(h) ∈ [δ,1] and ‖ẽh‖L2 = 1. Then
(Mh − μ̃(h))̃eh = 0 is equivalent to (Th − μ̃(h)+Rh)̃e

h = 0, and using Lemma 8,
we get

(1 − χ0)̃e
h + (

Nμ̃(h),h + Eμ̃(h),hRh

)̃
eh = 0.(4.21)

Set ẽl = χ0(̃e
h) and ẽ+ = (1 − χ0)(̃e

h) so that ẽh = ẽl + ẽ+. Since by (4.5) and
(4.13) the operator Nμ̃(h),h + Eμ̃(h),hRh is O(h2) on Lp and W 1,p , we can solve
equation (4.21) for ẽ+ on the form

ẽ+ = Sμ̃(h),h(̃el),
(4.22) ∥∥Sμ̃(h),h

∥∥
Lp + ∥∥Sμ̃(h),h

∥∥
W 1,p ≤ Ch2.
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Let 1 − h2τ = μ̃(h) and ω = √
1 + τ . One has |�h|(̃eh) = 2(d + 2)(τ +

h−2Rh)(̃e
h), and therefore, with (|�h| − |�0

h|)χ0 = Ah, we get the equation

|�0
h|χ0(̃e

h) = (
2(d + 2)χ0(τ + h−2Rh) − Ah + [|�h|, χ0])(̃eh).(4.23)

By (4.5) and Lemma 3, the operator 2(d + 2)χ0(τ + h−2Rh) − Ah + [|�h|, χ0])
is bounded by O(ω2) on Lp , uniformly in h. Then by (4.22) and (4.23), we get for
some p� ∈]d,∞[ and all p ∈ [2,p�], that the following estimates holds true, with
C independent of h:

‖ẽh‖Lp ≤ Cωd/2−d/p,
(4.24)

‖ẽh‖W 1,p ≤ Cωd/2−d/p+1.

Indeed, by (3.31) and (3.42), for χ1 ∈ C∞
0 equal to 1 near the support of χ0,

one has |�0
h|χ1 = −�gBh with Bh ∈ E −∞

cl elliptic near the support of χ0. Thus,
‖ẽh‖L2 = 1 and (4.23) implies ‖ẽl‖W 2,2 ≤ Cω2, and thus ‖ẽl‖W 1,2 ≤ Cω, so us-
ing (4.22), one gets that (4.24) holds true for p = 2. This also shows easily
that (4.24) holds true for d = 2. When d ≥ 3, then if (4.24) holds true for some
p ∈ [2, d[, then let q ∈]p,∞[ be defined by d/q = d/p − 1. Then the injection
W 1,p ⊂ Lq shows that the first line of (4.24) holds true for q . Moreover, in (4.23),
classical properties of −�g and the fact that operators in E −∞

cl are bounded on
Ws,p , shows that ‖ẽl‖W 2,p ≤ Cωd/2−d/p+2. Then the injection W 2,p ⊂ W 1,q and
(4.22) implies that the second line of (4.24) holds true for q . Then, from (4.24),
we conclude the proof of (4.12) by the interpolation inequality for p� > d ,

‖u‖L∞ ≤ C‖u‖1−d/p�

Lp� ‖u‖d/p�

W 1,p�
.(4.25)

4.2. The total variation estimate. In this section, we prove Theorem 3. Let �0
be the orthogonal projector in L2(M,dμM) on the space of constant functions

�0(f )(x) = 1

Vol(M)

∫
M

f (y)dgy.(4.26)

Then

2 sup
x∈M

‖Mn
h(x, dy) − dμM‖TV = ‖Mn

h − �0‖L∞→L∞ .(4.27)

Thus, we have to prove that there exist A,h0, such that for any n and any h ∈
]0, h0], one has

e−γ ′(h)nh2 ≤ ‖Mn
h − �0‖L∞→L∞ ≤ Ae−γ (h)nh2

(4.28)

with γ (h) � γ ′(h) � λ1
2(d+2)

when h → 0. Since (Mn
h −�0)(̃e

h
1) = (1 −h2τ̃ h

1 )nẽh
1 ,

with |τ̃ h
1 − λ1

2(d+2)
| ≤ Ch by (4.9), the lower bound in (4.28) is obvious, and to
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prove the upper bound, we may assume n ≥ C0h
−2. Let δ ∈]0,1[ be such that the

spectrum of Mh is contained in [−δ,1]. Then write Mh − �0 = Mh,1 + Mh,2 with

Mh,1(x, y) = ∑
δ≤μ̃k(h)<1

(
1 − h2τ̃k(h)

)̃
eh
k (x)̃e h

k (y),

(4.29)
Mh,2 = Mh − �0 − Mh,1.

