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SEMI-CLASSICAL ANALYSIS OF A RANDOM
WALK ON A MANIFOLD

BY GILLES LEBEAU AND LAURENT MICHEL
Université de Nice Sophia-Antipolis

We prove a sharp rate of convergence to stationarity for a natural ran-
dom walk on a compact Riemannian manifold (M, g). The proof includes a
detailed study of the spectral theory of the associated operator.

1. Introduction. This paper has two main aims. First, we study the spectral
theory of a Markov chain associated to a natural “ball walk” on a compact, con-
nected Riemannian manifold. From x, the walk moves to a uniformly chosen point
in a ball of radius /& around x. Here % is a small parameter. We prove a precise
Weyl-type estimate on the number of eigenvalues close to 1, and convergence of
the spectrum near 1 (when & — 0) to the Laplace—Beltrami spectrum. This walk
does not have, in general, the Riemannian area distribution as stationary distribu-
tion. The second aim is to analyse the Metropolis algorithm as a way to achieve
uniformity. Sharp rates of convergence for the Metropolized chain are given. In the
Appendix, we prove that under appropriate scaling, the modified Metropolis chain
converges to the Brownian motion.

Let (M, g) be a smooth, compact, connected Riemannian manifold of dimen-
sion d, equipped with its canonical volume form dgx. Let dg(x, y) be the Rie-
mannian distance on M x M. Forx € M and h > 0,let B(x, h) = {y,dy(x,y) < h}
be the ball of radius % centered at x, and let |B(x, h)| = fB(x,h) dgy be its Rie-
mannian volume. For any given & > 0, let T, be the operator acting on continuous
functions on M,

1
1.1 Thfx) = ——— dgy.
(1.1) (T ) (x) Bo )| B(x’h)f(y) gy
We denote by K} the kernel of Ty, which is given by

Lg, (x,y)<h) y
|B(x,h)| ¢

Obviously, for any x € M, Kj,(x, y) dgy is a probability measure on M, and there-
fore K}, is a Markov kernel. It is associated with the following natural random walk
on M: if the walk is at x, then it moves to a point y € B(x, h) with a probability
given by Kj(x, y)dgy.

(1.2) Kp(x,y)dgy =
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Let ' Tj, be the transpose operator acting on Borel measures on M, defined as
usual by (‘Tj(w), f) = (i, Tp(f)). Let cg be the volume of the unit ball of the
Euclidean space R?. For i small, A=¢|B(x, h)| is a smooth function on M which
converges uniformly on M to ¢; when & — 0. Let dvj, be the probability measure
onM,

|B(x, h)|
1.3 dvy, = ——
(1.3 K thdhd

dgx,

where the normalizing constant Zj, is such that dv;, (M) = 1. Then for i small, dvy
is close to dgx /Vol(M) and Zj, is close to Vol(M). One verifies easily that 7}, is
self-adjoint on the space L*(M, dvy), and that ' Tj, (dvy,) = dvy,.

The first goal of this paper is to analyze the spectral theory of the self-adjoint op-
erator Ty acting on L%>(M, dvy,). Let us recall some basic facts. One has Tj,(1) = 1,
and by the Markov property, the norm of T}, acting on the space L* is equal to 1;
by self-adjointness, the norm of 7}, acting on the space L' (M, dvy) is equal to 1
and thus the norm of 7}, acting on the space L2(M, dvy) is also equal to 1. Ob-
serve that for any given & > 0, the operator 7j is compact. Thus the spectrum
of Ty, Spec(Ty), is a closed subset of [—1, 1] which is discrete in [—1, 1] \ {0}
with 0 as accumulation point, and each u € Spec(Ty) \ {0} is an eigenvalue of
finite multiplicity.

We denote by A, the (negative) Laplace—Beltrami operator on (M, g), and by
O0=Xxp <A1 <Az <--- <A, <--- the spectrum of the self-adjoint operator —A,
on L3(M, dgx). We will denote by G;(§) the following function of & € R:

1 .
(1.4) Ga(€) = —/ eV dy.
Ca Jly|<1

Up to the factor é, the function G is the Fourier transform of the characteristic
function of the unit ball in R?, and depends only on |&|2. We shall also use the
function 'y (s) on [0, oo[ defined by

(1.5) Ga(&) =T4(E%).

The function I'y is real analytic, |[I'4(s)| < 1, and limg_, oo ['¢(s) =0, since G4(§)
is the Fourier transform of a compactly supported, real and even L' function of
total mass 1. One has near s =0,

(1.6) Ty(s)=1 + O(s?).

S
2(d +2)
Moreover, there exists yg < 1 such that I'y(s) € [—yp, 1] for all s, and one has
[y(s) =1 iff s = 0. To see this point, just observe that if |G4(§)| = 1, then one
has G4(&) = €' for some real 6, hence f‘ﬂil(e’ys_’@ — 1)dy = 0 which implies
vE — 60 € 2xZ for all |y| <1, and therefore £ =0 and 0 € 27 Z.
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THEOREM 1. Let hg > 0 be small. There exist y < 1 such that for any h €
10, hol, one has Spec(Ty,) C [—y, 1], and 1 is a simple eigenvalue of Ty. Let

(1.7) 0<- = pkp1(h) =pr(h) <+ < pr(h) < po(h) =1

be the decreasing sequence of positive eigenvalues of Ty. For any given L > 0,
there exists C such that for all h € 10, ho] and all k < L, one has

'1 —m(h) A ‘ ~Ci.

h? 2(d +2)
Let N (a, h) be the number of eigenvalues of Ty, in the interval [a, 1]. For any given
8 €]0, 1[, there exist Cs ; independent of h €10, hol, such that the following holds

true:
Forany T € [0, (1 — $h™2], N(1 — th?, h) satisfies the Weyl law,

(1.8)

‘N(l —th%, h) — (2Jrh)_d/ dx d
Ty(&12)el1—-Th?,1]
(1.9)

< Coa(1+ D)V,

where dx d& is the canonical volume form on the symplectic manifold T*M, and
|€ | is the Riemannian length of the co-vector & at x. In particular, one has

(1.10) N1 —th? h) < Csa(1+1)%2

Moreover, for any eigenfunction e,}(’ of Ty associated with the eigenvalue i (h) €
[8, 11, the following inequality holds true with T (h) = h_2(1 — ur(h)),

(1.11) lef [l oo < Cs.3(1 + e () *lel 2

Let | Ay| be the positive, bounded, self-adjoint operator on L*(M, dvy) defined
by
2

T 2d+2)

By (1.8), the two operators |A| and — A have almost the same eigenvalues in any
interval [0, L] independent of &, for & small enough. Our next result gives more
precise information on the difference of their resolvents for 4 small. Observe that
as vector spaces, the two Hilbert spaces LZ(M ,dvy) and L2(M ,dgx) are equal,
and that their norms are uniformly in & equivalent. We set L> = L2(M, dv,) =
L*(M, dex), I fllp2= ”f”Lz(M,dgx/V()l(M))’ and if A is a bounded operator on L2,
we denote by || Al|;2 its norm.

Let F; and F, be the two closed subsets of C, F| = {z, dist(z, spec(—Ag)) < &},
F> ={z,Re(z) > A, |Im(z)| < eRe(z)} with & > 0 small and A > 0 large. Let
F=FUF,andU=C\F.

(1.12) 1-T, |Anl.
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THEOREM 2. There exists C, hog > 0 such that for all h € 10, hol, and all 7z € U,
(1.13) I = 1AnD) " = @+ Ag) M2 < Ch.

REMARK 1. The error term O(h?) in the estimate (1.13) is of the same type
than the error one gets for the difference between discrete and continuous Lapla-
cian on R?. However, in our geometric setting, the Ricci curvature of M con-
tributes also to the error term (see Lemma 3 below), and to get a true discrete
Laplacian on the manifold M, one will have to discretize the integration process
in formula (1.1). Although this is clearly a question of practical interest [as well
as modification of |Ay| to improve the convergence in (1.13)], we will not discuss
this point in the present paper.

Observe that when M = (R/27Z)? is the flat d-dimensional torus with g equal
to the Euclidean metric, one has the equality,

(1.14) Th = Ta(—h*Ay).

Thus, in that case, the operators 7 and A, have exactly the same eigenvec-
tors ¢/** and the results of Theorems 1 and 2 can be proved by a simple com-
putational verification. For a general compact Riemannian manifold (M, g), the
two operators 7, and A, do not commute, and the formula (1.14) is untrue. In
Section 2, we will use a suitable h-pseudo-differential calculus in order to show
that formula (1.14) remains almost true (in a proper sense), modulo lower order
terms involving the curvature of M. Then, using the results of Section 2, we will
prove Theorems 1 and 2 in Section 3. Observe that the L bound (1.11) on the
eigenfunctions of |Ay| is the exact analogue of what one gets from Sobolev in-
equalities for the eigenfunctions of Ag; in particular, this is certainly not optimal,
and it will be of interest to know if the Sogge estimates (see [14]) for the eigen-
functions of Ag are true for the eigenfunctions of |Aj|. However, (1.11) will be
sufficient for us in the proof of Theorem 3.

Let us now discuss the second goal of this paper. For any n > 1, let K ;l“ (x,y)dgy
be the kernel of (7j)". Then [, K}/ (x, y)dgy is the probability that the random
walk associated to 7y, starting at x is in the set A after n steps of the walk. When
n — oo, the sequence of probabilities K}/ (x, y) dy will converge to the stationary
probability dvy, (), but this is not quite satisfactory, since on a general manifold M,
dvy, (y) depends on k. Thus, in order to get a Markov chain with the fixed stationary
probability duy = dgx/Vol(M), we modified the kernel Kj(x, y) d,gy, according
to the strategy of the Metropolis algorithm, in the following way. Let

(1.15) My (x,dy) = mp(x)dy=x + Kn(x, y) dgy,
where the functions my and Kj, are defined by

|B(x,h)| )
By, m|” /)

mp(x)=1-— /M ’Ch(xa)’)dgy-

mwwznwwm%
(1.16)
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Then, My, (x, dy) is still a Markov kernel, but now, the operator
(1.17) M = [ 7M. dy)

is self-adjoint on the space LZ(M, dgx), and therefore one has M, (dgx) = dgx
for all h. Let M} (x,dy) be the kernel of (Mj)". Our purpose is to get an es-
timate uniform with respect to the small parameter 4, on the speed of conver-
gence, when n — oo, of the probability M; (x, dy) toward the invariant measure
duy = dgx/Vol(M). Let us recall that if p,q are two probabilities, their total
variation distance is defined by

lp—qlltv= sgp Ip(A) —q(A)],

where the sup is over all Borel sets A. The following theorem tells us that this
speed of convergence is estimated for 4 small, as expected, by the first nonzero
eigenvalue A of the Laplace—Beltrami operator-A.

THEOREM 3. Let hg > 0 small. There exists A such that for all h € 10, ho] the
following holds true:

! 2
eV (h)nh <2 sup ||M;l1(x, dy) —dupmltv,
M
(1.18) -

sup [|M}, (x,dy) —dumlTv < AeVhnh? forall n.
xeM

Here y (h), y'(h) are two positive functions such that y (h) >~ y'(h) >~ % when
h— 0.

