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INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE
MODEL WITH UNBOUNDED CONDUCTANCES

BY M. T. BARLOW! AND J.-D. DEUSCHEL?

University of British Columbia and Technische Universitdt Berlin

We study a continuous time random walk X in an environment of i.i.d.
random conductances pe € [1, 00). We obtain heat kernel bounds and prove
a quenched invariance principle for X. This holds even when Eu, = co.

1. Introduction. We consider the Euclidean lattice Z¢ with d > 2. Let E,,
the set of nonoriented nearest neighbour bonds, and, writing e = {x, y} € Eg, let
(i, e € E;4) be nonnegative r.v., defined on a probability space (€2, P). Through-
out this paper we will assume that (. ) is stationary and ergodic, and that its law is
invariant under symmetries of Z4 . We write Mxy = Mx,y} = Myx, and let g,y =0
if x % y. Set

"
(1.1) o= by Py)="C
y

X

There are two natural continuous time random walks associated with p. Both jump
according to the transitions P (x, y). The first (the constant speed random walk or
CSRW) waits at x for an exponential time with mean 1 while the second (the
variable speed random walk or VSRW) waits at x for an exponential time with
mean 1/u,. Write L¢ and Ly for their generators, given by

(1.2) Lof@)=ui" Y un(f() = (),
y
(1.3) Ly fx) =) mwy(f() — fx).
S
Set

1
E(f.8)= 3 Yo D ey (f) = M) () —g().

xeZd ye7d
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Let v, = 1, x € Z4. It is easy to check that if f, g have finite support, then

(1.4) Ef,9)=—2_8) ) pwy(f() — f(x)),
X y

and so

(15) 8(f’g)=_<£Vf’g>V=_<£Cf’g>/L

Thus the VSRW is the Markov process associated with the Dirichlet form
(€, D)) on L?>(v) and has stationary measure v while the CSRW is the Markov
process associated with the Dirichlet form (€, D(E)) on L%(u) and has stationary
measure /L.

Let X = (X,,t >0, PX, x € Z%) be either the CSRW or the VSRW. Write £ for
its generator, 6 for its invariant measure (so either 8 = v or 6 = u) and let

P)C Xl =
(1.6) q?(x,y>=¥
y

be the transition density of X (or heat kernel associated with £). This model, of a
reversible (or symmetric) random walk in a random environment, is often called
the random conductance model or RCM, particularly in the special case when
(me) are i.i.d. We are interested in the long-range behavior of X and, in particular,
in obtaining heat kernel bounds for ¢;°(x, y) and a quenched or P-a.s. invariance
principle for X. When Eu, < oo, an averaged invariance principle is obtained
in [17].

We begin by discussing the case when (u.) are i.i.d. If u, =0 then X never
jumps across e. So if p; = P(u, > 0) is less than p.(d), the critical probability
for bond percolation in Z¢, then X is P x PZ*-a.s. confined to a finite set. Thus we
restrict to the case p;+ > p.. A number of different authors have studied this model
under various restrictions on the support of .. If u. € {0, 1} then this problem
reduces to that of a random walk on (supercritical) percolation clusters (see [1]
for heat kernel bounds, and [10, 29, 34] for quenched invariance principles). More
generally it is useful to consider the following special cases:

Case 0. c~ ! < e < c for some ¢ > 1;

Case1.0< pu,<1;

Case?2. 1<, < oo.

For case 0, heat kernel bounds follow from the results in [18, 19], and a
quenched invariance principle is proved in [34]. Case 1 is treated in [11, 12, 30].
(The papers [11, 12] consider a discrete time random walk.) These papers prove
an invariance principle, with a strictly positive diffusion constant 2. Further, [11]
shows that Gaussian heat kernel bounds do not hold in general in this case.

In this paper we will look at case 2. There is not a great difference between
the CSRW and VSRW in case 1, but in case 2, and in particular when Eu, = oo,
the VSRW and CRSW do have different behaviors. Also, while the discrete time
random walk with jump probabilities P(x, y) given by (1.1) behaves in a similar
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fashion to the CSRW, there is no simple discrete time analogue of the VSRW in
case 2. We remark that our result for the CSRW also gives an invariance principle
for the discrete time random walk with jump probabilities P (x, y).

Let

(1.7) X =eX, 2, 120
Our first main result is the following quenched functional central limit theorem

(QFCLT):

THEOREM 1.1. Letd > 2. Suppose that (i) are i.id., and ., > 1 P-a.s.

(a) Let X be the VSRW. Then P-a.s. X© converges (under PS) in law to a
Brownian motion on RY with covariance matrix 0‘2}1 where oy > 0 is nonrandom.

(b) Let X be the CSRW. Then P-a.s. X©® converges (under PB) in law to a
Brownian motion on R? with covariance matrix aé[ where

o2 — {aé/(szua, if e < 00,
7o, if Ee = 0.

We also have heat kernel bounds for the VSRW.

THEOREM 1.2. Let d > 2. Suppose that (u.) are i.i.d. and 1, > 1 P-a.s. Let
q;’(x,y) be the heat kernel for the VSRW. Let 1) € (0, 1). There existrv. Uy, x € 74,
such that

(1.8) P(Ux(®) > n) < c1 exp(—can™)

and constants c; (depending on d and the distribution of |.) such that the follow-
ing hold.
(a) Forall x, y, t

(1.9) g (x, y) < c3t™ 2,
) If |x — y| V2 > U,, then

(1.10) gl (x,y) < C3t_d/ze_c4|x_y|2/t whent > |x — y|,

G q;’(x,y) < czexp(—calx — y|(1 vlog(lx — y|/1)))

whent <|x —y|.

(c)Letx,y e 74, t > 0. Then

(1.12) qt‘”(x,y)zcst_d/ze_cﬁlx_”z/t ift>U?v|x —y|*.
(d)Letx,yeZ% and t > c7V |x — y|'t". Then

(1L13)  cgr™ el <R (x, y) < egor~ @ 2emenr P/,
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Using Theorems 1.1 and 1.2 we can obtain a parabolic Harnack inequality (PHI)
for g/ (for the VSRW) by the same arguments as in [3] (see Theorem 4.7). Since
the CSRW is a time change of the VSRW, harmonic functions and Green’s func-
tions are the same for both processes. The PHI for the VSRW implies an ellip-
tic Harnack inequality (see Corollary 4.8) which therefore holds for both CSRW
and VSRW. Combining the invariance principle and the PHI, we obtain, using the
methods of [3], a local limit theorem for the VSRW (see Theorem 5.14).

When d > 3 the calculations in Section 6 of [3] then give bounds on the Green’s
function g, (x, y) defined by

o0
(1.14) gt = [ ateyar
THEOREM 1.3. Let d > 3, and suppose that (u.) are i.i.d. and 1, > 1 P-a.s.
(a) There exist constants cy, ...,cq and rv. Uy, x € 74 such that
(1.15) P(Uy = n) < cjexp(—can'/?)
and

c3 C4 .
(1.16) mfé’w(&)’)fm iflx =yl = Ux AUy.

(b) Let C = F(% — 1)/(271‘1/20‘2,). For any ¢ > 0 there exists M = M (g, ) with
P(M < o0) =1 such that

1—¢)C 1 C
(L.17) (|X|TS)2 <g,0,x) < % for |x| > M(w).

(c) We have, P-a.s.,
(1.18) lim |x>9g,(0,x) = lim |x|* %Eg,(0,x)=C.
[x]—o00 |x]—o00

REMARK 1.4. (b) and (c¢) in Theorem 1.3 use the QFCLT, which in turn uses
the ergodic theorem. As we do not have any rate of convergence in the QFCLT this
means that [unlike the r.v. U, in (a)] we have no control on the tail of the r.v. M
in (b).

The main difference between the RCM and the percolation case is the possibility
of traps. Suppose e = {x, y} is a bond with u, = K > 1, and that all the other
bonds e’ adjacent to x and y have u, >~ 1. Then P(x,y) >~ 1 —c/K, so X will
jump between x and y O(K) times before leaving {x, y}, and thus the CSRW will
be trapped for a time of order K in {x, y}. However, for the VSRW each jump
takes only O (K1), so the total time spent in {x, y} is only O(1). A similar effect
will arise from finite clusters of bonds of high conductivity.

The presence of traps of this kind is why we have, when Eun, = oo, that the
diffusion constant Jg for the CSRW is zero. In this case it is natural to ask if
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a different scaling will give a nontrivial limit. There is a connection here with
“aging” (see [6-8]), and in [2] it is proved that if the tail distribution P(u, > t) ~
1%, then X, > converges to the “fractional kinetic” motion with parameter o
(see [8]).

While we have written this paper for the case of i.i.d. conductances p, our ar-
guments do not require the full strength of this. In case 0, when the conductances
are bounded (both above and below), then uniform upper and lower Gaussian heat
kernel estimates, as in Theorem 1.2, are well known (see [18]). It follows (see Re-
mark 6.3) that Theorem 1.1. holds for any stationary ergodic environment. On the
other hand, in the unbounded case 2, there exist stationary ergodic environments
such that the VSRW can explode in finite time; for an example, see Remark 6.6
below.

For the Gaussian bounds in Theorem 1.2 we need to control the sizes of the
clusters of high conductivity which is done by comparison between the graph met-
ric d(x, y) and a new metric d (introduced by Davies in [15, 16]) which is adapted
to the structure of the random walk and satisfies d (x,y) < [L;yl/ % when x ~ y.
This new metric is constructed by a first passage percolation procedure, and in this
paper we have used first passage percolation arguments to compare the two met-
rics (see Lemma 4.2). These arguments use estimates from [25] which in turn use
the fact that p, are i.i.d. However, we could also have used a direct argument as
in [12], Lemma 3.1 or [30], Lemma 5.3. Once we have the Gaussian bounds (with
sufficiently good control on the tails of the r.v. U, in Theorem 1.2), the quenched
invariance principle follows with no further hypotheses on {1, e € E4} other than
that it is stationary, symmetric and ergodic. Theorem 6.1 summarizes the general
situation.

The structure of this paper is as follows. In Sections 2 and 3 we study a de-
terministic graph I' = (G, E) with edge weights jy,. Under certain conditions
(which are P-a.s. satisfied by the VSRW on the i.i.d. RCM) we obtain heat kernel
bounds in this setup. Our approach uses similar methods to those used in [1] for
percolation clusters. However, in [1] the Carne—Varopoulos “long-range” bounds
played an essential role at various points. These bounds do not hold for the VSRW,
and instead we use more general upper bounds obtained by Davies [15, 16], which
are in terms of the metric d (x,y). The same metric d is also needed to control
P} (d(X,, x) > At'/?) which is the key step in obtaining general Gaussian upper
bounds. Similar bounds, in the context of weighted Laplacians on manifolds, are
obtained by Grigor’yan [24]; here the metric d is the Riemannian metric. Very re-
cently, and independently, Mourrat [31] has obtained upper bounds for the VSRW
which in certain cases improve on those in Theorem 1.2.

Once one has upper bounds, lower bounds follow by the same arguments as
in [1], Section 5 (see Section 3). In Section 4 we then prove Theorem 1.2.