Here 1 − h2τ̃k(h) = μ̃k(h). One has Mn
h − �0 = Mn

h,1 + Mn
h,2, and we will get the

upper bound in (4.28) for each of the 2 terms. From (4.29) and (4.12), there exist
some α > 0 such that

‖Mn
h,1‖L∞→L∞ ≤ ∑

τ̃1(h)≤τ̃k(h)≤(1−δ)h−2

(
1 − h2τ̃k(h)

)n(
1 + τ̃k(h)

)α
.(4.30)

Using 1 − x ≤ e−x , and the estimate (4.11) on the number of eigenvalues of Mh in
[1 − h2τ,1], one gets for some C,β ,

‖Mn
h,1‖L∞→L∞ ≤ C

∫ ∞
τ̃1(h)

e−nh2x(1 + x)β dx,(4.31)

and we get for some C′,

‖Mn
h,1‖L∞→L∞ ≤ C′e−nh2τ̃1(h) ∀n ≥ C0h

−2.(4.32)

Since Mn
h is bounded by 1 on L∞, we get from Mn

h −�0 = Mn
h,1 +Mn

h,2 and (4.31)
that there exist C1,m such that ‖Mn

h,2‖L∞→L∞ ≤ C1h
−m for all n ≥ 1. Next we

use (1.15) to write Mh = mh + Kh with

‖mh‖L∞→L∞ ≤ γ < 1,
(4.33)

‖Kh‖L2→L∞ ≤ C2h
−d/2.

From this, we deduce that for any p = 1,2, . . . one has M
p
h = Ap,h + Bp,h, with

A1,h = mh,B1,h = Kh and the recurrence relation Ap+1,h = mhAp,h,Bp+1,h =
mhBp,h + KhM

p
h . Thus one gets since M

p
h is bounded by 1 on L2,

‖Ap,h‖L∞→L∞ ≤ γ p,
(4.34)

‖Bp,h‖L2→L∞ ≤ C2h
−d/2(1 + γ + · · · + γ p) ≤ C2h

−d/2/(1 − γ ).

Observe that ‖Mn
h,2‖L∞→L2 ≤ ‖Mn

h,2‖L2→L2 ≤ δn and for q,p ≥ 1, one gets, us-
ing (4.34),

‖Mp+q
h,2 ‖L∞→L∞ = ‖Mp

h M
q
h,2‖L∞→L∞

≤ ‖Ap,hM
q
h,2‖L∞→L∞ + ‖Bp,hM

q
h,2‖L∞→L∞(4.35)

≤ C1h
−mγ p + C2h

−d/2δq/(1 − γ ),

and this implies for some C,μ > 0,

‖Mn
h,2‖L∞→L∞ ≤ Ce−nμ ∀n ≥ 1/h,(4.36)

and thus the contribution of Mn
h,2 is far smaller than the bound we have to prove in

(4.28). The proof of Theorem 3 is complete.
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APPENDIX: CONVERGENCE TO THE BROWNIAN MOTION

The purpose of this appendix is to answer a question of one of the referees about
the convergence of the previous Metropolis chain to the Brownian motion on a Rie-
mannian manifold (M,g). One classical and efficient way to prove such conver-
gence is the use of Dirichlet forms (see [9]). Here, we present a self-contained
proof, in the spirit of ([12], Chapter 2.4), making use of our previous results.
The two main estimates are: the large deviation estimate (A.15) of Proposition
1, and the “central limit” theorem (A.46) of Proposition 2.

We refer to [8] and [11] for a construction of the Brownian motion on (M,g).
For a given x0 ∈ M , let Xx0 = {ω ∈ C0([0,∞[,M),ω(0) = x0} be the set of con-
tinuous paths from [0,∞[ to M , starting at x0, equipped with the topology of
uniform convergence on compact subsets of [0,∞[, and let B be the Borel σ -field
generated by the open sets in Xx0 . Let Wx0 be the Wiener measure on Xx0 , and
let pt(x, y) dgy be the heat kernel, that is, the kernel of the self-adjoint oper-
ator et�g/2. Then Wx0 is the unique probability on (Xx0, B), such that for any
0 < t1 < t2 < · · · < tk and any Borel sets A1, . . . ,Ak in M , one has

Wx0

(
ω(t1) ∈ A1,ω(t2) ∈ A2, . . . ,ω(tk) ∈ Ak

)
=

∫
A1×A2×···×Ak

ptk−tk−1(xk, xk−1) · · ·pt2−t1(x2, x1)(A.1)

× pt1(x1, x0) dgx1 dgx2 · · · dgxk.

