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LOOP STATISTICS IN THE TOROIDAL HONEYCOMB DIMER
MODEL

BY CÉDRIC BOUTILLIER AND BÉATRICE DE TILIÈRE1

UPMC University Paris 06 and CNRS and Université de Neuchâtel

The dimer model on a graph embedded in the torus can be interpreted as
a collection of random self-avoiding loops. In this paper, we consider the
uniform toroidal honeycomb dimer model. We prove that when the mesh
of the graph tends to zero and the aspect of the torus is fixed, the winding
number of the collection of loops converges in law to a two-dimensional dis-
crete Gaussian distribution. This is known to physicists in more generality
from their analysis of toroidal two-dimensional critical loop models and their
mapping to the massless free field on the torus. This paper contains the first
mathematical proof of this more general physics result in the specific case of
the loop model induced by a toroidal dimer model.

1. Introduction. Two-dimensional critical loop models are believed by
physicists to renormalize at criticality onto a Gaussian free field theory (Coulomb
gas). On this basis, they are able to derive explicit formulae for partition functions
on the torus [1, 3, 6, 7, 15], from which they obtain information about the asymp-
totic distribution of the sum of the winding numbers of the loops. In this paper, we
give the first mathematical proof of this result, in the case of the toroidal uniform
dimer model on the honeycomb lattice.

Let G = (V (G),E(G)) be a graph embedded in the torus. A dimer configura-
tion or perfect matching M of G is a subset of edges of G such that every vertex of
G is incident to exactly one edge of M . Superimposing M onto a reference dimer
configuration M0 yields a collection of self-avoiding loops together with doubled
edges; see Figure 2. Loops in this collection can wind around the torus horizontally
and vertically.

We consider the case where G is a quotient of the hexagonal lattice and where
dimer configurations are chosen uniformly among all dimer configurations of G.
The algebraic sum of the winding numbers of the loops in the collection is then
a random variable. The main result of this paper can loosely be stated as follows
(see Theorem 2 of Section 1.3 for a precise statement):

THEOREM 1. When the mesh of the graph G tends to 0 and the aspect of the
torus is fixed, the probability that the algebraic sum of the winding numbers of the
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loops has horizontal component k and vertical component � converges to

1

Zρ

e−π(k2/ρ+ρ�2)/2,

where Zρ =∑
(k,�)∈Z2 e−π(k2/ρ+ρ�2)/2 is the normalizing factor and ρ is the ratio

of the two side lengths of the torus.

Let us now describe the setting in more detail.

1.1. Toroidal honeycomb dimer model. The dimer model is a statistical me-
chanics model introduced to represent the adsorption of diatomic molecules on the
surface of a crystal. When, in addition, the underlying graph is bipartite (as is the
case for the square lattice or the honeycomb lattice), this model can be interpreted
as a random interface model in dimension 2 + 1, via the height function [17]. The
dimer model has the attractive feature of being exactly solvable [8, 9, 16] and is
believed to be conformally invariant in the scaling limit; for rigorous results on
this, see [5, 10–12].

In the case where the surface of the crystal is modeled by the regular hexagonal
lattice H , we speak of the honeycomb dimer model. The honeycomb lattice H has
a natural embedding in the plane, in which all faces are regular hexagons of side
length 1 (or, equivalently, the dual faces are equilateral triangles of side length

√
3).

Consider the two vectors x and y represented in Figure 1. The lattice H and its
bipartite coloring are invariant under the action of x and y by translation. If, for
every m,n ∈ N

∗, we define Lm,n to be the group of translations spanned by mx

and ny, then Lm,n is a subgroup of the symmetry group of H . The toroidal graph
Hm,n is defined to be the quotient Hm,n = H/Lm,n.

The graph Hm,n can be obtained by cutting out an mx × my rectangle in H and
then gluing opposite sides together. A horizontal side of the rectangle, oriented
from left to right, is mapped to an oriented closed loop on the torus, as is a vertical
side of the rectangle, oriented from bottom to top. Let us denote by γ h and γ v

FIG. 1. The lattice H is invariant under the action of x and y by translation (left). Fundamental
domain H1,1 (right).
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these two oriented closed loops. The first homology group H1(T) is spanned by
the homology classes of γ h and γ v .

The modulus of the torus is the ratio of the two complex numbers representing
the vertical and the horizontal sides of the rectangle. Since the length of the hori-
zontal side is 3m and the vertical side has length n

√
3 by construction, the modulus

of Hm,n is i n√
3m

.
A dimer configuration of Hm,n is a perfect matching of Hm,n, that is, a subset

of edges M of Hm,n such that every vertex of Hm,n is incident to exactly one
edge of M . Let us denote by M(Hm,n) the set of dimer configurations of Hm,n.
Suppose that a positive weight function ν is assigned to edges of Hm,n, that is,
every edge e has weight ν(e). Then, every dimer configuration M of Hm,n has
an energy E(M) = −∑

e∈M logν(e). The probability of occurrence of the dimer
configuration M of Hm,n is given by the Boltzmann measure μm,n:

μm,n(M) = e−E(M)

Zm,n(ν)
=
∏

e∈M ν(e)

Zm,n(ν)
,

where Zm,n(ν) = ∑
M∈M(Hm,n)

∏
e∈M ν(e) is the normalizing constant, known as

the partition function.
When the weight function ν is periodic, it is known, using classical subaddi-

tivity arguments (as in [4]) that the quantity − 1
mn

logZm,n(ν) converges when m

and n tend to ∞. The limit is denoted by f(ν) and is called the free energy per
fundamental domain.

In this paper, we consider dimer configurations of Hm,n chosen with respect
to the uniform measure (i.e., the Boltzmann measure corresponding to weights 1
on all edges). The corresponding partition function is called the uniform partition
function. In this case, the free energy per fundamental domain, simply denoted by
f, is given by the following formula [8], whose derivation is recalled in Section 3.2:

f = − 1

4π2

∫ 2π

0

∫ 2π

0
log

(
2(cosψ + 1) − eiφ)dφ dψ.(1)

1.2. Toroidal dimer model and self-avoiding loops. The dimer model on the
toroidal graph Hm,n can be interpreted as a collection of self-avoiding loops as
follows. Let M0 be a fixed dimer configuration of Hm,n and let M be any other
dimer configuration of Hm,n. The superimposition of M0 and M then consists of
self-avoiding doubled edges and alternating loops, where doubled edges are edges
covered by a dimer in both M0 and M , and alternating loops are cycles whose
edges are, in alternation, dimers of M0 and M ; see Figure 2. This feature is due to
the fact that, by definition of perfect matchings, every vertex of Hm,n is incident to
exactly one edge of M0 and one edge of M .

Orienting the dimers of M from their white end to their black end and the dimers
of M0 from their black end to their white end gives rise to an orientation of the
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FIG. 2. The superimposition of M and M0 consists of doubled edges and alternating loops.

loops. Let us denote by M � M0 the set of oriented loops obtained from this su-
perimposition; see Figure 3 for an example.

A loop C of M �M0 can then be seen as a closed path on the torus T. The equiv-
alence class [C] of C in the first homology group H1(T) � Z

2 can be decomposed
in the basis ([γ h], [γ v]). Its coordinates (Ch,Cv) in this basis are called the wind-
ing number of C: Ch (resp., Cv) is the algebraic number of times the loop C winds
horizontally (resp., vertically) around the torus. The winding number of the dimer
configuration M , denoted by windM0(M), is the sum of the winding numbers of
all of the loops contained in M � M0:

windM0(M) = ∑
C loop

in M�M0

[C] ∈ Z
2.

An example of a computation of windM0(M) is given in Figure 3. Note that the
dependence on M0 of the winding number of M is quite simple: if M1 is another

FIG. 3. The superimposition M � M0 consists of oriented loops. In this example, the winding
number is windM0(M) = (1,0).
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FIG. 4. Dimer configuration of H1,3 which generates the reference matching M0.

dimer configuration, then

windM1(M) = windM0(M) − windM0(M1).

From now on, we assume that n is a multiple of 3 and fix the reference dimer
configuration M0 of Hm,n to be the one generated by translations of the dimer
configuration of H1,3 of Figure 4. We also drop the subscript M0 in windM0(M).