Section 5 proves the invariance principle. We begin with the VSRW. The basic
technique in the proof (as in many previous papers such as [10, 12, 17, 27-29]) is
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to associate with X; a process Z; on 2 =1, oo]Ed which is the environment seen
from the random walk. More precisely, for each x € Z4, let T, : Q — Q be given
by

Te(w)(z,w) =w(z+x,w+x).
Assuming that Xo = 0 we define
(1.19) Zi(@) = Tx, () (®).

One seeks to use the process Z to construct the “corrector,” that is, a map x : Q2 x
74 — R4 such that

(1.20) M; (@) = X1 (@) — x (@, X (@), 1=>0,

is a PY-martingale. Once one has constructed the corrector, showing the invariance
principle for the rescaled martingale e M, ;> is standard, and using results from [12,
34], the heat kernel estimates in Theorem 1.2, together with the sublinear growth
of x, imply that

(1.21) lin}) ex(w,X,,2)=0  in P)-probability.
E—>

However, the standard construction of the corrector is based on L?(P) calculus,
which requires finiteness of the first moment of the conductance (see [17], pa-
ge 816). In our case we wish to handle the case when Eu, = 0o, and so we need
an alternative approach. (We remark that if Ex, = oo then it is not easy to find
suitable function spaces on €2 which give a core for the Dirichlet form associated
with Z.)

Our solution relies on discretization. We define X, n=X,,n € Zy, and consider
the process

(1.22) X =X, ).

We can control sup, 7| X t(e) -X t(g)l (see Lemma 4.12), so an invariance principle

for X® will follow from one for X©). The process X does not have bounded
jumps—in fact it jumps anywhere in Z¢ with positive probability. However, the
long-range bounds on ¢’ (x, y) in (1.11) give good control on these jumps, and, in
particular, the bounds on ¢{’(x, y) imply that

(1.23) EE?| X% < oo,

which is the key L2 condition on X for the construction of the corrector. As we will
see in Section 5, looking at the discrete time process does actually introduce some
simplifications in the construction of the corrector x. In the end (see Remark 5.15)
it will turn out that the “discrete time” corrector x also satisfies (1.20).

Finally, a short Section 6 makes some remarks on more general environments,
and gives an example (a one-sided spanning tree) where the process X fails to be
conservative, and so the invariance principle fails.
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2. Transition density upper bounds on a fixed graph. LetI"' = (G, E) be an
infinite (deterministic) graph, ., e € E, be bond conductances and v be a measure
on G. We make the following assumptions on (G, E), u and v.

ASSUMPTION 2.1. (1) I" is connected.
(2) The vertex degree is uniformly bounded,

2.1 Hy:y~x}|<Cp forall x € G.

(3) e >0foralle € E.
(4) There exists Cp; > 1 such that

(2.2) Cyf <vi=v(x)<Cy forallxeG.

The results of this section do not explicitly require a strictly positive lower
bound on u.; however, a later assumption [see Assumption 2.6(2)] will impose
some control on the edges e with . small.

We write ptyy for ptix,y}, and set puyy =0 if x »* y. Let d(x, y) be the usual
graph distance on G, and write

(2.3) Bx,r)={y:d(x,y) <r}.

Let C4 < oo. We now construct, by a first passage percolation procedure, a second
metric d on G satisfying

Q24 (C?Vuyldx,y) —d(x,y)P <1 foreveryx € G,y~y"

We write B(x,r) = {y:c?(x, y) < r} for balls in the metric d. (In this paper we
can take C4 = 1, but for possible future extensions we treat the general case.) To
construct d we assign waiting times

(2.5) t(e)=Canu;'?, ecE,

and then take d (x, y) to be the shortest journey time between x and y. More pre-
cisely,

n
(2.6) d(x,y) = inf{Zt(e,-)},
i=1
where the infimum is taken over paths (ey, ..., e,;) from x to y. Since we do not
have a strictly positive uniform lower bound on ¢ (e), in general there may not be a
minimizing path. However, such paths will a.s. exist when ¢ (e;) are i.i.d. positive
random variables.

LEMMA 2.2. The metric d constructed above satisfies (2.4).
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PROOF. Let e = {y, z}; then d(x,z) < d(x,y) + t(e), and using (2.5) gives
Q4. O

Recall that

1
E(f.8) =7 D ey (FO) = F)) () — g(x)).

X y~x

Let uy = Zy~x Mxy, and extend p to a measure on G. Then £(f, g) is defined for
f,8 € L*(G, ).

Let X = (X;,t €[0,00), P*, x € G) be the continuous time Markov chain on
G with generator

L) =v" > wey(fO) = fF(x).
y

At this point we cannot exclude the possibility that X may explode, and we write
¢ for the lifetime of X. Let

£, =E )+ 1172,

and F be the closure of the set of functions on G with finite support with respect
to || fllg,- Then X is the Markov process associated with the Dirichlet form (€, F)
on L%(G,v) (see [22]). Let q:(x, y) be the transition density (heat kernel) of X
with respect to v:
PH(X; = )7)
gi(x,y) = ————
Vy
We begin by using the results of Davies [15, 16] to obtain long-range bounds
on g;. By Proposition 5 of [15], we have

—1/2 . .
2.7 g1 (x,y) < (vxvy) weggg@ exp(¥ () — ¥ (x) + A)e),

where A () = sup, b(¢, x), and

(2.8) b(y, x) = 2_ Z Jy (VO TVO) 4 ¥ DIV _g)

Vx yx

THEOREM 2.3. Assume (G, E) and p satisfy Assumption 2.1. There exist con-

stants c1, ..., C4 (dependmg only on Cy4, Cp, Cy) such that the following hold.
(a) If x, yeGandD d(x y) <cit, then
(2.9) gi(x, y) < caexp(—c3D?/1).

() Ifx,y € G and D =d(x,y) > cit, then
(2.10) q:(x,y) < caexp(—caD(1 v log(D/1))).
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PROOF. Fix xg, yo € G, lett > 0, and write D= g(xo, vo). Let A > 0 and set

¥3.(x) = —=A(D A d(x0, x)), b(L) = supb(¥;., x).

Let x € G, y ~ x and write fiyy = C3% V fiyy,
ey = fay (VD 7V0) 4 O gy,

Then as [ (x) — ¥ (y)]| < Aﬁ;yl/Z, and cosh(x) is increasing on [0, 00),

2.11)  Jey <2ty (cosh(Afiy, /%) = 1) < 20y (cosh(Afi;) /) — 1).

Using the power series for cosh we have that the right-hand side of (2.11) is de-
creasing in fiyy, SO

ny = C‘Xz(ecA}L + e_C“ —2).
Hence
by, x) < %CMCDCXZ(eCA)‘ + e Cak _ 2).

Let f(x) =e* + e * —2; then b(A) < c7f(Car). Thus by (2.7), and writing y =
Cal,

1 (x0, y0) < Ciy ir;fexp(—xﬁ + c7tf(Cal))

(2.12) -
<Cye (D('nf( 4 Gact ))))
X — 1 — ~ .
= TMERp Ca \y>0 Y D Y
So if
F(s) = in‘g(—y +25) Y + e —2)),
y>
then
R e )
. s < ex _
q: (X0, Yo M €Xp Ca 2Cacot

and it remains to bound F'.
We have (see [15], page 70) that

F(s) =511 +sHY2 = 1) —log(s + (1 +5H'/?)

and also that F(s) < —s/2(1 — s2/10) for s > 0. Hence, if s < 3, then F(s) <
—s/20 while if s > e, then

F(s) <1—log(2s) = —log(2s/e).

Substituting in (2.13) completes the proof. [
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REMARK 2.4. Note that if D = ct then both (2.9) and (2.10) give a bound of
the form ce™!/¢.

Since p. are not bounded above, the process X may explode. The following
condition is enough to exclude this.

LEMMA 2.5. Suppose there exists x € G and 0 > 0 such that

(2.14) > exp(—0d(x, y))vy < 00.
yeG

Then X is conservative.

PROOF. Let ¢ be the lifetime of X. Then as I' is connected it is easy to see that

either PY({ =oo)=1forall ye G,orelse P’({ <t)>0forallye G, > 0.
For n > C;z let M)(f;) =N A yy, X ) be the process associated with the con-
ductances 1, and q,(")(x, y) be the transition density of X with respect to v.

We have ¢g;(x, y) = lim,_, q,(")(x, v). Note that each X ™) is conservative, and
that the bounds in Theorem 2.3 hold (with the same constants c¢;) for each q(”).
With (2.2) the condition (2.14) implies that E(x, R) is finite for each R > 0.

Let ¢ > 0. With constants ¢; as in Theorem 2.3, choose r large enough so that
r > cit and c4(1 Vv log(r/t)) = 6. So, if R > r, using (2.10),

(2.15) Yo gy s Y crexp(—0d(x, y)vy < .
yeB(x,R)¢ yeB(x,R)¢

Let ¢ > 0; then we can take R large enough so that the right-hand side of (2.15) is
less than &. Thus, as X is conservative, for all 7,

Z q,(")(x, yvy >1—e.
yeB(x,R)

So,

PG>0z Y g yvy=lim Y gy =1-e
yeB(x,R) yeB(x,R)

Therefore P*(¢ > t) =1 for all ¢, proving that X is conservative. [

We now make further assumptions on the graph I'" and the conductances . As
we will see in Section 4, it is easy to check these for the random conductance
model on Z¢ when p, > 1.

ASSUMPTION 2.6. (1) There exists d > 1 and Cy < oo such that

(2.16) v(B(x,r) <Cyr? forallxeG,r>1.
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(2) There exists a constant C such that the following Nash inequality holds. If
fe LY(G,v) N L3(G,v), then, writing || f ||, for norms in L?(G, v),

244/d  py—4/d

2.17) EL D =ZCNILIG Il

REMARK 2.7. Note that (2) above does place some restrictions on the edges
e with ., small. For example, taking x € G and f = 1, (2.17) gives

Z Hxy = CNV;_Z/d-
y

By [14] we have:

LEMMA 2.8. Suppose (2.17) holds. Then
(2.18) gi(x,y) <ct™42, x,y€G,t>0.

To obtain better control of g;(x, y) when d(x, y) is large we need to compare
the metrics d and d. Note first that d (x, y)<Cy A M;y]/z < Cy4 when x ~ y, so
(2.19) d(x,y) <Cad(x,y),  x,y€G.

DEFINITIO}I 2.9, LetA>1,ne(0,1).Letx € G, r €[1, 00). We say (x, r)
is A-good if B(x,n/\) C B(x,n) for all n > r, n € N. We say (x, Rg) is A-very
good if for all R > Ry, (y,r) is A-good for all y € B(x, R), r > R", r € N. Note

that if (x, Ro) is A-very good then (x, Ry) is A-very good for all Ry > Ry. For
x € G let Vy = V,(A) be the smallest integer such that (x, V) is A-very good.

Note. Unlike the definitions in [1], the event that (x,r) is A-good depends on
the structure of I “at infinity.”