For h ∈]0,1], let MN
h,x0

be the closed subset of the product space MN,

MN
h,x0

= {x = (x1, x2, . . . , xn, . . .),∀j ≥ 0, dg(xj , xj+1) ≤ h}.(A.2)

Equipped with the product topology, MN is a compact metrisable space, and
the Metropolis chain starting at x0 defines a probability Px0,h on MN, such that
Px0,h(MN

h,x0
) = 1, by setting for all k and all Borel sets A1, . . . ,Ak in M ,

Px0,h(x1 ∈ A1, x2 ∈ A2, . . . , xk ∈ Ak)
(A.3)

=
∫
A1×A2×···×Ak

Mh(xk−1, dxk) · · ·Mh(x1, dx2)Mh(x0, dx1),

where the Metropolis kernel Mh(x, dy) is defined in (1.15). Let jx0,h be the map
from MN

h,x0
into Xx0 defined by

jx0,h(x) = ω ⇐⇒ ∀j ≥ 0 ω
(
jh2/(d + 2)

) = xj(A.4)

and

∀t ∈
[

jh2

d + 2
,
(j + 1)h2

d + 2

]
ω(t) is the geodesic curve connecting

(A.5)
xj to xj+1 at speed h−2(d + 2)dg(xj , xj+1).
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Observe that for h > 0 given, smaller than the injectivity radius of the Riemannian
manifold M , the map jx0,h is well defined and continuous. Let Px0,h be the proba-
bility on Xx0 defined as the image of Px0,h by the continuous map jx0,h. Our aim
is to prove that Px0,h converges weakly to the Wiener measure Wx0 when h → 0.

THEOREM 4. For any bounded continuous function ω �→ f (ω) on Xx0 , one
has

lim
h→0

∫
f dPx0,h =

∫
f dWx0 .(A.6)

Observe that the proof below shows that our study of the Metropolis chain on
the manifold M is also a way to prove the existence of the Brownian motion on M .

Let us recall that the Metropolis operator Mh acting on L2 = L2(M,dμM) with
dμM = dgx/Vol(M)) is defined by (1.17). If ϕ is a Lipschitz function on M , we
denote by Mh,ϕ the bounded operator on L2 defined by

Mh,ϕ = eϕ/hMhe
−ϕ/h.

The first ingredient we use in the proof of Theorem 4 is the following lemma,
which gives an L2-estimate on the resolvent (z − Mh)

−1 near z = 1.

LEMMA 9. Let ψ be a real valued Lipschitz function on M , ρ > 0 and 0 <

θ < 2π . Let us assume that the following inequality holds true:

ρ sin(θ/2) −
∞∑

k=2

ρk/2‖ψ‖k
Lips

k!
∣∣ sin

(
(k − 1)θ/2

)∣∣ = c > 0.(A.7)

Then, with w = ρeiθ ∈ C \ [0,∞[ and ϕ = iρ1/2eiθ/2ψ , one has

‖(1 − Mh,ϕ − w)−1‖L2 ≤ 1/c.(A.8)

PROOF. If k(x, y) is a complex valued bounded measurable function on
M × M , let Ak,h be the bounded operator on L2,

Ak,h(f )(x) =
∫
dg(x,y)≤h

min
(

1

|B(x,h)| ,
1

|B(y,h)|
)
k(x, y)f (y) dgy.(A.9)

With k∗(x, y) = k(y, x), the adjoint on L2 of Ak,h is equal to Ak∗,h, and one has
the obvious estimate

‖Ak,h‖L2 ≤ ‖k‖L∞(M×M).(A.10)

From (1.15) and (1.2), one has Mh = mh + A1,h, and an easy calculation gives

Mh,ϕ = mh + Akϕ,h, kϕ(x, y) = 1dg(x,y)≤he
(ϕ(x)−ϕ(y))/h.(A.11)
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Let τ(x, y) = 1dg(x,y)≤hi(ψ(x) − ψ(y))/h. With ϕ = iρ1/2eiθ/2ψ , we thus get

Mh,ϕ = mh +
∞∑

k=0

(ρ1/2eiθ/2)k

k! Aτ k,h.(A.12)

From (A.12) and w = ρeiθ , we get with S = −e−iθ/2(1 − Mh,ϕ − w),

S = −e−iθ/2(1 − Mh) + ρ1/2Aτ,h + ρeiθ/2Id + N,
(A.13)

N = e−iθ/2
∞∑

k=2

(ρ1/2eiθ/2)k

k! Aτ k,h.