Since dimer configurations of Hm,n are chosen according to the uniform mea-
sure, for every m,n, wind(·) is a random variable. Let us call it the winding number
and, in order to stress the dependence on m and n, denote it by windm,n(·).

The main result of this paper is an explicit expression for the asymptotic distri-
bution of the random variables (windm,n) when m,n tend to infinity and when the
modulus i n√

3m
of Hm,n converges to iρ for some ρ > 0.

1.3. Statement of result. Let us assume that the modulus i n√
3m

of Hm,n con-
verges to iρ for some ρ > 0. Recall that when n is a multiple of 3, windm,n is the
winding number of the uniformly distributed dimer configurations of Hm,n, com-
puted with respect to the reference dimer configuration M0 defined above. Then,
the main result of this paper is the following theorem:

THEOREM 2. In the joint limit m,n → ∞, n√
3m

→ ρ, the sequence of ran-

dom variables (windm,n) converges in distribution to the two-dimensional discrete
Gaussian random variable windρ whose law is given by

∀(k, �) ∈ Z
2

P[windρ = (k, �)] = 1

Zρ

e−π(k2/ρ+ρ�2)/2,(2)

where Zρ =∑
(k,�)∈Z2 e−π(k2/ρ+ρ�2)/2.

• A similar result was obtained by Kenyon and Wilson [14] in the case of the
square lattice embedded in the cylinder. Working on the torus makes compu-
tations much more difficult since it means dealing with the toroidal partition
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function in the proof, which is a combination of four terms [9] (instead of one,
as in the cylinder case). Moreover, we have to extract information about the two
components of the winding number (instead of one, as in the cylinder case).
Note, also, that in proving Theorem 2, we give a full asymptotic expansion of a
perturbation of the uniform partition function; see Theorem 4, Section 2 below.

• It was brought to our attention, after the acceptance of this paper, that an asymp-
totic expansion of the uniform partition function was obtained in the physics
literature by Ferdinand, in the case of the square lattice [7]. Nevertheless, let us
stress the following facts: the expansion of [7] is not perturbative, it is not done
to the same level of mathematical rigor and no information about the distribution
of the winding number is inferred.

• Theorem 2 holds if the honeycomb lattice is replaced by the square lattice. We
believe that the techniques and ideas applied here could be used to extend the
result to quotients of the honeycomb and square lattice, embedded on tori with
modulus in the upper half complex plane (and not just iρ, ρ > 0). More gener-
ally, we conjecture the result to be true when considering the dimer model on
any periodic bipartite graph within the liquid phase [13], with an appropriate
embedding.

1.4. Outline of the paper.

• In Section 2, we prove that the moment generating function of windm,n can be
expressed in terms of a perturbed uniform partition function Zm,n(α,β); see
Section 2 for a definition. Theorem 4 then gives a full asymptotic expansion
of Zm,n(α,β), from which we deduce pointwise convergence of the moment
generating function of windm,n to the moment generating function of windρ

and, hence, Theorem 2.
• The remainder of the paper consists of the proof of Theorem 4, giving the full

asymptotic expansion of the perturbed uniform partition function Zm,n(α,β).
For the reader’s convenience, the proof is split into two parts:
– By [8], the partition function Zm,n(α,β) can be expressed as a linear com-

bination of four terms, Z
(ση)
m,n (α,β), σ,η ∈ {0,1}. Proposition 8 of Section 3

gives a full asymptotic expansion for each of the four terms Z
(ση)
m,n (α,β) as a

function of Jacobi’s four elliptic theta functions. The proof of Proposition 8
is postponed until Section 4. Proposition 9 then gives an explicit expression
for the combination of Jacobi theta functions involved in the expression of
Zm,n(α,β). The proof of Theorem 4 is thus completed, apart from the proof
of Proposition 8.

– Section 4 consists of the proof of Proposition 8, giving the full asymptotic
expansions of the four terms Z

(ση)
m,n (α,β) as functions of Jacobi’s four elliptic

theta functions.
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2. Winding number and partition function. Define Fm,n to be the moment
generating function of the random variable windm,n:

∀(α,β) ∈ R
2 Fm,n(α,β) = E

[
e−π windm,n ·(α,β)]

= ∑
(k,�)∈Z2

P[windm,n = (k, �)]e−π(αk+β�).

Convergence in distribution of the sequence (windm,n) to the two-dimensional
Gaussian random variable windρ given in (2) is equivalent to pointwise conver-
gence of the sequence (Fm,n) to the corresponding moment generating function.

Lemma 3 below gives an expression of Fm,n in terms of a perturbed uniform
partition function, defined as follows. Let us introduce the appropriate choice of
perturbed edge-weights. Define edges to be of type I (resp., II, III), as in Fig-
ure 5. Then, for α,β ∈ R, let us assign weights a = e−απ/(2m) to edges of type I,
b−1 = e−βπ/(2n) to edges of type II and b = eβπ/(2n) to edges of type III. In the
sequel, we shall also use the notation A = a−2m = eαπ , B = b2n = eβπ . Observe
that the weights a, b−1, b tend to 1 when m,n tend to infinity and thus yield a per-
turbation of the uniform partition function. They are used to collect information
on the uniform measure. Let us denote by Zm,n(α,β) the partition function of the
graph Hm,n corresponding to these weights and let us call it the perturbed uniform
partition function or, in short, perturbed partition function.

LEMMA 3. The moment generating function Fm,n(α,β) of windm,n and the
perturbed uniform partition function Zm,n(α,β) are related in the following way:

Fm,n(α,β) = eπαn/3 Zm,n(α,β)

Zm,n(0,0)
.

PROOF. For i =I, II, III, let Ni(M) be the number of edges of type i in the
dimer configuration M . Then, by definition, the partition function Zm,n(α,β) is

Zm,n(α,β) = ∑
M∈M(Hm,n)

(
e−απ/(2m))NI(M)(

e−βπ/(2n))NII(M)(
eβπ/(2n))NIII(M)

= ∑
M∈M(Hm,n)

A−NI(M)/(2m)B(NIII(M)−NII(M))/(2n)

where, we recall, A = eπα,B = eπβ.

FIG. 5. The three types of edges around a white vertex (left) and around a black vertex (right).
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FIG. 6. Computing windv
m,n (left), windh

m,n (right).

Let us compute the two components windh
m,n and windv

m,n of windm,n as functions
of NI,NII,NIII. Consider the 2n left-to-right horizontal paths of the dual graph
H ∗

m,n, as in Figure 6 (left). Then, for any such path γ , windv
m,n(M) is equal to the

number of positive (right-to-left) crossings of M � M0 along γ minus the number
of negative (left-to-right) crossings of M � M0 along γ . Summing over all 2n

horizontal paths and observing that NIII(M0) = NII(M0), we obtain

2n · windv
m,n(M) = NII(M) + NIII(M0) − NIII(M) − NII(M0)

= NII(M) − NIII(M).

In a similar way, considering the 2m top-to-bottom vertical paths of Figure 6 (right)
and observing that NI(M0) = 2mn/3, we obtain

2m · windh
m,n(M) = NI(M) − NI(M0) = NI(M) − 2mn

3
.

Plugging this into the partition function Zm,n(α,β), we obtain

Zm,n(α,β) = A−n/3
∑

M∈M(Hm,n)

A−windh
m,n(M)B−windv

m,n(M)

= e−παn/3
∑

(k,�)∈Z2

Ck,�e
−π(αk+β�),

where Ck,� is the number of dimer configurations whose winding number is (k, �).
The proof is completed by recalling that dimer configurations of Hm,n are chosen
with respect to the uniform measure, which implies that

P[windm,n = (k, �)] = Ck,�

Zm,n(0,0)

[Zm,n(0,0) is the uniform partition function].

�

Theorem 4 below gives a precise asymptotic expansion of Zm,n(α,β). Com-
bined with Lemma 3, this yields pointwise convergence of the sequence (Fm,n)
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to the moment generating function Fρ of the discrete Gaussian random variable
windρ and, hence, Theorem 2.