LEMMA 2.10. Suppose (x, R) is A-good.
(@) Ifd(x,y) = R,

(2.20) 2l y) =d(x,y) < Cad(x, ).
() If R > 2R) v 2(1 + CaM)d(x, x'), then (x', R') is 2A-good.
PROOF. (a) The upper bound is given in (2.19). For the lower bound, let s =

d(x,y) > R.Then y ¢ B(x,s),s0 y ¢ B(x, s/X\) and thus d(x, y) > s/A.
(b)Let7 =d(x,x’),r =d(x,x"),and s > R’. Then as s /2 > R,

B(x',s/2).) C B(x,F+s/2)) C B(x, A¥ +5/2).
So, using (2.20), B(x',s/2)) C B(x', (1 +ACA)r +5/2) C B(x',s). O
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LEMMA 2.11. Letx € G,0 >0,r > 1.If (x,r) is A-good, then

c(A)rde=cr?, ifro > 1,

(2.21) > exp(—0d(x, y))vy < {c(x)e—d, i< 1.

yeB(x,r)¢

In particular, X is conservative.

PROOF. Write I for the left-hand side of (2.21), and D, = B(x, 2"r) — B(x,
2"=1y). Then

(222) 1<) > exp(—0d(x,y)/A)vy < > Cy2"r) exp(—=2""'ro/n).
n=1yeD, n=1

If « > 0, d > 1 then there exists ¢; = ¢1(d) such that

d

o _ .
Zznde—OtZ" < Jcie «, ifa>1,
et “|lca™4, ifa <1,

and using these bounds in (2.22) completes the proof. [

LEMMA 2.12. Let x € G and suppose that (x,r) is A-good. If t € (0, 1), then
(2.23) E*d(x,X))? < c(yrP™.

PROOF. Using the bound (2.10) a similar calculation to that in Lemma 2.11
gives

OO ~
E*d(x,X)P <rP + ) Cy@"'r)dtPe cdny)

n=1

o0
<rP 4 or®tP Y 2MAEP exp(—c'2"r /1) < crdtP.

n=1

O

We now follow the arguments in [1], Section 3 (the “Bass—Nash method”) to
obtain Gaussian upper bounds on g;(x, y). As in Lemma 2.5 for 1 <n < oo, let
,u)(c';) =Uxy AN, X ™) pe the associated VSRW, and q(") (x, y) be the transition
density of X Let xo € G, and set

(224)  M,(t) = My(x0, 1) = E*d(x0, X") = Y d(x0, »)g™ (xo0, y)vy,
y

(225)  Qu(t) = Qu(x0.1) == Y_q;" (x0, y) log g (xo, )y

y
The following three inequalities lead, by Nash’s argument [32], to upper bounds on
M, (t) which are uniform in n. [We remark that we only need the approximations
X ™ to justify an interchange of sums in part (c) of the following lemma.]
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LEMMA 2.13. Letxg € G and r > 1. Suppose (xg, 1) is A-good, and 1 <n <
00. There exist constants c;, independent of n, such that the following hold.
(a) We have, fort > 0,

(2.26) 0, (x0,1) > c1 + 3dlogt.
(b)

227 M, (xo,t) > czeQ"(xo’t)/d provided either M, (xo,t) >r ort > c3rl.
(c) Fort > 0,

(2.28) 0,,(1) > caM;, (1),

PROOF. We write Q,(t), M, (t) for Q,(xg,t), M,(xg,t). (a) is immediate
from (2.18) and the fact that since X is conservative, 2y qt(")(xo, yvy =L
(b) The proof is similar to those in [1, 4, 32]. First note that (2.16) and Lem-
ma 2.8 give that
(2.29) M,(t)>r  provided r > c3r2.
By Lemma 2.11, provided ar <1,
Z efag(m,y) vy < Z efag(m,y) vy + Z efag(m,y) vy
yeG YEB(x0,r) y€B(xo,r)

d d

§crd +ca “ <ca“.

Now u(logu +0) > —e 1% for u > 0. So, setting 0 = ac?(xo, y) 4+ b, where a <
1/r,

—0u() +aM, (1) +b=>" g™ (x0,y)(logg," (x0, ) + ad (xo, y) + b)vy

yeG
> Z e—l—ad(xo,y)—bvy
yeG
> _e—l—b Z e—ad(xo,y)vy > —C5€_ba_d.

yeG
Setting a = 1/M,,(¢) and e’ = M, (1) = a4, we obtain
— 0, (1) +1+dlog M,(t) > —cg
and rearranging gives (b).

() Set f,(x) = g™ (xo, x), and let b,(x, y) = f,(x) + f;(y). We have, using
(2.4),

~ 0 ~
M) = d(xo.y) %vy => " d(xo, VLY f; (y)vy
y y

1 ~ ~
=—5 222ty (d(xo, y) —d(xo, ) (£ () = fi(0));
x oy
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the final interchange of sums can be justified using (2.9) and (2.10) and the fact
that 1 is uniformly bounded. So using (2.4),

M0 = 5 30 3 (w20, ) —J(xo,xnbz(x,y)”%(uif%)

X y~x

1/2 1/2|ft(}’)—ft(x)|
;yg;(bz(x y) ( My —b,(x,y)l/z )

1 (i) = fin\ 2
2<Zzb’(”)) (Z?‘y o)

X y~x

Now

(230) DD bi(x,y)=2) ) fi(x) <2CpCy Z fi(x)vy =2CpCy.
X y~x X y~x

So,

/ i) — f(0))?
M, <CZZ o= T o)

Since we have, for u, v > 0,

(u —v)?
u-+v

< (u —v)(logu — logv),

we deduce

M (17 eI e (fi(y) = fi(x)) (log £i(y) — log f; (x)).
x oy

Thus

0,1 ==Y (L+log fi(ML™ fi(y)vy

y

1
(2.31) =3 DD iy (log £ () —log fi(0) (fi (y) — fi(x))
x oy

> cM)(1)?;

where again the interchange of sums uses (2.9) and (2.10) and the fact that w™ is
uniformly bounded. [J

PROPOSITION 2.14. Let xg € G,r > 1 and (xg, r) be A-good. Then

(2.32) cltl/2 < My (x0,1) < czz‘l/2 fort> C3r2.
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PROOF. Note that the lower bound is immediate from Lemma 2.8. For the
upper bound let first n < 0o. Set R, (t) = d=10,(t) — c1 — %dlogt), so that
R, (t) > 0 by (2.26). Then

12

M,,(t):/ot M,Q(S)dSSCfOt Q;(S)l/zdS§c/0[<R2(S)+%) &

Using the inequality (a 4+ b)'/? < b'/? + a/(2b)'/? and integrating by parts we
obtain

t
M, (1) 5ct1/2+cf0 sV2R! (s)ds

<ct'? 4 (14 R,V <et'?(1 + R, (1)).

By (2.27) we also have M,, () > t'/2eR»® for t > ¢r?. Thus R,(¢) is bounded for
t > cr? and this implies that
(2.33) 1tV ? < My (xo, 1) <cat'/?  fort > c3r.

Since the constants in Lemma 2.13 are independent of n, the constants ¢; in (2.33)
are also independent of n. Since Mo (t) < liminf,_, oo M, (), (2.32) then follows.
O
LEMMA 2.15. Letx € G,r > 1 and (x,r) be A-good. Then
(2.34) it <EYd(x, X;) <t fort>cyr’.

PROOF. Since d(x, X;) > C;lg (x, X;), the first inequality is clear. Let c3 be

as in Proposition 2.14, and ¢ = C3R%, so Ry > r. Then if A = B(x, Ry)¢, using
(2.20),

E*d(x, X;) < AR1 4+ E*(d(x, X,); X; € A)
< ARy + E*(Md(x, X,); X; € A)
< ARy + rcat'/? < cs5t!/?, O

The next few results follow quite closely along the lines of [1]. Let

t(x,r)=inf{t:d(x, X;) > r}.

LEMMA 2.16. There exist constants cy, ¢z, c3 such that if R > c| and

(2.35) (y,c2R) is A-good for all y € B(x, R),
then if to = R?/(2¢3)
(2.36) P (t(x,R/2) <tp) <%
and hence for t > 0,

1 t
2.37) P (t(,R)<1) <~ + =

=2 " RY
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PROOF. Write Tt = 7(x, R/2), and clf for the constants ¢; in Lemma 2.15. Let
c3 = 64((:/2)2. Choose ¢ so that r = ¢ R satisfies cgr2 =1y, and cq so that r > 1.
Then as (2.35) holds we can use Lemma 2.15 to bound EYd(y, X;) for s > tg,
y € B(x, R). So,

hQt0)1? = E¥d(x, X21y) = EX(d(x, Xiyre) — d(Xignrs X2ny))

> E l(r<id(x, Xz) — sup  sup E’d(y, Xas—s)
yeB(x,R) 0<s<tg

> P¥(t <19)R/2 — c5(210)'/?,

and rearranging we obtain (2.36).
Inequality (2.37) now follows easily; if t <y, P*(t(x,R) <t) < P*(t(x, R/
2) <ty < % while if # > #g, then the right-hand side of (2.37) is greater than 1. [

To obtain the Gaussian upper bound on ¢;(x,y) we need to prove that the
process X does not move too rapidly across a ball B(x, R). We choose r < R,
and use the fact that if X moves across B(x, R) in the time interval [0, ¢], then it
has to move across many smaller balls of side » in the same period; the estimate
(2.37) is enough to bound the probability of this. Our argument uses the following
easily proved estimate:

LEMMA 2.17 (See [5], Lemma 1.1). Let &1,&,...,§&,, V be nonnegative r.v.
such that V > Y"1 &. Suppose that for some p € (0,1),a > 0,

(2.38) P(& <tlo(&1,....&-1) < p +at, t>0.
Then
ant\ /2

(2.39) log P(V <1) 52(7> —nlog(1/p).

PROPOSITION 2.18. There exists constants ci, ..., c4 such thatifx € G, R >
ci,t >ciR and
(2.40) (z, 2t/ R) is A-good for all 7 € B(x, R),
then
(2.41) P*(t(x,R) <1) < c3e”“R/1,

PROOF. Letl <m < R/2, and set r = R/2m. Define stopping times
So=0,  S§=inflr=S_1:d(Xs_.X)=r), izl

Set 7; = §; — S;_1, and write F; = o(X,,s < t) for the filtration of X. As
d(Xs;, Xs,.,) <r+1<2r, we have S;, < 7(x, R) and X5, € B(x, R) for 0 <
i<m-—1.
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Suppose for the moment that 7 is such that we can apply Lemma 2.16 to control
each 1;. Then

1
(2.42) P*(ti <ulFs,_ )<=+ —CSZM,
2 r

1

u>0,1<i<m,

S0 writing p = %, a= C5/r2 and using (2.39), we obtain

m
log P*(t(x,r) <t) <log P* (Zr,- < t)

1

1/2 1

<2(amt/p)

c7tm 172
< —cem|2— 72

= —cem(2 — (m/i)"/?),

—mlogp~
(2.43)

where k = R?/(c7t). If k is such that we can choose m € N with k < m < 2«, and
so that (2.42) holds, then (2.43) implies (2.41).