Since τ ∗ = τ , the second term in the first line of (A.13) is self-adjoint, and we get

Im(S) = sin(θ/2)(1 − Mh) + ρ sin(θ/2)Id + Im(N),
(A.14)

Im(N) =
∞∑

k=2

ρk/2

k! sin
(
(k − 1)θ/2

)
Aτ k,h.

From sin(θ/2)(1 −Mh) ≥ 0, and since from (A.10) the self-adjoint operator Aτ k,h

has norm ≤ ‖ψ‖k
Lips, we get from (A.7) and (A.14) that Im(S) ≥ cId. The proof of

Lemma 9 is complete. �

From Lemma 9, we shall now deduce a key estimate on the probabil-
ity that Xn

h,x0
, the nth step of the Metropolis chain starting at x0, satisfies

dg(X
n
h,x0

, x0) > ε. Let ε0 > 0 be smaller than the injectivity radius of the Rie-
mannian manifold M .

PROPOSITION 1. There exist positive constants C,A,a, c0, h0 > 0 such that
for all ε ∈]0, ε0], all δ ∈]0, c0ε

2] and all h ∈]0, h0], the following inequality holds
true:

sup
x0∈M,nh2≤δ

Px0,h

(
dg(X

n
h,x0

, x0) > ε
) ≤ Cε−Ae−aε2/δ.(A.15)

PROOF. We may assume nh ≥ ε, since otherwise Px0,h(dg(X
n
h,x0

, x0) >

ε) = 0. In the proof, we denote by a,A,C positive constants, changing from line
to line, but which are independent of h, ε, x0 ∈ M and n ≥ 1. One has

Px0,h

(
dg(X

n
h,x0

, x0) > ε
) =

∫
dg(y,x0)>ε

Mn
h(x0, dy)

(A.16)
= Mn

h

(
1dg(y,x0)>ε

)
(x0).

Let ϕ(r) ∈ C∞([0,∞[) be a nondecreasing function equal to 0 for r ≤ 3/4 and
equal to 1 for r ≥ 1. For ε ∈]0, ε0] and x0 ∈ M , set

ϕx0,ε(x) = ϕ

(
dg(x, x0)

ε

)
.(A.17)
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Then ϕx0,ε is a smooth function, and from 1dg(y,x0)>ε ≤ ϕx0,ε ≤ 1, we get, since
Mh is Markovian,

Mn
h

(
1dg(y,x0)>ε

) ≤ Mn
h(ϕx0,ε) ≤ Mn

h(1) = 1.(A.18)

We first deduce from Lemma 9 the following estimates on Mn
h(ϕx0,ε).

LEMMA 10. There exists c0 > 0 such that for nh2 ≤ c0ε
2, the following in-

equalities hold true:

‖Mn
h(ϕx0,ε)‖L2(B(x0,ε/2)) ≤ Ce−aε2/nh2;(A.19)

‖Mn
h(ϕx0,ε)‖L∞(B(x0,ε/4)) ≤ Ch−d/2e−aε2/nh2

.(A.20)

PROOF. By the Cauchy–Schwarz formula, the self-adjoint operator Mn
h is

equal to

Mn
h = 1

2iπ

∫
σ

zn(z − Mh)
−1 dz,(A.21)

where σ is a contour in the complex plane surrounding the spectrum of Mh with
the counter-clockwise orientation. Let θ0 ∈]0, π/2[ close to π/2 and ρ0 > 0 small
be given. Since we know that the spectrum of Mh is a subset of [−γ,1] with
γ ∈ [0,1[, we may choose σ in the form σ1 ∪ σ2, with

σ1 = {z = 1 − w(θ),w(θ) = ρ(θ)eiθ , θ ∈ [θ0,2π − θ0]},
where the function ρ(θ) > 0 takes small values, is such that ρ(θ) = ρ(2π − θ),
ρ0 = ρ(θ0) and will be chosen later, and with q = |1 − ρ0e

iθ0 | < 1,

σ2 ⊂ {|z| ≤ q,dist(z, [−γ,1]) ≥ ρ0 sin(θ0)}.
Set g = ϕx0,ε and fz = (z − Mh)

−1g. For z ∈ σ2, one has ‖fz‖L2 ≤ ‖g‖
L2

ρ0 sin(θ0)
, and

from (z − mh)fz = A1,hfz + g, |z − mh(x)| ≥ dist(z, [0,1]) ≥ ρ0 sin(θ0), and
‖A1,hfz‖L∞ ≤ Ch−d/2‖fz‖L2 , we get for z ∈ σ2, with a constant C changing from
line to line,

‖fz‖L∞ ≤ 1

ρ0 sin(θ0)
(‖A1,hfz‖L∞ + ‖g‖L∞)

(A.22)
≤ Ch−d/2(ρ0 sin(θ0))

−2.