Of course, the analogue of this result is also valid if one replaces M, by 7j, and
dupy by dvy, with a simple proof. Theorem 3 will be proved in Section 4. We
will verify that M}, is a sufficiently small perturbation of 7}, and, in particular, that
estimates (1.11) and (1.10) remains true for its eigenfunctions. Finally, in Theo-
rem 4 of the Appendix, we will answer a question of one of the referees of the
paper, about the convergence of the Metropolis chain to the Brownian motion on
the Riemannian manifold (M, g).

Perhaps the main contribution of this paper is the introduction of micro-local
analysis as a tool for analyzing rates of convergence for Markov chains. These
result in a fairly general picture; the top of the spectrum of the Metropolis chain
converges to a Laplace spectrum. Because of the holding, the Metropolis chain
has a continuous spectrum but this is bound from %1 and does not enter the final
result. This picture was found in a simple case in [4] and for the Metropolis algo-
rithm in Lipschitz domains, including the random placement of N hard discs in the
unit square, in [5]. The present paper shows that the picture holds fairly generally.
Throughout this paper, we will use basic techniques in semi-classical analysis, for
which we refer to [13] and [7].
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For an introduction to the well-developed area of probability theory on Rie-
mannian manifolds we refer to [11]. For the analysis of the Metropolis algorithm,
we refer to [6] and references therein. There are also emerging applications to sta-
tistics on Riemannian manifolds (see [1-3, 10] for examples and references). All
of these applications lead to the problem of drawing random samples from the uni-
form distribution. This topic has not been widely addressed. Some algorithms are
suggested in [3]. The present paper is a contribution to a rigorous treatment, giving
reasonably sharp bounds on rates of convergence.

2. The symbolic calculus of 7j,. We first recall some basic facts on the classi-
cal h-pseudo-differential calculus. For m € R, let S the set of functions a(x, &, h)
smooth in (x, &) € R24 | with parameter 4 € ]0, 1] such that for any «, 8, there ex-
ists Cy, g such that for all (x,§) € R24 and all & €]0, 1] one has

@1 02 0l a(x, &, )| < Cap(1 + 18" P,

For a € $™, we denote by Op(a) the h-pseudo-differential operator acting on the
Schwartz space S(R?),

(2.2) Op(a)(f)(x) = rh)™ / e CTVE MG (x, £ h) f(y) dy dE.

Let us recall that for a € S, the operator Op(a) is uniformly bounded in / on the
space L2(RY), and that for a € S™, b € S, one has Op(a)Op(b) = Op(c) where
¢ = ath € §"T* is given by the oscillatory integral

(23) c(x, & h) = (2nh)_d/e_ize/ha(x,c§ +6,h)b(x +z,& h)dzdb,

and admits the asymptotic expansion

||

h o o
C(xﬂi:ah): Z Wasa(xvgsh)axb(x’gsh)
|la|<N :

2.4)
+hVry (g ),y e STV,

The subset S of ™ is the set of a(x, &, h) € S such that there exists a sequence
a,(x,&) e S™ " n >0, such that for all N, one has

25) a(x.Eh= > (W) 'an(x, &) +hNry(x, & h),  raeS"N.
0<n<N

From (2.4), one has atib € SZ’H‘ forae S and b € Sfl.

Let (M, g) be a compact smooth Riemannian manifold, and let e;(x) €
C®(M), j = 0, be an orthonormal basis in L2(M ,dgx) of real eigenvectors of
—Ag with —Age; = Aje;. For any distribution f € D’'(M), the Fourier coeffi-
cients of f are defined by f; = [ fe;d,x and one has f(x) = >_j fjej(x) where
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the series is convergent in D'(M). For s € R, let H*(M) = (1 — Ag)_s/sz(M,
dgx) be the usual Sobolev space on M. For f € D'(M) one has f € H'(M) iff
||f||%1S(M) =>;(0+ Aj)s|fj|2 < 00. We shall also use the semi-classical H*
norms defined by

(2.6) IFI7 =Y (L + R ) | f51%
J

A family of operators Ry, h €]0, 1], acting on the space of distributions D’(M)
is said to be smoothing iff for any s,¢, N, R, maps H*(M) in H'(M) and there
exists Cs ; n such that for all 2 €]0, 1] one has

2.7 IRA ()1 e oty < Coa NENIRR GO L5 -

A family of operators Ay, h €]0, 1] acting on the space of distributions D' (M),
belongs to the set £} of classical h-pseudo-differential operators of order m,
iff for any xp € M, there exists an open chart U centered at xo and two func-
tions ¢,y € CG°(U) equal to 1 near xo with ¥ equal to 1 near the support
of ¢ such that A, = Vv Ape + Rp, with R;, smoothing and there exists a ~
Y ns0(h/i)'ay(x, &) € 87}, such that in the local chart U, one has ¥ Ay, = Op(a).
The principal symbol of Ay, oo(Ap)(x, &), is by definition the first term ag(x, &)
in the asymptotic expansion of a(x, &, k). It is a well-defined function on T*M,
and for any smooth function ¢ € C*°(M), one has

(2.8) eI h AL (90T = 60(AR) (x, dp(x)) + O(h).

Then & = U,, £/} is the algebra of classical i-pseudo-differential operators on
M. For A, € ™ and By, € £X, one has Ay By, € £, 00(AyBp) = 00(An)ao(Br)
and the commutator [Ay, By] = Ay B, — Bp Ay, satisfies [Ap, By € hgz_’l”k_l,
Go(;l;[Ah, Bin]) = {o0(Ap), o0(Bn)} where { f, g} is the Poisson bracket. Moreover,
for any A, € £, one has A} € £}, 00(A}) = 00(Ap), and for any s € R, there

exist Cy independent of £ € ]0, 1] such that
(2.9) NARfllns—m < Csllflln.s VfeH (M).
Let us recall that for any ® € C§°([0, oo[), the operator ® (—h%A ¢) defined by

(2.10) (12 Ag)(f) =Y @A) fie;(x)
;

belongs to £,°° =, £7, and its principal symbol is equal to
2.11) o0(®(=h*Ag)) = @ (53),

where |£], is the Riemannian length of the co-vector £ at x. For a proof of this
fact, we refer to [7].
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DEFINITION 1. A family of operators Cj, h €]0, 1], acting on the space of

distributions D’(M), belongs to the class SCOI if and only if Cj, is bounded uniformly

in h on L*>(M) and for any ®g € C3°([0, oo[), one has

(2.12) ®o(—h?Ag)Cy and C,®o(—h*A,) belongs to £,°°.

Let I'y , be the operator I'y ), = Fd(—thg), so that

2.13) Tan(f)x) =Y Ta(h®2)) fe;(x).
;

Since &¢I’y € C(C)’O([O, oo[), one has obviously I'y 5, € éN’L(_)l.
Let U C M be an open chart with local coordinates x = (x1, ..., xq) € R?. Then
for x € U and r > 0 small, the geodesic ball of radius r centered at x is given by

(2.14) B, ) ={x +u, Y ki e wyuiuy <2,

where (k;, j(x, u)) is a smooth and symmetric matrix in (x, ) such that k; ; (x, 0) =
gi,j(x). For any function f compactly supported in U and & small, T}, f is sup-
ported in U and given in these local coordinates by

1
2.15) Tpf(x)= B0 et s f(x+u)/det(g(x +u))du.

Using the new integration variable hv = w = k'/2(x, u)u in (2.15), we get

d

h
(2.16) Thf(x) = Bo 0] e f(x 4+ hm(x, hv)v)p(x, hv)dv,

where m(x, w) is the smooth, symmetric and positive matrix, such that near u =0
one has w = k2 (x, w)u & u=m(x, w)w, som(x,0) = g_l/z(x), and p(x, w) =
det(g(x + u))| detg—,’j)| is smooth in (x, w) and p(x,0) = 1.

LEMMA 1. For ho > 0 small and any k, Ty, is a bounded operator on ckm)

uniformly in h €10, ho]l. Moreover, there exists C independent of h such that, with
|Ay| defined in (1.12), one has for all f € C*(M),

(2.17) AR fllLee < Cll fllc2-
PROOF. The first assertion is obvious from (2.16) since % is a smooth

function of x, i € [0, hg]. From (2.16) and the Taylor formula f(x +y) = f(x) +
Vix)y+ O(yzllfllcz), one gets easily that (2.17) holds true. [J

In the above open chart U, we define the symbol of T}, o (T},) by
(2.18) o (Th)(x, &, h) = e 5/, (e,
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For any compact set K C U, there exists hx > 0 such that o (T3,)(x, &, h) is well
defined forx € K, & € R4 and h €10, hg]. From (2.18), one has

h? .
2.19 o(Tp))(x, &, h) = ———— el &MY b hyydv,
(2.19) (Tr)(x, &, h) Bo )] Dot p( )
and therefore, for any «, B, there exists Cy, g independent of £ such that
(2.20) 102 90 (T1) (x, &, h)| < Ca,p(1+ [ED.

Observe also that, since m(x, 0) = g‘l/ 2(x) and p(x,0) =1, one has
2.21) o (T)(x, &,0) =Tq(&]3).

LEMMA 2. Let ho small. For h €]0, hol, the operator T), belongs to the
class 52.

PROOF. Let M = |J; Ui be a finite covering of M by local charts Uy, and
1 =} ¢r(x) apartition of unity with ¢ € C3°(Uy). Let ¥y € C3°(Uy) equal to 1
near the support of ¢i. Then for 2 small enough, one has

(2.22) Tu(f) ) =Y ¥ Ti(pr f)(x).
k

Let Ty x = Y Thekr; we reduce to show that for any k, T x € ggl. Let &g €
C°l0, ool; there exists ¥ € C3°(Ux) and a compact set K C Uy such that
(kaIDO(—thg) = Op(a)¥ + Ry with a(x,&,h) € S;loo with support in x € K,
and R;, smoothing. By Lemma 1, Tj Rj, is smoothing, and thus we are reduce to
show that in the local chart Uy, one has T, Op(a) € Sc_loo. From (2.2) and (2.16),
one has

T,0p(a)(f)(x) = 2mh)™ / TR Mp(x, & h) f(y)dy dE,

hd
|B(x, h| Jjv|<1

(2.23) b(x, &, h) = EMEIY G (¢ 4 hm(x, hv)v, &, h)

X p(x, hv)dv.

From (2.23) and a € S™%, it is clear that b € S™°°. Using the Taylor expansion
in 4 in (2.23) and a € S_;°°, one gets easily b € S_;°°. Thus T, ®o(—h>Ag) € £,%,
and since T}, is self-adjoint for the volume form dv;, given by (1.3), one has also
d)o(—hZAg)Th € 5C_l°°. The proof of our lemma is complete [

Using the Taylor expansion a(x + hmv, &, h) = Z%aﬁa(x,é,h) and

(mv)“e"té'm” = (ag/i)“ef’?m“, we get from (2.23) that the symbol b admits the
usual asymptotic development,

1
(2.24) b(x,&, h)~ Z(h/i)“a Bga(Th)(x, E,h)d%a(x, &, h).
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The following lemma will be crucial in our analysis.