We can choose c; so that ¥k < R/2 — 1. If ¥ <1 then, adjusting the constant c3
appropriately, (2.41) is immediate. If 1 <k < R/2—1thenletm = |« |+ 1 < 2«.
Then ice(t/ R)<r< %c(,(t/ R), and so choosing ¢, suitably, (2.40) and Lem-
ma 2.16 imply (2.42). O

Recall that V is the smallest R such that (x, R) is A-very good.
THEOREM 2.19. Let x,y € G, and write D = d(x, y). Suppose that either

D>c Vv V,ort> D%
(@) IfcoD <t, then

(2.44) 6i(x, y) < ezt~ emesd e,
(b) If caD > t, then
(2.45) g:(x,y) <czexp(—caD(1 v log(D/1))).

PROOF. We need to consider various cases. First, if > D?, then (2.44) fol-
lows from (2.18). So we can suppose D > V.. Note that by (2.20) d(x, y)>1"1D.

If t < ¢y D, then (2.45) follows from (2.10). If c;D <t < cGDz/log D, then
Theorem 2.3 gives

q1(x,y) < cgexp(—2c7D?/1).

Choosing cg small enough we have exp(—c7D?/t) < t~4/2 and (2.44) follows.
It remains to consider the case cGDz/logD <tr<D2LletA,={z:d(x,2) <
d(y,2)}, Ay=G — A,t" =1t/2, D' = D/2. Note that B(x, D") C A,. Then

(2.46) vy P (X, =y) = v, P (X, =y, Xy EAy)+VxPx(Xt =y, Xy € Ayx).
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To bound the first term in (2.46), and writing T = t(x, D’), we have
P*(X: =y, Xy € Ay)
=P (t<t,Xp €Ay, X; =)

(2.47) < E*(lip ey PX*(Xi—r = y))

< P*(z(x,D") <t sup qr—u(2, y)vy
z€0B(x,D"),u<t/2

<ct™ 2 pX(z(x, D) <1/2).
Similarly, using symmetry, for the second term in (2.46) we have

WP (X, =y, Xp e Ay)=v, PP (X; =x, Xy € Ay)
(2.48)
<ct™2pY(z(y, D) <1/2).

It remains to verify that we can use Proposition 2.18 to bound the terms P*(t(z,
D’) <t/2) for z = x, y. Writing ¢; for the constants ¢; in Proposition 2.18, taking
c1 large enough we have D" > ¢}, and t' > ¢| D’. As (x, Vi) is A-very good, and
D > V,, we have that (z,r) is A-good for z € B(x,2D), and r > (2D)". We have
cht'/D' > (2D)" provided t > cgD'*7, and since t > c¢D?/log D this holds by
adjusting the constant c;. So

(2.49) Pi(t(w,D") <t/2) <cexp(—c'D?*/t)  forz=ux,y,
and combining the estimates (2.46)—(2.49) completes the proof. [

REMARK 2.20. This theorem does not give any bound for ¢;(x, y) when D <
c1 vV Vi and t < D?. In this case we still have the global upper bound (2.18).
In addition the “long-range” bounds in Theorem 2.3, bound ¢, (x, y) in terms of
d (x, y), but we do not have a bound in terms of D.

The final result of this section is that, under fairly mild additional conditions,
functions which are harmonic for the discrete time process X,,n € Z, are also
harmonic for the continuous time process X, t € R;. At the end of Section 5 we
will use this remark to note that the corrector constructed using the discrete time
process also gives us a corrector for the continuous time process X .

Let X be the discrete time process given by X, =Xp,ne Zy. Write

(2.50) Lfx)= ch(x, Wy (f ) — f)).

We say h is L harmonic if the sum in (2.50) converges absolutely for all x, and
Lh (x) = 0 for all x. This implies that (& (X ),n € Z4) is a P*-martingale for each
xeG.

For x € G let kx = jy /vy be the jump rate out of x by X. Set

2.51) AK)={y e G:x, <K}.
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LEMMA 2.21. Let I satisfy Assumption 2.6. In addition suppose that there
exist (xo,ro) such that (xg,rg) is A-good, and that there exist Ry, K such when
R > Ry then every self avoiding path y from xqo to B(xo, R)¢ contains at least R'/?
pointsin A(K). Let h:G — R be L harmonic, and satisfy the growth condition

(2.52) |h(x)| < Cy + C1d(x0, x)?
for some p € [1,00). Then Lh =0, so that h is harmonic for X.
PROOF. By Lemma 2.10(b) we have that (x, r) is 2A-good if r/2 =rg Vv (1 +

CaM)d(x0, x). So by Lemma 2.12 there exists Cy (depending on Cp and A) so that
if s € [0, 1],

(2.53) E¥|h(Xy)| < cr®tP < Co(r ™ + d (x0, x)P);
it follows that EXh(X;) is well defined for any ¢ > 0. Set for s € [0, 00)
hg(x) = E*h(Xy).

To prove the lemma, it is sufficient to prove that & = hy for every s; this implies
that #(X;) is a continuous time martingale and hence that L4 = 0. We have

hsp1(x) = EX(E* h(X1)) = E* (h(X)) = hy(x),

80 s — hj has period 1. We extend &, by periodicity to s € R. Since E*hy(X1) =
E*h(X145) = hs(x), each hy is L-harmonic. Let

k(x)=sup |hg,(x) = hg ()]

0<s1=<s<1
note that by (2.53) we have
(2.54) k(x) < 2sup EX|h(Xy)| < 2C2(rPT¢ 4 d(xo, x)P).

s<1

Fix x € G, and write k = ky. Write Pyy = iy /Ly for the jump probabilities
of X. Then by conditioning on the time of the first jump of X, if it occurs in [0, 1],
we obtain

1
hs(x) =€ hs(x)+ ) Pyy /O ke “hs_y(y)du.
y

So
hs(x)(1 —e™)

1 1
@55 =Xy [ et heduct [ e - ey du)

y

1 1
:pry<;c/0 e hu(y)du—l—/o K(e ™ " —e )hs_u(y)du).

y
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Then (2.55) implies that
(2.56) k()1 —e™) < 37 Poyk((1 = (1 +ke)e ™).
y

So if k(x) > 0, then there exists y ~ x with k(y) > k(x). Further, if k, < K, then
there exists § > 0 (depending only on Cjp; and K) such that

(2.57) k(y) > (1 +8)k(x) for some y ~ x.

Suppose now that there exists x; with k(x;) > 0. Then there exists a noninter-
secting infinite path y; starting at x; on which k is strictly increasing. Let y» be
a shortest path from x( to a closest point y on y to xg, and let D be the length
of y». Combining y» and the infinite segment of y; starting at y, we obtain a path
y = (xo, 21, - ..) for which k(z,) > O foralln > D. Let R > Ry, and let wg be the
first point in ¥ N B(xg, R)° N A(K). Then Ry = d(xg, wg) > R. So, using (2.54),
(2.57) and the condition on A(K),

172
20,0+ RPY = k(wg) = (1 + )% Ph(xy),

which is a contradiction if R is large enough. [

3. Lower bounds and Harnack inequalities. Unlike the papers [10, 12, 34]
we will need to make explicit use of heat kernel lower bounds in our proof of the
invariance principle Theorem 1.1 (see Lemma 5.9).

In this section we specialize to the case when I is the d-dimensional Euclidean
lattice, and . are bond conductances with p, > 1. We continue to assume that
Assumptions 2.1 and 2.6 hold. Note that balls and distance are with respect to the
graph distance on Z<.

We can follow the arguments in Section 5 of [1] fairly closely. First, as p1yy > 1
when x ~ y, by comparison with the standard Dirichlet form & on Z¢ we have a
weighted Poincaré inequality as in [1], Theorem 4.8.

THEOREM 3.1. Let B = B(xg, R), pp(y) = d(y, B) and ¢(x) = R3(R A
ps(y)*. Then if f : B — R,

G inf Y (f@) —a) e <CR Y (f@) = F(0)) 90 APty

xeB x,yeB

Using this, and the method of Fabes and Stroock [21] we obtain a lower bound
of the form ¢, (x, y) > ct~%/? when x, y are close enough together.

PROPOSITION 3.2. Let xo € Z¢ and R > ¢;. Then provided
(3.2) (z, c2R) is A-good for all z € B(xp, R),
we have

(33)  q@ix)=at™?  forxi,x€ B(xo, R/2), §R* <t < R*.
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PROOF. This can be proved using the argument in [1], Proposition 5.1, with
only minor changes. Note that we need to show that P*' (X, ¢ B(xg,2R/3)) < %
when r = OR? and 6 is sufficiently small (see (5.2) and (5.9) in [1]). [There is
a missing minus sign in exponential in the last line of (5.2).] This is done using
Lemma 2.16, and so to satisfy (2.40) we need (3.2). O

THEOREM 3.3. Letx,y e Z% t >0, and write D = d(x, y). Suppose that

(3.4) t>civVivDIT
Then
3.5) g1 (x, y) = et ~4/2em e

PROOF. The proof as in [1], Lemma 5.2, Theorem 5.3, follows by a standard
chaining argument. We just give the details of the conditions on V,, D and ¢ needed
to make this argument work.

First, if D? < ¢ then the lower bound in (3.5) is just  ~¢/2, so we can use Propo-
sition 3.2. We set R = c¢r!/2. Then ¢ > sz implies R > V,, so B(x, R) is A-very
good, and so as cR > R", (3.2) holds.

If D? >t then we set R = 2D, r = ct/D. We apply Proposition 3.2 in a chain
of balls B; = B(z;, r) linking x and y. (See [1], Lemma 5.2, or [21] for details of
the calculations.) Since D > t'/> > V,, we have that (x, R) is A-very good, and
hence that (z, cr’) is A-good for all ¥ > R", z € B(x, R). As r =ct/D > ¢'R",
(3.2) holds for all the balls B;. [

REMARK 3.4. 1. Note that the lower bounds do not extend to the range when
t >~ D. The difficulty is that if t >~ D, then we need Proposition 3.2 for a chain
of balls of radius O(1) connecting x and y. The hypothesis “very good” is not
enough to ensure this.

However, the chaining argument does not need (3.2) for all points in B(xg, R),
but just for a suitable chain connecting x and y. In [1] this fact was used to obtain
full Gaussian lower bounds. It is likely that the same approach will work for the
random conductance model, but we do not pursue this point, since the bounds in
Theorem 3.3 are enough for most applications.

2. A well-known theorem (see [23, 33]) states that for Brownian motion on a
manifold Gaussian bounds are equivalent to two conditions: volume doubling plus
a family of Poincaré inequalities. This theorem was extended to graphs in [18].
Since we have volume doubling (for v) and the Poincaré inequalities hold (since
e > 1), one might therefore ask if Theorems 2.19 and 3.3 follow immediately
from known results.

However, it is clear that some conditions on i, are needed before Theorem 2.19
holds—one has to prevent X from moving a long distance in a very short time. In
fact, examination of the theorems in [18, 23, 33] shows that in each case there
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is a “hidden” additional assumption which prevents the process from moving too
quickly. For example, [18] considers a discrete time nearest neighbour random
walk.

For B C 74 let gB (x, y) be the transition density for the processes X killed on
exiting from B.