This gives ∥∥∥∥
∫
σ2

zn(z − Mh)
−1(g) dz

∥∥∥∥
L2

≤ Cqn(ρ0 sin(θ0))
−1,

(A.23) ∥∥∥∥
∫
σ2

zn(z − Mh)
−1(g) dz

∥∥∥∥
L∞

≤ Cqnh−d/2(ρ0 sin(θ0))
−2.
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Observe that since nh ≥ ε, one has qn ≤ e−aε/h ≤ e−aε2/nh2
. Thus (A.23) gives

(A.19) and (A.20) for the contribution of σ2. Next we use Lemma 9 to bound the
contribution of σ1 in (A.21).

Let μ < 1 and set ψ(x) = μ
√

2 dist(x,B(x0, ε/2)). One has ‖ψ‖Lips = μ
√

2,
and if ρ(θ) > 0 is small enough, inequality (A.7) is fulfilled with a constant c �
ρ(θ) sin(θ/2)(1 −μ)+O(ρ3/2(θ)) � ρ(θ). From (A.8), and (z −Mh,ϕ)eϕ/hfz =
eϕ/hg, we get for z = 1 − w(θ) ∈ σ1, since ϕ = 0 on B(x0, ε/2), g = 0 on
B(x0,3ε/4), and |eϕ/h| = |eiw1/2(θ)μ

√
2 dist(x,B(x0,ε/2))/h|,

‖fz‖L2(B(x0,ε/2)) ≤ ‖eϕ/hfz‖L2 ≤ C

ρ(θ)
‖eϕ/hg‖L2

(A.24)

≤ C′

ρ(θ)

∣∣eiw1/2(θ)μ
√

2ε/4h
∣∣.

One has (z − mh)fz = A1,h(fz) + g with g = 0 on B(x0, ε/2), and h ≤ c0ε since
hε ≤ nh2 ≤ c0ε

2. For c0 < 1/4, we thus get from (A.24),

‖fz‖L∞(B(x0,ε/4)) ≤ Cρ−1(θ)h−d/2|eiw1/2aε/h|.(A.25)

On σ1, we set z = 1 − w = 1 − u2, u = ρ1/2(θ)eiθ/2 = w1/2. Then one has∫
σ1

zn(z − Mh)
−1(g) dz =

∫
γ
(1 − u2)nf1−u22udu,(A.26)

where γ is a contour in the upper half plane Im(u) > 0 connecting u− =
−ρ

1/2
0 e−iθ0/2 to u+ = ρ

1/2
0 eiθ0/2. From (A.24), (A.25) and (A.26), we deduce∥∥∥∥

∫
σ1

zn(z − Mh)
−1(g) dz

∥∥∥∥
L2(B(x0,ε/2))

≤ CJ,

(A.27) ∥∥∥∥
∫
σ1

zn(z − Mh)
−1(g) dz

∥∥∥∥
L∞(B(x0,ε/4))

≤ Ch−d/2J,

where J is defined by (with a > 0 small)

J =
∫
γ

|(1 − u2)neiuaε/h| |du|
|u| ,(A.28)

and it remains to verify that J satisfies

J ≤ C2e
−a2ε

2/nh2
.(A.29)

At this point, we use the classical steepest descent method in order to choose the
contour γ such that (A.29) holds true. One has (1−u2)neiuaε/h = en(log(1−u2)+iru)

with r = aε/nh ∈]0, a]. Thus, r > 0 is a small parameter. The phase �(u) =
log(1 − u2) + iru has a single nondegenerate critical point uc near 0, which satis-
fies, uc = ir/2 + O(r3), and the critical value is equal to �(uc) = −r2/4 + O(r4).
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Moreover, one has �′′(uc) = −2 + O(r2). It is then easy to verify that one can
select the contour γ in Im(u) ≥ r/4 connecting u− to u+, and such that on γ , one
has both Re(�(u)) ≤ Re(�(uc)) − C0|u − uc|2 and |u| ≥ C0(r + |u − uc|) for
some C0 > 0. We thus get

J ≤ Cen�(uc)
∫ ∞
−∞

e−ns2 ds

r + |s| .(A.30)

Then we get (A.29) from (A.30); one has n�(uc) ≤ −a2ε2/8nh2, and since
r
√

n = aε/h
√

n ≥ ac
−1/2
0 , one has

∫ ∞
−∞ e−ns2 ds

r+|s| ≤ C′/r
√

n ≤ C2. The proof
of Lemma 10 is complete. �

Next, to deduce from the L2 estimate (A.19) the desired L∞ estimate (A.15),
we use the following lemma.

