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UPPER BOUND ON THE DISCONNECTION TIME OF DISCRETE
CYLINDERS AND RANDOM INTERLACEMENTS

BY ALAIN-SOL SZNITMAN

ETH Zürich

We study the asymptotic behavior for large N of the disconnection time
TN of a simple random walk on the discrete cylinder (Z/NZ)d × Z, when
d ≥ 2. We explore its connection with the model of random interlacements on
Zd+1 recently introduced in [Ann. Math., in press], and specifically with the
percolative properties of the vacant set left by random interlacements. As an
application we show that in the large N limit the tail of TN/N2d is dominated
by the tail of the first time when the supremum over the space variable of the
Brownian local times reaches a certain critical value. As a by-product, we
prove the tightness of the laws of TN/N2d , when d ≥ 2.

0. Introduction. The present article derives an upper bound on the disconnec-
tion time TN of a discrete cylinder with base a d-dimensional torus of large side-
length N . It explores some of the connections of this question with the percola-
tive properties of the model of random interlacements recently introduced in [12].
A variety of results concerning the disconnection time by simple random walk of
discrete cylinders with various large bases has been obtained; cf. [3, 4] and [11]. In
particular, it appears that with broad generality the disconnection time has a rough
order of magnitude comparable to the square of the number of points in the base.
In all the above quoted references upper bounds on the disconnection time hinge
on the fact that once the walk has covered the “zero level” of the cylinder, dis-
connection has occurred. This causes the appearance in the resulting upper bounds
of spurious factors involving some power of the logarithm of the cardinality of
the base. The present work departs from this approach and builds on the results
of [12] concerning percolation for the vacant set left by random interlacements.
Notably, we show here that when d ≥ 2, the laws of TN/N2d are tight. Together
with the results of [4], this implies that when d is sufficiently large, that is, d ≥ 17,
TN “lives in scale N2d .” Moreover, this work leads to a natural guess concerning
the convergence and characterization of the limit of the distributions of TN/N2d

in terms of Brownian local times.
Before discussing these matters any further, let us first present the model more

precisely. For d ≥ 2 and N ≥ 1 we consider the discrete cylinder

E = T × Z where T = (Z/NZ)d .(0.1)
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A finite subset S ⊆ E is said to disconnect E if for large M , T × [M,∞) and
T × (−∞,−M] are contained in distinct connected components of E \ S. For x

in E we denote with Px the canonical law on EN of a simple random walk on E

starting at x, and write Ex for the corresponding expectation. We let X· = (Y·,Z·)
stand for the canonical process with Y· and Z· its respective T- and Z-components.
A key object of interest in this article is the disconnection time

TN = inf
{
n ≥ 0;X[0,n] disconnects E

}
.(0.2)

We write ρk , k ≥ 0, for the times of successive displacements of the “vertical”
component Z· of X·, that is, ρ0 = 0 and ρk = inf{n > ρk−1; Zn �= Zρk−1}, for
k ≥ 1, as well as Ẑ· for the time changed process

Ẑk = Zρk
, k ≥ 0,(0.3)

which is distributed as a one-dimensional simple random walk. The local time of Ẑ

is defined as

L̂z
k = ∑

0≤m<k

1{Ẑm = z} with k ≥ 0, z ∈ Z.(0.4)

We also consider γ z
v , the first time when the number of distinct visits of the walk

X to T × {z}, the “level z” in the cylinder, reaches an amount v:

γ z
v = inf{ρk;k ≥ 0 and L̂z

k ≥ v} with v ≥ 0, z ∈ Z.(0.5)

A further ingredient is the so-called random interlacement at level u ≥ 0, intro-
duced in [12]. It is the trace left on Zd+1 (here d + 1, with d ≥ 2, plays the role
of d ≥ 3 in [12]) by a cloud of paths constituting a Poisson point process in the
space of doubly infinite trajectories modulo time-shift, tending to infinity at posi-
tive and negative infinite times. We refer to Section 1 for precise definitions. The
nonnegative parameter u is in essence a multiplicative factor of the intensity mea-
sure of this point process. In a standard fashion one constructs on the same space
(�,A,P) [see (1.25) and below (1.26)] the family I u, u ≥ 0, of random interlace-
ments at level u; see (1.32). They are the traces on Zd+1 of the cloud of trajectories
modulo time-shift, “up to level u.” The random subsets I u increase with u and for
u > 0, they are infinite random connected subsets of Zd+1, ergodic under space
translations; cf. Theorem 2.1, and Corollary 2.3 of [12]. The complement of I u,
denoted by Vu, is the so-called vacant set at level u; see (1.34). An important role
is played here by the critical parameter

u∗∗ = inf{u ≥ 0, α(u) > 0} with
(0.6)

α(u) = sup
{
α ≥ 0, lim

L→∞LαP[B(0,L)
Vu←→ S(0,2L)] = 0

}
for u ≥ 0,

where the supremum is by convention 0 if the set in the second line of (0.6) is

empty, and {B(0,L)
Vu←→ S(0,2L)} denotes the event where there is a nearest
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neighbor path in Vu starting in B(0,L), the closed ball of radius L and center 0
for the �∞-distance, and ending in S(0,2L), the �∞-sphere with radius 2L and
center 0. We show in Lemma 1.4 that, for all d ≥ 2,

u∗ ≤ u∗∗ < ∞,(0.7)

where u∗ is the critical parameter introduced in [12], such that P-a.s. Vu has an
infinite connected component, that is, percolates, when u < u∗, and only finite
components when u > u∗. Among the key results of [12] are the facts that when
d ≥ 2, u∗ < ∞ (cf. Theorem 3.5 of [12]) and u∗ > 0, at least when d ≥ 6 (cf.
Theorem 4.3 of [12]; we recall that here d + 1 plays the role of d in [12]). This
has later been extended to all d ≥ 2 in Theorem 3.4 of [10]. It is a natural question
whether actually u∗ = u∗∗.

The main results of this article relate TN to u∗∗. Specifically, we show in Theo-
rem 4.1 that, when d ≥ 2,

lim
N

P0

[
TN > inf

z∈Z
γ z

(Nd/(d+1))u

]
= 0 when u > u∗∗.(0.8)

Loosely speaking, this says that, given u > u∗∗, when N is large, once the number
of distinct visits of the walk to some level T × {z} of the cylinder exceeds Nd

(d+1)
u,

then typically disconnection must have occurred. This result has some similar fla-
vor to [13], where the trace left by random walk in the neighborhood of points of
the cylinder by times of order N2d is compared to random interlacements. As a
consequence of the key property (0.8), we show in Corollary 4.6 that

lim
N

P0[TN ≥ sN2d ] ≤ W

[
ζ

(
u∗∗√
d + 1

)
≥ s

]
for all s > 0,(0.9)

where W stands for the Wiener measure and

ζ(u) = inf
{
t ≥ 0; sup

v∈R

L(v, t) ≥ u
}

for u ≥ 0,(0.10)

with L(v, t) a jointly continuous version of the local time of the canonical Brown-
ian motion. In particular, this shows that the laws of TN/N2d under P0 are tight.
With the results of [4], it also proves that when d is large, that is, d ≥ 17,

the laws on (0,∞) of TN/N2d under P0, with N ≥ 2, are tight,(0.11)

that is, “TN lives in scale N2d .” It is natural to wonder whether more than (0.9)

holds and TN/N2d actually converges in distribution toward ζ( u∗∗√
d+1

)
law= u2∗∗

d+1ζ(1);
see Remark 4.7 (and a related question whether u∗ = u∗∗). Let us also mention
that, thanks to the works [1] and [5], the Laplace transform of ζ(u) is known and
can be expressed as

EW [
e−θ2/2ζ(u)] = θu

[sinh(θu/2)]2

I1(θu/2)

I0(θu/2)
for θ,u > 0,(0.12)

with Iν the modified Bessel function of index ν.
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We will now briefly sketch the strategy of the proof of the main Theorem 4.1.
The rough idea we use in order to show (0.8) is that once sufficiently many dis-
tinct visits of a given level z of the cylinder have taken place, that is, more than
Nd

d+1(u∗∗ + δ) distinct visits, then the trace left by the walk in a box with center at
level z and side-length N1−ε , where ε can be chosen arbitrarily small, dominates
the trace left by random interlacements at level u∗∗ +δ′ in such a box, where 0 < δ′
(= δ

8) < δ. With a straightforward covering argument and the definition of the crit-
ical exponent u∗∗ [cf. (0.6)], one finds by adjusting parameters that the probability
of existence of a nearest neighbor path in the cylinder between levels z − N1−ε

and z + N1−ε , avoiding the trajectory of the walk, tends to 0 as N goes to infinity.
In order to take care of the infimum over z which appears in (0.8), the above rough
scheme is combined with an argument relying on the spatial regularity of the local
time of the simple random walk Ẑ. It enables us to simply consider a large but fi-
nite number of levels, regularly spaced at heights which differ by a small multiple
of Nd .