THEOREM 4. In the joint limit m,n → ∞, n√
3m

→ ρ, we have the follow-

ing asymptotic expansion for the perturbed partition function Zm,n(α,β). For all
(α,β) ∈ R

2,

Zm,n(α,β) = (−1)mne−πnα/3e−mnf eπρ/6
√

2ρP (e−ρπ )2

× ∑
(k,�)∈Z2

eπ(αk+β�)e−π(k2/ρ+ρ�2)/2(1 + o(1)
)
,

where P(q) =∏∞
k=1(1 − q2k) and f is the free energy per fundamental domain of

equation (1).

REMARK 5. Recall that, by definition, the free energy per fundamental do-
main f is given by

f = − lim
m,n→∞

1

mn
logZm,n(0,0).

Hence, it is not surprising that f should govern the exponential growth rate mn of
Zm,n(α,β).

COROLLARY 6. For all (α,β) ∈ R
2,

lim
m,n→∞

n/
√

3m→ρ

Fm,n(α,β) = Fρ(α,β).

PROOF. Combining Lemma 3 and Theorem 4, we have

lim
m,n→∞

n/(
√

3m)→ρ

Fm,n(α,β) = 1

Zρ

∑
(k,�)∈Z2

eπ(αk+β�)e−π(k2/ρ+ρ�2)/2

= 1

Zρ

∑
(k,�)∈Z2

e−π(αk+β�)e−π(k2/ρ+ρ�2)/2

= Fρ(α,β),

where Zρ = ∑
(k,�)∈Z2 e−π(k2/ρ+ρ�2)/2. In the second equality, we have used the

fact that the sum is symmetric in (k, �). �

REMARK 7. Recall that Fm,n(α,β) is the moment generating function of the
random variable windm,n, which is computed using the reference dimer config-
uration M0. A natural question which arises is what happens when the reference
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dimer configuration is changed. Let F
M1
m,n(α,β) be the moment generating function

of the winding number, computed using a generic reference matching M1. Then,
looking at the proof of Lemma 3, we obtain

FM1
m,n(α,β) = ANI(M1)/(2m)B(−NIII(M1)+NII(M1))/(2n) Zm,n(α,β)

Zm,n(0,0)
.

Using Theorem 4, we deduce that

FM1
m,n(α,β) = ANI(M1)/(2m)−n/3B(−NIII(M1)+NII(M1))/(2n)

× 1

Zρ

∑
(k,�)∈Z2

eπ(αk+β�)e−π(k2/ρ+ρ�2)/2(1 + o(1)
)
.

Hence, Corollary 6 holds provided that the reference dimer configuration satis-
fies NI(M1) = 2mn

3 and NIII(M1) = NII(M1). Observing that NI, NII, NIII are al-
ways constrained to satisfy NI + NII + NIII = 2mn, this implies that NI(M1) =
NII(M1) = NIII(M1) = 2mn

3 .

3. Proof of Theorem 4. The main ingredient in the proof of Theorem 4 is an
explicit expression for the perturbed partition function Zm,n(α,β) as a combina-
tion of Jacobi theta functions. This is given in Proposition 8, Section 3.2 below.
The proof of Proposition 8 is postponed until Section 4. In Section 3.1, we recall
the definition of Jacobi theta functions. Proposition 9 of Section 3.3 gives a con-
cise formula for the combination of theta functions involved in the expression of
the perturbed partition function Zm,n(α,β). Section 3.4 consists of the proof of
Theorem 4, using all of the above.

3.1. Jacobi theta functions. Recall the definition of Jacobi’s four elliptic theta
functions ϑi(ζ, q), i = 1, . . . ,4, and their expressions in terms of infinite products:

ϑ1(ζ, q) =
∞∑

k=−∞
(−1)k−1/2e(2k+1)iζ q(k+1/2)2

= 2q1/4 sin(ζ )P (q)

∞∏
�=1

(
1 − 2q2� cos(2ζ ) + q4�),

ϑ2(ζ, q) =
∞∑

k=−∞
e(2k+1)iζ q(k+1/2)2

= 2q1/4 cos(ζ )P (q)

∞∏
�=1

(
1 + 2q2� cos(2ζ ) + q4�),

ϑ3(ζ, q) =
∞∑

k=−∞
e2kiζ qk2 = P(q)

∞∏
�=0

(
1 + 2q2�+1 cos(2ζ ) + q4�+2),



LOOP STATISTICS IN THE TOROIDAL HONEYCOMB DIMER MODEL 1757

ϑ4(ζ, q) =
∞∑

k=−∞
(−1)ke2kiζ qk2 = P(q)

∞∏
�=0

(
1 − 2q2�+1 cos(2ζ ) + q4�+2),

where P(q) = ∏∞
k=1(1 − q2k). It is sometimes convenient to use the notation

ϑi(ζ |τ) for ϑi(ζ, eiπτ ).
The proofs of these formulas, as well as other properties of Jacobi theta func-

tions, can be found in [2].

3.2. Perturbed uniform partition function. Let us recall the definition of the
perturbed partition function Zm,n(α,β). It is the partition function of the dimer
model on the graph Hm,n, where edges are assigned perturbed uniform weights:
edges of type I (resp., II, III) have weights a = e−απ/(2m) (resp., b−1 = e−βπ/(2n),
b). Recall, also, the notation A = eαπ , B = eβπ and ρ = limm,n→∞ n√

3m
. An ex-

plicit formula for the partition function Zm,n(α,β) is given in [8]:

Zm,n(α,β) = 1
2

(
(−1)n

(−Z(00)
m,n (α,β) + Z(01)

m,n (α,β)
)

(3)
+ Z(10)

m,n (α,β) + Z(11)
m,n (α,β)

)
,

where

Z(ση)
m,n (α,β) = ∏

zm=(−1)σ

∏
wn=(−1)η

P (z,w),

P (z,w) = det

⎛
⎜⎝

1

b
+ b

w
a

az b + w

b

⎞
⎟⎠(4)

=
(

1

b
+ b

w

)(
b + w

b

)
− a2z = w

b2 + b2

w
+ 2 − a2z.

Each of the four terms Z
(ση)
m,n (α,β) is a determinant of a Kasteleyn matrix, a rel-

ative of the adjacency matrix of the graph Hm,n, computed with discrete Fourier
transforms, using the invariance of the graph under translations by the vectors x

and y of Figure 1. Using Riemann sums and analyzing the behavior of P(z,w) in
the neighborhood of its zeros, one deduces (see, e.g., Kasteleyn [8]) that the free
energy per fundamental domain with weights 1 on the edges is

f = − lim
m,n→∞

1

mn
logZm,n(0,0) = 1

4π2

∫
T

log
(
w + 1

w
+ 2 − z

)
dz

z

dw

w
,

= − 1

4π2

∫ 2π

0

∫ 2π

0
log

(
2(cosψ + 1) − eiφ)dφ dψ,

which is precisely equation (1).
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The following proposition gives the asymptotic expansion of the four terms
Z

(ση)
m,n (α,β) involved in the explicit expression (3) of Zm,n(α,β). The proof is

postponed until Section 4.

PROPOSITION 8. In the joint limit m,n → ∞, n√
3m

→ ρ, we have the fol-

lowing asymptotic expansion for the four terms involved in the partition function
Zm,n(α,β):

(−1)nZ
(00)
m,n (α,β)

(−1)nZ
(01)
m,n (α,β)

Z
(11)
m,n (α,β)

Z
(10)
m,n (α,β)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= (−1)mnA−n/3e−mnf e
πα2ρ/2eπρ/6

P(q)2

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−ϑ1(ζ, q)ϑ1(ζ̄ , q)) + o(1),

ϑ2(ζ, q)ϑ2(ζ̄ , q) + o(1),

ϑ3(ζ, q)ϑ3(ζ̄ , q) + o(1),

ϑ4(ζ, q)ϑ4(ζ̄ , q) + o(1),

where ζ = π
2 (ρα + iβ), q = e−ρπ and f is given in equation (1).

3.3. Recombining Jacobi theta functions. The following proposition gives an
explicit expression for the combination of Jacobi theta functions involved in the
perturbed partition function.

PROPOSITION 9.