LEMMA 11. For given a0,A0,C0, there exist a1,A1,C1,p > 0, q > 0 such
that for ε ∈]0,1], n ≥ 1 and 0 < h ≤ ε, the following holds true: for any function f

on M which satisfies ‖f ‖L∞ ≤ 1, ‖|�h|f ‖L∞ ≤ C0ε
−2 and ‖f ‖L2(B(x0,ε/2)) ≤

C0ε
−A0e−a0ε

2/nh2
, one has

‖f ‖L∞(B(x0,ε/4)) ≤ C1(ε
−A1e−a1ε

2/nh2 + hpε−q).(A.31)

PROOF. Let r0 > 0 and χ0 ∈ C∞
0 ([0,2r0[) equal to 1 on [0, r0]. Set fL =

χ0(−h2�g)f and fH = f − fL. From Lemma 8, there exists E1,h and N1,h such
that −fH = E1,h(1 − Th)f + N1,hf , and thus from (4.14) and h2|�h| = 2(d +
2)(1 − Th), we get

‖fH‖L∞ ≤ Ch2ε−2.(A.32)

Let �0 ∈ C∞
0 ([0,2r0[) be equal to 1 near the support of χ0. One has χ0(1 −

�0) = 0 [we use the notation χ0 = χ0(−h2�g),�0 = �0(−h2�g)]. By Lemma 3
and with |�0

h| defined by (3.31), we get

χ0|�h|f = χ0|�0
h|�0f − 2(d + 2)χ0Ahf

(A.33)
− 2(d + 2)χ0

(
Thh

−2(1 − �0)
)
f.

Since Ah ∈ E −∞
cl and [by (A.32)] ‖h−2(1 − �0)f ‖L∞ ≤ Cε−2, we get

‖|�0
h|fL‖L∞ = ‖χ0|�0

h|�0f ‖L∞ ≤ Cε−2.(A.34)

By (1.6), one has |�0
h| = −(1 + h2�gB̃)�g with B̃ ∈ Ẽ 0

cl . Therefore, one has

|�0
h|fL = |�0

h|�0fL = −(1 + h2�gB̃�0)�gfL.

If r0 is small, the operator 1 + h2�gB̃�0 is invertible on L∞, and thus we get
from (A.34)

‖�gfL‖L∞ ≤ Cε−2.(A.35)
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Let ψ(x) ∈ [0,1] be a smooth function with support in the ball B(x0, ε/3) with
ψ(x) equal to 1 in the ball B(x0, ε/4), and such that ‖∇αψ‖L∞ ≤ Cαε−|α|. Set
F(x) = ψ(x)fL(x) = ψ(x)(f (x) − fH (x)). Using (A.32), �gF = ψ�gfL +
[�g,ψ]fL and (A.35), we get

‖F‖L2 ≤ C(ε−A0e−a0ε
2/nh2 + h2ε−2+d/2),

(A.36)
‖�gF‖L∞ ≤ Cε−2, ‖F‖L∞ ≤ C.

We now conclude that (A.31) holds true using (A.32), (A.36) and the classical
interpolation inequality, with θ > d

4+d

‖F‖L∞ ≤ C‖(1 − �g)F‖θ
L∞‖F‖1−θ

L2 .(A.37)

The proof of Lemma 11 is complete. �

By the last inequality in (A.18) and (A.19), the function f = Mn
h(ϕx0,ε) sat-

isfies ‖f ‖L∞ ≤ 1 and ‖f ‖L2(B(x0,ε/2)) ≤ Ce−aε2/nh2
. Let us show that it sat-

isfies also ‖|�h|f ‖L∞ ≤ Cε−2. Let us recall that the operator |�̃h| is de-
fined in (4.7). By (4.1) and (4.5), one has |�h| = |�̃h| + 2(d + 2)h−2Rh and
‖Rh‖L∞ ≤ Ch3. One gets easily from (2.17) ‖|�h|ϕx0,ε‖L∞ ≤ Cε−2. Thus, one
has also ‖|�̃h|ϕx0,ε‖L∞ ≤ C(ε−2 + h) ≤ C′ε−2. Since |�̃h| commutes with Mh,
one has Mn