The above-mentioned scheme crucially involves a stochastic domination argu-
ment; see, in particular, Proposition 4.2 and its proof. Its implementation goes
through several steps. It begins with the extraction of excursions of the walk, which
roughly correspond to successive returns to the box B(z) = T × [z − N,z + N ]
and departures from the box B̃(z) = T × (z − hN, z + hN), where the height
hN = [N(logN)2] is large enough so that the T-component of the walk has time
to homogenize between various excursions of the walk. There is, however, a spe-
cial recipe in the precise specification of the excursions [cf. (2.2)], and it plays an
important role. With the coupling techniques developed in Proposition 2.2, we are
able to replace the true excursions of the walk with a collection of i.i.d. excursions
for which the starting point is uniformly distributed on the union of the two levels
T × {z + N} and T × {z − N}, and the path otherwise evolves as a simple random
walk on E stopped when exiting B̃(z). The specific choice of this starting distrib-
ution leads to a key identity for the entrance law of the excursion in a subset A of
T × (z − N,z + N) ⊆ B(z); see Lemma 1.1.

Via a Poissonization argument, the above mentioned identity induces a very
handy comparison of the trace left by a Poisson number of i.i.d. excursions in a
box of E with center in T × {z} and size N1−ε , and the trace left in a box of the
same size by trajectories of a random interlacement at a suitably calibrated level u,
when the trajectories entering the box are stopped once they leave a concentric box
of side-length N

2 ; see (4.22). To handle the truncation involved in stopping trajec-
tories, we use Theorem 3.1, which shows that in essence the trace of the truncated
trajectories in the box of size N1−ε dominates the untruncated trace in the same
box of a random interlacement at a slightly lower level u′ (which in the applica-
tion in Section 4 can be chosen equal to u∗∗ + δ

8 ). The important Theorem 3.1
solely pertains to the model of random interlacements. Its proof uses a “sprinkling
technique” with a similar flavor to some of the arguments employed in Section 3
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of [12], when showing that u∗ < ∞. These are some of the main ingredients en-
tering the proof of Theorem 4.1.

Let us now describe how the article is organized.
In Section 1 we introduce further notation and recall various useful facts con-

cerning random walks and random interlacements. The key identity of the en-
trance law in sets interior to B(z) of the specially tailored excursions appears in
Lemma 1.1. The finiteness of u∗∗ is shown in Lemma 1.4.

In Section 2 we develop the coupling technique, which enables us to work with
i.i.d. excursions in the sequel. The main result appears in Proposition 2.2.

In Section 3 we develop the sprinkling technique which shows that the trace left
in a box of size of order N1−ε by trajectories of an interlacement at level u stopped
when exiting a concentric box of side-length N

2 , in essence dominates the trace left
in the box of size of order N1−ε by an interlacement at a slightly lower level u′.
The main result is Theorem 3.1.

In Section 4 we prove the key statement (0.8) in Theorem 4.1, and its con-
sequence (0.9) in Corollary 4.6. The proof of Theorem 4.1 is split into Proposi-
tion 4.2, where the key domination argument shows that once at a given level z in
the cylinder, sufficiently many distinct visits have occurred, then with high proba-
bility disconnection of the cylinder has taken place, and into Proposition 4.3, where
the spatial regularity of the local time of Ẑ is used to replace the infimum over all
levels z, which appears in (0.8), with an infimum over a large but finite number of
levels.

Finally the convention concerning constants we use in the text is the following.
Throughout c or c′ denote positive constants, which solely depend on d , with val-
ues changing from place to place. The numbered constants c0, c1, . . . are fixed and
refer to the value at their first appearance in the text. Dependance of constants on
additional parameters appears in the notation, for instance, c(ε) denotes a positive
constant depending on d and ε.

1. Notation and some useful properties. In this section we introduce ad-
ditional notation and present some useful results concerning random walks and
random interlacements. In particular, the key identity for the hitting distribution of
the excursions of the walk on the cylinder appears in Lemma 1.1, and the proof of
the finiteness of the critical value u∗∗ of (0.6) is presented in Lemma 1.4.

We write N = {0,1,2, . . .} for the set of natural numbers. Given a nonnegative
real number a, we write [a] for the integer part of a. We let | · | and | · |∞, respec-
tively, stand for the Euclidean and �∞-distances on Zd+1 or for the corresponding
distances induced on E. Throughout the article we assume d ≥ 2. We say that two
points of Zd+1 or E are neighbors if their | · |-distance equals 1. With B(x, r)

and S(x, r) we denote the closed | · |∞-ball and | · |∞-sphere with radius r ≥ 0
and center x in Zd+1 or E. For A,B subsets of Zd+1 or E we write A + B for
the set of elements x + y with x in A and y in B , and d(A,B) = inf{|x − y|∞;
x ∈ A,y ∈ B} for the mutual �∞-distance of A and B; when A = {x} is a singleton
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we write d(x,B) for simplicity. We also write U ⊂⊂ Zd+1 or U ⊂⊂ E to indicate
that U is a finite subset of Zd+1 or E. Given U subset of Zd+1 or E, we denote
with |U | the cardinality of U , with ∂U the boundary of U and ∂intU the interior
boundary of U :

∂U = {x ∈ Uc; ∃x′ ∈ U, |x − x′| = 1},
(1.1)

∂intU = {x ∈ U ; ∃x′ ∈ Uc, |x − x′| = 1}.
The canonical shift on EN is denoted with (θn)n≥0, that is, θn stands for the map
from EN into EN such that (θnw)(·) = w(·+n) for w ∈ EN, and we write (Fn)n≥0
for the canonical filtration. Given a subset U of E, we denote with HU, H̃U and
TU the entrance time, the hitting time of U and the exit time from U :

HU = inf{n ≥ 0;Xn ∈ U}, H̃U = inf{n ≥ 1;Xn ∈ U},
(1.2)

TU = inf{n ≥ 0;Xn /∈ U}.
In the case of a singleton U = {x}, we simply write Hx or H̃x . We denote with
P Zd+1

x the canonical law of a simple random walk on Zd+1 starting at x and with

EZd+1

x the corresponding expectation. We otherwise keep the same notation as for
the walk on E concerning the canonical process, the canonical shift and other
natural objects such as in (1.2).

Given K ⊂⊂ Zd+1 and U ⊇ K , the equilibrium measure and capacity of K

relative to U are defined by

eK,U (x) =
{

P Zd+1

x [H̃K > TU ], for x ∈ K ,
0, for x /∈ K ,

(1.3)

and

capU(K) = ∑
x∈K

eK,U (x) [note that capU(K) ≤ |K|].(1.4)

The Green function of the walk killed outside U is defined as

gU(x, x′) = EZd+1

x

[∑
n≥0

1{Xn = x′, n < TU }
]

for x, x′ ∈ Zd+1.(1.5)

When U = Zd+1, we drop U from the notation in (1.3)–(1.5). The Green function
is symmetric in its two variables and the probability to enter K before exiting U

can be expressed as

P Zd+1

x [HK < TU ] = ∑
x′∈Zd+1

gU(x, x′)eK,U (x′) for x ∈ Zd+1.(1.6)

One also has the bounds∑
x′∈K

gU(x, x′)
/

sup
y∈K

∑
x′∈K

gU(y, x′) ≤ P Zd+1

x [HK < TU ]
(1.7)

≤ ∑
x′∈K

gU(x, x′)
/

inf
y∈K

∑
x′∈K

gU(y, x′).
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These inequalities, for instance, follow from the L1(P Zd+1

x )-convergence of the
bounded martingale Mn = ∑

x′∈K gU(Xn∧HK∧TU
, x′), n ≥ 0, toward 1{HK <

TU }∑
x′∈K gU(XHK

, x′).
In the case of the discrete cylinder E, when U � E is a strict subset of E, we

define the corresponding objects just as in (1.3)–(1.5) with Px and Ex in place of
P Zd+1

x and EZd+1

x . We then have a similar identity and bounds as in (1.6) and (1.7).
We will sometimes find it useful to consider the continuous time random walks

X·, Y · and Z· on E, T and Z with respective jump rates equal to 2(d +1),2d and 2.
We denote (with some abuse of notation) by Px , P T

y and P Z
z the corresponding

canonical laws starting at x ∈ E, y ∈ T and z ∈ Z. We otherwise use notation
such as (θ t )t≥0, (F t )t≥0 or HU to refer to the natural continuous time objects.
The continuous time walks are convenient because, on the one hand, the discrete
skeleton of X· is distributed as the discrete time walk X· and, on the other hand,
for x = (y, z) ∈ E,

under P T
y × P Z

z , (Y ·,Z·) has the canonical law Px governing X·.(1.8)

One should, however, note that the discrete time processes Y and Z, respective
T- and Z-projections of X [cf. (0.2) above], are not distributed as the discrete
skeletons of Y and Z; indeed, they need not jump at each integer time.