∀ζ = x + iy ∈ C,∀τ ∈ H = {z ∈ C; Im z > 0},
4∑

i=1

ϑi(ζ |τ)ϑi(ζ̄ |τ) =
√

2i

τ
e−i2x2/(πτ)ϑ3

(
x

τ

∣∣∣∣− 1

2τ

)
ϑ3

(
iy
∣∣∣τ
2

)
.

PROOF. Let q = eiπτ . By definition of Jacobi theta functions, we have

ϑ1(ζ |τ)ϑ1(ζ̄ |τ) + ϑ2(ζ |τ)ϑ2(ζ̄ |τ)

= ∑
(k,�)∈Z2

(
1 − (−1)k+�)ei(2k+1)ζ ei(2�+1)ζ̄ q(k+1/2)2+(�+1/2)2

= ∑
(k,�)∈Z2

(
1 − (−1)k+�)ei2(k+�+1)xei2(k−�)iyq(k+1/2)2+(�+1/2)2

.

The general term of this sum is nonzero if and only if k 
≡ �mod 2. In this case, we
introduce the two integers u and v such that k + � + 1 = 2u and k − � = 2v + 1,
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and rewrite ϑ1(ζ |τ)ϑ1(ζ̄ |τ) + ϑ2(ζ |τ)ϑ2(ζ̄ |τ) as

ϑ1(ζ |τ)ϑ1(ζ̄ |τ) + ϑ2(ζ |τ)ϑ2(ζ̄ |τ)
(5)

= 2
∑

(u,v)∈Z2

ei2u(2x)ei2(2v+1)iyq2u2+(2v+1)2/2.

Similarly, we write

ϑ3(ζ |τ)ϑ3(ζ̄ |τ) + ϑ4(ζ |τ)ϑ4(ζ̄ |τ)

= ∑
(k,�)∈Z2

(
1 + (−1)k+�)ei2kζ ei2�ζ̄ qk2+�2

= ∑
(k,�)∈Z2

(
1 + (−1)k+�)ei2(k+�)xei2(k−�)iyqk2+�2

.

In this case, the general term is nonzero when k ≡ �mod 2. Setting u = k+�
2 and

v = k−�
2 , we get

ϑ3(ζ |τ)ϑ3(ζ̄ |τ) + ϑ4(ζ |τ)ϑ4(ζ̄ |τ)
(6)

= 2
∑

(u,v)∈Z2

ei2u(2x)ei2(2v)iyq2u2+(2v)2/2.

Summing (5) and (6), and recombining the sum over v, we obtain

4∑
i=1

ϑi(ζ |τ)ϑi(ζ̄ |τ) = 2
∑

(u,v)∈Z2

ei2u(2x)ei2v(iy)q2u2+v2/2

= 2

( ∞∑
u=−∞

e2iu(2x)(q2)u
2

)( ∞∑
v=−∞

u2iv(iy)(q1/2)v
2

)

= 2ϑ3(2x|2τ)ϑ3

(
iy
∣∣∣τ
2

)

=
√

2i

τ
e−i2x2/(πτ)ϑ3

(
x

τ

∣∣∣∣− 1

2τ

)
ϑ3

(
iy
∣∣∣τ
2

)
.

The last equality results from the Jacobi identity which describes the transforma-
tion of the function ϑ3 under the modular group [2]:

∀u ∈ C,∀σ ∈ H ϑ3(u|σ) =
√

i

σ
e−iu2/(πσ)ϑ3

(
u

σ

∣∣∣∣− 1

σ

)
,

with u = 2x and σ = 2τ . �
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COROLLARY 10. In the case where ζ = π
2 (ρα + iβ) and τ = iρ (i.e., q =

e−πρ ),

4∑
i=1

ϑi(ζ, q)ϑi(ζ̄ , q) =
√

2

ρ
e−πα2ρ/2ϑ3

(
− iπα

2

∣∣∣∣ i

2ρ

)
ϑ3

(
iπβ

2

∣∣∣∣ iρ2
)

=
√

2

ρ
e−πα2ρ/2

∑
(k,�)∈Z2

AkB�e−π(k2/ρ+ρ�2)/2,

where A = eπα and B = eπβ .

3.4. Proof of Theorem 4. Using expression (3) for the perturbed partition func-
tion Zm,n(α,β) and Proposition 8, we know that in the joint limit m,n → ∞,

n√
3m

→ ρ,

Zm,n(α,β) = (−1)mnA−n/3e−mnf e
πα2ρ/2eπρ/6

2P(q)2

(7)

×
( 4∑

i=1

ϑi(ζ, q)ϑi(ζ̄ , q) + o(1)

)
.

Replacing the combination of Jacobi theta functions of (7) by the expression given
in Corollary 10 yields

Zm,n(α,β) = (−1)mnA−n/3e−mnf eπρ/6
√

2ρP (q)2

(8)
× ∑

(k,�)∈Z2

AkB�e−π(k2/ρ+ρ�2)/2(1 + o(1)
)
,

which is precisely Theorem 4.

4. Asymptotic expansion of the perturbed partition function: Proof of
Proposition 8. Let us quickly recall the content of Proposition 8. It gives explicit
expressions for the four terms Z

(00)
m,n (α,β), Z

(01)
m,n (α,β), Z

(11)
m,n (α,β), Z

(10)
m,n (α,β)

involved in the expression (3) of the perturbed partition function Zm,n(α,β), as
functions of Jacobi’s four theta functions. Sections 4.1–4.4 consist of prelimi-
nary computations for each of the four terms Z

(ση)
m,n (α,β). Proposition 8 is then

proved in Section 4.5 using the aforementioned computations. Let us recall the no-
tation used: a = e−πα/(2m), b = eπβ/(2n), A = eπα , B = eπβ , ρ = limm,n→∞ n√

3m
,

ζ = π
2 (ρα + iβ) and q = e−ρπ .
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4.1. Computations for Z
(11)
m,n (α,β). The beginning of this computation is in-

spired by [14]. Using the explicit expression (3) for Z
(11)
m,n (α,β) yields

Z(11)
m,n (α,β) = ∏

zm=−1

∏
wn=−1

(
w

b2 + (2 − a2z) + b2

w

)

= ∏
zm=−1

∏
wn=−1

b2

w

(
w2

b4 + w

b2 (2 − a2z) + 1
)

= ∏
zm=−1

∏
wn=−1

b2

w

(
w

b2 − r1

)(
w

b2 − r2

)

= ∏
zm=−1

∏
wn=−1

1

b2w
(w − b2r1)(w − b2r2),

where

r1, r2 = −1 + a2z

2
±
√(

1 − a2z

2

)2

− 1.

Since r1 and r2 depend on a and z through the product a2z, we define φ ∈ C as
a2z = eiφ and

r1,2(φ) = −1 + eiφ

2
± i

√
1 −

(
1 − eiφ

2

)2

.(9)

Recall that a = e−πα/(2m) and that z is an mth root of −1. Hence, for large m and
n, we are concerned with values of φ whose imaginary part is close to 0 and whose
real part is in [−π,π ].

Choice of r1, r2 and their domain of definition. In the formula for r1(φ), r2(φ),
there is an ambiguity in the determination of the square root, which we now clar-
ify. The functions r1(φ), r2(φ) are analytic on a domain D, provided the square
root does not vanish in D. The square root vanishes when (Re(φ), Im(φ)) =
(0[2π ], log(1/4)), so let us choose

D = {φ ∈ C|−π < Re(φ) < π,−c < Im(φ) < c},
where c is some positive constant smaller than log(4). Now, observe that
r1(φ)r2(φ) = 1 so that one of r1, r2 has nonnegative imaginary part. Moreover,
r1 satisfies the polynomial equation

r1 + 1

r1
= eiφ − 2.(10)

Taking imaginary parts on both sides yields

Im(r1(φ))

(
1 − 1

|r1(φ)|2
)

= e− Im(φ) sin(Re(φ)).(11)
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FIG. 7. Plot of the two functions r1(φ) (plain line) and r2(φ) (dashed line) for φ ∈ [−π,π ], and
their position with respect to the unit circle. Note that when α is not 0 and m is large enough, r1(i πα

m )

and r2(i πα
m ) are still on the unit circle (see Lemma 11 below).