h(|�̃h|ϕx0,ε) = |�̃h|Mn
h(ϕx0,ε), and this implies since Mh is Markov-

ian, ‖|�̃h|Mn
h(ϕx0,ε)‖L∞ ≤ Cε−2. Thus we get ‖|�hM

n
h(ϕx0,ε)‖L∞ ≤ C(ε−2 +

h) ≤ C ′ε−2. From Lemma 11, (A.16), (A.18) and (A.20) we thus get, for some
a,A,p, q > 0,

Px0,h

(
dg(X

n
x0

, x0) > ε
) ≤ C(ε−Ae−aε2/nh2 + hpε−q),

(A.38)
Px0,h

(
dg(X

n
x0

, x0) > ε
) ≤ Ch−Ae−aε2/nh2

.

Let α be such that 0 < α < a/A. It remains to observe that (A.38) im-
plies (A.15), using the second line in case h ≥ e−αε2/nh2

and the first one if
h ≤ e−αε2/nh2

. The proof of Proposition 1 is complete. �

With the result of Proposition 1, the proof of Theorem 4 follows now the clas-
sical proof of weak convergence of a sequence of random walks in the Euclidean
space R

d to the Brownian motion on R
d , for which we refer to ([12], Chapter 2.4).

Let T > 0 be given. One has, for 0 < δ ≤ c0ε
2 and h ∈]0, h0],

Px0,h

(∃j < l ≤ h−2T , (l − j)h2 ≤ δ, dg(X
j
x0

,Xl
x0

) > 4ε
)

≤ C

δ
sup

y0∈M

Py0,h

(∃j < l ≤ h−2δ, dg(X
j
y0

,Xl
y0

) > 4ε
)

(A.39)
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≤ C

δ
sup

y0∈M

Py0,h

(∃j ≤ h−2δ, dg(X
j
y0

, y0) > 2ε
)

≤ 2C

δ
sup

z0∈M,nh2≤δ

Pz0,h

(
dg(X

n
z0

, z0) > ε
)

(by (A.15))≤ C′δ−(1+A/2)e−aε2/δ.

In fact, for the first inequality in (A.39), we just use the fact that the inter-
val [0, T ] is a union of � C/δ intervals of length δ/2. The second inequal-
ity is obvious since the event {∃j < l ≤ h−2δ, dg(X

j
y0,X

l
y0

) > 4ε} is a subset
of {∃j ≤ h−2δ, dg(X

j
y0, y0) > 2ε}. For the third, we use the fact that the event

A = {∃j ≤ h−2δ, dg(X
j
y0, y0) > 2ε} is contained in B

⋃
j<k(Cj ∩ Dj) with B =

{dg(X
k
y0

, y0) > ε} (k is the greatest integer ≤ δh−2), Cj = {dg(X
j
y0,X

k
y0

) > ε},
Dj = {dg(X

j
y0, y0) > 2ε and dg(X

l
y0

, y0) ≤ 2ε for l < j}, and the fact that Cj and
Dj are independent.

Using the definition (A.4), (A.5) of the map jx0,h, we get easily from (A.39) the
convergence for T > 0 and ε > 0,

lim
δ→0

(
lim sup

h→0
Px0,h

(
max|s−t |≤δ,0≤s,t≤T

dg(ω(s),ω(t)) > ε
))

= 0.(A.40)

Therefore, the family of probability Px0,h is tight, hence is compact by the Pro-
horov theorem. It remains to verify that any weak limit Px0 of a sequence Px0,hk

,
hk → 0, is equal to the Wiener measure Wx0 . By Theorem 4.15 of [12] we have
to show that for any m, any 0 < t1 < · · · < tm, and any continuous function
f (x1, . . . , xm), one has

lim
k→∞

∫
f (ω(t1), . . . ,ω(tm)) dPx0,hk

=
∫

f (x1, . . . , xm)ptm−tm−1(xm, xm−1) · · ·pt2−t1(x2, x1)(A.41)

× pt1(x1, x0) dgx1 dgx2 · · · dgxm.