As mentioned in the Introduction, we will consider certain concentric boxes in
the cylinder E and certain excursions of the walk related to these boxes. More
precisely, we introduce the height scales

rN = N < hN = [
N

(
2 + (logN)2)]

(1.9)

as well as the boxes in E centered at level z ∈ Z,

B(z) = T × (z + I ) ⊆ B̃(z) = T × (z + Ĩ ),
(1.10)

where I = [−rN, rN ] and Ĩ = (−hN,hN).

When z = 0, we simply write B and B̃ . We also introduce the probability q which
is the equidistribution on the union of levels rN , and −rN in E:

q = 1

2Nd

∑
x∈T×{−rN ,rN }

δx.(1.11)

We now come to an identity which will be applied to the entrance distribution in
subsets of B \ ∂intB prior to exit from B̃ for the walk in E with starting distrib-
ution q . This identity plays a crucial role in comparing the trace left by the walk
in the neighborhood of points of B away from ∂intB , with random interlacements.
For the sake of clarity, we state the result in a slightly more general form than
needed. We consider

ã > a > b > b̃ in Z
(1.12)

with
a + b

2
= ã + b̃

2
,2h = ã − b̃,2r = a − b,
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so h + r and h − r are integers, but h and r are possibly half-integers. We then
define the probability

qa,b = 1

2Nd

∑
x∈T×{a,b}

δx.(1.13)

For a measure μ on E we write Pμ in place of
∑

x∈E μ(x)Px . We can now state
the following.

LEMMA 1.1 (N ≥ 3). If U = T × (b̃, ã), one then has∑
x′∈E

qa,b(x
′)gU(x′, x) = (d + 1)

(h − r)

Nd
for all x ∈ T × [b, a].(1.14)

Moreover, for K ⊆ T × (b, a) one also has

Pqa,b
[XHK

= x,HK < TU ] = (d + 1)
(h − r)

Nd
eK,U (x) for x ∈ K.(1.15)

PROOF. We begin with the proof of (1.14). With the help of the continuous
time process X· and the symmetry of gU(·, ·), we can write for x = (y, z) ∈ T ×
[b, a] ∑

x′∈E

qa,b(x
′)gU(x′, x)

= ∑
x′∈E

qa,b(x
′)gU(x, x′)

= ∑
x′∈E

qa,b(x
′)2(d + 1)Ex

[∫ TU

0
1{Xt = x′}dt

]

(1.8), (1.13)= ∑
y′∈T

(d + 1)

Nd
ET

y

(1.16)

× EZ
z

[∫ ∞
0

1{Y t = y′}1{
Zt = a,T (b̃,̃a) > t

}
dt

+
∫ ∞

0
1{Y t = y′}1{

Zt = b,T (b̃,̃a) > t
}
dt

]

= (d + 1)

Nd

(
EZ

z

[∫ T (b̃,̃a)

0
1{Zt = a}dt

]
+ EZ

z

[∫ T (b̃,̃a)

0
1{Zt = b}dt

])

= (d + 1)

2Nd

(
P Z

z [Ha < T(b̃,̃a)]
P Z

a [H̃a > T(b̃,̃a)]
+ P Z

z [Hb < T(b̃,̃a)]
P Z

b [H̃b > T(b̃,̃a)]
)
,

using again the link between the continuous time and discrete walk, as well as a
classical identity for the Green function of the discrete walk in the last step. Using
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symmetry around a+b
2 = ã+b̃

2 , we see that

P Z
a

[
H̃a > T(b̃,̃a)

] = P Z
b

[
H̃b > T(b̃,̃a)

] = 1
2(h − r)−1 + 1

2(h + r)−1.(1.17)

Moreover, we also have

P Z
z

[
Ha < T(b̃,̃a)

] + P Z
z

[
Hb < T(b̃,̃a)

] = z − b̃

h + r
+ ã − z

h + r
= 2h

h + r
.(1.18)

Inserting these identities in the last line of (1.16), we find that

∑
x′∈E

qa,b(x
′)gU(x′, x) = (d + 1)

2Nd

[
1

2
(h − r)−1 + 1

2
(h + r)−1

]−1 2h

h + r

= (d + 1)

Nd
(h − r).

This proves (1.14).
We now turn to the proof of (1.15). For x ∈ K(⊆ T × (b, a)) we have

Pqa,b
[XHK

= x,HK < TU ]
= ∑

n≥1

Pqa,b
[Xn = x,n = TU\K ]

(1.19)
= ∑

n≥1

Pqa,b
[TU\K > n − 1,X1 ◦ θn−1 = x]

Markov= ∑
x′∈E

∑
x′′ : |x′′−x|=1

qa,b(x
′)gU\K(x′, x′′) 1

2(d + 1)
.

Note that for x′, x′′ in E, the application of the strong Markov property at time HK

in the formula corresponding to (1.5) yields that

gU(x′′, x′) = gU\K(x′′, x′) + Ex′′ [HK < TU,gU(XHK
, x′)].(1.20)

Coming back to the last line of (1.19), using the symmetry of the Green functions
as well as (1.14), we see that for x′′ ∈ T × [b, a]∑

x′∈E

qa,b(x
′)gU\K(x′, x′′) = (d + 1)

(h − r)

Nd
(1 − Px′′ [HK < TU ])

(1.21)

= (d + 1)
(h − r)

Nd
Px′′ [HK > TU ].

Inserting this identity in the last line of (1.19), we find after the application of the
Markov property at time 1 that

Pqa,b
[XHK

= x,HK < TU ] = (d + 1)
(h − r)

Nd
Px[H̃K > TU ]

(1.22)
for x ∈ K,

and this proves (1.15). �
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REMARK 1.2. In what follows the above lemma will be applied to the special
case ã = hN , b̃ = −hN , a = rN , b = −rN [see (1.9)], so that qa,b = q in (1.11),
and U = T × (b̃, ã) = B̃; see below (1.10). If one considers the time of the last
visit to K ⊆ B̃ of the walk prior to the exit from B̃ ,

LB̃
K = sup{n ≥ 0,Xn ∈ K,n < TB̃},

where the supremum is by convention equal to −1, when the set in parenthesis
is empty, an application of the simple Markov property classically yields that, for
x ∈ K ,

Pq[XLB̃
K

= x,HK < TB̃] = ∑
x′∈E

q(x′)gB̃(x′, x)Px[H̃K > TB̃]
(1.23)

= ∑
x′∈E

q(x′)gB̃(x′, x)eK,B̃(x).

When K ⊆ B \ ∂intB = T × (−rN, rN), Lemma 1.1 shows that this expression re-
mains the same when LB̃

K is replaced with HK . In fact, for any nearest neighbor
B̃-valued path τ(n), 0 ≤ n ≤ Nτ , having its starting point xs = τ(0) and its end-
point xe = τ(Nτ ) in the support of eK,B̃(·), one has, with the help of (1.15) and
the strong Markov property,

Pq[HK < TB̃, (XHK+·)0≤·≤LB̃
K−HK

= τ ]

= (d + 1)
(hN − rN)

Nd
eK,B̃(xs)(1.24)

× Pxs [Xn = τ(n),0 ≤ n ≤ Nτ ]eK,B̃(xe).

This identity has a strong flavor of (1.29) below and underlies the link between ex-
cursions with entrance distribution q on the cylinder E and random interlacements
on Zd+1. This will play a crucial role in Section 4.

We now recall some notation and results from [12] concerning random inter-
lacements. We denote with W the space of doubly infinite nearest neighbor Zd+1-
valued trajectories which tend to infinity at positive and negative infinite times, and
with W ∗ the space of equivalence classes of trajectories in W modulo time-shift.
The canonical projection from W onto W ∗ is denoted by π∗. We endow W with
its canonical σ -algebra W and denote by Xn,n ∈ Z, the canonical coordinates.