Hence, Im(r1(φ)) 
= 0 whenever Re(φ) /∈ {−π,0, π}. When Re(φ) = 0, we look at
equation (9) and deduce that the term in the square root is positive when | Im(φ)| <
c so that Im(r1(φ)) 
= 0 in D. Using the analyticity of r1 and r2 in D, we conclude
that one of r1, r2 has imaginary part which is positive in D. By convention, we
choose r1(φ) such that Im(r1(φ)) > 0 in D. The values for r1, r2 on the boundary
of the domain D are chosen by continuity. Figure 7 shows a plot of r1(φ), r2(φ)

when φ is real.
Let us first compute the product over w in (8). Since w is an nth root of −1, we

have

∀λ ∈ C
∏

wn=−1

(λ − w) = λn + 1.

In particular,∏
wn=−1

w = (−1)n,
∏

wn=−1

(
b2rj (φ) − w

)= 1 + Brn
j (φ), j = 1,2,

so that

Z(11)
m,n (α,β) = (−1)mnB−m

∏
zm=−1

(
1 + Brn

1 (φ)
)(

1 + Brn
2 (φ)

)
.(12)

Ideas governing the next steps of the computation. There is a change of behav-
ior in the product (12) when |rj (φ)| is smaller, greater or close to 1. We start by

factoring out rj (φ) when |rj (φ)| > 1. This part of Z
(11)
m,n (α,β) grows exponen-

tially, so we expect it to involve the free energy per fundamental domain f. We
postpone its study until Section 4.5. Then, in Lemma 12, we deal with the part
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of Z
(11)
m,n (α,β) where |rj (φ)| < 1. This part makes no contribution to Z

(11)
m,n (α,β).

Finally, in Lemma 13, we deal with the part of Z
(11)
m,n (α,β) where |rj (φ)| is close

to 1. This part involves the Jacobi theta functions giving the discrete Gaussian
term of Z

(11)
m,n (α,β). In Sections 4.2, 4.3 and 4.4, we study, in a concise way, the

computations for Z
(10)
m,n (α,β), Z

(01)
m,n (α,β) and Z

(00)
m,n (α,β).

In order to proceed with these steps, we need:

1. a characterization of |rj (φ)| > 1, |rj (φ)| < 1 and |rj (φ)| = 1;
2. an expansion of rj (φ) when φ is close to 0 (for Lemmas 12, 13);
3. to know that |r1(φ)| is increasing as a function of Re(φ) when −π ≤ Re(φ) < 0

and Im(φ) is small (for Lemma 12).

All of this is provided by the following lemma.

LEMMA 11. On the domain D, the functions r1 and r2 have the following
properties:

1. – If 0 < Re(φ) ≤ π , then |r1(φ)| > 1, |r2(φ)| < 1.
– If −π ≤ Re(φ) < 0, then |r1(φ)| < 1, |r2(φ)| > 1.
– If Re(φ) = 0, then |r1(φ)| = |r2(φ)| = 1.

2. Their expansions in the vicinity of φ = 0 are given by

r1(φ) = ei2π/3
(

1 + φ√
3

+ O(φ2)

)
= ei2π/3eφ/

√
3+O(φ2),(13)

r2(φ) = e−i2π/3
(

1 − φ√
3

+ O(φ2)

)
= e−i2π/3e−φ/

√
3+O(φ2).(14)

3. When −π ≤ Re(φ) < 0, |r1(φ)| is increasing as a function of Re(φ).

PROOF. 1. Since r2(φ)r1(φ) = 1, it suffices to prove the properties for r1(φ).
Recall that, by convention, Im(r1(φ)) > 0 in D. Looking at equation (11), we de-
duce that when sin(Re(φ)) > 0 or, equivalently, Re(φ) ∈ (0, π), we have |r1(φ)| >
1. We further deduce that when sin(Re(φ)) < 0 or, equivalently, Re(φ) ∈ (−π,0),
we have |r1(φ)| < 1. The explicit evaluation of r1(±π) shows that the inequalities
are still strict when Re(φ) = ±π .

We thank the referee for the idea behind the above argument.
Let us now consider the case where Re(φ) = 0. Since φ ∈ D, we have Im(φ) >

log(1/4) and

1 −
(

1 − e− Im(φ)

2

)2

> 0

so that, in this case, r1(φ) is given by

r1(φ) = −1 + e− Im(φ)

2
+ i

√
1 −

(
1 − e− Im(φ)

2

)2

with no ambiguity in the square root. An explicit computation yields |r1(φ)| = 1.
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2. The second part of the lemma is obtained via an explicit Taylor expansion of
r1(φ), r2(φ) in a neighborhood 0, which can be performed since these functions
are analytic.

3. We need to prove that ∂|r1(φ)|2
∂ Re(φ)

is nonnegative whenever −π ≤ Re(φ) < 0.

The derivative of |r1(φ)|2 with respect to Re(φ) is

∂|r1(φ)|2
∂ Re(φ)

= 2 Re
(

∂r1(φ)

∂ Re(φ)
r1(φ)

)
.

Observe that r1(φ) satisfies the polynomial equation

r1(φ)2 + r1(φ)(2 − eiφ) + 1 = 0.

From this, we deduce, by differentiating with respect to Re(φ), that

∂r1(φ)

∂ Re(φ)
= ieiφr1(φ)

2r1(φ) + 2 − eiφ
,

∂|r1(φ)|2
∂ Re(φ)

= 2 Re
(

ieiφ|r1(φ)|2
2r1(φ) + 2 − eiφ

)
.

Hence,

sign
(

∂|r1(φ)|2
∂ Re(φ)

)
= −sign

(
Im
(

1

2e−iφ(r1(φ) + 1) − 1

))

= sign
(
Im
(
e−iφ(r1(φ) + 1

)))
.

Rewriting the quadratic equation satisfied by r1(φ) as(
r1(φ) + 1

)2 = eiφr1(φ),

we see that e−iφ(r1(φ) + 1) equals r1(φ)
1+r1(φ)

, whose imaginary part has the same
sign as Im(r1(φ)), which is nonnegative by definition. �

Since z is an mth root of −1, we can write z = eiπ(2j+1)/m for j ∈ {−
m
2 �, . . . ,


m−1
2 �} so that φ = π

m
(iα + 2j + 1). Using Lemma 11, we know that when j ≥ 0,

|r1(φ)| > 1, and when j ≤ −1, |r2(φ)| > 1. Factoring those terms out in (12) and
using an algebraic manipulation to produce a product over positive j ’s only, we
obtain the following expression for Z

(11)
m,n (α,β):

Z(11)
m,n (α,β)

= (−1)mnB−m

(m−1)/2�∏
j=−
m/2�

(
1 + Brn

1

(
π(iα + 2j + 1)

m

))

×
(

1 + Brn
2

(
π(iα + 2j + 1)

m

))



LOOP STATISTICS IN THE TOROIDAL HONEYCOMB DIMER MODEL 1765

= (−1)mn

(
(m−1)/2�∏
j=0

r1

(
π(iα + 2j + 1)

m

))n

×
(
m/2�−1∏

j=0

r2

(
π(iα − (2j + 1))

m

))n

×

(m−1)/2�∏

j=0

(
1 + B−1r−n

1

(
π(iα + 2j + 1)

m

))

×
(

1 + Brn
2

(
π(iα + 2j + 1)

m

))

×

m/2�−1∏

j=0

(
1 + Brn

1

(
π(iα − (2j + 1))

m

))

×
(

1 + B−1r−n
2

(
π(iα − (2j + 1))

m

))
.

LEMMA 12. In the joint limit m,n → ∞, n√
3m

→ ρ, we have


(m−1)/2�∏
j=
m1/4�

(
1 + B−1r−n

1

(
π(iα + 2j + 1)

m

))
= 1 + o(1),


(m−1)/2�∏
j=
m1/4�

(
1 + Brn

2

(
π(iα + 2j + 1)

m

))
= 1 + o(1),


m/2�−1∏
j=
m1/4�

(
1 + Brn

1

(
π(iα − (2j + 1))

m

))
= 1 + o(1),


m/2�−1∏
j=
m1/4�

(
1 + B−1r−n

2

(
π(iα − (2j + 1))

m

))
= 1 + o(1).

PROOF. We give the proof for the first product on the second line. The proof
for the other terms is obtained using the same arguments.