As in [12], we may assume m = 2. For a given t ≥ 0, let n(t, h) ∈ N be the great-
est integer such that h2n(t, h) ≤ (d + 2)t . By (A.4), (A.5), one has dist(ω(t),

X
n(t,h)
h,x0

) ≤ h and therefore Px0,h(dist(ω(t),X
n(t,h)
h,x0

) > ε) = 0 for h ≤ ε. Thus we
are reduced to prove

lim
h→0

∫
f

(
X

n(t1,h)
h,x0

,X
n(t2,h)
h,x0

)
dPx0,h

(A.42)
=

∫
f (x1, x2)pt2−t1(x2, x1)pt1(x1, x0) dgx1 dgx2.
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From (A.3), one has∫
f

(
X

n(t1,h)
h,x0

,X
n(t2,h)
h,x0

)
dPx0,h

(A.43)
=

∫
f (x1, x2)M

n(t2,h)−n(t1,h)
h (x1, dx2)M

n(t1,h)
h (x0, dx1).

By (A.42), (A.43), we have to show that for any continuous function f (x1, x2) on
the product space M × M , one has

lim
h→0

∫
M×M

f (x1, x2)M
n(t2,h)−n(t1,h)
h (x1, dx2)M

n(t1,h)
h (x0, dx1)

(A.44)
=

∫
M×M

f (x1, x2)pt2−t1(x2, x1)pt1(x1, x0) dgx1 dgx2,

or, equivalently,

lim
h→0

M
n(t1,h)
h

(
M

n(t2,h)−n(t1,h)
h (f (x1, ·))(x1)

)
(x0)

(A.45)
= et1�g/2(

e(t2−t1)�g/2(f (x1, ·))(x1)
)
(x0).

Since ‖Mn(t,h)
h ‖L∞ ≤ 1 and ‖et�g/2‖L∞ ≤ 1, the following “central limit” theorem

will conclude the proof of Theorem 4.

PROPOSITION 2. For all f ∈ C0(M), and all t > 0, one has

lim
h→0

∥∥et�g/2(f ) − M
n(t,h)
h (f )

∥∥
L∞ = 0.(A.46)

PROOF. Since one has ‖Mn(t,h)
h ‖L∞ ≤ 1 and ‖et�g/2‖L∞ ≤ 1, it is sufficient

to prove that (A.46) holds true for f ∈ D, with D a dense subset of the space
C0(M), and therefore we may assume that f = ej is an eigenvector of �g . We
set n = n(t, h), and we use the notation of Section 4.2. From (4.36) and n(t, h) �
1/h, we get for some a > 0,∥∥Mn(t,h)

h,2 (ej )
∥∥
L∞ ≤ Ce−at/h2

.(A.47)

One has

gh = (
M

n(t,h)
h,1 + �0

)
ej

(A.48)
= ∑

τ̃k(h)≤(1−δ)h−2

(
1 − h2τ̃k(h)

)n(t,h)
ẽ h
k (x)

∫
M

ẽh
k (y)ej (y) dgy.

Let Aj = {k; |τ̃k(h) − λj

2(d+2)
| ≤ ε} with ε small. Then from (4.8) and Theo-

rem 2, one has �Aj = mj = dim Ker(�g + λj ), and for any k /∈ Aj , | ∫M ẽh
k (y) ×

ej (y) dgy| ≤ Ckh. Using (4.9), one has |τ̃k(h) − λk

2(d+2)
| ≤ Ckh for any given k.
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Take N large and split the sum in (A.48) in the two pieces τ̃k(h) ≤ N and
τ̃k(h) > N . Using the L∞ estimate (4.12) and the Weyl estimate (4.11) to bound
the contribution of the sum on τ̃k(h) > N , we get that there exists C,a > 0 and for
all N , a constant C(N) such that

‖gh − e−tλj /2�j,h(ej )‖L∞ ≤ hC(N) + Ce−atN ,(A.49)

where �j,h is the orthogonal projector on the vector space spanned by the ẽ h
k for

k ∈ Aj . Let �j be the orthogonal projector on Ker(�g + λj ). From (4.8) and
Theorem 2, one has ‖�j,h − �j‖L2 ≤ Cjh. From (4.24), one has ‖ẽ h

k ‖W 1,p∗ ≤
C(1 + τ̃k(h))α for some p∗ > d,α > 0. This implies ‖�j,h −�j‖L2→W 1,p∗ ≤ Cj ,
and by interpolation ‖�j,h − �j‖L2→L∞ ≤ Cjh

μ for some μ > 0. Then (A.49)
implies

‖gh − e−tλj /2ej‖L∞ ≤ Cjh
μ + hC(N) + Ce−atN .(A.50)

Clearly, (A.47) and (A.50) imply (A.46). The proof of Proposition 2 is
complete. �
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