We endow W ∗ with W∗ = {A ⊆ W ∗; (π∗)−1(A) ∈ W}, the largest σ -algebra
on W ∗ for which π∗ : (W,W) → (W ∗,W∗) is measurable. We also consider W+
the space of nearest neighbor Zd+1-valued trajectories defined for nonnegative
times and tending to infinity. We denote with W+ and Xn,n ≥ 0, the canonical
σ -algebra and the canonical process. Since d ≥ 2, the simple random walk (on
Zd+1) is transient and W+ has full measure for any P Zd+1

x , x ∈ Zd+1 [see above
(1.3)], and we view whenever convenient the law of simple random walk on Zd+1
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starting from x as a probability on (W+,W+). We consider the space of point
measures on W ∗ × R+:

� =
{
ω = ∑

i≥0

δ(w∗
i ,ui ), with (w∗

i , ui) ∈ W ∗ × R+, i ≥ 0, and

(1.25)

ω(W ∗
K × [0, u]) < ∞, for any K ⊂⊂ Zd+1, u ≥ 0

}
,

where for K ⊂⊂ Zd+1, W ∗
K ⊆ W ∗ is the subset of trajectories modulo time-shift

which enter K ,

W ∗
K = π∗(WK) and WK = {w ∈ W ; for some n ∈ Z,Xn(w) ∈ K}.(1.26)

We endow � with the σ -algebra A generated by the evaluation maps ω → ω(D),
where D runs over the product σ -algebra W∗ × B(R+). We denote with P

the probability on (�,A) which is the Poisson point measure with intensity
ν(dw∗) du, giving finite mass to the sets W ∗

K × [0, u], for K ⊂⊂ Zd+1, u ≥ 0,
where ν is the unique σ -finite measure on (W ∗,W∗) such that, for any K ⊂⊂
Zd+1 (cf. Theorem 1.1 of [12]),

1W ∗
K
ν = π∗ ◦ QK(1.27)

with QK the finite measure on W 0
K , the subset of WK of trajectories which enter K

for the first time at time 0, such that, for A,B in W+, x ∈ Zd+1

QK [(X−n)n≥0 ∈ A,X0 = x, (Xn)n≥0 ∈ B]
(1.28)

= P Zd+1

x [A|H̃K = ∞]eK(x)P Zd+1

x [B],
where we recall eK(·) stands for the equilibrium measure of K ; cf. (1.3) and be-
low (1.5).

REMARK 1.3. It is also shown in Theorem 1.1 of [12] that, for A,B ∈ W+,
LK(w) the time of the last visit of K by the trajectory w ∈ W 0

K , and τ(n), 0 ≤ n ≤
Nτ , a finite nearest neighbor trajectory on Zd+1 with starting point xs = τ(0) and
endpoint xe = τ(Nτ ), both in the support of eK(⊆ ∂intK),

QK [(X−n)n≥0 ∈ A, (X·)0≤·≤LK
= τ, (Xn+LK

)n≥0 ∈ B]
= P Zd+1

xs
[A|H̃K = ∞]eK(xs)P

Zd+1

xs
[Xn = τn,0 ≤ n ≤ Nτ ](1.29)

× eK(xe)P
Zd+1

xe
[B|H̃K = ∞].

In the case A = B = W+ the above formula has a very similar flavor to (1.24).
It is also shown in Theorem 1.1 of [12] that ν is invariant under time reversal of
trajectories in W ∗ and under translation of trajectories by a constant vector.



1726 A.-S. SZNITMAN

Given K ⊂⊂ Zd+1, u ≥ 0, one further defines on (�,A) the random point
process with state space the set of finite point measures on (W+,W+):

μK,u(ω) = ∑
i≥0

δ(w∗
i )K,+1{w∗

i ∈ W ∗
K,ui ≤ u} for ω = ∑

i≥0

δ(w∗
i ,ui ),(1.30)

where (w∗)K,+ stands for the trajectory in W+ which follows step by step w∗ ∈
W ∗

K from the time it first enters K . One then has the fact that (cf. Proposition 1.3
of [12]), for K ⊂⊂ Zd+1, u ≥ 0,

μK,u is a Poisson point process on (W+,W+) with intensity measure
uP Zd+1

eK
,

(1.31)

where the notation is similar to below (1.13).
Given ω ∈ �, the interlacement at level u ≥ 0 is the subset of Zd+1:

I u(ω) = ⋃
ui≤u

range(w∗
i ) if ω = ∑

i≥0

δ(w∗
i ,ui ),(1.32)

where for w∗ ∈ W ∗, range(w∗) = w(Z), for any w ∈ W with π∗(w) = w∗. One
readily sees that

I u(ω) = ⋃
K⊂⊂Zd+1

⋃
w∈SuppμK,u(ω)

w(N).(1.33)

The vacant set at level u is then defined as

Vu(ω) = Zd+1 \ I u(ω) for ω ∈ �,u ≥ 0.(1.34)

One has

P[Vu ⊇ K] = exp{−u cap(K)} for all K ⊂⊂ Zd+1,(1.35)

and this property leads to a characterization of the law Qu on {0,1}Zd+1
of the

random subset Vu; see Remark 2.2 of [12]. As recalled in the Introduction, Qu is
ergodic under spatial translations (cf. Theorem 2.1 of [12]), and for u > 0, I u(ω)

is P-a.s. an infinite connected subset of Zd+1; cf. Corollary 2.3 of [12]. To measure
the percolative properties of Vu, one introduces the nonincreasing function on R+,

η(u) = P[0 belongs to an infinite connected component of Vu],(1.36)

and the critical value

u∗ = inf{u ≥ 0;η(u) = 0} ∈ [0,∞].(1.37)

The main results of [12] show in Theorem 3.5 that Vu does not percolate for large u

and in Theorem 4.3 that, for d ≥ 6 (recall we work here on Zd+1), Vu percolates
for small u, that is,

u∗ < ∞, and for d ≥ 6, u∗ > 0.(1.38)

We will now deduce from the controls derived in [12] the finiteness of the critical
parameter u∗∗ introduced in (0.6).
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LEMMA 1.4.

u∗ ≤ u∗∗ < ∞(1.39)

(it is a natural question whether u∗ = u∗∗, see Remark 1.5 below).

PROOF. The left-hand side inequality is straightforward. Indeed, with similar
notation as in (0.6), if u > u∗∗, then, for L ≥ 1,

η(u) ≤ P[B(0,L)
Vu←→ S(0,2L)](1.40)

and the right-hand side tends to 0 with L from the definition of u∗∗ in (0.6). Hence,
u ≥ u∗, and the left-hand side inequality of (1.39) follows by letting u tend to u∗∗.
We will now prove that u∗∗ is finite. Define for L0 > 1 and a = (100(d + 1))−1

the sequence of length scales

Ln+1 = �nLn where �n = 100[La
n], n ≥ 0.(1.41)

If we now introduce for n ≥ 0

C(n) = [0,Ln)
d+1 ∩ Zd+1 and C̃(n) = ⋃

i

(
iLn + C(n)),(1.42)

where the union is over indexes i in Zd+1 such that d(C(n), iLn + C(n)) ≤ 1, in
the notation from the beginning of this section, then with (3.16), (3.67) and (3.68)
of [12], one can choose L0 and u > 0 such that

P[Au,n] ≤ cL−1
n for all n ≥ 0,

(1.43)
where Au,n = {

C(n) Vu←→ ∂intC̃
(n)}.

When L is large we can find a unique n ≥ 0 such that Ln ≤ L < Ln+1, and we can
cover B(0,L) by at most c�d+1

n possibly overlapping translates of C(n) contained
in B(0,L), with the corresponding translate of C̃(n) included in B(0,2L). As a
result of translation invariance of Qu, we see that, for large L,

P[B(0,L)
Vu←→ B(0,2L)] ≤ c�(d+1)

n P[Au,n] ≤ c�(d+1)
n L−1

n

(1.41)≤ cL−(1−a(d+1))
n

(1.44)
(1.41)≤ cL

−(1−a(d+1))/(1+a)
n+1

≤ cL−(1−a(d+1))/(1+a).

This shows that in the notation of (0.6), α(u) ≥ 1−a(d+1)
1+a

> 0 and, hence, u∗∗ < ∞.
This completes the proof of (1.39). �
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REMARK 1.5. In the case of Bernoulli percolation it is well known that, in
the sub-critical phase, the probability that the origin is connected by an open path
to S(0,L) decays exponentially with L; cf. Theorem 5.4, page 88 of [6]. So far
no quantitative estimate for percolation in the vacant set of random interlacements
showing, for instance, that α(u) > 0 for u > u∗ is known. It is a natural question
whether in fact u∗ = u∗∗.

2. The coupling construction. In this section we introduce in (2.2) excur-
sions of the walk in the cylinder E which take place sometimes during the return
to B(z) and the departure from B̃(z); cf. (1.10). Due to translation invariance,
we will only need to focus on the case z = 0 in the sequel. With the choice of hN

in (1.9), the T-component of the walk has enough time to homogenize between one
excursion and the next. At the beginning of the next excursion the distribution of
the location of the starting point of the path is close to q in (1.11); cf. Lemma 2.1.
This enables us to construct in Proposition 2.2 a coupling of the excursions of
the path with a sequence of i.i.d. excursions with starting distribution q . Although
simpler, this coupling has a similar flavor to what was needed in Section 3 of [13].
It will be very handy when comparing the percolative properties of the vacant set
left by the walk on E with that of the vacant set of random interlacements on Zd+1

in Section 4.
We begin with some notation. Given z ∈ Z, we consider the stopping time σz

which is the first time when the walk visits one of the two levels z ± rN after
reaching level z:

σz = HT×(z+{−rN ,rN }) ◦ θHT×{z} + HT×{z}(2.1)

as well as the successive times

σz
0 = σz, τ z

0 = TB̃(z) ◦ θσz + σz and for k ≥ 0,
(2.2)

σz
k+1 = σz ◦ θτz

k
+ τ z

k , τ z
k+1 = TB̃(z) ◦ θσz

k+1
+ σz

k+1,

so that P0-a.s., 0 < σz
0 < τz

0 < · · · < σz
k < τz

k < · · · < ∞.
When z = 0 we drop the superscript z for simplicity. We begin with the follow-

ing.