Taking the logarithm of the left-hand side, we get∣∣∣∣∣

m/2�−1∑
j=
m1/4�

log
(

1 + Brn
1

(
π(iα − (2j + 1))

m

))∣∣∣∣∣

≤

m/2�−1∑
j=
m1/4�

∣∣∣∣log
(

1 + Brn
1

(
π(iα − (2j + 1))

m

))∣∣∣∣
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≤

m/2�−1∑
j=
m1/4�

cB

∣∣∣∣rn
1

(
π(iα − (2j + 1))

m

)∣∣∣∣ for some constant c > 0

≤ mcB max

m1/4�≤j≤
m/2�−1

∣∣∣∣rn
1

(
π(iα − (2j + 1))

m

)∣∣∣∣
≤ mcB

∣∣∣∣rn
1

(
π(iα − 2m1/4)

m

)∣∣∣∣ (Lemma 11, part 3)

≤ mcBe−2πρm1/4(1+o(1)) (Lemma 11, part 2)

= o(1). �

LEMMA 13. In the joint limit m,n → ∞, n√
3m

→ ρ, we have


m1/4�−1∏
j=0

(
1 + B−1r−n

1

(
π(iα + 2j + 1)

m

))(
1 + Brn

1

(
π(iα − (2j + 1))

m

))

= ϑ3(ζ̄ , q)

P (q)
+ o(1),


m1/4�−1∏
j=0

(
1 + Brn

2

(
π(iα + 2j + 1)

m

))(
1 + B−1r−n

2

(
π(iα − (2j + 1))

m

))

= ϑ3(ζ, q)

P (q)
+ o(1),

where ζ = π
2 (ρα + iβ), q = e−ρπ and P(q) =∏+∞

j=1(1 − q2k).

PROOF. The arguments used are similar to those of Lemma 12. First, note that

ϑ3(ζ, q) = P(q)

∞∏
j=0

(1 + e2iζ q2j+1)(1 + e−2iζ q2j+1)

= lim
m→∞P(q)


m1/4�−1∏
j=0

(1 + e2iζ q2j+1)(1 + e−2iζ q2j+1).

Let us prove the following (the other three cases are handled similarly):


m1/4�−1∏
j=0

(
1 + B−1r−n

2

(
π(iα − (2j + 1))

m

))
(15)

=

m1/4�−1∏

j=0

(1 + e2iζ q2j+1) + o(1).
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A generic term of the right-hand side of (15) can be written as

(1 + e2iζ q2j+1) = (
1 + e−βπeiπαρe−πρ(2j+1)).

Note that such a term can be equal to 0, whenever α = 2k+1
ρ

for some integer k and

β = −ρ(2j + 1) for some j ∈ {0, . . . , 
m1/4� − 1}. So, the product of the right-
hand side of (15) might vanish. Observe that when this is the case, there is only
one term in the product which is actually 0; let us denote by j the corresponding
index.

We first consider the part of the product corresponding to nonzero terms on
the right-hand side of (15). That is, depending on the values of α and β , we either
consider the whole product or the product over all indices except j . In order to keep
the notation simple, it is implicit that j is omitted whenever it occurs. Dividing the
left-hand side by the right-hand side in (15) and taking logarithms yields∣∣∣∣∣


m1/4�−1∑
j=0

log
(

1 + B−1r−n
2 (π(iα − (2j + 1))/m)

1 + B−1eiπαρq2j+1

)∣∣∣∣∣

≤

m1/4�−1∑

j=0

∣∣∣∣log
1 + B−1r−n

2 (π(iα − (2j + 1))/m)

1 + B−1eiπαρq2j+1

∣∣∣∣.
Observe that the two quantities B−1eiπαρq2j+1 and B−1r−n

2 (
π(iα−(2j+1))

m
) are

bounded, and bounded away from −1, uniformly in j = 0, . . . , 
m1/4�, j 
= j ,
for m and n large enough. We therefore get the following bounds, where c1, c2 are
positive constants:∣∣∣∣∣


m1/4�−1∑
j=0

log
(

1 + B−1r−n
2 (π(iα − (2j + 1))/m)

1 + B−1eiπαρq2j+1

)∣∣∣∣∣

≤

m1/4�−1∑

j=0

c1 · B−1
∣∣∣∣r−n

2

(
iα − (2j + 1)

m

)
− eiπαρq2j+1

∣∣∣∣

≤

m1/4�−1∑

j=0

c1 · B−1∣∣eπ(iα−(2j+1))n(1+o(1))/(
√

3m)

− eπ(iα−(2j+1))ρ
∣∣ by (13)

≤ c2


m1/4�∑
j=0

|iα − (2j + 1)|e−π(2j+1)(ρ+o(1))

∣∣∣∣ρ − n(1 + o(1))√
3m

∣∣∣∣= o(1)

because the series with general term |iα − (2j + 1)|e−π(2j+1)ρ is convergent and
thus the upper bound goes to zero when n√

3m
goes to ρ.
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Let us now consider the case when α = 2k+1
ρ

for some integer k and β =
−ρ(2j + 1) for some j ∈ {0, . . . , 
m1/4� − 1}. For all terms involving indices
j 
= j , the above estimate holds. When j = j , the corresponding term on the right-
hand side of (15) is 0; let us show that the corresponding term on the left-hand side
is o(1): ∣∣∣∣1 + B−1r−n

2

(
π(iα − (2j + 1))

m

)∣∣∣∣
= ∣∣1 + B−1eπ(iα−(2j+1))n(1+o(1))/(

√
3m)

∣∣ by (13)

= ∣∣1 + B−1eπ(iα−(2j+1))ρ[eπ(iα−(2j+1))(n(1+o(1))/(
√

3m)−ρ)]∣∣
=
∣∣∣∣1 −

[
1 + π

(
iα − (2j + 1)

)(n(1 + o(1))√
3m

− ρ

)
+ o(1)

]∣∣∣∣
=
∣∣∣∣π(iα − (2j + 1)

)(n(1 + o(1))√
3m

− ρ

)
+ o(1)

∣∣∣∣= o(1).

In the two last lines, we have used the assumption 1 + B−1eπ(iα−(2j+1))ρ = 0.
Combining this with the estimate when j 
= j yields the lemma. �

COROLLARY 14. In the joint limit m,n → ∞, n√
3m

→ ρ, we have

(−1)mnZ
(11)
m,n (α,β)

�1
m,n(α)�2

m,n(α)
= ϑ3(ζ, q)ϑ3(ζ̄ , q)

P (q)2 + o(1),

where

�1
m,n(α) =

(
(m−1)/2�∏
j=0

r1

(
π(iα + 2j + 1)

m

))n

,

�2
m,n(α) =

(
m/2�−1∏
j=0

r2

(
π(iα − (2j + 1))

m

))n

.

4.2. Computations for Z
(10)
m,n (α,β). The computations for Z

(10)
m,n (α,β) go

through in a similar way. Let us just stress where the differences occur. Using
the explicit expression of (3) for Z

(10)
m,n (α,β) yields

Z(10)
m,n (α,β) = ∏

zm=−1

∏
wn=1

1

b2w
(w − b2r1)(w − b2r2).

This time, w is an nth root of 1 (instead of −1), so

∀λ ∈ C
∏

wn=1

(λ − w) = λn − 1.
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In particular,
∏

wn=1 w = (−1)n−1 and, when performing the product over w, we
obtain

Z(10)
m,n (α,β)

= (−1)m(n−1)B−m

×

(m−1)/2�∏
j=−
m/2�

(
1 − Brn

1

(
π(iα + 2j + 1)

m

))(
1 − Brn

2

(
π(iα + 2j + 1)

m

))

= (−1)mn

(
(m−1)/2�∏
j=0

r1

(
π(iα + 2j + 1)

m

))n

×
(
m/2�−1∏

j=0

r2

(
π(iα − (2j + 1))

m

))n

×

(m−1)/2�∏

j=0

(
1 − B−1r−n

1

(
π(iα + 2j + 1)

m

))

×
(

1 − Brn
2

(
π(iα + 2j + 1)

m

))

×

m/2�−1∏

j=0

(
1 − Brn

1

(
π(iα − (2j + 1))

m

))

×
(

1 − B−1r−n
2

(
π(iα − (2j + 1))

m

))
.