LEMMA 3. Let &g € C°([0, 00]), and Ay = h=>(T, — Ty ) Po(—h>Ay).
Then Ap, belongs to ;. Its principal symbol, oo(Ay), satisfies near § =0,

00(Ap)(x, &) = (Qm (I(0) — T4(0)%)

()

(2.25)
L pico e, s))<bo<|§| )+ 0@E),

where Ric(x) and S(x) are the Ricci tensor and the scalar curvature at x. More-
over, let U be a local chart, K a compact subset of U and ¢ € C;°(U) such that
¢(x) =1 in a neighborhood of K; let a(x,&,h) ~ Z(h/i)kak(x, §) e SC_Zoo be
such that in this local chart one has App = Op(a) + Ry, with Ry, smoothing. Then,
forall k and all x € K one has ax(x,0) =0

PROOF. Let xg € M and let e, ..., e; be an orthonormal basis of the tan-
gent space Ty,M. For x = (x1,...,xq) € R?, we identify x with Y. xjej € Ty M.
Let s — exp,,(sx) be the geodesic curve starting at xo with speed x. Then, for
r >0 small, the map ¢y, :x — exp, (x) is a diffeomorphism of the Euclidean
ball |x| < r on an open neighborhood U of x¢, and the coordinates x; in U
are called geodesics coordinates centered at xg. In these coordinates, one has
x0 =0, and (g; ;(0)) = Id. Let R be the Riemann curvature tensor at x = 0 and
R iyt,m) = (R( aixl’ 8)(?"1 )= FED | 7 ). Then the Ricci tensor and the scalar curvature
at x =0 are given by

a

ad
(2.26) RlC(
ax;’ Oxk

):Ricj,k=ZR<,~,j)(,-,k), S=Y Ricj;.
i J

Moreover, one has in these geodesic coordinates (see [15], page 474)

(227)  9jg,m(0) =0, 0j kg1,m(0) = —%R(z,j)(m,k) - %R(l,k)(m,j)

or, equivalently,

(2.28) 8i.j(¥) = 8ij + 3 (R(x, exlej) + O(xY).

Consequently, one has

(2.29) Jdet(g)(x) = 1 — tRic(x, x) + O(x?).

From this formula, parity arguments, and 2¢4I",(0) = — f‘ yi<l yjz. dy, we get

(2.30) | B0, h)| :hdcd(l + FdT(O)ShZ +(’)(h3)>.
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Moreover, in geodesic coordinates, one has k(0, u) = Id = m(0, w) and p(0, v) =
J/det(g)(v), and thus from (2.19), (2.29), (2.30) and (1.4), we get

h ,
— iEwv
O(Th)(o’é’h)_|3(0,h)| |U|<1€ det(g)(hv) dv
_ 2 I3 (0) ) h? i£vp:
— (] ><1 L s 6Cd/|v|§1e Ric(v, v) dv
(2.31) +Oh>)

(0 1 3%2Gy
=musﬁw#(—mua%%uEZRi 5E o <s>)

+ Ohd).
Since G4(&) = Ty(|€|%), one has
3°Gy
0 08
and from T4 (|€%) = 1 + T, (0)|€]> + O(I&|*), we get from (2.31),
o (Tp)(0,§, h)
=T4(l&1)

(£) =28;4(T4(0) + [EI°T(0)) + 4€;6 T (0) + O(€["),

(2.32)

()

S 2
(L g0 - 1502 + 2 rice. )+ 001

+OWhd).

Let us now compute the symbol of the operator I'y , ®o(—h%A ¢)- Until the end
of the proof we use the Einstein summation convention. First we remark that in
local coordinates the symbol of the operator —h?A ¢ 1s given by p = po + hpy
with po(x, ) = g/*(x)€;& = 1§17 and p1(x, ) = —igké. Here (¢/%) denotes
the inverse matrix of the matrix (g;x) and g = ijgjk + igjkaxjg where g is
the determinant of the matrix (g;¢). Let F = ®oI'y and F be an almost analytic
extension of F. Then

(2.33) F(—h*A,) = %/CgF(z)(—thg —2)7'Lda),

where L(dz) = dxdy is the Lebesgue measure on C and 9 = %(ax +idy). Let
¢ € C{° be equal to 1 near x = 0. For any z € C \ R there exist symbols ag, ay, a»
such that in local geodesic coordinates we have

(2.34) (—h?Ag — 2)Op(ag + hay + h*az) = ¢(x) + W Ry,
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with R, € Sc(_),. From the symbolic calculus it suffices to set

o(x) —i
R a1=p0_zagjp18xjao,
(2.35) 1
ay = m(pothm + pothao + prai + pitiao),

where for two symbols f, g we define f;g(x,&) =3 4 =; ﬁ 0 f(x,8) 0y g(x,
). It follows that

(2.36) F(=h*Ag)¢(x) = Op(bo + hby + h*by) + >Ry,

with b (x,§) = %f(c 5F(z)aj(z, x,€)L(dz) and Ry, € Sg. In particular we have
by = (p(x)F(|é|§), and as a;(z,0,&) = 0; we get also b1(0, &) = 0. Let us com-
pute ax(z, 0, §). First, we observe that p1(0, §) = 0. Moreover, as 9y, po(0,&) =0,

for all k we have also (p1f1a0)(z,0,8) =0, poft1ai1(z,0,&) = O( lé';) and

pofzap(z,0,&) = %. Therefore, from (2.27) we get

___1_ ; 3
bx&&-77AﬁF@%EP_@JﬁMM&M®&%+CMH)
1
(2.37) =—§FMH%A&M®&%+4NE®

1
=§Wmmmm%+omﬂ.

Therefore, we conclude that in geodesic coordinates, the symbol of F(—h?A 9]
satisfies

o (F(—h*Ag))(0, &, h)

2.38
(2.38) F(0)
3

= F(P) + 12 ( T2 Ric6.6) + 06 ) + O
Then, from (2.32), (2.38) and the rule of symbolic calculus, which are valid for
Tj, by (2.24), we conclude that A, belongs to £, °° and that (2.25) holds true.
Finally, since T, (1) = 1 = ['y(—h%Ag)(1) and ®o(—h2A,)(1) = P((0), one
has Ap(1) = 0; therefore App(x) = O(h®°) for any x € K, and therefore,
Op(a)(1)(x) = a(x,0,h) = O*>°) for any x € K. The proof of Lemma 3 is
complete. [

The following lemma will be used in the sequel to handle the very high frequen-
cies.
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LEMMA 4. Let x € Cj°(R) be equal to 1 near 0. There exists hg > 0, Co such
that for all p € [1, 00], all h €10, hg] and all s > 1, one has
Co

< —

Lr /s

—h%A,
(2.39) HTh(l_X)< . )

PROOF. Set i = h//s. Then X( = ) is a h classical pseudo-differential
operator, and belongs to the class £, " Let Rp(x,y)dyy be the kernel of the

operator X( Ag ). Then Ry (x, y) is a smooth function of (x,y) € M x M, and
for any «, there exists a nonincreasing function v, with rapid decay such that for
all h €]0, 1], one has

(2:40) VE R, )] < ey (£,

h

1,2
Let O s(x, y) dgy be the kernel of the operator 7j, (1 — x)( hSAg ). Then one has

Lgyap=ny 1
|B(x, h)| |B(x, h)| JB(x,h

By the Shur lemma, it is sufficient to prove that there exists sg > 0, Cp such that

(2.41) Op,s(x,y) =

Rp(z,y)dgz.

sup f 1Oh.s(x. )| dgy < Co//5.

xeM,he]0,hp]

sup f 1Oh.(x. )| dgx < Co//5.

yEM,he ]0,ho]

(2.42)

We shall prove the first line in (2.42), the proof of the second line being the same.
One has A < h for s > 1, and from (2.41) and (2.40), we get that for any given
co > 0, one has for all & €]0, cg/2],

dg(x,y) > co
(2.43)
—  |Ons(x, )| < 9YP0(co/2h) € O(h™®) C O(s™).

Thus we may work in a local chart U centered at a given xo € M, with local
coordinates x = (x,...,X4) € Rd, and we are reduced to prove in this local chart,
for some Cp > 0 independent of xg, h €10, hol,s > 1,

(2.44) sup |On,s(x0 =0, y)|dgy < Co/+/s.
hel0,ho] Y 1y1=<2co

Let fi(y) = % One has

(2.45) Oy (0. ¥) = fao(¥) — / "Ri(y.2) fro (2) dgz.
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Let ri(y, &, 1) = Y Brni(y, &) € S;°° be the symbol of 'Ry, = x (—h*A,) €
&y ° in the local chart U. Then all the rp x(y, &) are smooth functions of (y, &)
with support in |£|2 < ro if x (r) is supported in r < ry. Moreover, by (2.11), one
has rp,0(y, 0) = 1. Therefore, we get with bo(y, u) smoothin y and in the Schwartz
class in u, and for some i with rapid decay,

‘Ri(y, 2)/detg(z) = h dbo(y, . )+qh<y 2,

(2.46)
/bO(y’”)d“= Lo lgn(y, 2| Sh‘d“w(ly . |>_

Set y="hy,z=nhZ and C:)h,s 0,y = th)h,s (x0, ¥). Then (2.44) becomes
(2.47) sup 1G5 (0, $)Iy/detg(xo + h$)dH < Co//s.

he0,ho] |)A1|§2L'oh_1
One has by (2.46),

— 2\ Yd, (x0.2)<h)
, dyz| < C [ ! ('y Z') utnI=t g
‘ [ a2 @ dez| < € [ty (2 BGo, ]

(2.48)
—d+1 Al ga
<ch /; oy VSIS =2 a2
and
Jro(¥) — fﬁ dbo(% )fxo(Z)dZ
(2.49)

_/h dbo(y’ >(f)6()(y) fxo(Z))dZ
From (2.48) and (2.49), we get for some i with rapid decay,

16,50, §)] < C/s"”w(ﬁw —3))

(2.50)
x (Mg, 0.n2)<h) + Niag0.n2)<n) — Lid,0.15)<m|) 42
This implies
/ A 10450, $)1\/det g(xo + hF) d
1§1<2coh~1
< c//sd/zz/f(m& —2))
2.51)

x (Mg, 0.n2)<h) + M(d,0.12)<h) = Lidg0.05)<my]) dZdP

1 0 dv f
<Cl|h // d><C .
< (—i—o uﬁ1+v4u_o/s

The proof of our lemma is complete. [




SEMI-CLASSICAL RANDOM WALK 291

3. The spectral theory of T},.

3.1. Estimates on eigenfunctions. In this section, we prove estimates on the
eigenfunctions of 7j,. Let us recall that || f|| gs(a) denotes the usual Sobolev norm,
and that the semi-classical Sobolev norm || f|| s is defined by (2.6). For a fam-
ily f» € L>(M), we shall write fj, € Ocoo (h™) iff there exists hy > 0, such that
for any s, N there exists Cs y such that one has || f |l gsm) < Cs, ~hY for all
h €10, hol. If fn =)_ fj nej is the Fourier expansion of f}, in the basis of eigen-
functions of A, this is equivalent to

3ho > 0,VkVN ICx.y | finl < Cenh¥ (A 4+21))7*
(3.1
Vj,Vh €10, hol.