LEMMA 2.1 (N ≥ 1). For all x′ /∈ B̃ and x ∈ T × {−rN, rN } one has

|Px′ [Xσ = x] − q(x)| ≤ cN−4d .(2.3)

PROOF. The argument has a similar flavor to what appears in the proof of
Lemma 3.1 of [13]. With (1.8) and the fact that the discrete skeleton of X· is
distributed as X·, we see that the distribution of Xσ under Px′ , for x′ = (y′, z′),
coincides with the distribution of (Y σ ,Zσ ) under P T

y′ ×P Z
z′ , if σ is the first time Z·
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reaches {−rN, rN } after reaching 0. Thus, using reflection of the path after HT×{0},
we see that, for x = (y, rN),

Px′ [Xσ = x] = 1
2Px′ [Yσ = y] = 1

2P T
y′ × P Z

z′ [Yσ = y]
(2.4)

= 1
2EZ

z′ [μy′
σ (y)],

where for t ≥ 0 we have set μ
y′
t (·) = P T

y′ [Y t = ·].
Since σ ≥ H 0, and |z′| ≥ hN > N(logN)2, standard estimates on the displace-

ment of a simple random walk in continuous time on Z (see, for instance, (2.22)
of [11]) show that

P Z
z′ [σ ≤ N2(logN)2] ≤ cN−4d .(2.5)

We thus see coming back to (2.4) and (1.11) that

|Px′ [Xσ = x] − q(x)|
(2.6)

≤ 1
2EZ

z′ [|μy′
σ (y) − N−d |, σ > N2(logN)2] + cN−4d .

Letting λT stand for the spectral gap of the walk Y · on T (cf. (1.8) of [11]),

Lemma 1.1 in [11] states that, for t ≥ tT
def= λ−1

T log(2|T|), one has

|μy′
t (y)Nd − 1| ≤ 1

2 exp{−(t − tT)λT} for t ≥ tT.(2.7)

One can see that λT ≥ cN−2, for N ≥ 2, and, hence, tT ≤ cN2 log(2Nd); see,
for instance, the end of the proof of Lemma 3.1 of [13]. Coming back to (2.6),
we see that, for N ≥ c, the right-hand side is smaller than cN−4d . The case of
x = (y,−rN) is treated analogously and, adjusting constants, this completes the
proof of Lemma 2.1. �

We now come to the coupling construction which is the main object of this
section.

PROPOSITION 2.2 (N ≥ 1). One can construct on an auxiliary probability
space (�̃, Ã, P̃ ) two sequences Xk· , k ≥ 1, and X̃k· , k ≥ 1, of E-valued processes
such that

Xk· , k ≥ 1, under P̃ has same distribution as X(σk+·)∧τk
, k ≥ 1, under P0,(2.8)

X̃k· , k ≥ 1, under P̃ are independent and each distributed as X·∧TB̃
, un-

der Pq ,
(2.9)

P̃ [Xk· �= X̃k· ] ≤ cN−3d for k ≥ 1.(2.10)
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PROOF. The distributions of Xσ under Px′ , with x′ ∈ E, and under Pq are
concentrated on T × {−rN , rN }. It follows from Lemma 2.1 that when x′ belongs
to B̃c their total variation distance is smaller than cNd−4d = cN−3d . With Theo-
rem 5.2, page 19 of [8], we can construct for any x′ in B̃c a probability ρx′(dx, dx̃)

on E2 such that, under ρx′ ,

the first component has the same distribution as Xσ under Px′,(2.11)

the second component has distribution q(2.12)

and

ρx′({x �= x̃}) ≤ cN−3d .(2.13)

Let us denote with TE the countable set of E-valued trajectories which reach B̃c

after a finite time and are constant from then on, and are nearest neighbor prior to
that time. The auxiliary space we consider is �̃ = (TE × TE)[1,∞) endowed with
the canonical σ -algebra Ã. We denote with Xk· , X̃k· , k ≥ 1, the canonical coordi-
nates on �̃. The probability P̃ on (�̃, Ã) is constructed as follows. We introduce
the kernel Rx′ from B̃c to TE × TE such that, for x′ in B̃c, and w, w̃ in TE ,

Rx′((w, w̃)) =
∫
{x=x̃}

ρx′(dx, dx̃)Px[X·∧TB̃
= w(·) = w̃(·)]

(2.14)
+

∫
{x �=x̃}

ρx′(dx, dx̃)Px[X·∧TB̃
= w(·)]Px′ [X·∧TB̃

= w̃(·)].

In other words, under Rx′ the ordered pair of starting points of the two trajectories
has distribution ρx′ and, conditionally on these starting points, when both points
coincide the two trajectories coincide as well and evolve as the walk on E stopped
when exiting B̃ , and when the starting points differ the two trajectories evolve as
independent copies of the walk stopped when exiting B̃ . We then construct P̃ as
the law of the Markov chain on (TE × TE)[1,∞) such that

(X1· , X̃1· ) has distribution
∑

x′∈B̃c P0[Xτ0 = x′]Rx′(2.15)

and

RXk
T
B̃

is the conditional law of (Xk+1· , X̃k+1· ) given Xk′
· , X̃k′

· ,1 ≤ k′ ≤ k.(2.16)

With (2.13) and (2.14), it is immediate that (2.10) holds. With (2.12) and (2.14)
under any Rx′ , x′ ∈ B̃c, the second component is distributed as X·∧TB̃

under Pq ,
and (2.9) follows. On the other hand, under Rx′ the first component is distributed
as X(σ0+·)∧τ0 under Px′ and (2.8) is a consequence of the strong Markov property
for the walk on E and (2.2). �

With the help of Proposition 2.2, we will be able to replace the excursions
X(σk+·)∧τk

, k ≥ 1, under P0 by the collection of i.i.d. excursions X̃k· , k ≥ 1, under
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P̃ which have the same law as X·∧TB̃
under P̃ . Together with Lemma 1.1, this will

facilitate the task of comparing the trace left by the excursions of the walk X· in a
sub-box A of B \ ∂intB with center at level 0 and side-length of order N1−ε with
the trace left by a well calibrated random interlacement on A (suitably identified
to a subset of Zd+1).

3. Truncation, sprinkling and random interlacements. The object of this
section is to develop a stochastic domination result showing that when A and C̃

are boxes in Zd+1 centered at the origin with respective side-length of order N1−ε

and N , then for large N one can in essence dominate the trace on A of the random
interlacement at level u′ by the trace on A left by all trajectories in the support
of μA,u stopped at the exit time of C̃, if u is slightly bigger than u′. We refer to
(1.30) for the notation. Thus, sprinkling, that is, choosing u slightly bigger than u′,
compensates the truncation of trajectories. Our main result Theorem 3.1 directly
pertains to random interlacements and will play an important role in the next sec-
tion when relating the critical parameter u∗∗ of (0.6) to the disconnection of the
discrete cylinder by a simple random walk. We begin with some notation.

We consider 0 < ε < 1 and denote with A ⊆ C̃ the boxes in Zd+1:

A = B

(
0,2

[
N1−ε

8

])
⊆ C̃ = B

(
0,

[
N

4

])
.(3.1)

Given u > 0, we introduce for ω ∈ � [cf. (1.25)] the truncated interlacement

I u
C̃
(ω) = ⋃

w∈SuppμA,u(ω)

w([0, TC̃]),(3.2)

where the notation appears in (1.30). We will now compare when u′ is “sufficiently
smaller” than u the trace on A of I u′

(ω), the random interlacement at level u′
[cf. (1.32)] to the trace on A of I u

C̃
(ω). Our main result is as follows.