The rest of the computation goes through in the same way, except that the +’s of
Z

(11)
m,n are replaced by the −’s of Z

(10)
m,n . As a consequence, the analog of Lemma 13

involves the fourth Jacobi theta function ϑ4(ζ, q) instead of the third one. We sum-
marize the expression for Z

(10)
m,n in the following result.

COROLLARY 15. In the joint limit m,n → ∞, n√
3m

→ ρ,

(−1)mnZ
(10)
m,n (α,β)

�1
m,n(α)�2

m,n(α)
= ϑ4(ζ, q)ϑ4(ζ̄ , q)

P (q)2 + o(1).

4.3. Computations for Z
(01)
m,n (α,β). The computations for Z

(01)
m,n (α,β) are

slightly different. When performing the product over w for Z
(01)
m,n (α,β), we get

Z(01)
m,n (α,β) = (−1)mnB−m


(m−1)/2�∏
j=−
m/2�

(
1 + Brn

1

(
π(iα + 2j)

m

))

×
(

1 + Brn
2

(
π(iα + 2j)

m

))
.
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In order to obtain an expression similar to what we had above for Z
(11)
m,n and Z

(10)
m,n ,

we isolate the term j = 0 and factor rn
k ( π

m
(iα + 2j)) when its modulus is greater

than 1. This yields

Z(01)
m,n (α,β)

(16)

= (−1)mn

(
B−1 + rn

1

(
iαπ

m

))(
1 + Brn

2

(
iαπ

m

))

×
(
(m−1)/2�∏

j=1

r1

(
π(iα + 2j)

m

))n(
m/2�∏
j=1

r2

(
π(iα − 2j)

m

))n

×

(m−1)/2�∏

j=1

(
1 + B−1r−n

1

(
π(iα + 2j)

m

))

×
(

1 + Brn
2

(
π(iα + 2j)

m

))

×

m/2�∏
j=1

(
1 + Brn

1

(
π(iα − 2j)

m

))(
1 + B−1r−n

2

(
π(iα − 2j)

m

))
.(17)

Let us rewrite the first two terms in brackets, using the fact that r1(
iαπ
m

) =
r−1

2 ( iαπ
m

), as(
B−1 + rn

1

(
iαπ

m

))(
1 + Brn

2

(
iαπ

m

))

=
(
B−1/2r

−n/2
1

(
iαπ

m

)
+ B1/2r

n/2
1

(
iαπ

m

))
(18)

×
(
B−1/2r

−n/2
2

(
iαπ

m

)
+ B1/2r

n/2
2

(
iαπ

m

))

= 4 cosh
(

log
(
B1/2r

n/2
1

(
iαπ

m

)))
cosh

(
log

(
B1/2r

n/2
2

(
iαπ

m

)))

and note that

lim
n,m→∞

n/(
√

3m)→ρ

4 cosh
(

log
(
B1/2r

n/2
1

(
iαπ

m

)))
cosh

(
log

(
B1/2r

n/2
2

(
iαπ

m

)))

= 4 cos
(

π(αρ − iβ)

2

)
cos

(
π(αρ + iβ)

2

)

= (2 cos(ζ̄ ))(2 cos(ζ )).

For the other terms of (16), we use the same arguments as for Z
(11)
m,n (α,β) and

obtain:
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COROLLARY 16. In the joint limit m,n → ∞, n√
3m

→ ρ,

(−1)mnZ
(01)
m,n (α,β)

�1
m,n(α)�2

m,n(α)
= q−1/2ϑ2(ζ, q)ϑ2(ζ̄ , q)

P (q)2 + o(1),

where

�1
m,n(α) =

(
(m−1)/2�∏
j=1

r1

(
(iα + 2j)π

m

))n

,

�2
m,n(α) =

(
m/2�∏
j=1

r2

(
π(iα − 2j)

m

))n

.

4.4. Computations for Z
(00)
m,n (α,β). Computations are similar to those for

Z
(01)
m,n (α,β). The analog of (18) is, in this case,(

B−1 − rn
1

(
iαπ

m

))(
1 − Brn

2

(
iαπ

m

))

= 4 sinh
(

log
(
B1/2r

n/2
1

(
iαπ

m

)))
sinh

(
log

(
B1/2r

n/2
2

(
iαπ

m

)))
,

which, in the scaling limit, converges to

4 sinh
(

π(iαρ + β)

2

)
sinh

(
π(−iαρ + β)

2

)

= 4 sin
(

π(αρ − iβ)

2

)
sin

(
π(αρ + iβ)

2

)
= (2 sin(ζ̄ ))(2 sin(ζ )).

As in the case of Z
(10)
m,n , the product over the roots of unity introduces a factor

(−1)m(n−1). An extra factor (−1)m−1 appears since we factor −rk(
π(iα+2j)

m
) when

its modulus is greater than 1, something which occurs exactly 
m−1
2 � + 
m

2 � =
m − 1 times. Thus, we have the following result:

COROLLARY 17. In the joint limit m,n → ∞, n√
3m

→ ρ,

(−1)mnZ
(00)
m,n (α,β)

�1
m,n(α)�2

m,n(α)
= −q−1/2ϑ1(ζ, q)ϑ1(ζ̄ , q)

P (q)2 + o(1).

4.5. Investigation of �i
m,n(α) and �i

m,n(α), and proof of Proposition 8. As
mentioned in “Ideas governing the next steps of the computations” in Section 4.1,
we deal here with that part of each of Z

(11)
m,n (α,β), Z

(10)
m,n (α,β), Z

(01)
m,n (α,β) and

Z
(00)
m,n (α,β) which grows exponentially in mn. Recall that we expect this growth
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rate to be driven by the free energy per fundamental domain f of equation (1).
Proposition 8 below gives precise statements about this by exhibiting the relation
between �1

m,n(α)�2
m,n(α), �1

m,n(α)�2
m,n(α) and �1

m,n(0)�2
m,n(0), and giving the

asymptotic behavior of �1
m,n(0)�2

m,n(0).
Note that the proof of Proposition 8 is completed by combining Corollaries 14,

15, 16, 17 and Proposition 18.

PROPOSITION 18. In the joint limit m,n → ∞, n√
3m

→ ρ,

1. An/3 · �1
m,n(α)�2

m,n(α)

�1
m,n(0)�2

m,n(0)
= eπα2ρ/2 · (1 + o(1));

2. An/3 · (−1)n�1
m,n(α)�2

m,n(α)

�1
m,n(0)�2

m,n(0)
= q1/2 · eπα2ρ/2 · (1 + o(1));

3. �1
m,n(0)�2

m,n(0) = eπρ/6 · e−mnf · (1 + o(1)).

PROOF. Recall the definition of the functions r1(φ) and r2(φ) given in (9).
Recall, also, that there is an ambiguity in the choice of the square root, which
we had clarified on the domain D = {φ ∈ C|−π ≤ Re(φ) ≤ π,−c ≤ Im(φ) ≤ c},
where c is some positive constant smaller than log(4).

For the purpose of proving Proposition 18, we need to extend this clarification
to a domain D′ containing −π ≤ Re(φ) ≤ 3π and small values of Im(φ). On this
new domain, we also want to give a meaning to log(r1(φ)). Hence, we need to
show that we can associate with r1(φ) a well-defined argument in (0,2π).

Recall that r1(φ) is analytic provided that the term in the square root of (9) does
not vanish. This only happens when (Re(φ), Im(φ)) = (0[2π ],− log(4)), so the
function r1 is analytic on

D′ = {φ ∈ C|−π < Re(φ) < 3π,−c′ < Im(φ) < c′},
where c′ is some positive constant smaller than log(4).