Let0 <8 < 1 and g > 0. For h €10, hol, let ¢” be an eigenfunction of 7;, with
[l e" ;2 =1, associated to an eigenvalue z;, € [§, 1], so (T}, — e =0.
LEMMA 5. There exists ho > 0, and for all j € N there exists Cj > 0, such

that, the following inequality holds true

(3.2) sup [le"|ln; < C;.
he0,hg]

PROOF. We use the notation of Lemma 2 and we set T x = Yk Tp@r. One
has for A small enough 7, = > ; Tj x. For any given k, we denote by x =

(x1,...,xq) local coordinates in Uy, and we choose a partition of unity in R4
of the form
—ah
(33) =Y 6 am=o(*).
aeZd

with @ € C°. Then, for any integer m, there exists D,, independent of & such that
for any u € H™(R?) with compact support, one has

(3.4) D> 10t < Nl y < Din Y 10autlly -
o o

If 9/ ¢ Cg° is equal to 1 on the set {X,dist(X, support(f)) < 2}, one has
for h €]0, ho] with hg > O small enough, 6,7, = QaThQ(; for all . For any
given o, we perform the change of variable x = h(a + X). Let S, be the
rescale}cll operator acting on functions of the variable X defined by [with f(x) =
F( )]

(3.5 O T k0, () (e + X)) = Sa (F)(X).

Let us first show that S, is the sum of two quantized canonical transformations
of degree —(1 + d)/2 < —1. From the definition (3.5) of S, and (2.16), one
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has
d
Su(F)(X) = (2m)~d 00
|B(h(a + X), h)
(3.6) x/e“"*Y)%q(h(a+X),g,h)9/(Y)F(Y)de§,

q(h(a+X).6.h) = / &m0 oy 4 XY, o) dv.
lvl=<1

Let us compute the integral which defined ¢ (x, &, h) for |&| large. The phase

v — &.m(x, hv)v as no critical points in v, so if x(r) € C3°]0,2[ is equal to 1

near » = 1, one has

l .
q(x,g,h)=/0 X(r)rd_1</| l_le’é‘rm(x’hr“’)“’p((x,hrw))da))dr

(3.7
+n(x,& h),

where n is a symbol in S™°°. The phase w — &.rm(x, hrw)w has two non-

degenerate critical points on the sphere |w| =1, coﬁE = :I:M + O(h),

lg=1/2(0)¢]
. -1/2 .. .
since i% are the two nondegenerate critical points of the phase w —

&.rm(x,0)w, and the critical values (homogeneous in & of degree 1) are & (x, r,
£,h) = £r|E|x + O(h) since |g~/?(x)&| = |£|,. Using the stationary phase theo-
rem, we get

1 .
q(x.6.h) = /O XA (R ErED G (x p g )
(3.8) .
4+l O &N G (x r & h))dr +n(x, €, h),

where o are two symbols of degree —(d — 1)/2. By integration in r, we thus
get

qx, &, h) = P+ELED L (¢ £ B) 4 P-CLEN L (x £ )
3.9
+n(x, &, h),

where 71 are two symbols of degree —(d + 1)/2. From (3.9) and (3.6), we get
that Sy is (uniformly in «, i for h €]0, ho] with kg > 0 small), the sum of two
quantized canonical transformations of degree —(d + 1)/2, with canonical rela-
tions closed to the ones associated to the phases (X — Y)& % |&|j(+x), that is, of
the form (Y, n) = (X =Y £n/Inlpe + Oh), & =n+ O(h)).

Since T}, is (in the variable X)) the sum of two quantized canonical transforma-
tions of degree —(1 +d)/2, and since el = ZLTh (e"), and zj, > §, we get that there
exists ¢ and for all m, Cy,, independent of h, o, such that

(3.10)  |6C0OE" (hle+ X)) |y < Cun[6'(X)e" (e + X0) | -t
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where HY denotes the Sobolev space in variable X, as soon as 6'(X) is equal
to 1 at each point X whose distance to support(9) is less than c. From (3.10) with
m =1, (3.4),and hd; = dx, we get for x (x) € C§°(Uy) and h €0, ho] with hg > 0
small,

(3.11) lx e )lln1 < Clle" @ 2

Therefore, since (Uy) is a covering of M, we get | ¢" ln1 < Clle" l72. We can now
iterate this argument from (3.10), and we get for any j,

(3.12) le" 14, < Cille" I 2.
The proof of our lemma is complete. [

Remark that there exists s; > 1 such that |['y(s)| < % for all s > 51 — 1. Let

X € CS"(RQ be equal to 1 on [0, s1] and equal to O on [s1 + 1, oo[.

LEMMA 6. Let e" as in Lemma 5. Then
(3.13) X (=h*Ag)e" — e = Ocoo (h™).

PROOF. Let (¢;) jen be an Hilbertian basis of L*(M, dgx) such that —Age; =
Ajej and consider Ilg the orthogonal projector on spanf{e;, h2 j = s}. By
Lemma 4, there exist sg, kg such that
(3.14) Vs > 59 sup I Tx Il ;2 < 8/2.

he0,ho]

Let so > max(s; + 1, so) and let x2, x3 be smooth functions such that 1z, = x +
X2+ x3, x3(s) =0 for s <52 — 1 and x3(s) =1 for s > s57. Let 3o € C;°(Ry)
equal to 1 near [s1, s2] and equal to 0 on [0, s — 1] U [s2 + 1, oo[. On supp(x2(s))
we have z;, — I'y(s) > % Hence it follows from Lemma 3 that there exist E € £°
such that E(Ty — z) = X2(—h*Ag) + R with R € h°E~%°. As (Tj, — z)e" =0,
we get

(3.15) F2(—h*Ag)e € Ocoe (h™).

Set e = 2 x?ej. Then

l'IsZeh — X3(—h2Ag)eh = Z xj'ej — ng(hz)\j)xj’ej
hz)LjZSZ J
(3.16) 5 Y
=— Z x3(h Aj)xjej.

S1 §h2)»j <8

As x2 =1 on [sq, s2], it follows from (3.15) and (3.1) that one has HsZeh —
X3(—h2Ag)eh € Oco (h®). Therefore we get

(3.17) e = x(=h*Ag)e! + Te" + Ocoo (h™).
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Since Iy, is bounded by 1 on L?, applying I1 s, (Th — zp) to this equality, we get
(3.18) M (Th — z) e = —T, (T — z0) x (—=h* Ag)e" + Op2(h).

Let x € C3°([0, oo[) be supported in [0, s>[ and equal to 1 near the support of x.
Then, thanks to Lemma 2, we have

(3.19) (T — 2 x (—h*Ag) = F(—h*AQ)(Th — zp) x (—h*Ag) + hXE,™.

From (3.18), (3.19) and I, x(—h>Ag) = 0, we get Iy, (T — zx)Te" €
O;2(h®). Since s2 > 59, the operator I, (T}, — z5)I1;, is invertible on the space
I, (L2(M)). Consequently, I"[meh is O(h™) in L?>(M). On the other hand, from
Lemma 5, (3.2), one has for any integer j, ||A£,/21_[sth||L2 = IIHSZAi,/zehIILz <
th_j. By interpolation it follows that for all j, one has ||A£,/21'ISZeh||L2 €
O (h®®), that is, one has HSzeh € Ocx(h®). Then (3.13) follows from (3.17).
The proof of our lemma is complete. [

For z; € [8, 1], set z; = 1 — h21y,, so that " satisfies Tj,e" = 1 - hzth)eh.
The next lemma is a refinement of Lemma 5.

LEMMA 7. For all j € N, there exists C; such that for all h €10, hol, the
following inequality holds true:

(3.20) le" Il s ary < (1 + )72
PROOF. By Lemma 6, we have el — X (—hZAg)eh € Oc¢x (h®), and therefore

using also Lemma 1, we get ((T, — 1)X(—h2Ag) + h2my)el € Ocoe (h™®) and it
follows from Lemma 3 and (I'y — 1)(1 — )()(—hZAg)eh € Ocoo (h™) that

(3.21) ((Cq — D(=h>Ag) + h*Ap + B ty)e" € Ocoe (h™)

with Aj, € Ec_loo. One has (I'y —1)(s) = —s Fy(s) with F; smooth, and from (3.21),
we get

(3.22) —AgFy(=h?Ag)e" = (Ap + t)e" + Ocoo (h™).

Since Ay, is uniformly in 4 bounded on all H/ (M), and ||e"|| 12 =1, we get from
(3.22) for all j € N, with C; independent of 4,

(3.23) I Fa(—=h*Ag)e™ Il yisacary < Ci (L4 Tl | i -

Since Fy(s) # 0 on [0, s; + 2], we get (3.20) by induction on j from (3.23)
and (3.13). The proof of our lemma is complete. [J
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3.2. Proof of Theorem 1. Let us recall that there exists y9 < 1 such that
La(s) € [=yo, 1] for all s € R. Let ¢ €]0, (1 — y9)/2[ and x (¢) € C3°([0, oo[)
equal to 1 near r+ = 0 and such that x (¢) € [0, 1] for all 7. Thanks to Lemma 4,
there exists s > 0 such that

(3.24) <e.

s L2(M.dvy)

—thg>

To(l —x)(

On the other hand, thanks to Lemma 3 we can apply the Garding inequality to the
—h2A,
N

pseudo-differential operator Ty, x ( ) to get for 4 > 0 small enough,

—h?>Ag
(3.25) <Thx( )f, f> > (=vo — N SFlL2m.dvy)»
s L2(M,dvy)

where we have used the fact that sup s | fll .2/l Fll L2(p,4v,) 8O€S to 1 when h
goes to 0. Combining equations (3.24) and (3.25), we obtain

(3.26) (T fs P r2aany = 0 =200 F 1720140,

which proves the first statement of Theorem 1 as 7j, is self-adjoint on L2(M,dvy).

Let us now prove (1.8). Set [A,| =2(d+2) IZZT’“ .For k < L, we denote by m; =
dim(Ker(Ag+Ax)) the multiplicity of A;. Let pg € C3°(R) be equal to 1 near zero.
Then there exists ig > 0 such that for / € ]0, hg], one has ¢ = po(—thg)e for any
e € Ker(Ag+Ag) with k < L. Thus, if (U;) is a finite covering of M by local charts

and 1 =} ¢; a partition of unity with ¢; € C5°(U;), one has

(3.27) (Th —Tan)(e) = Z(Th —Tan)po(—h>Ag)p;(e).
J

From Lemma 3 one has for each j, (T, — Fd,h),oo(—thg)wj = h20p(a) + Ry,
with a = ap + ha3 + --- € S_;°° compactly supported in x € U;, R, smoothing,
ax(x, &) = O(£2) near &£ =0 and a3(x, 0) = 0. As e is smooth and does not depend
on A, it follows that ((T}, — deh),oo(—hZAg)goj (e) OLz(h4). Therefore,

(3.28) 1CTh = Tan) @l 2ar.auy) = ORY.

Moreover, Ty ye = I'y(h*Ar)e = (14 h2T/(0) Ak + O (h*))e. Combining this with

(3.28) we obtain ||(|Ar| — roellL2.avy) = O(h?) forall e € Ker(Ag + Ax), and

since |Ay| is self-adjoint on L*(M,dvy), we get that there exists Cp such that
VYh€]0,hol,VO<k <L

(3.29)
card(Spec(|Ap]) N [Ax — Coh?, Ay + Coh?]) = my.