THEOREM 3.1 (d ≥ 2, u > u′ > 0, 0 < ε < 1). For N ≥ c(ε), whenever

u ≥ u′ exp
{
c0

ε
e−√

logN

}
,(3.3)

then there exist I ∗, I random subsets of A such that

I u′ ∩ A = I ∗ ∪ I,(3.4)

I ∗, I are independent under P,(3.5)

P[I �= ∅] ≤ u′N−d,(3.6)

I ∗ is stochastically dominated by I u
C̃

∩ A.(3.7)
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PROOF. We now define the integer M and the subbox C of C̃ via

M = [
exp

{√
logN

}] + 1, C = B

(
0,

[
N

4M

])
,(3.8)

so that, for N ≥ c(ε),

A ⊆ B(0,100[N1−ε]) ⊆ C ⊆ B

(
0,100

[
N

4M

])
⊆ C̃.(3.9)

Throughout the proof we will write, for simplicity, Px and Ex in place of P Zd+1

x

and EZd+1

x , with x in Zd+1, to denote the law on (W+,W+) of a simple random
walk starting from x and its corresponding expectation. We introduce the sequence
of successive returns to A and departures from C of the walk, that is, with similar
notation as in (1.2),

R1 = HA, D1 = TC ◦ θR1 + R1 and for k ≥ 1,
(3.10)

Rk+1 = R1 ◦ θDk
+ Dk, Dk+1 = D1 ◦ θDk

+ Dk,

so that 0 ≤ R1 ≤ D1 ≤ · · · ≤ Rk ≤ Dk ≤ · · · ≤ ∞, and Px-a.s. these inequalities,
except maybe for the first one, are strict if the left-hand side is finite. Note that, for
ω ∈ � [see (1.25)], the finitely many trajectories of W+ in the support of μA,u′(ω)

have a starting point in ∂intA ⊆ A, and D1 is finite for such trajectories. We can
thus consider the index of the last finite exit from C for the various trajectories in
the support of μA,u′ and write

μA,u′ = ∑
1≤�≤r

μ′
� + μ where r =

[
8

ε

]
+ 1, and

(3.11)
μ′

� = 1{D� < ∞ = R�+1}μA,u′, μ = 1{Dr+1 < ∞}μA,u′ .

Similarly, in the case of μA,u considering the last return to A before exiting C̃, we
can write

μA,u = ∑
�≥1

μ� where μ� = 1{D� < TC̃ < R�+1}μA,u.(3.12)

As a direct consequence of (1.31) and the above decompositions, we see that un-
der P

μ′
�,1 ≤ � ≤ r,μ are independent Poisson point processes on (W+,W+)

with respective intensity measures ζ ′
� = u′1{D� < ∞ = R�+1}PeA

,1 ≤
� ≤ r , and ζ = u′1{Dr+1 < ∞}PeA

,
(3.13)

and that

μ�, � ≥ 1, are independent Poisson point processes on (W+,W+) with
respective intensity measures ζ� = u1{D� < TC̃ < R�+1}PeA

.
(3.14)
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Moreover, we can express the respective traces of I u′
and I u

C̃
on A as follows:

I u′ ∩ A = I ∗ ∪ I, where
(3.15)

I ∗ = ⋃
1≤�≤r

( ⋃
w∈Suppμ′

�

w(N) ∩ A

)
, I = ⋃

w∈Suppμ

w(N) ∩ A

and

I u
C̃

∩ A = ⋃
�≥1

( ⋃
w∈Suppμ�

w([0, TC̃]) ∩ A

)
.(3.16)

Note that the successive application of the Markov property at times Dr ,
Dr−1, . . . ,D1 yields for N ≥ c(ε)

ζ (W+) = u′PeA
[Rr+1 < ∞] ≤ u′( sup

x∈∂C

Px[HA < ∞]
)r × cap(A)

≤ u′
{
c

(
Nε

M

)−(d−1)}r

× cN(1−ε)(d−1)(3.17)

≤ u′cr+1N−3/4ε(d−1)r+(d−1) ≤ u′N−d,

where we have used the inequality in the right-hand side of (1.7) combined
with standard bounds on the Green function (cf. [7], page 31) to estimate
supx∈∂C Px[HA < ∞], a standard upper bound on the capacity of A (cf. (2.16),
page 53 of [7]), the fact that M grows slower than Nε/4 [see (3.8)] and the defini-
tion of r in (3.11).

We now introduce the measurable maps φ′
�, for � ≥ 1, from {D� < ∞ = R�+1}

(⊆ W+) into W×�
f , where Wf stands for the countable set of finite nearest neighbor

trajectories on Zd+1 as well as the measurable maps φ�, � ≥ 1, from {D� < TC̃ <

R�+1} into W×�
f defined through

φ′
�(w) = (

w(Rk + ·)0≤·≤Dk−Rk

)
1≤k≤� for w ∈ {D� < ∞ = R�+1},

(3.18)
φ�(w) = (

w(Rk + ·)0≤·≤Dk−Rk

)
1≤k≤� for w ∈ {D� < TC̃ < R�+1}.

In other words, φ′
�(w), respectively, φ�(w), keep track of the � portions of the

trajectory w corresponding to times between the successive returns to A up to
the next departure from C. With (3.11) and (3.12), we can view μ′

� and μ�, for
� ≥ 1, as Poisson point processes on {D� < ∞ = R�+1} and {D� < TC̃ < R�+1},
respectively. We denote with ρ′

� and ρ� their respective images under the maps φ′
�

and φ�. Hence, ρ′
� and ρ� are Poisson point processes on W×�

f , and we write ξ ′
� and

ξ� for their respective intensity. Note that, as a direct result of (3.13) and (3.14),
we have

ρ′
�,1 ≤ � ≤ r, and μ are independent Poisson point processes,(3.19)

ρ�, � ≥ 1, are independent Poisson point processes,(3.20)
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and, moreover, for � ≥ 1,

ξ ′
�(dw1, . . . , dw�)

= u′PeA
[D� < R�+1 = ∞, (XRk+·)0≤·≤Dk−Rk

∈ dwk,1 ≤ k ≤ �],
(3.21)

ξ�(dw1, . . . , dw�)

= uPeA
[D� < TC̃ < R�+1, (XRk+·)0≤·≤Dk−Rk

∈ dwk,1 ≤ k ≤ �].
The next lemma will be useful in comparing ξ ′

� to ξ�.

LEMMA 3.2 (d ≥ 2,0 < ε < 1). For N ≥ c(ε), one has for x ∈ ∂C and y ∈
∂intA

Px[TC̃ < R1 < ∞,XR1 = y] ≤ c1

Md−1 Px[R1 < TC̃,XR1 = y].(3.22)

PROOF. We implicitly assume (3.9). Note that for y ∈ ∂intA one has

sup
z∈∂C

Pz[TC̃ < R1 < ∞,XR1 = y]

≤ sup
z∈∂C

Ez

[
PXT

C̃
[R1 < ∞,XR1 = y]]

(3.23)
≤ sup

z∈∂C̃

Pz[H∂C < ∞] sup
z∈∂C

Pz[R1 < ∞,XR1 = y]

≤ c

Md−1 sup
z∈∂C

Pz[R1 < ∞,XR1 = y],

where in the last step we have used the rightmost inequality in (1.7) combined
with standard bounds on the Green function just as in (3.17). Then observe that
the function z → Pz[R1 < ∞,XR1 = y] = Pz[HA < ∞,XHA

= y] is positive har-
monic on Ac. With the Harnack inequality (cf. [7], page 42) and a standard cover-
ing argument, we find that

sup
z∈∂C

Pz[R1 < ∞,XR1 = y] ≤ c inf
z∈∂C

Pz[R1 < ∞,XR1 = y].(3.24)

Therefore, coming back to (3.23), we see that

sup
z∈∂C

Pz[TC̃ < R1 < ∞,XR1 = y]

≤ c

Md−1 inf
∂C

Pz[R1 < ∞,XR1 = y]
(3.25)

≤ c

Md−1 inf
∂C

(Pz[TC̃ < R1 < ∞,XR1 = y]
+ Pz[R1 < TC̃,XR1 = y]).
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Assume that N ≥ c(ε) is such that c
Md−1 ≤ 1

2 , with c the constant appearing in the
last member of (3.25), then one finds that, for x ∈ ∂C and y ∈ ∂intA,

Px[TC̃ < R1 < ∞,XR1 = y] ≤ 2c

Md−1 Px[R1 < TC̃,XR1 = y]
and this completes the proof of Lemma 3.2. �

Our next step in the proof of Theorem 3.1 is the following.