LEMMA 3.5. Let (xg, R) be A-very good. Then
3.6 ¢ Py =™, x.yeBo,3R/4), 2R <1 <R

PROOF. Using Theorem 2.19 and Proposition 3.2, this follows, as in [1], Lem-
ma 5.8, by the argument in [21], Lemma 5.1. [

We now give a parabolic Harnack inequality (PHI) for X. The statement requires
a little extra notation. If A C Z9 we write A = {y:y ~ x for some x € A} for the
exterior boundary of A, and A=AUJA. We call a function u(z, x) caloric in a
space—time region Q = A x (0, T) C [0, 00) x Z% if u is definedon Q = A x [0, T']
and

%u(l,x}=ﬁvu(f,x)’ t.x)eQ.

Write Q(x, R, T) = B(x,R) x (0,T], O—(x,R,T) = B(x, sR) x [}T, 3T] and
Q4(x,R,T)=B(x,1R) x [3T,TI.

DEFINITION 3.6. We say the parabolic Harnack inequality (PHI) holds with
constant Cp for Q = Q(x, R, T) if whenever u = u(¢, x) is nonnegative and
caloric on Q, then

3.7 sup u(t,x) <Cp inf u(t,x).
(t,x)€Q_(x,R,T) (t,x)€Q+(x,R,T)

THEOREM 3.7 (Parabolic Harnack inequality). There exists a constant Cp
such that if (x, R) is A-very good. Then the PHI holds with constant Cp in
O(x, R, R?).

PROOF. Using the heat kernel bounds in Theorems 2.19 and 3.5, and Lem-
ma 3.5, this follows by the same argument as in [3], Theorem 3.1. [

4. Heat kernel bounds for the RCM. In this section we prove Theorem 1.2.
Let E; be the edges of the Euclidean lattice Z4, and let Q@ = [1, 00]%4. Let P be a
probability measure on €2 which makes the coordinates i.i.d. with a law on [1, 00).
We set . (w) = w(e) for e € E,4, and for each w € 2 we consider the random walk
X on the graph (Z4, E;) with conductances Ue(w).
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Using the notation of Section 2 we take vy = 1 for all x, so that we can take
Cyu = 1. We write P} for the law of X started at x, and

g7 (x,y) = Py(X; =)

for the transition density of X.

LEMMA 4.1. The graph (Z4, E;), conductances e and random walk X sat-
isfy Assumptions 2.1 and 2.6 with P-probability 1.

PROOF. Assumption 2.1 is immediate; note we can take Cp = 2d. Setting
Cy =24 Assumption 2.6(1) is also immediate.

Since we have (e) > 1 for all edges in Z4, if & is the Dirichlet form of the
standard continuous time random walk on Z<, then & (f, /) =& (f, f), so that
the standard Nash inequality on Z? (see [14]) implies Assumption 2.6(2) with a
constant Cy depending onlyond. [

In what follows we set C 4 = 1; thus none of the constants Cp, C4, Cpr, Cy, Cy
depend on the law of . (apart from the fact that IP’(,ue € [1 00)) =1).

Let d(x, y) be the graph metric on (Z¢, Ed) andd = d (w) be the metric given
by (2.6); as in the previous sections we write B(x r) for balls in the d metric. Write
Bp(x,r)={ye R?:|x — y| < r} for the Euclidean ball center x and radius r.

LEMMA 4.2. There exists a constant Lo > 0 such that
(4.1) P(B(0,r) C Bp(0, hor)) =1 —cre™?".

PROOF. We use re~sults on first passage percolation from [25]. As in [25] let
by.,, be the first time B(0, t) reaches the hyperplane {x; = n}. Using [25], The-
orem 2.18, there exists o such that lim,, n_lboyn = 1o, a.s. and in L'. By [25],

Theorem 1.15, we have po > 0. By [25], Theorem 5.2, there exist ¢3, ¢4 > 0 such
that

4.2) P(by,, < %n,uo) < c3e” 41, n>0.

The times for B (0, ¢) to hit each hyperplane {x; = £n}, fori =1, ..., d have the
same law as by ,, so we deduce

4.3) IP’(E(O, %,uon) C[—n, n]d) > 1 —2dcze™ 4", n=>0,
and (4.1) follows easily. U
Note that Ao does depend on the law of u.. We fix n € (0, 1), and define good

and very good as in Section 2, with A replaced by Ag; and we write V, for the
smallest integer such that (x, V,) is very good.
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THEOREM 4.3. (a)
P((x, r) is not good) < ce™ ", r>ro.

(b)
4.4) P(Vy > n) < cexp(—cn").

PROOF. Let G(y,r) = {(y,r) is good}, and F(R) = {(y,r) is good for all
y € B(0,2R),r > R"}. Then

o0
P(G(y,r)°) < Z ce " <ce™.

n=r

So,

o
P(F(R)°) < cR? Z e3¢ < cexp(—cR"),
k=R"

and since {Vy > n} = J;° F (k) (b) follows. [
Using Lemma 2.11 we obtain the following:
COROLLARY 4.4. X is conservative with P-probability 1.

COROLLARY 4.5. Letx € Z%. Then

(4.5) lim lim PO(|X,| > M~v1)=0,  P-as.

M—oot—00

PROOF. By Lemma 2.15, for t > ¢V (),
PY(1X/| = MV1) <eM ™'t 7PEDd(0, X;) <eM ™!,
and (4.5) follows. [J

THEOREM 4.6. There exist rv. Uy, x € 74 such that
(4.6) P(Uy (@) = n) < c1exp(—can”),
and if |x — y| v t'/2 > Uy, then
A7) qP(x,y) <3t~ hen > (x — ),
4.8) ¢/ (x,y) <czexp(—calx — y|(1 Vlog(lx — yI/1)))  whent <|x —yl.
Further,

49)  q®(x,y) > cet eI > U2y |x — y| 1
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PROOF. We take U, = cg(V, + 1) where cg > 1. The bounds then follow from
Theorems 2.19 and 3.3. [Note that the bounds (4.7) and (4.8) are of the same
form if d(x, y) <t <cd(x,y).] We use the constant cg to adjust between the the
Euclidean metric |x — y| and the graph metric d(x, y), and to absorb the conditions
d(x,y)>candt > cinto (4.6). [

THEOREM 4.7. There exists a constant Cp and rv. Uy, x € Z¢ with
(4.10) P(Ux(w) = n) < crexp(—can'),

such that if R > Uy then a PHI with constant Cp holds for Q(x, R, RZ).
PROOF. This is immediate from Theorem 3.7 and (4.4). [

The PHI implies an elliptic Harnack inequality (EHI), which holds for the
CSRW as well as the VSRW. A function % is harmonic on A C Z4 if it is defined
on A and Lyh(x) =0 [or equivalently Lch(x) = 0] for x € A.

COROLLARY 4.8. There exists a constant Cgyg and rv. Uy, x € 74 with
(4.11) P(Uy(w) > n) < crexp(—can'),

such that if R > Uy, then an EHI with constant Cy holds for B(x, R); if h > 0 is
harmonic in B(x, R), then

“.12) sup h(y)<Cpy inf _ h(y).
yeB(x,pR/Z) Y HyGB(x,R/2) Y

We have the following averaged bounds:

THEOREM 4.9. (a) Letx,y € 74 andt > ¢y v |x — y|1+’7. Then

(4.13) czfdﬂe*“lx*ylz/’ <Eg/(x,y) < C4l‘7d/2€765|x7y|2/t.
(b) We have
(4.14) EES|X, > <cet, t>1.
172

PROOF. (a) Let D = |x — y|. Choose ¢y so that P(U, > ¢,'") < % Then if
t>cy Vv D1 by (4.9),

Eq®(x,y) = E(g®(x, y); U2 < ¢1) = %Ct—d/Ze—ch/t‘

For the upper bound, let n” = 1 — 7, and R/, be the r.v. given in Theorem 4.6 using
n’ instead of 1. Then by (4.7) and (4.6),

Eq(x,y) =E(g(x, y); R, > D) + E(¢{"(x, y); R, < D)

_ —eD" _ —eD?
< crd/2g=eD" | y=d/2g=cD?/1
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Since the second term is larger, the upper bound in (4.13) follows.
(b) We have

(4.15) EQIX:* =) Ix*q{(0, x).
X
We split the sum in (4.15) into three parts. First,
(4.16) > IxPPgP0,x) < Ug.
lx|<Uo

Next, using (4.7),
4.17) Y kP00 < Y xfPe e NP <o,

Up<|x|<ct Up<|x|<ct

Finally, using (4.8),
(4.18) o IxPgP0,x) < > IxfPeem M <

ctvUp<|x| ct<|x|
Combining (4.15), (4.16) and (4.17) gives
ES X, > <ct + U,

and as by (4.6) IEU02 <ooandt > 1, we obtain (4.14). O

REMARK 4.10. Combining Lemma 2.8, Theorems 4.6 and 4.9 completes the
proof of Theorem 1.2.

Now let
(4.19) X =eX, 2, O0<e<l.

THEOREM 4.11. LetT > 0,8 >0,r > 0. Then

(4.20) lim sup Pg(sup|X§8)| > R) — 0,
R— o0 & SST
4.21) limlimsup PS( sup  [XE = XO|>r) = 0.
-0 .0 |s1—s2|<8,5;<T

PROOF. By Theorem 4.6, if R > Uy, then

PS(sup X > R) < cexp(—ch/T).
s<T
Soif R > Up, then R/e > Up and
Pg(sup|X§€)| > R) = Pg( sup |Xg| > R/s) <cexp(—cR?*/T),
s<T

ng/e2
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proving (4.20).
To prove (4.21) write

(4.22) P8, =P sup X, =Xy l>7),

[s1—s2]1<8,5i<T

so that
Pw()( sup |XS(§) - X§f)| > r) = p(T /€%, 8/€%,r/e).

|s1—521<8,5;<T

We begin by bounding p(7T,§,r) for fixed T, § and r. Let x € (0, %), Up =
maxyep(o,r) Ux, and H(R) = {U} < R“}. Then

(4.23) P(H(R)°) < cR“ exp(—cR*"),

so by Borel-Cantelli there exists Ry = Ro(w) such that w € H(R) for all R > Ry.
Let

(4.24) Zi = sup |Xists — Xpsl-

0<s<$
Then if K = |7/5] and Z* = maxo<x<k Zx, it is enough to control Z* since

sup | X, — Xy, | <2Z%.

[s1—s2]<8,5; <T
Let R > 1. Then
425  PY(Z*=r)<Pt(0,R)<T)+P2Z*>r,z(0,R)>T).
By Proposition 2.18 we have
(4.26) PO(z(0,R) <T) < cexp(—cR*/T),
provided that (0, R) is very good. For this it is sufficient that R > Up(w). Now,

K
PY(Z*>rt(0,R)>T) <Y PZi>r Xis € BO,R))
k=0

K
<Y Y PMr(r.r) <8)PY(Xps =)

k=0yeB(0,R)
Again by Proposition 2.18, for y € B(0, R),
(4.27) P)(t(y,r) <8) < cexp(—cr?/s),

provided r > UI”;. This will hold if R > Ro(w) and r > R*. Combining (4.25),
(4.26), (4.27), we obtain

(4.28) PYUZ* > r) < cexp(—cR*/T) 4 c(T/8) exp(—cr?/8),
provided R > Rp(w) and r > R¥.
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Hence
(4.29)  p(T/€?,8/¢%,2r/e) < cexp(—cR?/T) + c(T /8) exp(—cr?/$),

provided R > ¢Rg and r > R¥&!=¥ For fixed r, § choose R so that R > Ry and
R?/T > r?/8. Then

p(T/e2,8/e,2r/e) < cT8 'exp(—cr?/8)  whene! ™ <rR™".
Hence

limsup p(T /2, 8/e,2r/e) < cT8 ' exp(—cr?/s),

e—>0

and (4.21) follows. [

For n € N let ?n = X,,, and set

(4.30) X =X, 2, O<e<l.