Now, if e is a normalized eigenfunction of |Ay|, |Ap |eh = 15¢", with 7, bounded,
one has, by Lemma 6, el — po(—thg)eh € Ocx(h®), and also by Lemma 7
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since 7, is bounded, ||¢" || pi(M) < C; forall j, with C; independent of /. Thus
the same argument as above shows that there exists C independent of / such that

(3.30) I(th + A€ 20,4, < CH?,

and thus dist(z,, Spec(—Ag)) < Ch?. It remains to prove that for 4 small, we have
equality in the right-hand side of (3.29). Let p > my and let ey (h), ..., e,(h) be
a family of eigenfunctions of |Aj| associated to the eigenvalues z;(h) € [Ax —
Coh?, Ak + Coh?], orthonormal for the scalar product (-, VL2(M,dvy)- By Lemma 7,
there exists a sequence (h,) going to zero as n — oo such that e;(h,) converges
in H?. Denoting f; its limit we get from (3.30), —A, f; = A fy foralll =1,..., p
and the functions f; are orthogonal for the scalar product (-,-)72p 4,x)- This
proves that my > p, and completes the proof of (1.8). (In particular, this implies
that 1 is a simple eigenvalue of 7},.)

Let us now prove the Weyl estimate (1.9).

Let § €10, 1[ be given. Let 7 € [0, (1 — 8)A2]. Observe that N(1 — th?, h) is
the number of eigenvalues of |Aj| in the interval [0, 2(d + 2)t]. We denote by
No(a, h) the number of eigenvalues of Fd(—h2A ¢) in the interval [a, 1]. Let us

define the function & (s) and the operator |A2| by the formulas,
1—T4(s
@ (s) =2(d + 2)h—2d(),
(3.31) 0 5
ALl = Dp(—=h"Ay).

Then No(1 — th?, h) is the number of eigenvalues of |A2| in the interval [0, 2(d +
2)t]. Let us first show that Ny satisfies the Weyl estimate (1.9), that is, there exists
C such that for all & €10, ho] and all T € [0, (1 — §)h 2], one has

'No(l —th*, h) — (2nh)_d/ dx d
Ta(2)ell—th?,1]
(3.32)
<C(l+0)=h2,
To prove this point, let n (L) [resp. n~(1)] be the number of eigenvalues A j of
—Ag in the interval [0, A] (resp. [0, A[). By the classical Weyl estimate with accu-
rate remainder (see [7]), one has

(3.33) nt) = (2n)_d/ dxdg +0(.1471/2),

&12 <A
By (3.31), No(1 — th?, h) is the number of eigenvalues Aj of —A, such that
1 — Ta(h®r;) < th?. Since T < (1 — 8)h™2, the set {s > 0;1 — I'y(s) < th?}
is a finite union of disjoint intervals Ip U --- U I with Iy = [0, so(rhz)], I =
[sj_(rhz), s;r(rhz)] for 1 < j <k, and such that ¢y <s; < s1+ <s, < s;' <. <

s,j < ¢y with ¢g > 0 independent of %, § and ¢ independent of 4. Thus we get

j=k
(334)  No(I—th®,h)=n"(soh™) + D nT(sTh™) —n"(s;h77).
j=1
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Observe that k = 0 when 7 < ch—2 with ¢ small enough, and in that case one has
by (1.6), soh ™2 ~2(d +2)t, and therefore (3.32) is consequence of (3.33). On the
other hand, in the case T > ch~2, then both (sjj.th_z)(d_l)/2 and (soh—2)@=D/2 are

of order 7@~Y/2 and thus we get (3.32) from (3.33) and (3.34).

Let E; be the finite dimension space spanned by the eigenfunctions e; of —A,
with cbh(h%\ 1) <2t(d + 2). Then by (3.31), one has dim(E;) = No(1 — th?, h)
By (2.30) and ||| Ax||l;2 < Ch ™2, one has for all f € L?,

(335 2L 201, 20wy — (ARLFLD 20t 0| < CILF 12

Let x € C3°([0, oo[) equal to 1 near the compact set {s >0; 1 —y(s) <1 —5}.
Then f = X(—thg)f for all f € E;, and from Lemma 3, one has (|Ap| —
|A2|)X(—h2Ag) = —2(d 4+ 2)Ay,. Thus, since Ay is bounded on L2, from (3.35)
we get that there exists C_ = C_(§) independent of t, &, such that for all f € E,
one has

(3.36)  (AKIFIP) 200 zyawy < 2+ C@+DUF 12001 2000
and this implies, by the min—max,
(3.37) No(1 —th* h) =dim(E;) < N(1 — (t + C_)h?, h).

Let F; be the orthogonal complement of E; in L*(M, dgx). Let 6 € Cy° such
that || 7, (1 — 9)(—h2Ag)||Lz < 4. Let x € C3° with values in [0, 1], equal to 1
near [0, 1 — 6] U support(f). Let v =1 — x, so that (1 —0)y = . Let A} =
(ARl = 1ADDX (—h?Ag) € €5 and By = x(=h*Ag)(|1A4] — |A)]) € 5% be
given by Lemma 3. Then, one has
(3.38)  |Anl=xIAYIX +WIAY X + X|ANY + VIALIY + Ap + By

The operator A, + B, is bounded on L? by a constant C(8) uniformly in 4. From
V(1 =Ty = 9> — Y Ti(l — 0)y, we get

(3.39) WALV L2 .dgr) =

Therefore, from (3.35) we get that there exists C+ = C+(6) > 0 independent of
T, h,such that forall f =3, .. xje; € Fr, one has

(de)

DRI L2, 2y T (d + 2)C+”f”i2(M,Zhdvh)

> 3" Ou(h*A) (0 + 2x ) (P4 ))|x
)»j>‘L’
3.40
( ) d+2

A hPag)lx;l?

Aj>T

>2t(d+2) ) |xj1P = 2ed +2) = C) F 172001, 2,00

Aj>T
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and this implies by the min—max for t large enough, and % € ]0, ko] with i small,
(3.41) No(1 — th?, h) = codim(F;) > N(1 — (vt — C4)h?, h).

Then we obtain the Weyl estimate (1.9) from (3.32), (3.37) and (3.41). Finally, the
estimate (1.11) is an easy byproduct of the estimates (3.20) of Lemma 7. The proof
of Theorem 1 is complete.

3.3. Proof of Theorem 2. Let us recall that ®,(s) and |A2| are defined
in (3.31).
One has 2(d +2)(1 — I'4(s)) = ¢y min(s, 1) with ¢; > 0, and, therefore,

(3.42) @ (h*A ;) > cymin(hj, k™).

Observe that there exists Ag, cg > 0 such that for all z € U, all & €]0, h¢], and all
j €N, one has

(3.43) |z — @ (h*A))| > co(1 + |z| + min(r;, h72)).

To see this fact, just observe that by (3.42), for ¢; min(A, h=2) > A+1, (3.43)
holds true, since z € U. Now, ¢; min(2, h_z) < A + 1 implies if hg is small,
Aj < (A+1)/c1, and therefore, |d>h(h2kj) —Ajl < cah?, and (3.43) holds true
also in that case since z € U. Since for h%x j < c3 with ¢3 > 0 small, one has
| Dy, (hzkj) —Ajl = C4h2)L§, we get from (3.43), that there exists C such that for all
ze€ U and all h €]0, hg], one has

1

(3.44) 325 e R—y < Ch?,
and this implies, obviously,

(3.45) Iz =180 7" = G+ A 2 < CH,
and thus we are reduced to prove the estimate

(3.46) I = 12D~ = @ = 1D~ 2 < Ch2.

Observe that, as a straightforward consequence of Theorem 1 and of the self-
adjointness of |Ay| and |A2|, respectively, on L*>(M,dvy) and L*(M, dgx), there
exists C > 0 and A > 0 such that for all z € U and all & €]0, hg],

(3.47) 1= 1ADDMz + 1 —1A9D e <

141zl

Therefore, in order to prove (3.46), we may, and will assume that z satisfies
h?|z| <, with & > 0 small. Using Lemma 4, we then choose xq € Cg° equal
to 1 on [0, sg], with support in [0, 25p], and, such that,

(3.48) 12(d +2)T,(1 — Xo)(—hZAg)lle <d+2—-a/2
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Let x € C§° equal to 1 near [0, 3s9], and set R, = (z — A~ — (z — |A|2)_1.
Then since |A2| commutes with Ag, one has

Ryx(—=h*Ay)
(3.49) -1 0 2 0n—1
=z — A" (AR = A DX (=h"Ag)(z — |ALD ™.

From Lemma 3, one has (|Ap| — |A2 Dx (—thg) = Ahx’(—hZAg), with x’ equal
to 1 near the support of x, and the operator A;, € £, satisfies

(3.50) 1AL £l 20y < CRAILF | 2y -

On the other hand, from (3.43), we get

(3.51) ' (=h*Ag)@ = 1AM ™" Fllwzaany < CUF 2
From (3.47), (3.49), (3.50) and (3.51), we get

(3.52) IRhx (—h*Ag)|l 2 < Ch?.

It remains to estimate Ry, (1 — x)(—h2A ¢)» and it is obviously sufficient to prove
the two estimates

(3.53) 1z — 1A (A = x)(=h*A)|l 2 < Ch?,
(3.54) 1z — 1A = ) (=h* Al 2 < Ch.

Since x(s) = 1 near s =0, (3.54) is a consequence of (3.43). Let g € L23(M) with
lgl2=1andlet f=(z—[As])7 (1 — x)(—h>A,)g. Then

(3.55) (h?z —2(d +2)(1 = Tp)) f = h*(1 — x)(—h*Ag)g.

Let x1, x2 € Cgo with support in [0, 3sg[, with x2 equal to 1 near the support
of x1. One has x;(1 — x) =0, and thus, multiplying (3.55) by Xl(_thg) and
using Lemma 3, we obtain

(3.56) K (z— |AV X1 (=h*AQ) f = W2 Apxa(—h*Ag) f + Ocoe (h™).

Since on the support of i, one has h2\ j < 3s0, we get from (3.43), (3.47)
and (3.56) that one has ||X1(—h2Ag)f||Hz < C; thus, since yx; is arbitrary,
||X2(—h2Ag)f||Hz < C, and from (3.56) and (3.50), we thus get

(3.57) 1 (—h*Ag) f 2 < Ch*.
Then, we deduce from (3.55) and (3.57)
(3.58)  (h’z—2(d +2) +2(d +2)Ti(1 — xo(=h>A))) f € Op2(h?),

and from (3.48), we get ||fll;2 < Ch?. The proof of Theorem 2 is com-
plete.
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4. Proof of Theorem 3.

4.1. The spectral theory of the Metropolis kernel. In this section, we will de-
duce from the results of Section 3, useful properties on the spectral theory of the
Metropolis operator Mj,. Let us write

4.1) My, =Ty + Ry.
Then from (1.16) and (1.17), one has
Ryp(f)(x) =mp(x) f(x)

1 1
+/ min( — ,0) () dyy.
ieyen " IBOL A T TBGA )T ) e

Let a(x, y, h) <0 be the function

1 1
(4.3) a(x,y, h)=h'"? min( — ,o).
|B(y,h| |B(x,hl|

Then a is a Lipschitz function in x and y, and from (2.30), we get that there exists
C independent of x, y, & such that
4.4) la(x,y,h)| < Cdg(x,y), |Vya(x, y, h)| +|Vya(x,y, h)| < C.