LEMMA 3.3 (d ≥ 2,0 ≤ ε < 1). For N ≥ c(ε), one has

ξ ′
� ≤ u′

u

(
1 + c1

Md−1

)�−1

ξ� for � ≥ 1.(3.26)

PROOF. With (3.21), we see that for � ≥ 1, w1, . . . ,w� ∈ Wf , writing ws

and we for the respective starting point and endpoint of w ∈ Wf , one has

ξ ′
�((w1, . . . ,w�))

= u′PeA
[D� < ∞ = R�+1, (XRk+·)0≤·≤Dk−Rk

= wk(·),1 ≤ k ≤ �]
= ∑

B⊆{1,...,�−1}
u′PeA

[D� < TC̃ < R�+1 = ∞,

(3.27)
(XRk+·)0≤·≤Dk−Rk

= wk(·),1 ≤ k ≤ �,

TC̃ ◦ θDk
+ Dk < Rk+1, exactly when k ∈ B,

for 1 ≤ k ≤ � − 1].
Note that the above expression vanishes unless ws

k ∈ ∂intA, we
k ∈ ∂C, and wk

takes values in C except for its endpoint we
k , for each 1 ≤ k ≤ �. If these con-

ditions are fulfilled, we can use the strong Markov property repeatedly at times
D�,R�,D�−1, . . . ,D1, and find that the last member of (3.27) equals∑

B⊆{1,...,�−1}
u′PeA

[(X·)0≤·≤D1 = w1(·)]

× Ewe
1
[1{1 /∈ B}1{TC̃ > R1} + 1{1 ∈ B}1{TC̃ < R1},

R1 < ∞,XR1 = ws
2]

× Pws
2
[(X·)0≤·≤D1 = w2(·)] · · ·

× Ewe
�−1

[1{� − 1 /∈ B}1{TC̃ > R1} + 1{� − 1 ∈ B}1{TC̃ < R1},
R1 < ∞,XR1 = ws

�]
× Pws

�
[(X·)0≤·≤D1 = w�(·)]Pwe

�
[TC̃ < R1 = ∞](3.28)
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(3.22)≤ ∑
B⊆{1,...,�−1}

(
c1

Md−1

)|B|
u′PeA

[(X)0≤·≤D1 = w1(·)]

× Pwe
1
[R1 < TC̃,XR1 = ws

2]
× Pws

2
[(X·)0≤·≤D1 = w2(·)] · · ·

× Pwe
�−1

[R1 < TC̃,XR1 = ws
�]

× Pws
�
[(X·)0≤·≤D1 = w�(·)]Pwe

�
[TC̃ < R1 = ∞].

Using the strong Markov property, we see that the above expression equals

u′
(

1 + c1

Md−1

)�−1

PeA
[TC̃ ◦ θDk

+ Dk > Rk+1, for 1 ≤ k ≤ � − 1,

(XRk+·)0≤·≤Dk−Rk
= wk(·),1 ≤ k ≤ �,

D� < TC̃ ◦ θD�
+ D� < R�+1 = ∞]

(3.29)

≤ u′
(

1 + c1

Md−1

)�−1

PeA
[D� < TC̃ < R�+1,

(XRk+·)0≤·≤Dk−Rk
= wk(·),1 ≤ k ≤ �]

(3.21)= u′

u

(
1 + c1

Md−1

)�−1

ξ�((w1, . . . ,w�))

and this concludes the proof of Lemma 3.3. �

We now assume that

u ≥ u′ exp
{

8

ε

c1

Md−1

}
(3.30) [

≥ u′
(

1 + c1

Md−1

)�−1

, for all 1 ≤ � ≤ r , see (3.11)
]

and find, as a consequence of Lemma 3.3, that

ξ ′
� ≤ ξ� for 1 ≤ � ≤ r.(3.31)

In view of (3.13) and (3.15), we see that

I ∗ and I are independent under P(3.32)

and that, with notation above (3.19),

I ∗ = ⋃
1≤�≤r

⋃
(w1,...,w�)∈Suppρ′

�

rangew1 ∪ · · · ∪ rangew�.(3.33)
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We also see that, with (3.16),

I u
C̃

∩ A ⊇ ⋃
1≤�≤r

⋃
(w1,...,w�)∈Suppρ�

rangew1 ∪ · · · ∪ rangew�.(3.34)

In view of the independence stated in (3.19) and (3.20), and of the domination
stated in (3.31), we see that under P

I u
C̃

∩ A stochastically dominates I ∗.(3.35)

Together with the fact that

P[I �= 0] ≤ ζ (W+)
(3.17)≤ u′N−d(3.36)

and recalling (3.15) and (3.32), Theorem 3.1 now follows by choosing c0 = 8c1;
see (3.30) and (3.8). �

REMARK 3.4. It is clear from the proof of Theorem 3.1 that the specific
choice of the factor e−√

logN inside the exponential in the right-hand side of (3.3)
is not essential. One could just as well use a factor 1/ψ(N), where ψ(·) is a pos-
itive function on [1,∞) tending to infinity such that ψ(t) = o(tγ ) for all γ > 0,
and assuming N ≥ c(ε,ψ) in the statement of Theorem 3.1. The present choice
will be sufficient for our purpose.

4. Upper bound on the disconnection time. We now come to the main ob-
ject of the present article, namely, the derivation of the upper bound (0.8) on
the disconnection time TN of the discrete cylinder E (cf. Theorem 4.1) and its
Corollary 4.6 relating the asymptotic behavior of TN to the Brownian stopping
time ζ( u∗∗√

d+1
); see (0.9) and (0.10). The strategy employed to show Theorem 4.1

roughly goes as follows. We will show that once for some z ∈ Z the local time at
z of Ẑ· [see (0.3)] exceeds Nd

(d+1)
u0 with u0 > u∗∗, then typically all excursions

X[σz
k ,τ z

k ], with k ≤ Nd

(d+1)hN
u1, have already occurred, where u∗∗ < u1 < u0. In ad-

dition, an argument based on the spatial regularity of the local time will allow us
to only consider a large but finite number of levels z’s in the cylinder as N goes
to infinity; see Proposition 4.3. With the coupling technique of Section 2, we will
be able to replace the excursions X[σz

k ,τ z
k ], 1 ≤ k ≤ Nd

(d+1)hN
u1, by a collection of

i.i.d. excursions with starting distribution, the vertical translation to level z of q

in (1.11). With a Poissonization argument, it will suffice to consider a Poisson
number of such i.i.d. excursions with parameter Nd

(d+1)hN
u2, where u∗∗ < u2 < u1.

The special character of these excursions (see Lemma 1.1 and Remark 1.2) and
the domination results for the trace of random interlacements of Section 3 will
allow to compare the trace left by this Poisson number of excursions in a box of
the cylinder with side-length N1−ε and center at level z, to the trace left by a ran-
dom interlacement at level u3, with u∗∗ < u3 < u2, in a box of Zd+1 of the same
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side-length, where ε will be chosen as a function of α(u3), in the notation of (0.6).
It will follow that disconnection of the cylinder typically must have occurred; see
Proposition 4.2. Combining Propositions 4.2 and 4.3 will yield Theorem 4.1.

We recall the notation (0.5). Our main result is as follows.

THEOREM 4.1 (d ≥ 2). For any δ > 0 one has

lim
N

P0

[
TN > inf

z∈Z
γ z

Nd/(d+1)(u∗∗+δ)

]
= 0.(4.1)

PROOF. We begin with a reduction step which shows that (4.1) is the conse-
quence of two claims that will be subsequently proved in Propositions 4.2 and 4.3
below. Indeed, we can write for L,N ≥ 1, in the notation of (2.2),

P0

[
TN > inf

z∈Z
γ z

Nd/(d+1)(u∗∗+δ)

]

≤ P0

[
TN > inf

z=�/LNd,|�|≤L2
τ z

[Nd/((d+1)hN )(u∗∗+δ/2)]
]

(4.2)

+ P0

[
inf

z=�/LNd,|�|≤L2
τ z

[Nd/((d+1)hN )(u∗∗+δ/2)] > inf
z∈Z

γ z

Nd/(d+1)(u∗∗+δ)

]
.

As a result, we see that (4.1) will follow from the two propositions:

PROPOSITION 4.2 (d ≥ 2, δ > 0).

For all z ∈ Z, lim
N

P0
[
TN > τz

[Nd/((d+1)hN )(u∗∗+δ/2)]
] = 0.(4.3)

PROPOSITION 4.3 (d ≥ 2, δ > 0).

lim
L

lim
N

P0

[
inf

z=�/LNd,|�|≤L2
τ z

[Nd/((d+1)hN )(u∗∗+δ/2)]
(4.4)

> inf
z∈Z

γ z

Nd/(d+1)(u∗∗+δ)

]
= 0.

We start with the following.