LEMMA 4.12. Forany u > 0,

4.31) lim PS( sup [X = X©| > u) =0.
e—0

0<s<T

PROOF. In the notation of the previous theorem, it is sufficient to bound
p(T/sz, 1,u/e); using (4.29) we have

p(T/ez, Lu/e) < cTe? exp(—cuZ/sz),

provided there exists an R with R > ¢ Ro(w), R%?> Tu?c~2% and u/e > R¥. Setting
R=T"Y?u/e, we need uT'/? > e? Ro(w), and u' = > ! =% T*/2_ 50 these bounds
hold for all sufficiently small ¢. [

S. Invariance principle. In this section we prove the invariance principle
Theorem 1.1. We assume that the conductances . are defined on the space (€2, P)
where

Q =11, 00]%.

We write . (w) = w(e) for the coordinate maps, and make the following assump-
tions on the environment (jt,).

ASSUMPTION 5.1. (1) (u.) is stationary, ergodic, and invariant under sym-
metries of Z<.

(2) e €[1,00) forall e € Ey4, P-azs.

(3) The conclusions of Theorem 1.2 hold for the VSRW associated with (u,).
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As explained in the Introduction, our basic approach is to construct the “correc-

tor” x : Q x Z¢ — R? so that, for P-a.a. w the discrete time process
(5.1) My =X, — x (@, X,)

1sa Pg-martingale with respect to the filtration fn = a()A( L 0<k<n).

N —

The key steps in the proof of the invariance principle are:

. Tightness (a consequence of Theorem 3.5);
. The invariance principle for the martingale part. This is standard and follows

from the ergodicity of our environment (see [29], proof of Theorem 2.6);

. The almost sure control of the corrector, for which we use the the ergodicity of

the environment, the properties (4.11) and (4.12) and the quenched heat kernel
estimates in Theorem 1.2 (see [34], or [12], Theorem 2.3). Note that all we need
here is the ergodicity of the environment; ergodicity under the action of each
direction as stated in [34], Remark 1.3, is not required since one can use the
cocycle property of the corrector (see [13, 26]).

We now give the details. Let
Qo ={w:w(e) €[l, o) for all e}.

Since w (e) satisfies Assumption 5.1 we have P(2¢) = 1. We write w = (w(e), e €
Eg),and w(x, y) =w({x, y}). For x € 74 define T, : Q@ — by

Ty (w)(z,w) =w(z+x, w+x).

Let X be the VSRW with generator Ly given by (1.3), and g;”(x, y) be the transi-
tion density of X. As v, =1 is the invariant measure for X,

g (x,y) =Py(X; =y) =g (y, x).

Write

52 Qu@=¢7xy., OW(@=q (x.y), x,yelZ%
and note that Qyy < 1 for all x, y, with 3, Oy = 1. We have

(5.3) 0WoT, =0 .,  OW=00.
We define the process Z, which gives the “environment seen from the particle,” by
(54 Z; =Tx,w, t € [0, 00),

and define the discrete time process Z by Zn=7Zn.ne€ Zy.

Let LP = LP (2, P). For F € L? write Fy = F o Ty. Then Z has generator
LF(@) =Y Qo(@)(F:(w)— F()).

xezd

Set

E(F.G)=E Y Qux(F — F:)(G — Gy).

xezd
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LEMMA 5.2. We have for F € L',

(5.5) EF =EF,,
(56) Il“—-ﬂ(QOxe) :E(QO,—XF)'

PROOF. Since P is invariant by 7, the first relation is immediate. As

(QO,x)—x = Q—x,O = QO,—x by (5-3)a ]E(QOxe) = E((QO)C)—XF) = E(QO,—XF)’
proving (5.5). U

LEMMA 5.3. If F,G € L2, then E(F, F) < oo, E(F, G) is defined, and
LF e L?

PROOF. Let F € L?. Then
E(F,F)=E ) Qu:(F — F,)*

xezd

<2E Y Qox(F*+F})
xezd
=2EF*+2E > Qo.F;
xezZd
=2EF>+2E Y Qo_F>=4|F|s3.

xeZd

Hence g(F, G) is defined for F, G € L?. Also, if F € L2,

EILFI>=E_ QoxQoy(Fx — F)(Fy — F)

X,y
12 12
< E[(Z Q0 Qoy (Fx — F)Z) (Z 00x Ooy (Fy — F)z) ]
X,y X,y
=E(F, F) <4|F|j. O

LEMMA 5.4. Let F,G € L%. Then

(5.7) E(GLF) = —&(F, G).

PROOF. Using (5.5) we have

(5-8) E(QO,—xG(F—x - F)) = E(QOxGx(F - Fx))~
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So
E(GLF)= ) EGQox(Fy — F)
xez4
1 1
=5 2 EGQu(Fe = F)+ 5 3 EGQo —x(F-x = F)
xez4 xez4

1 ~
=3 2 EQu(GF: = GF + G F — GiFo) = =E(F, G),
xezd

where we used (5.8) in the last line. [

Now we look at “vector fields.” We define for G = G(w, x): Q2 x 74 > R,
EG =) EQu:G(,x).
X

DEFINITION. We say G(w, x) has the cocycle property (see [13, 26]) if
(5.9 G(Tiw,y—x)=G(w,y) — G(w, x), P-a.s.
Let H = L? be the set of vector fields G with the cocycle property and |G ||?> =
EG? < oo.

LEMMA 5.5. Let G=G(w,x) e L?.
(a) G(w,0) =0, and G(Tyw, —x) = —G(w, x).
(b) If xo0, x1, ..., Xxn €74, then

(5.10) > G(Ty_ 0, x5 —xi—1) = G(w, x,) — G(w, x0).

i=l

PROOF. (a) follows immediately from the definition. For (b), as G has the
cocycle property

G(Ty_w,xi —xi—1) =G(w,x;) — G(w, xi—1),
giving (5.10). O

It is easy to check the following:
LEMMA 5.6. L? is a Hilbert space.

For F € L? we set

VF(w,x)=F(T,w) — F(w).

LEMMA 5.7. IfF € L? then VF € L?.
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PRrROOF. First,

EIVFI> =Y EQo.(Fy — F)* =&(F, F) < 0.
X

Also,
VF(Tyw,y —x)=F(Ty_Tyo) — F(Tyw)
=F(Tyw) — F(Tyw) =VF(w,y) — VF(w, x),

so VF has the cocycle property. [

LEMMA 5.8. Let G € L2. Then
(5.11) EY 05G(w,x)? <n|G|3.
X

PROOF. Write aﬁ for the left-hand side of (5.11). Then using (5.9),

(5.12) a2=EY Y 00 "0, (G(Txw, y — x) + G(w, %))’
x oy

We now expand the final square in (5.12) and compute the three terms separately.
We have

EY" Y 0070 (@) 0ry (@) G (Txw, y — x)°
x oy
=EY Y 0" ) (Tw) Q0.y— (T:0) G(Trw, y — x)?
x oy
=EY Y 0" (@) 00,: ()G, 2)

—EY" Q0. (@)G(@,2)’ =G|

Also,
EY S 00 (@) 0uy(@)G,x)? =EY 08 (@) G(w, x)* =a?_,.
x oy X

Finally,
EY" Y 007V (@) 01y(@)G (@, )G(Trw, y — x)
x oy

=EY" Y 00" (@) Q0 (T:0)G (@, ) G(Tro, 2)

1 12
= (EX X 06 @00 (T)G (. x)?)
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1/2
x (EZ 3 08V () Qoo (Th) G(Tro, z)z)

=an-11G|l.
Thus a, <a,_1 + |G|, and so a, <n|GJ|. O

Note that the following lemma uses the heat kernel lower bounds.

LEMMA 5.9. Let G € L? and 1 < p < 2. Then there exists a constant cp <00
such that

(5.13) EIGC, x)I)HP < (cplxDIG].
It follows that, P-a.s.,

G, 0)|

(5.14) lim max =0.

n—>00|x|5n nd+4

PROOF. By (5.9) and the triangle inequality we have
EIG, 0P < [x|BIG(, en|)/?;

so it is enough to bound E|G(-, ¢1)|?. By Theorem 1.2 there exists an integer
valued random variable Wy with Wy > 1 such that P(Wy = n) < ¢ exp(—can®)
for some § > 0 and ¢°(0, x) > c3t~4/2 for t > Wy. Write &, =¢q,(0,e1). Then

o0
(5.15) EIG(,e)|” =) EIG(, eI’ Lwy=n).-

n=1

Leta =2/p, and let o’ =2/(2 — p) be its conjugate index. Then using Holder’s
inequality and (5.11),

E|G (-, eD|” 1 (wy=n)
=EEYGC, enPE Y (wymn))

< (B&,G (-, )V (BE /"1y
1/a , ,
< (E > 086, y>2) ((c3n™ %)=V ¢y exp(—con®))
y

< ()| G|*)% cqn?/? exp(—csn®)

= c4n“9TD/2% exp(—c5n®) || G|

Summing the series in n we obtain (5.13).
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Using (5.13) with p =1 we have

P(max|G (@, x)| > &) < )¢ max P(|G (@, x)| > 1)
RE x| <n

<cndy)! max |G (@, x)| < en?™ NG
x|<n

Taking A, = n¢+3 and using Borel-Cantelli gives (5.14). [

Following [29] we introduce an orthogonal decomposition of the space L. Set
Ly =cl{VF,FelL? inH,

and let Z? be the orthogonal complement of Z%, in H. (Here p stands for “poten-
tial” and s for “solenoidal.”)

LEMMA 5.10. Let G € Z%,. Then for each x, EG(x, w) = 0.

PROOF. Fix x € Z4. Note first that if G = VF, where F € L2, then EG (w,
x)=E(F,—F)=EF, —EF =0.

Now let G € Z%,. Then there exist F, € L? such that G = lim,, VF, in L>.
Since P(Qqox > 0) = 1, it follows that V F,(w, x) converges to G(w, x) in P-
probability. By Lemma 5.9, for each p € [1, 2) the sequence V F,, (w, x) is bounded
in LP(2,P), and therefore VF,(w,x) converges to G(w, x) in LY(Q,P). So
EG(w,x)=1lim, EVF,(w,x)=0. [

We define the semi-direct product measure P* =P x PD.