Since R, (1) = 0, one has mj,(x) = —h*¢ Jiye.yy=h @(x, ¥, h) dgy, and therefore

the function my, is Lipschitz and satisfies [|[my ||z~ < Ch? and || Vmy||L~ < Ch?.
From these facts, one easily gets that there exists C independent of p € [1, co] and
h such that

IRullLr < CH?,
4.5) 5
I Rullw1.r < Ch?,

where W-? = {f € L,V f € L} is the usual Sobolev space. Therefore, M, is a
small perturbation of 7j,. In particular, there still exist 29 > 0 and y < 1 such that
the spectrum of M, is a subset of [—y, 1], 1 is a simple eigenvalue of M}, and since
lmpllze < Ch? and my(x) > 0, the spectrum of Mj, is discrete outside [0, Ch3].
Let

(4.6) Ch <+ < figs1(h) < ix(h) < -+ < Fa(h) < Foh) =1

be the decreasing sequence of positive eigenvalues of Mj. Set
2

=—— A4l
2(d+2)| 'l

“4.7) 1 — M,

Then from (4.5), one has
(4.8) l1Anl = 1A4l] 2 < Ch.
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From Theorem 1 and (4.8) we get that for any given L > 0, there exists C such
that for all 4 €10, hg] and all k£ < L, one has

‘1—l7vk(h)_ Ik ’<Ch
2 2d+2)|~

4.9

Moreover, since ||T;, — Mpll;2 < C h3, the Weyl estimate (1.9) remains valid for
the number N (a, h) of eigenvalues of M}, in the interval [a, 1]: for § €]0, 1[, one
has

‘1\7(1 —th*, h) — (Znh)_d/ dx d€
Ta(€2)el1-th2,1]
(4.10)

< Csa(l47) 02

for any 7 € [0, (1 — 8)h~2], and therefore, the estimate (1.10) is still valid; for any
7 €0, (1 — 8)h~?], one has

(4.11) N —th% h) < Cs(1 + )42,

The main result of this section is to prove that there exist Cs such that for any
eigenfunction E,}{‘ of M), associated to the eigenvalue i (h) € [8, 1], the inequality
(1.11) still holds true, that is, with T (h) = h~2(1 — fix(h)), one has

d/4||

(4.12) 120 e < Cs (14T 180 12

We will obtain this estimate as a consequence of (4.5), using Sobolev inequalities
and the following lemma.

LEMMA 8. Let N> 1, pe[l,oo] and § €]0,1[. Let so > 0 such that
[Cq(s)| < 8/2 for s > so. Let xo € Cg° such that xo(s) =1 on [0, so]. There exist
C,Cy,hg,and forall ze K ={z € C, |z] € [8, 2]} and all h €0, hgl, operators
E; n, N, which satisfy

(4.13) Eon(Th —2) =1 = xo(=h*Ag) + Nop,
and such that the following estimates holds true:

lE . nllLr <C, NE.nllwir <C,
4.14) N N
INZallr < Cyh™, INZRllwir < Cnh™.

PROOF. Let x € C;°([0,2[) equal to 1 on [0, 1], and set x(t) = x(¢/s). By
Lemma 4, there exist s such that for all s > sg, one has || 7 (1 _Xs(_thg))”L” <
8/2. We then take s > sg such that y; = 1 near the support of xg, and we set
Y =1—xyand ¥’ =1 — y4s. For z € K, Tpyy — z is then invertible on L?. Set

(4.15) E\ =y (T —2)7 "
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Then, there exists C, hg such that for all 4 € ]0, ho] and all z € K one has
(4.16) IEllLe + 1 Etllwrr < C.

The L? bound is obvious since operators in £, are bounded on L” and ¢’ =
1 — x4; let us prove the W7 bound in (4.16). We denote by B any operator which
is, uniformly in 2 > 0 small, and z € K, bounded on L”. Let X be a vector field
on M. Then by (2.16), one has [Ty, X] =hB1 X + B>. Thus, with L =Ty — z,
we get [L, X]=hB3X + B4 and [X, L~'1=hBsXL~! + Bg. Since for h small,
1 — hBs is invertible on L”, we obtain XL ! = B7X + Bg, and thus (4.16) holds
true, since E; = 'L~ Let ¢ € C§e ([0, 3s]); from y'¢p =0, we get E;Lp =0,
and therefore

(4.17) Ei¢p=E[¢,LIL™".

By Lemma 3, one has [¢,L] € hE,;°°. Thus (4.17) implies ||Ei¢lizr +
IE1@|lw1.» < Ch, and since ¢ is arbitrary, by an easy induction from (4.17), we

get |[E1pllLr + [|E1]lyy1.» < CyhY for all N. Thus one has
(4.18) ElTy—2)=v"+M

with V1 = E1T;,(1 — ) = E1 (¢ Ty xs + O(h"og;loo)) if ¢ =1 near [0, 2s]. Thus
N satisfies for all N,

(4.19) IV e + IV i < Cah™.
Now, by the symbolic calculus, there exist E» € £,,°° and N> € h*°E_;* such that
(4.20) Ex(Th — 2) = x4s — o + Na.

Here we use Lemma 4 and the fact that 7, — z is elliptic near the support of
xas — Xo0- Then E; , = E| + E3 and N, j, = N| + N satisfies (4.13) and (4.14).
The proof of our lemma is complete. [

Let us now achieve the proof of (4.12). Let fi(h) € [8, 1] and ||&" ;2 =1. Then
(M}, — fi(h))e" =0 1is equivalent to (T}, — fi(h) + R;)e" = 0, and using Lemma 8,
we get

(4.21) (1—x0)e" + Naawy.n + Eﬁ(h),th)Zh =0.

Set & = xo(e") and &4 = (1 — x0)(e") so that " = & + &,.. Since by (4.5) and
(4.13) the operator Nﬂ(h),h + Ejny,nRp is O(h?) on L? and WP, we can solve
equation (4.21) for € on the form

€ = Sam.n(@),
4.22) 2
|Szawynl o + |Sam.nlwir < Ch*.
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Let 1 — h%’t = ji(h) and w = /1 + 7. One has |Ay|(@") =2(d + 2)(t +
h=2Ry)(e"), and therefore, with (|Aj| — |A0|) X0 = Ap, we get the equation

(4.23)  |AYx0(@") = (2(d +2)xo(r +h72Ry) — A + [|Anl, x0l)@").

By (4.5) and Lemma 3, the operator 2(d + 2) xo(t + h=2Ry) — Ap +[|Anl, x0])
is bounded by O(w?) on LP, uniformly in /. Then by (4.22) and (4.23), we get for
some p, €]d, ool and all p € [2, p,], that the following estimates holds true, with
C independent of A:

Ie"ILe < Ca=47,

(4.24)
||fé‘h||W1vp < Cod/?=d/p+1,

Indeed, by (3.31) and (3.42), for x; € Cgo equal to 1 near the support of o,
one has IAOIX | = —AgBy, with B, € £,% elliptic near the support of xo. Thus,
e ||L2 =1 and (4.23) 1mpl1es el w22 < < Cw?, and thus € llw12 < Cow, so us-
ing (4.22), one gets that (4.24) holds true for p = 2. This also shows easily
that (4.24) holds true for d = 2. When d > 3, then if (4.24) holds true for some
p € [2,d[, then let g €]p, oo[ be defined by d/q = d/p — 1. Then the injection
WP c L9 shows that the first line of (4.24) holds true for g. Moreover, in (4.23),
classical properties of —A, and the fact that operators in £, are bounded on
W#:P shows that ||e;||y2, < Cw?/?=4/P+2 Then the injection W>? ¢ W14 and
(4.22) implies that the second line of (4.24) holds true for ¢. Then, from (4.24),
we conclude the proof of (4.12) by the interpolation inequality for p, > d,
(4.25) el o < Clall Lo P el 7.

4.2. The total variation estimate. In this section, we prove Theorem 3. Let [Ty
be the orthogonal projector in L2(M, d ) on the space of constant functions

1
4.26 I = d,v.
(4.26) 0O = o /Mf(y) oy
Then
4.27) 2 sup M (x, dy) — dpplly = [ M2 — o oo 1.
xXeM

Thus, we have to prove that there exist A, hg, such that for any n and any s €
10, Ag], one has

(4.28) eV W < pgp — Mgl g oo < Ae™Y B

with y(h) ~ y'(h) = 575 when h — 0. Since (M} — o) (e}) = (1 — KT} el
with | T~ 2@ +2)| < Ch by (4.9), the lower bound in (4.28) is obvious, and to
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prove the upper bound, we may assume n > Coh 2. Let 8 €0, 1[ be such that the
spectrum of M}, is contained in [—§, 1]. Then write M;, — ITp = My 1 + M), » with

My ()= Y. (1—R*%M)E @ D),
8<fir(h)<l
Mpr»=My — Iy — My 1.

Here 1 — h?%,(h) = [ix(h). One has My —Tlp = Mh +M; b2 and we will get the
upper bound in (4.28) for each of the 2 terms. From (4 29) and (4.12), there exist
some « > 0 such that

4.30) M} |l < 3 (1 = B*T ()" (1 4 T (h))°.
1 (W) <T(h)<(1—8)h—2

(4.29)

Using 1 —x < e, and the estimate (4.11) on the number of eigenvalues of M}, in

[1-— ht, 1], one gets for some C, 8,
o0
(431) IM} e <C | e ™1+ x0)P d,
' T (h)
and we get for some C’,
(4.32) 1M} oo < Cle P0G v > Coh~2,
Since M/ is bounded by 1 on L, we get from M}/ — 1o = M}, | + M, , and (4.31)

that there exist Cp, m such that ||MZ’2||Loo_,Loo < Cih™™ for all n > 1. Next we
use (1.15) to write My, = my, + Kj with

Impllpoespe <y <1,

(4.33) n

IChll oy oo < Coh

From this, we deduce that for any p =1, 2, ... one has Mh = A, n+ By, with
Arp =my, By h = K;, and the recurrence relatlon Apiin=mpApp, Bpy1n =
thp n+ IChM Thus one gets since M,f is bounded by 1 on L2,

IAp nllLoespoe < yP,

IBpillpzspoe <Cah ™21 4y 4 +yP) < Coh™ % /(1 = p).

Observe that || M} 5|00 72 < [IM}/ 5ll;2_, ;2 < 6" and for ¢, p > 1, one gets, us-
ing (4.34),

pt+q Pagsd
||Mh,2 ||L°°—>L°° = ”Mh Mh,2||L°°—>L°°

(4.34)

(4'35) = ”Ap,hMZ’QHLOO—)LOO + ||Bp,hMZ,2||L°°—>L°°
< Cih™™yP + Coh =289 /(1 — )

and this implies for some C, u > 0,
(4.36) M} yllzompe < Ce™™  Vn=1/h,

and thus the contribution of M} 7.2 is far smaller than the bound we have to prove in
(4.28). The proof of Theorem 3 is complete.
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APPENDIX: CONVERGENCE TO THE BROWNIAN MOTION

The purpose of this appendix is to answer a question of one of the referees about
the convergence of the previous Metropolis chain to the Brownian motion on a Rie-
mannian manifold (M, g). One classical and efficient way to prove such conver-
gence is the use of Dirichlet forms (see [9]). Here, we present a self-contained
proof, in the spirit of ([12], Chapter 2.4), making use of our previous results.
The two main estimates are: the large deviation estimate (A.15) of Proposition
1, and the “central limit” theorem (A.46) of Proposition 2.