Equating the real parts of the two sides of equation (10) yields

Re(r1(φ))

(
1 + 1

|r1(φ)|2
)

= e− Im(φ) cos(Re(φ)) − 2

so that Re(r1(φ)) < 0 on D′. As a consequence, one can associate, without am-
biguity, an argument in (0,2π) [even in (π

2 , 3π
2 )] with r1(φ). We deduce that the

function log(r1) is analytic on D′.
We need one more property of r1: looking at the term in the square root of (9),

we know that r1(φ + 2π) = r2(φ) = 1
r1(φ)

. Therefore,

arg
(
r1(φ + 2π)

)= 2π − arg(r1(φ)).(19)
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Proof of 1. Let us first consider the log of the ratio
�1

m,n(α)�2
m,n(α)

�1
m,n(0)�2

m,n(0)
. Recall that

r2(φ) = r1(φ + 2π) so that one can write

�1
m,n(α)�2

m,n(α) =
(
(m−1)/2�∏

j=0

r1

(
π(iα + 2j + 1)

m

)

×

m/2�−1∏

j=0

r1

(
π(iα + 2m − 2j − 1)

m

))n

=
(

m−1∏
j=0

r1

(
π(iα + 2j + 1)

m

))n

.

It follows that

log
�1

m,n(α)�2
m,n(α)

�1
m,n(0)�2

m,n(0)
= n ·

m−1∑
j=0

(
log r1

(
π(iα + 2j + 1)

m

)
− log r1

(
π(2j + 1)

m

))

= n ·
m−1∑
j=0

(
f1(φj + εα) − f1(φj )

)
,

where f1(φ) = log r1(φ), φj = π(2j+1)
m

and εα = iπα
m

. We know that f1 is analytic
in D′, so we can perform a Taylor expansion. This yields

log
�1

m,n(α)�2
m,n(α)

�1
m,n(0)�2

m,n(0)

= n ·
m−1∑
j=0

(
εαf ′

1(φj ) + ε2
α

2
f ′′

1 (φj ) + O

(
1

m3

))

= iαn

2

(
2π

m

m−1∑
j=0

f ′
1(φj )

)
− α2πn

4m

(
2π

m

m−1∑
j=0

f ′′
1 (φj )

)
+ O

(
n

m2

)
.

For the first term, we have

2π

m

m−1∑
j=0

f ′
1(φj ) =

∫ 2π

0
f ′

1(φ) dφ −
m−1∑
j=0

∫ φj+π/m

φj−π/m

(
f ′

1(φ) − f ′
1(φj )

)
dφ

= f1(2π) − f1(0) −
m−1∑
j=0

∫ φj+π/m

φj−π/m
f ′′

1 (φj )(φ − φj ) dφ + O

(
1

m2

)

= f1(2π) − f1(0) + O

(
1

m2

)
.
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For the second term,

2π

m

m−1∑
j=0

f ′′
1 (φj ) =

∫ 2π

0
f ′′

1 (φ) dφ + O

(
1

m2

)
= f ′

1(2π) − f ′
1(0) + O

(
1

m2

)
.

Recombining the different terms gives

log
�1

m,n(α)�2
m,n(α)

�1
m,n(0)�2

m,n(0)
= iαn

2

(
f1(2π) − f1(0)

)

− α2πn

4m

(
f ′

1(2π) − f ′
1(0)

)+ O

(
n

m2

)
,

where f1(2π) = 4iπ
3 , f1(0) = 2iπ

3 , f ′
1(2π) = − 1√

3
, f ′

1(0) = 1√
3
.

Hence,

log
�1

m,n(α)�2
m,n(α)

�1
m,n(0)�2

m,n(0)
= −n

3
logA + α2πρ

2
+ O

(
n

m2

)
,

which proves part 1.
Proof of 2. To prove part 2, it suffices to show that limn,m→∞

n/(
√

3m)→ρ

(−1)n�1
m,n(α)

× �2
m,n(α)/�1

m,n(α)�2
m,n(α) = q−1/2 = eπρ/2. We write �1

m,n(α)�2
m,n(α) as a

unique product:

�1
m,n(α)�2

m,n(α)

=
(
(m−1)/2�∏

j=1

r1

(
π(iα + 2j)

m

) 
m/2�∏
j=1

r1

(
π(iα + 2m − 2j)

m

))n

=
(

m−1∏
j=1

r1

(
π(iα + 2j)

m

))n

=
(

m−1∏
j=1

√
r1

(
π(iα + 2j)

m

)2)n

(20)

=
(√

r1

(
π(iα + 2)

m

)
r1

(
π(iα + 2(m − 1))

m

)

×
m−2∏
j=1

√
r1

(
π(iα + 2j)

m

)
r1

(
π(iα + 2(j + 1))

m

))n

.

The first two terms of the last line consist of the first and last terms of the product
(20), while the product over j contains the terms of (20) grouped in pairs, starting
from the second one.

From equation (19), we know that r1(φ)r1(φ + 2π) = 1 and arg(r1(φ)r1(φ +
2π)) = 2π . In particular, we deduce that√

r1

(
π(iα)

m

)
r1

(
π(iα + 2m)

m

)
= −1.
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Therefore,

�1
m,n(α)�2

m,n(α) = (−1)n

(
m−1∏
j=0

√
r1

(
π(iα + 2j)

m

)
r1

(
π(iα + 2(j + 1))

m

))n

.

Let us consider the log of the ratio
�1

m,n(α)�2
m,n(α)

(−1)n�1
m,n(α)�2

m,n(α)
. It can be rewritten as

log
�1

m,n(α)�2
m,n(α)

(−1)n�1
m,n(α)�2

m,n(α)

= −n ·
m/2−1∑
j=0

1

2

(
f1

(
π(iα + 2j)

m

)
− 2f1

(
π(iα + 2j + 1)

m

)

+ f1

(
π(iα + 2j + 2)

m

))
.

Since the function f1 is analytic in D′, a Taylor expansion yields

log
�1

m,n(α)�2
m,n(α)

(−1)n�1
m,n(α)�2

m,n(α)
= −nπ

4m
·
(

2π

m

)m−1∑
j=0

f ′′
1

(
π(2j + 1)

m

)
+ O

(
n

m2

)

= −nπ

4m

∫ 2π

0
f ′′

1 (φ) dφ + O

(
n

m2

)

= −nπ

4m

(
f ′

1(2π) − f ′
1(0)

)+ O

(
n

m2

)
.

Hence,

log
�1

m,n(α)�2
m,n(α)

(−1)n�1
m,n(α)�2

m,n(α)
= −nπ

4m

(
f ′

1(2π) − f ′
1(0)

)+ O

(
n

m2

)

= nπ

2
√

3m
+ O

(
n

m2

)
= ρπ

2
+ O

(
n

m2

)
,

which proves part 2.
Proof of 3. Recalling the definition of the free energy per fundamental domain f

given in equation (1), let us integrate it explicitly over ψ :

f = − 1

4π2

∫ 2π

0

∫ 2π

0
log

(
2(cosψ + 1) − eiφ)dφ dψ

= − 1

2π2

∫ 2π

0

∫ π

0
log |2(cosψ + 1) − eiφ|dφ dψ (by symmetry)

= − 1

2π2

[∫ π

0

∫ 2π

0
log |eiψ − r1(φ)|dψ dφ +

∫ π

0

∫ 2π

0
log |eiψ − r2(φ)|dψ dφ

]
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= − 1

π

∫ π

0
log |r1(φ)|dφ = 1

2π

[∫ π

0
log r1(φ) dφ +

∫ π

0
log r2(−φ)dφ

]

= − 1

2π

∫ 2π

0
f1(φ) dφ,

where, in the fourth line, we have used the identity

1

2π

∫ 2π

0
log |t + seiψ |dψ =

{
log |t |, if |t | ≥ |s|,
log |s|, if |s| > |t |.

Let us now consider the logarithm of �1
m,n(0)�2

m,n(0):

log�1
m,n(0)�2

m,n(0)

= n ·
m−1∑
j=0

f1(φj )

= mn

2π

[∫ 2π

0
f1(φ) dφ +

m−1∑
j=0

∫ φj+π/m

φj−π/m

(
f1(φj ) − f1(φ)

)
dφ

]

= mn

[
1

2π

∫ 2π

0
f1(φ) dφ

]

− πn

12m

(
f ′

1(2π) − f ′
1(0)

)+ O

(
n

m3

)
,

by the Euler–McLaurin formula. Hence, we deduce that

log�1
m,n(0)�2

m,n(0) = −mn · f + π

6
ρ + O

(
n

m3

)
. �
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