LEMMA 5.11. Let G € L2. Then

(5.16) > 00:(@)G(w,x)=0,  P-as.

xez4

Hence M,, = G(w, X,) is a Pg—martingalefor P-a.a. w. Further, writing
1G (@, )II* =" Qox(@,x)G(w, x)?,
X
we have
n—1 n—1 .
(5.17) (M) =>_1G(Tg,0.)I> = 1G(Z. )
k=0 k=0

Hence

(5.18) E*(M,)? =n|G|>.
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PROOF. If FelL?and G € Zz, then using Lemma 5.5,
Y EQuxG(w,x)Fy= ) EQox(T—x»)G (T, x) Fe(T_ )

xeZd xeZd
=Y EQo (@) (—G(w, —x))F(w)
xezd
=- 2 EQu(@)G(@.x)F (o).
xeZd
Thus
(5.19) > EQo:G(,x)(F + Fy) =0.
xezd

If G € L2, then
0=E(GVF) =) EQuG(.x)(Fx — F),
X

and so EY" Q0. G F = 0. Since this holds for any F € L? we obtain (5.16).
To show that M is a martingale it is enough to prove that for any x,

(5.20) Eg(G(a), Xnt1) — G(w, X,)| X, =x) =0.
However, using (5.16),

EX(G(w, Xp41) — G(w, Xp)| Xy =)
=) 04y (G(w,y) — G(w,x))
y

=" 00,y (T)G(Trw, y — x) =0.
y

Recall that (M) is the unique predictable process so that M,% — (M), is a martin-

gale. We have
EX(Mp | — M7\ Xy =y) = E5(Myt1 — My)*| X, =)

=Y 0,:@)(G(@.2) - G, )’

=3 00 (Ty) (G~ y. )

= |G(Tyw, )|,
and (5.17) follows.
Finally,
n—1
E*M; =E(EQM;) = E(EQ(M),) = > E|G(Tg,,)* =nllG|*.
k=0

O



INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE MODEL 269

Let IT:RY — R? be the identity, and write IT j for the jth coordinate of IT.
Then IT;(y — x) = I1;(y) — IT;(x), so I1; has the cocycle property. Further by
(4.14),

ElIT;*=E)_ Qoxlx;|* < o0,
X

so I1j € H. So we can define x; € L3 and ®; € L] by
Hj:Xj‘FCI)jEZ%@Z%;

this gives our definition of the corrector x = (x1,..., xa): 2 X 74 — R, We
will sometimes write x (x) for x (-, x). Note that conventions about the sign of the
corrector diffe—compare [34] and [12]. As the environment process is invariant
under isometries of Z4, @l =[Pyl foreach j =1,...,d.

The following proposition summarizes the properties of x and ®.

PROPOSITION 5.12. (a) Mn = )A(n — x(w, )?n) isa Pg-martingale.
(b) For each x € 72, x(G,x) € L.
(c) Foreach j=1,...,d

EY Qox(@)|®j(w, x)|* = [[@1]* < co.

(d) x is sublinear on average; for each € > 0

(5.21) lim 2™ 3 L wa=en =0, Peas.
|x|<n

PROOF. (a) and (b) are immediate from Lemmas 5.11 and 5.9, and (c) is im-
mediate from the definition of ®; as a projection in L?. Let ey be the unit vector
e1=(1,0,...,0). By Lemma 5.10 we have Ex (-, e;) = 0. So since

n
(5.22) x(w,ney) = Z X (T—1ye, @, €1)
k=1

and as x has the cocycle property, the ergodic theorem implies that lim, n™! x (w,
nep) =0 P-a.s., and (d) then follows by the results in Section 6 of [26]. [

LEMMA 5.13. The processes Z and Z are ergodic under the time shift on the
environment space 2.

PROOF. This is well known; see [17], Lemma 4.9, and Section 3 of [10] for a
careful proof in discrete time. [

PROOF OF THEOREM 1.1. We begin with the VSRW. The arguments are very
similar to those in [10, 12, 34], so we only mention the key points. We define

(5.23) My=®, X, M7 =eM,,., 120,
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so that
(5.24) X =eX |0 =M +ex(w e X").

Thus it is sufficient to prove that the martingale M® converges to a multiple of
Brownian motion, and that for P-a.a. w, the second term in (5.24) converges in
PwO -probability to zero.

We start with the control of the corrector, and use [12], Theorem 2.4. This proves
that if the corrector x has polynomial growth, and is sublinear on average, then
Gaussian upper bounds on the heat kernel imply pointwise sublinearity of x. Thus,
using (1.10), (5.14) and (5.21) we have that for P-a.a. w,

(5.25) lim max M =

n—>00|x|§n n

0.

Given (5.25) the Gaussian upper bounds then imply that, for P-a.a. w,
(5.26) ex(o, X, /2)) >0  in PS-probability.

For the convergence of M ©) we proceed as in [10]. Let v € R be a unit vector,
write M} =v - M,, and let

Fi () = Eq(IM}1*; |M}] = K).
Then Fx is decreasing in K and
EFg <EFy <d|®1]”.

In the notation of Lﬁllllma 5.11, Fy(w) = ||v - P (w, -)||2, and so by (5.17) the co-
variance process of MV is

n—1
(M), = Fo(Zy).
k=0
So by Lemma 5.13 we have n-! (M\“),1 — EFy, ch—a.s., for P-a.a. w.

Using the same arguments as in [10], Theorem 6.2, it is straightforward to check
the conditions of the Lindeberg—Feller FCLT for martingales (see, e.g., [20], The-
orem 7.7.3), and deduce that v - M (©) converges to a constant multiple of Brownian
motion. Hence M®) converges to an R¢-valued Brownian motion with nonrandom
covariance matrix D given by D;; = E®; ® j- Since the law of the random vari-
ables w(e) is invariant under symmetries of Z¢, we deduce that there exists 0‘2, >0
such that D = 0‘2,1 , and that

(5.27) ol =Ed3.

This establishes the convergence of X@:. using Lemma 4.12 gives the convergence
of X® to the same limit.
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The global upper bounds on ¢;°(0, x) in Lemma 2.8 imply that if A > 0 and
Atl/2 > 1, then

PY(IX/) < 1'%y < et™ 2B, a1 P)| < A4
Hence there exists A > 0 such that for all large ¢,
Po(1X| > a'/?) = 5,

which implies that 0‘2, > 0.
We now consider the CSRW. Recall from (1.1) the definition of wu,(w), set
F(w) = po(w), and

t t
(5.28) Ay =/ wx, ds =/ F(Z)ds.
0 0
Then if 7; = inf{s > 0: Ay > ¢} is the inverse of A, the time changed process
(5.29) Y =X

is the CSRW.
By the ergodic theorem for the process Z,

lim t~'A;, =EF =2dEu., P*-a.s.

t—00

So if Epte < 0o then 7/t — a a.s. where a = 1/2dEpu, > 0. Let ¥*) = ¢Y, 0.
Then

(530) v =X + (0 - x.7)
and using Theorem 4.11 we have for any fixed #y > O that

(5.31) sup |¥® — x|

0<r<ty

converges in Pg -probability to 0, for P-a.a. w. Thus Y ) converges to ¢ B/ where
B’ is a Brownian motion and og = ao‘z, > 0.

In the case when Eu, = oo we have that 7;/t — 0, and hence y® converges to
a degenerate limit. [

We conclude this section by stating a local limit theorem for g;(x, y) (for the
VSRW). Write

ke (x) = Qmtod) d/2e= 11/ 2071
2

for the Gaussian heat kernel with diffusion constant 0‘2, where oy; is as in Theo-
rem 1.1.



272 M. T. BARLOW AND J.-D. DEUSCHEL

THEOREM 5.14. Let X be the VSRW. Let T > 0. For x € R? write |x] =
(Lx1), ..., |xal). Then

(5.32) nlgrolo sup sup |nd/2q,‘1‘), (0, Lnl/zxj) —k;(x)] =0, P-a.s.

xeRd =T

PROOF. This is proved as in Section 4 of [3]. We have to verify Assumptions
4.1 and 4.4 in [3], but this is straightforward given the invariance principle and
heat kernel bounds in Theorems 1.1 and 1.2, and the PHI in Theorem 4.7.

Note that as v is the invariant measure for X, in Assumption 4.1(d) all we need
is that v(A, (x, r))/(2n1/2r)d converges, and as v, = 1 for all x; this is easy. (Here
Ap(x,r) = (xn'? +[—rn/?, m21 Nz O

REMARK 5.15. In this section we have constructed a corrector x (w, x) So
that the process

(5.33) M, =X, — x(w, X,), ne’Zy,

is a (discrete time) martingale. It is natural to ask if x (w, -) is also a corrector for
the continuous time process X;.

For the RCM with i.i.d. conductances it is straightforward to check that the
condition in Lemma 2.21 involving the set A(K) holds P-a.s. (see [12], Lemma
3.1, for a similar argument). We can therefore use Lemma 2.21 with 4(:) = x (w, -)
to deduce that

(5.34) M, =X, — x (o, Xy), teRy,

is, for P-a.a. w, a Pg—martingale.

6. General ergodic environments. We conclude this paper with some re-
marks on more general ergodic random environments. First, note that the proof
of the invariance principle in Section 5 just uses the facts that the environment is
stationary, symmetric and ergodic, and that the heat kernel bounds in Theorem 1.2
hold.

In the proof of Theorem 1.2 the full strength of the assumption that u, were
i.i.d. was only used at one point, in Theorem 4.3, where we controlled the prob-
ability that a ball was not very good. The heat kernel upper bounds in Section 2
only require Assumptions 2.1 and 2.6, together with a comparison of the metrics
d (x,y) and d(x, y). Given these upper bounds, and using the fact that ., > 1, no
additional hypotheses on ., were needed to obtain the lower bounds in Section 3.
We therefore have the following:

THEOREM 6.1. Let ., e € Eg be a stationary symmetric ergodic environ-
ment, satisfying for some c1 > 0,

(6.1) e € [c1,00) forall e € Eq,P-a.s.
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Let Ew(x, y) be the metric given by the first passage percolation construction
of (2.6), and (as in Definition 2.9) let V(L) be the smallest integer such that
(x, Vx (X)) is A-very good. Suppose that there exists Ao < 00 and 1 € (0, 1) such
that

6.2) P(Vy (ko) = n) < cre” 2",

Then the conclusions of Theorems 1.1, 1.2(a)—(c), 1.3, 4.7 and 5.14 all hold for the
environment (i.).

PROOF. We begin by considering the heat kernel bounds in Theorem 1.2. As
in Lemma 4.1, it is immediate that Assumptions 2.1 and 2.6 hold for (u.), P-a.s.
Using the hypothesis (6.2) instead of Theorem 4.3, the arguments in Section 4
[except for Theorem 4.9(a), for which see Remark 6.2 below] hold in this more
general context, and give Theorems 1.2 and 4.7.

Given Theorem 1.2, the arguments in Section 5 then give the invariance princi-
ple (Theorem 1.1) and local limit theorem (Theorem 5.14).

Combining these results gives the Green function estimates in Theorem 1.3. [

REMARK 6.2. The proof of Theorem 4.9 used the fact that the bounds in
Theorem 4.6 hold for 1 — 5 as well as for 5. If we only have (6.2) then we obtain

63)  Eq®(x,y) <citm WO if > o3 v — y) ',

(6.4) Eq”(x,y) > C4t_d/ze_”5|x_y|2/t ifr>ceV|x—y/> .

REMARK 6.3. If u, is bounded and bounded away from 0, so there exist
O<ci<cp<o0 such that P(u, € [c1, c2]) = 1, then the metrics d(x, y) and
d(x,y) are comparable. So, taking Ag large enough, (6.2) holds.