We refer to [8] and [11] for a construction of the Brownian motion on (M, g).
For a given xo e M, let X, = {w € CY([0, oo[, M), w(0) = xo} be the set of con-
tinuous paths from [0, oco[ to M, starting at xg, equipped with the topology of
uniform convergence on compact subsets of [0, co[, and let B be the Borel o-field
generated by the open sets in X . Let Wy, be the Wiener measure on X,,, and
let p;(x,y)d,y be the heat kernel, that is, the kernel of the self-adjoint oper-
ator ¢'%¢/2. Then Wy, is the unique probability on (X,,, B), such that for any
O0<t <th <--- <ty and any Borel sets Ay, ..., A; in M, one has

Wy (@) € AL, w(12) € Az, ..., 0 (%) € Ag)
(Al) = plk—tk_l(xk’ xk—l)"'ptz—tl(XQ,XI)
ApxAyx- XAy
X pr (X1, X0) dgx1dgx2 - - - dgXi.

For h €]0, 1], let Mﬁ o be the closed subset of the product space M N s

(A2) MY ={x=(x1, %2, X0, .0, Vi = 0,dg(x}, xj41) < h).

h,xo

Equipped with the product topology, MY is a compact metrisable space, and
the Metropolis chain starting at xo defines a probability Py, , on M N "such that
Pxo,h(MﬁxO) = 1, by setting for all k£ and all Borel sets Ay, ..., A; in M,

'Pxo,h(X] € A],X2 € AQ, oo, Xk E Ak)
(A.3)

= My (xg—1,dxi) - - My (x1, dx2) My (xo, dx1),
AL XAy XX Ay

where the Metropolis kernel M, (x, dy) is defined in (1.15). Let jy, » be the map
from ME’ x, Into Xy, defined by

(A4) Jor@ =0 = Vj>0  o(jh?/d+2)=x;

and

ih?  (j+ Dh?
WE[] G+D

, } w(t) is the geodesic curve connecting
d+2 d+2

(A.5)
Xj to x4 at speed h_z(d +2)dg(xj, xj11).
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Observe that for 4 > 0 given, smaller than the injectivity radius of the Riemannian
manifold M, the map jy, » is well defined and continuous. Let Py, ; be the proba-
bility on X, defined as the image of Py, ; by the continuous map jy, ». Our aim
is to prove that Py, , converges weakly to the Wiener measure Wy, when i — 0.

THEOREM 4. For any bounded continuous function w +— f(w) on Xy, one
has

(A.6) 1im/fdPx(,,h=fdexo.

h—0
Observe that the proof below shows that our study of the Metropolis chain on
the manifold M is also a way to prove the existence of the Brownian motion on M.
Let us recall that the Metropolis operator M, acting on L2 = L*(M, dupr) with

dupy = dgx/Vol(M)) is defined by (1.17). If ¢ is a Lipschitz function on M, we
denote by M), , the bounded operator on L? defined by

My, = e(p/the—w/h‘
The first ingredient we use in the proof of Theorem 4 is the following lemma,

which gives an L2-estimate on the resolvent (z — Mj) ™! near z = 1.

LEMMA 9. Let Y be a real valued Lipschitz function on M, p > 0 and 0 <
6 < 2m. Let us assume that the following inequality holds true:
e VA

(A7) psin(0/2) — T

k=2

|sin((k — 1)6/2)| = ¢ > 0.
Then, with w = pe'® € C\ [0, oo[ and ¢ = ip'/2e/>y, one has
(A8) (1= Mp,p —w) "Ml 2 < 1/e.

PROOF. If k(x,y) is a complex valued bounded measurable function on
M x M, let Ay j, be the bounded operator on L2,

. 1 l
(A9) Agn(f)(x) :/dg(x,y)fh mm<|B(x,h)|’ |B(y, h)|

)k(x,wf(y)dgy.

With k*(x, y) = k(y, x), the adjoint on L? of Ak.n is equal to Ag+ 5, and one has
the obvious estimate
(A.10) I Ak nll 2 < 1kl Loo (a1 x by -

From (1.15) and (1.2), one has M}, = mj, + A1 5, and an easy calculation gives

(All) Mh,(p =my + Akw,hv kw(_x’ y) — ldg(x’y)fhe(w(X)—w(y))/h‘
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Let 7(x, y) = la,(e.y)<ni (W (x) — ¥ (3))/ h. With ¢ = ip!/2e!/2y, we thus get
1/2 10/2)k
k!

(A.12) Mig=my+ 3 &
k=0
From (A.12) and w = peie, we get with § = —e 102(1 — My, —w),

S=—e"920 = My) + p 2 Arp + pe®?ld+ N,

A.[k7h.

(A.13) 00 1/2,i0/2\k
1
N=e 2y @%Afw
k=2 :

Since t* = 7, the second term in the first line of (A.13) is self-adjoint, and we get
Im(S) =sin(0/2)(1 — My) + psin(8/2)Id + Im(N),

0 Hk/2
Im(N) =Y ——sin((k — 1)6/2) A ;.
v k! ’
From sin(6/2)(1 — Mj) > 0, and since from (A.10) the self-adjoint operator Ark’ h

has norm < ||y ||]]ii ¢» we get from (A.7) and (A.14) that Im(S) > cld. The proof of
Lemma 9 is complete. [

(A.14)

From Lemma 9, we shall now deduce a key estimate on the probabil-
ity that XZ’XO, the nth step of the Metropolis chain starting at xg, satisfies
dg (XZ’ xo» X0) > €. Let &9 > 0 be smaller than the injectivity radius of the Rie-
mannian manifold M.

PROPOSITION 1. There exist positive constants C, A, a, cg, ho > 0 such that
foralle €10, g0l, all § €10, coe?l and all h €10, ho], the following inequality holds
true:

(A.15) sup  Pryi(dg(Xh . x0) > &) < Ce~Ae™0 .

X0EM ,nh2<§

PROOF. We may assume nh > ¢, since otherwise Py n(dg(X} , . x0) >
&) = 0. In the proof, we denote by a, A, C positive constants, changing from line
to line, but which are independent of 4, ¢, xg € M and n > 1. One has

Paoin(de (X 70) = ) = [ M} (xo. dy)
do(y,x0)>¢

(A.16)
= M} (1d,(y.x)>¢) (X0)-

Let ¢(r) € C°°([0, oo[) be a nondecreasing function equal to O for r < 3/4 and
equal to 1 for r > 1. For € €]0, g¢9] and xg € M, set

d ’
(A.17) Prp.e(X) = w(@)
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Then @y ¢ is a smooth function, and from 14,y xp)>e < ¢xg.e < 1, We get, since
M, is Markovian,

(A.18) My (Lay(y,x0)>e) < My (@x0,6) < Mp (1) = 1.

We first deduce from Lemma 9 the following estimates on M} (¢x,.¢)-

LEMMA 10. There exists co > 0 such that for nh* < coe?, the following in-
equalities hold true:

2 2
(A.19) 1M} (@xo ) L2(Bxg.e 2y < Ce /M

_ 2 2
(A.20) M} (99|l Lo (B(xg.e /4y) < Ch™4/2eae7/nh",

PROOF. By the Cauchy—Schwarz formula, the self-adjoint operator M, is
equal to

n 1 n —1
(A.21) My =— | 2"(z— M)~ dz,
2im Jo
where o is a contour in the complex plane surrounding the spectrum of My with
the counter-clockwise orientation. Let 6y € 10, 7t /2[ close to /2 and pg > 0 small

be given. Since we know that the spectrum of M) is a subset of [—y, 1] with
y € [0, 1[, we may choose o in the form o1 U 07, with

o1=1{z=1-w), w®) =p®e"’,0 €60, 27 — 6ol},

where the function p(6) > 0 takes small values, is such that p@)=pQR2r —0),
po = p(6o) and will be chosen later, and with ¢ = |1 — ppe'®| < 1,

02 C{lz| = ¢, dist(z, [—y, 11) = po sin(6p)}.

Set g = ¢y,e and f; = (z — M;)~'g. For z € 02, one has | fzll2 < p(llsgi!l%;())’ and
from (z —mp) fz = A fz + g, |z — mp(x)| = dist(z, [0, 1]) > posin(bp), and
AL f2ll Lo < Ch_d/2||fZ||Lz, we get for z € o2, with a constant C changing from

line to line,

1
| fzllLee < —————(lALnfzllLe + llglliLee)
o sin(6p)

(A.22)
< Ch™4"(pg sin(6p)) 2.
This gives
[ - m @z | =Cqpusinon
(A.23) ? L

"z — M)~ N(g) dz

]

02

< Cq"h™42(pysin(6p)) 2.
LOO
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Observe that since nk > ¢, one has g" < e %¢/h < e—ae’/nh® Thys (A.23) gives
(A.19) and (A.20) for the contribution of o,. Next we use Lemma 9 to bound the
contribution of oy in (A.21).

Let s < 1 and set ¥ (x) = u+/2dist(x, B(xg, £/2)). One has [|¥||Lips = 1+/2,
and if p(f) > 0 is small enough, inequality (A.7) is fulfilled with a constant ¢ >~
p(0)sin(0/2)(1 — ) + 0(p*2(9)) = p(6). From (A.8), and (z — My, ,)e?/ " f, =
e‘/’/hg, we get for z =1 — w(f) € o1, since ¢ =0 on B(xp,&/2), g =0 on
B(xo, 38/4), and |e(p/h| — |eiw1/2(9)u«/§dist(x,B(xo,e/Z))/h|’

C
< ew/h < e@/h
I fell2(Bxg,e/2)) = €777 fellp2 < @) le® “gll 2

< C’ |eiw'/2(9)uﬁe/4h|_
~ pO)

One has (z — my) f; = A1 n(f;) + g with g =0 on B(xp, £/2), and h < cpe since
he < nh? < coe?. For ¢o < 1/4, we thus get from (A.24),

(A.24)

— _ ian1/2
(A.25) 1 f2ll Lo (Bxg.e 4 < Cp ™ (@)R™U2]e™ 7l
Onoj,wesetz=1—w=1—u?u=p'""?®)e'?=w!/2 Then one has

(A.26) / 7z — Mh)_l(g) dz = / (1- uz)"f17u22u du,
o] 14

where y is a contour in the upper half plane Im(x#) > 0 connecting u_ =
—po/7e™i0/2 1o uy = py/ei%/2, From (A.24), (A.25) and (A.26), we deduce

‘f (= M)~ (g)dz| <CJ,
o L2(B(xo,&/2
(A.27) : (B(x0,/2)
2z — M) N(g)dz <chily,
o1 L®(B(xg.£/4))
where J is defined by (with a > 0 small)
i d
(A.28) J =/ (1 — MZ)nezuaa/hlﬂ’
14 [u|

and it remains to verify that J satisfies
(A.29) J < Cpe—@s*/nh?,

At this point, we use the classical steepest descent method in order to choose the
contour y such that (A.29) holds true. One has (1 — u?)"ei"ae/h = gntlog —u)Firu)
with » = ae/nh €]0,a]. Thus, r > 0 is a small parameter. The phase ®(u) =
log(1 — u?) + iru has a single nondegenerate critical point . near 0, which satis-
fies, u. = ir/2+ O(r3), and the critical value is equal to ®(u.) = —r2/4+ o).
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Moreover, one has ®”(u.) = —2 + O(r?). It is then easy to verify that one can
select the contour y in Im(u) > r/4 connecting u_ to u4, and such that on y, one
has both Re(®(u)) < Re(®(ue)) — Colu — ue|> and |u| > Co(r + |u — u.|) for
some Cp > 0. We thus get

0
(A.30) J < Ce®o) / st 98

—00 V+|S|'

Then we get (A.29) from (A.30); one has n®(u.) < —a®sc?/8nh?, and since
ry/n=ae/hyn > acal/z, one has [0 e s rﬁﬂ < C'/ry/n < C,. The proof
of Lemma 10 is complete. [

Next, to deduce from the L? estimate (A.19) the desired L™ estimate (A.15),
we use the following lemma.

LEMMA 11. For given ag, Ag, Co, there exist ai, A1, C1, p > 0,q > 0 such
thatfore €10, 1],n > 1 and 0 < h < ¢, the following holds true: for any function f
on M which satisfies || f < 1, [|An|fllizee < Coe™ and || f1| 12(Bxg.e/2)) <

Cos_AOe_aogz/"hz, one has
2 2
(A.31) I £ 1l oo (B(xg.e/ay) < C1(e~A1e™E /M 4 pPe=),
PROOF. Let rg > 0 and xo € C§°([0, 2ro[) equal to 1 on [0, ro]. Set f; =
XO(_thg)f and fy = f — fr. From Lemma 8, there exists E j and N} j such

that — fy = Ey (1 — Tp) f + N1 f, and thus from (4.14) and hzlAh| =2(d +
2)(1 —Ty), we get

(A.32) I fulle < ChPe ™2,
Let &g € Cgo ([0, 2ro[) be equal to 1 near the support of xg. One has yo(1 —
@) = 0 [we use the notation xo = Xo(—thg), dp = d>0(—h2Ag)]. By Lemma 3
and with |A2| defined by (3.31), we get
X0l Anlf = X0l AR ®o f — 2(d +2) x0An f
—2(d 4+ 2)x0(Tih ™2 (1 — @0)) f.
Since A; € £,% and [by (A.32)] [h=2(1 — ®¢) f |l < Ce™2, we get
(A.34) AR fLllze =l xol AR @o f o < Ce ™.
By (1.6), one has |A2| =—0+ thgg)Ag with B € gg. Therefore, one has
AR fL =201 @0 fL =—(1 + > Ag BOo)Ag fr.

If ro is small, the operator 1 + A%A gﬁ ®d is invertible on L°°, and thus we get
from (A.34)

(A.35) |Ag frllLee < Ce™2.

(A.33)
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Let ¥(x) € [0, 1] be a smooth function with support in the ball B(xg, £/3) with
¥ (x) equal to 1 in the ball B(xg, £/4), and such that | V¥ ||z < Cee™ 1l Set
F(x) = ¢ x) fLx) = ¢x)(f(x) = fu(x)). Using (A.32), AgF = YAy fL +
[Ag, ¥]fL and (A.35), we get

|Fllpz < Ce™ e 0/t 4 2e=24d/2),
(A.36) 5
|AgFll~ <Ce™% |Flle <C.

We now conclude that (A.31) holds true using (A.32), (A.36) and the classical
interpolation inequality, with 6 > 4%
(A.37) IFlle < ClI(1 = A F Il I Fll 27

The proof of Lemma 11 is complete. [

By the last inequality in (A.18) and (A.19), the function f = M; (@) sat-

ag? /nh?

isfies || flleee = 1 and || fll z2(g(xg,e/2)) < Ce™ . Let us show that it sat-

isfies also |||An|fllre < Ce™2. Let us recall that the operator |Zh| is de-
fined in (4.7). By (4.1) and (4.5), one has |Ay| = |Zh| + 2(d + 2)h_2Rh and
|RnllL < Ch3. One gets easily from (2.17) 1 AR@xgellLe < Ce™ 2. Thus, one
has also |||Ah|<px0 ellpe < C(e‘2 +h) < C’e2. Since |Ah| commutes with My,
one has Mj (|Ah|<pr e) = |Ah|Mh (¢xp,¢)» and this implies since My, is Markov—
ian, [||Ap| M} (¢xy.e)llL < Ce™2. Thus we get [||ApM] (gxy.e)ll < C(e™2

h) < C’e2. From Lemma 11, (A.16), (A.18) and (A.20) we thus get, for some
a,A,p,q>0,

(A.38) Pro.n(dg X%y X0) > ) < C(e"“e—asz/nh2 Py,
Pro.n(dg (X', x0) > €) < Ch—Ag—as’/nh® .

Let o be such that 0 < @ < a/A. It remains to observe that (A.38) im-
plies (A.15), using the second line in case i > e=@*/mh* and the first one if
h < e=ae?/nh® The proof of Proposition 1 is complete. [

With the result of Proposition 1, the proof of Theorem 4 follows now the clas-
sical proof of weak convergence of a sequence of random walks in the Euclidean
space R? to the Brownian motion on R¢, for which we refer to ([12], Chapter 2.4).
Let T > 0 be given. One has, for 0 < § < coe? and h €10, ho],

Pron(3j <1 <h72T, (1 = j)h? <8,dg(X],. X)) > 4e)

X0’ X()

C
(A.39) <5 sup Pyon(3j <l <h™28,dg (X!

l
yo) > 48)
yoEM

Yo’
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C .
< — sup Py, x(3j < h725,dg(X§0, yo) > 2¢)
YoeM

2C

< sup  Pyy.n(de (X2 . z0) > &)

20
20€EM,nh2<§

(by (SAJS)) C'5—(+A/2) —ae? /5.

In fact, for the first inequality in (A.39), we just use the fact that the inter-
val [0, T] is a union of ~ C/§ intervals of length §/2. The second inequal-
ity is obvious since the event {3j </ < h_28,dg(X§0, leo) > 4¢} is a subset
of {3j < h™28, dg(X§0, yo) > 2¢}. For the third, we use the fact that the event
A={3j < h_28,dg(X§0, yo) > 2¢} is contained in BUj<k(Cj N D;) with B =
{dg(X’;,O, yo) > ¢} (k is the greatest integer < Sh=2), Cj= {dg(Xio, X’;O) > ¢},
Dj = {dg(X{y» yo) > 2¢ and a'g(leO, yo) < 2¢ for [ < j}, and the fact that C; and
D; are independent.

Using the definition (A.4), (A.5) of the map jy, », we get easily from (A.39) the
convergence for 7 > 0 and ¢ > 0,

=0,VU=s5,l =

(A40)  lim(limsup Py max  de(w(9), 0(1) > ¢)) =0.

=0 50 |
Therefore, the family of probability Py, j is tight, hence is compact by the Pro-
horov theorem. It remains to verify that any weak limit Py, of a sequence Py, s,
hi — 0, is equal to the Wiener measure Wy,. By Theorem 4.15 of [12] we have
to show that for any m, any 0 < #; < --- < t,, and any continuous function
f(x1, ..., Xxm), one has

kli)n;o/ flo(t), ..., o(ty))d Py n,

(A41) = / F X1y ey Xm) Pyy—tyy s Kms Xm—1) -+ * Pry—ry (X2, X1)
X pry (X1, x0) dgx1dgxa -+ dgXpp.

As in [12], we may assume m = 2. For a given ¢t > 0, let n(¢, 1) € N be the great-
est integer such that h2n(t, h) < (d + 2)t. By (A.4), (A.5), one has dist(w(?),
XMy < b and therefore Py, i (dist(w(2), XMy S ) =0 for h < e. Thus we

h,xo h,xo
are reduced to prove

lim / Fxpaem n:my gp

W0 h,xo h,xq

(A.42)
=/f(x1,x2)17t2—z1 (x2, x1) pry (X1, X0) dgx1 dgx3.
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From (A.3), one has

h h
[ OGP X ap,,
(A.43)
= / £, x) My PP () My P (xo, dxy).

By (A.42), (A.43), we have to show that for any continuous function f(x, x2) on
the product space M x M, one has

lim F@n, x) MR gy M (g, dxy)
h—-0JMxM
(A.44)

= / f(x1, x2) pry—1, (X2, X1) pry (x1, X0) dgx1 dgx2,
MxM
or, equivalently,

lim M (b D (f (e ) ) (o)

A.45
(A4 = "1 8¢/ (TR (f (xy, ) (x1)) (x0).

Since ||MZ(”h)||Loo < 1and |e'®2/2|| = < 1, the following “central limit” theorem
will conclude the proof of Theorem 4.

PROPOSITION 2. Forall f € CO(M), and all t > 0, one has

(A.46) lim " 2¢/2(f) = M ()] o0 = 0.

PROOF.  Since one has | M]'"" |« < 1 and [le'®/2| 1 < 1, it is sufficient
to prove that (A.46) holds true for f € D, with D a dense subset of the space
CO(M), and therefore we may assume that f = e j 1s an eigenvector of A,. We
set n = n(t, h), and we use the notation of Section 4.2. From (4.36) and n(t, h) >
1/ h, we get for some a > 0,

(A.47) |ME9P (e))] oo < e/
One has
n(t,h)
gn= (M, ;" +To)e;
(A.48)

~ )~ ~
= X =RR®) Ve [ 0emdyy.
B <(1-9)h 2 M
Let A; = {k; |7k (h) — %l < ¢} with & small. Then from (4.8) and Theo-
rem 2, one has §A; =mj =dimKer(A, + 1), and forany k ¢ A;, | [}, E,ﬁ’(y) X
ej(y)dgy| < Crh. Using (4.9), one has |Ty(h) — %I < Cih for any given k.
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Take N large and split the sum in (A.48) in the two pieces Ty(h) < N and
Tk (h) > N. Using the L* estimate (4.12) and the Weyl estimate (4.11) to bound
the contribution of the sum on 7 (k) > N, we get that there exists C, a > 0 and for
all N, a constant C(N) such that

(A.49) lign — e ™1 j(ej)llLe < hC(N) + Ce N,

where IT; ; is the orthogonal projector on the vector space spanned by the E,f’ for
k € Aj. Let Il be the orthogonal projector on Ker(Ag + A ;). From (4.8) and
Theorem 2, one has ||[I1;, — I1;]|;2 < Cjh. From (4.24), one has ||E,§’||W1,p* <
C(1 + T, (h))® for some py > d,a > 0. This implies || IT; 5 — Il 2, wi.p <Cj,
and by interpolation ||IT; 5 — IT||;2_, ;00 < C;jh* for some p > 0. Then (A.49)
implies

(A.50) lgn — e "*i/%ej||Lo < Cjh* +hC(N) + Ce V.

Clearly, (A.47) and (A.50) imply (A.46). The proof of Proposition 2 is
complete. [
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