REMARK 6.4. See [12], Lemma 3.1, or [30], Lemma 5.3, for percolation ar-
guments which are more robust than Theorem 4.3 and which may be useful for
establishing (6.2) in more general contexts.

REMARK 6.5. If u, is stationary and ergodic, but not invariant with respect
to symmetries of 74, then if (6.2) holds, we still obtain Theorem 1.2, and the
convergence of X" to a Brownian motion with covariance matrix D. However,
D need not be diagonal.

REMARK 6.6. Unlike ergodic bounded conductance models, the results of
this paper certainly do not hold for all unbounded stationary symmetric ergodic
random environments. For example, let d = 2, 3, 4 and let 7 be a uniform spanning
tree on Z4 (see [9]). Then 7 is 1-sided, so from each x € 74 there is a unique
self-avoiding path y, to infinity. Let a(x) be the first point on this path. Then
a:74% — 74 and the path y, is {x,a(x),a’(x),...}.
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Let N(x) be the set of points in 7 which are disconnected from infinity by
deleting the bond {x, a(x)}, and let n(x) = |[N(x)|. As x € N(x), n(x) > 1 for
all x. Let . = 1 for edges e € E; which are not in 7. Each edge e € 7 is of the
form e = {x, a(x)} for some x, set

n()c)2

Mix,a(x)) =n(x)e
Let T;, i > 1, be the jump times of the VSRW X. Then

2ya(x) My

(6.5) PX (X7 #a(x)) = .
a)( : ) Mx,a(x) + Zy;éa(x) /ny

Fix x, and let the neighbors of x in 7 be a(x), yi, ..., yx. Then

k
3 ey =Qd—k—D+ Y n(y)e"0’.
y#a(x) i=1

Since py q(x) = n(x)e"()‘)2 and n(x) =14 Y n(y;), it is easy to see that

po(x) = Py (X7, #a(x)) < 2de"? —|—m.alxe'”(y")zfn(x)2 < 2de~ "’ +e 0/
l

So i po (a¥ (x)) < 0o, and it follows that ultimately the process X moves to in-

finity along a path y, for some x. Since ) ,u_kl(x) ak1 () < O this takes finite

time. Hence the quenched invariance principle Theorem 1.1 fails, as well as the
Gaussian bounds in Theorem 1.2.

Acknowledgments. The authors thank J. Cerny and T. Kumagai for valuable
discussions.

REFERENCES

[1] BARLOW, M. T. (2004). Random walks on supercritical percolation clusters. Ann. Probab. 32
3024-3084. MR2094438

[2] BARLOW, M. T. and CERNY, J. (2009). Convergence to fractional kinetics for random walks
associated with unbounded conductances. Preprint.

[3] BARLOW, M. T. and HAMBLY, B. M. (2009). Parabolic Harnack inequality and local limit
theorem for percolation clusters. Electron. J. Probab. 14 1-26. MR2471657

[4] BAss, R. F. (2002). On Aronson’s upper bounds for heat kernels. Bull. Lond. Math. Soc. 34
415-419. MR1897420

[5] BARLOW, M. T. and BASS, R. F. (1989). The construction of Brownian motion on the Sier-
pinski carpet. Ann. Inst. H. Poincaré Probab. Statist. 25 225-257. MR1023950

[6] BEN AROUS, G., CERNY, J. and MOUNTFORD, T. (2006). Aging in two-dimensional
Bouchaud’s model. Probab. Theory Related Fields 134 1-43. MR2221784

[71 BEN AROUS, G. and CERNY, J. (2007). Scaling limit for trap models on 74 . Ann. Probab. 35
2356-2384. MR2353391

[8] BEN AROUS, G. and CERNY, J. (2008). The arcsine law as a universal aging scheme for trap
models. Comm. Pure Appl. Math. 61 289-329. MR2376843


http://www.ams.org/mathscinet-getitem?mr=2094438
http://www.ams.org/mathscinet-getitem?mr=2471657
http://www.ams.org/mathscinet-getitem?mr=1897420
http://www.ams.org/mathscinet-getitem?mr=1023950
http://www.ams.org/mathscinet-getitem?mr=2221784
http://www.ams.org/mathscinet-getitem?mr=2353391
http://www.ams.org/mathscinet-getitem?mr=2376843

(9]
(10]

(11]

(12]
[13]

(14]

[15]
(16]

(17]

(18]

(19]

[20]
(21]

[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE MODEL 275

BENJAMINI, I., LYONS, R., PERES, Y. and SCHRAMM, O. (2001). Uniform spanning forests.
Ann. Probab. 29 1-65. MR1825141

BERGER, N. and BISKUP, M. (2007). Quenched invariance principle for simple random walk
on percolation clusters. Probab. Theory Related Fields 137 83-120. MR2278453

BERGER, N., BISKUP, M., HOFFMAN, C. E. and KOzMA, G. (2008). Anomalous heat-kernel
decay for random walk among bounded random conductances. Ann. Inst. H. Poincaré
Probab. Statist. 44 374-392. MR2446329

Biskup, M. and PRESCOTT, T. M. (2007). Functional CLT for random walk among bounded
random conductances. Electron. J. Probab. 12 1323-1348. MR2354160

BOIVIN, D. and DERRIENNIC, Y. (1991). The ergodic theorem for additive cocycles of 74 or
RY. Ergodic Theory Dynam. Systems 11 19-39. MR1101082

CARLEN, E. A., KUSUOKA, S. and STROOCK, D. W. (1987). Upper bounds for symmet-
ric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. 23 245-287.
MR898496

DAVIES, E. B. (1993). Large deviations for heat kernels on graphs. J. Lond. Math. Soc. (2) 47
65-72. MR1200978

DAVIES, E. B. (1993). Analysis on graphs and noncommutative geometry. J. Funct. Anal. 111
398-430. MR1203460

DE MasI, A., FERRARI, P. A., GOLDSTEIN, S. and WICK, W. D. (1989). An invariance
principle for reversible Markov processes. Applications to random motions in random
environments. J. Stat. Phys. 55 787-855. MR1003538

DELMOTTE, T. (1999). Parabolic Harnack inequality and estimates of Markov chains on
graphs. Rev. Mat. Iberoamericana 15 181-232. MR1681641

DELMOTTE, T. and DEUSCHEL, J.-D. (2005). On estimating the derivatives of symmetric
diffusions in stationary random environment, with applications to V¢ interface model.
Probab. Theory Related Fields 133 358-390. MR2198017

DURRETT, R. (1996). Probability: Theory and Examples, 3rd ed. Duxbury Press, Belmont,
CA. MR1609153

FABES, E. B. and STROOCK, D. W. (1986). A new proof of Moser’s parabolic Harnack in-
equality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96 327-338. MR855753

FUKUSHIMA, M., OSHIMA, Y. and TAKEDA, M. (1994). Dirichlet Forms and Symmet-
ric Markov Processes. De Gruyter Studies in Mathematics 19. De Gruyter, Berlin.
MR1303354

GRIGOR’YAN, A. A. (1991). The heat equation on noncompact Riemannian manifolds. Mat.
Sb. 72 47-77. MR1098839

GRIGOR’YAN, A. (1997). Gaussian upper bounds for the heat kernel on arbitrary manifolds.
J. Differential Geom. 45 33-52. MR1443330

KESTEN, H. (1986). Aspects of first passage percolation. In Ecole D’été de Probabilités
de Saint—Flour, XIV—1984. Lecture Notes in Math. 1180 125-264. Springer, Berlin.
MR876084

KEYNES, H. B., MARKLEY, N. G. and SEARS, M. (1995). Ergodic averages and integrals of
cocycles. Acta Math. Univ. Comenian. (N.S.) 64 123-139. MR1360992

KIPNIs, C. and VARADHAN, S. R. S. (1986). Central limit theorem for additive functionals of
reversible Markov processes and applications to simple exclusions. Comm. Math. Phys.
104 1-19. MR834478

KozLov, S. (1985). The method of averaging and walks in inhomogeneous environments.
Russian Math. Surveys 40 73-145.

MATHIEU, P. and PIATNITSKI, A. (2007). Quenched invariance principles for random walks
on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 2287-2307.
MR2345229


http://www.ams.org/mathscinet-getitem?mr=1825141
http://www.ams.org/mathscinet-getitem?mr=2278453
http://www.ams.org/mathscinet-getitem?mr=2446329
http://www.ams.org/mathscinet-getitem?mr=2354160
http://www.ams.org/mathscinet-getitem?mr=1101082
http://www.ams.org/mathscinet-getitem?mr=898496
http://www.ams.org/mathscinet-getitem?mr=1200978
http://www.ams.org/mathscinet-getitem?mr=1203460
http://www.ams.org/mathscinet-getitem?mr=1003538
http://www.ams.org/mathscinet-getitem?mr=1681641
http://www.ams.org/mathscinet-getitem?mr=2198017
http://www.ams.org/mathscinet-getitem?mr=1609153
http://www.ams.org/mathscinet-getitem?mr=855753
http://www.ams.org/mathscinet-getitem?mr=1303354
http://www.ams.org/mathscinet-getitem?mr=1098839
http://www.ams.org/mathscinet-getitem?mr=1443330
http://www.ams.org/mathscinet-getitem?mr=876084
http://www.ams.org/mathscinet-getitem?mr=1360992
http://www.ams.org/mathscinet-getitem?mr=834478
http://www.ams.org/mathscinet-getitem?mr=2345229

276 M. T. BARLOW AND J.-D. DEUSCHEL

[30] MATHIEU, P. (2008). Quenched invariance principles for random walks with random conduc-
tances. J. Stat. Phys. 130 1025-1046. MR2384074

[31] MOURRAT, J.-C. (2009). Variance decay for functionals of the environment viewed by the
particle. Preprint.

[32] NASH, J. (1958). Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80
931-954. MR0100158

[33] SALOFF-COSTE, L. (1992). A note on Poincaré, Sobolev, and Harnack inequalities. Int. Math.
Res. Not. IMRN 2 27-38. MR1150597

[34] SIDORAVICIUS, V. and SZNITMAN, A.-S. (2004). Quenched invariance principles for walks
on clusters of percolation or among random conductances. Probab. Theory Related Fields
129 219-244. MR2063376

DEPARTMENT OF MATHEMATICS FACHBEREICH MATHEMATIK
UNIVERSITY OF BRITISH COLUMBIA TECHNISCHE UNIVERSITAT BERLIN
VANCOUVER, BC V6T 172 STRASSE DES 17. JUNI 136
CANADA D-10623 BERLIN

E-MAIL: barlow @math.ubc.ca GERMANY

E-MAIL: deuschel @math.tu-berlin.de


http://www.ams.org/mathscinet-getitem?mr=2384074
http://www.ams.org/mathscinet-getitem?mr=0100158
http://www.ams.org/mathscinet-getitem?mr=1150597
http://www.ams.org/mathscinet-getitem?mr=2063376
mailto:barlow@math.ubc.ca
mailto:deuschel@math.tu-berlin.de

	Introduction
	Transition density upper bounds on a fixed graph
	Lower bounds and Harnack inequalities
	Heat kernel bounds for the RCM
	Invariance principle
	General ergodic environments
	Acknowledgments
	References
	Author's Addresses