PROOF OF PROPOSITION 4.2. The application of the strong Markov property
at the entrance time of the walk in T × {z}, together with translation invariance,
shows that it suffices to consider the case z = 0 when proving (4.3). With (2.10)
of Proposition 2.2, bringing the i.i.d. excursions X̃k, k ≥ 1, into play, we see that
(4.3) will follow once we show that

lim
N

P̃
[
range(X̃1· ) ∪ · · · ∪ range

(
X̃[Nd/((d+1)hN )(u∗∗+δ/2)]·

)
(4.5)

does not disconnect E
] = 0.
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If we now introduce an independent Poisson random variable Kλ with intensity

λ = Nd

(d + 1)hN

(
u∗∗ + δ

4

)
,(4.6)

then with a slight abuse of notation we have

lim
N

P̃

[
Kλ >

[
Nd

(d + 1)hN

(
u∗∗ + δ

2

)]]
= 0

and, hence, the claim (4.3) follows from

lim
N

P̃ [range(X̃1· ) ∪ · · · ∪ range(X̃Kλ· ) does not disconnect E] = 0.(4.7)

We now choose [see (0.6) for the notation]

ε = 1

2d

(
α

(
u∗∗ + δ

8

)
∧ 1

)
∈

(
0,

1

4

]
.(4.8)

We can cover T ×{0} by cNεd closed | · |∞-balls of radius R = [N1−ε

8 ] with center
in T × {0}. Hence, using translation invariance, (4.7) follows from

lim
N

NεdP̃ [there is a nearest neighbor path from B(0,R) to S(0,2R)

(4.9)
not intersecting range(X̃1· ) ∪ · · · ∪ range(X̃Kλ· )] = 0.

We will write

A = B(0,2R) ⊆ C̃ = B

(
0,

[
N

4

])
⊆ E(4.10)

and for sufficiently large N , we will tacitly identify C̃ ∪ ∂C̃ with a subset of Zd+1,
so that the notation agrees with (3.1). Given X̃k· , k ≥ 1, entering A, we can define

the nearest-neighbor trajectory X
k

· , which starts when X̃k· enters A, follows X̃k·
and is stopped when X̃k· exits C̃. Then

μ̃ = ∑
1≤k≤Kλ

1{X̃k· enters A}δ
X

k
·

(4.11)

is a point process on the space of nearest neighbor C̃ ∪ ∂C̃-valued trajectories
which are constant after a finite time. The key observation, in view of (1.15) of
Lemma 1.1 when U = B̃ , (2.9) of Proposition 2.2 (and the main interest in intro-
ducing the independent Poisson variable Kλ), is that

μ̃ is a Poisson point process with intensity measure

λ(d + 1)

Nd
(hN − rN)PeA,B̃

[X·∧TC̃
∈ ·](4.12)

=
(
u∗∗ + δ

4

)(
1 − rN

hN

)
PeA,B̃

[X·∧TC̃
∈ ·].

We will now use the next lemma.
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LEMMA 4.4 (d ≥ 2, δ > 0). For N ≥ c(δ), one has

for all x ∈ ∂intA, eA,B̃(x) ≥ eA(x)

(
1 − c2

(logN)2

N(d−1)ε

)
(4.13)

[see below (1.5) for the notation and recall A ⊆ C̃ are viewed as subsets of both
E and Zd+1].

PROOF. It is plain from (1.3) that, for N ≥ c,

eA,C̃(x) ≥ eA(x) for x ∈ ∂intA.(4.14)

It is therefore sufficient to prove (4.13) with eA,C̃(x) in place of eA(x). On the
other hand, with the analogue of (1.3) for the walk on E, we see that

eA,C̃(x) − eA,B̃(x)

= Px[TB̃ > H̃A > TC̃]
(4.15)

strong Markov= Ex

[
H̃A > TC̃,PXT

C̃
[TB̃ > HA]]

≤ eA,C̃(x) sup
x∈∂C̃

Px[HA < TB̃] for x ∈ ∂intA.

Note that ∂C̃ ⊆ S(0, [N
4 ]+ 1)

def= S, and the claim (4.13) will follow once we show
that

sup
x∈S

Px[HA < TB̃] ≤ c
(logN)2

N(d−1)ε
for N ≥ c(δ).(4.16)

To this end, consider the probability that the walk starting in S reaches B(0, [1
2 ×

[N
4 ]]) before hitting S, and then enters A before entering S. We see with stan-

dard estimates on the one-dimensional simple random walk and the right-hand in-
equality of (1.7) combined with standard estimates on the Green function (cf. [7],
page 31) that, for N ≥ c(δ),

sup
x∈S

Px[HA < H̃S ∧ TB̃] ≤ cN−1cN−(d−1)ε = cN−1−(d−1)ε.(4.17)

On the other hand, using estimates on the one-dimensional simple random walk to
bound from below the probability to move at distance [ N

10 ] of C̃ ∪ S = B(0, [N
4 ] +

1) without hitting S, the invariance principle to bound from below the probability
to reach level [N

4 ] + N in E without entering S, and once again estimates on the
one-dimensional simple random walk to bound from below the probability to reach
level hN before level [N

4 ] + 1, we see that, for N ≥ c(δ),

inf
x∈S

Px[TB̃ < H̃S ∧ HA] ≥ c

N
× c × N − 1

hN − [N/4] − 1
(4.18)

(1.9)≥ cN−1(logN)−2.
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We can then introduce the successive hitting times of S,

V0 = 0, Vk+1 = H̃S ◦ θVk
+ Vk, k ≥ 0,(4.19)

which are Px-a.s. finite for all x in S (and in E). Considering the pairwise disjoint
events where θ−1

Vm
({HA ∧ TB̃ < H̃S}), m ≥ 0, first occurs when m = k, with k ≥ 0,

the application of the strong Markov property at time Vk shows that, for N ≥ c(δ),
for all x ∈ S,

Px[HA < TB̃]

≤ supx∈S Px[HA < H̃S ∧ TB̃]
supx∈S Px[HA < H̃S ∧ TB̃] + infx∈S Px[TB̃ < H̃S ∧ HA](4.20)

(4.17), (4.18)≤ c(logN)2N−(d−1)ε.

This shows (4.16) and concludes the proof of Lemma 4.4. �

We now proceed with the proof of (4.9). Note that with (4.11) one has(
range(X̃1· ) ∪ · · · ∪ range(X̃Kλ· )

) ∩ A ⊇ ⋃
w∈Supp μ̃

(range(w)) ∩ A(4.21)

and in view of (4.12) and (4.13), for N ≥ c(δ),

under P̃ ,
(
range(X̃1· ) ∪ · · · ∪ range(X̃Kλ· )

) ∩ A stochastically dominates
I u

C̃
∩ A under P with

(4.22)

u =
(
u∗∗ + δ

4

)(
1 − rN

hN

)(
1 − c2

(logN)2

N(d−1)ε

)
,

where we have used the fact stemming from (3.2) and (1.31) that

I u
C̃
(ω) ∩ A = ⋃

w∈Supp
≈
μ

(rangew) ∩ A where

≈
μ (ω) = ∑

w∈SuppμA,u(ω)

δw(·∧TC̃) is a Poisson point process

with intensity measure uP Zd+1

eA
[X·∧TC̃

∈ ·].
Hence, returning to the expression in (4.9), we see that its lim sup over N is smaller
than [see (0.6) for notation]

lim
N

NεdP[a nearest neighbor path in (I u
C̃

∩ A)c

(4.23)
joins B(0,R) with S(0,2R)].
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If we now define

u′ = u exp
{
−c0

ε
e−√

logN

}
≥ u∗∗ + δ

8
for N ≥ c(δ),(4.24)

it follows from (3.7) that the above expression with a similar notation as in (0.6) is
smaller than

lim
N

NεdP
[
B(0,R)

(I∗)c←→ S(0,2R)
]

(3.4)≤ lim
N

Nεd(
P

[
B(0,R)

(Vu′
)←→ S(0,2R)

] + P[I �= φ])
(4.25)

(3.6), (4.24)≤ lim
N

Nεd(
P

[
B(0,R)

Vu∗∗+δ/8←→ S(0,2R)
] + u′N−d)

(0.6), (4.8)≤ lim
N

NεdN−α(u∗∗+δ/8)+ε (4.8)= 0.

This concludes the proof of (4.9), and hence of Proposition 4.2. �

Our next concern is Proposition 4.3.

PROOF OF PROPOSITION 4.3. Our first step is the following.

LEMMA 4.5 (d ≥ 2, δ > 0).

lim
N

P0
[
τ z

[Nd/((d+1)hN )(u∗∗+δ/2)] ≥ γ z

Nd/((d+1))(u∗∗+3/4δ)

] = 0
(4.26)

for all z ∈ Z.

PROOF. Denote with Hz
k , k ≥ 1, the successive times of entrance of X at level

z after departure from B̃(z), that is,

Hz
0 = HT×{z} and

(4.27)
Hz

k+1 = HT×{z} ◦ θTB̃(z)
◦ θHz

k
+ TB̃(z) ◦ θHz

k
+ Hz

k for k ≥ 0.

It follows from (2.2) that τ z
k coincides with the exit time of B̃(z) after Hz

k :

τ z
k = TB̃(z) ◦ θHz

k
+ Hz

k for k ≥ 0.(4.28)

Notice also that under Px , for x ∈ T × {z}, the number of visits of Ẑ�, � ≥ 0
[cf. (0.3)], to z before exiting z + Ĩ = z + (−hN,hN), that is,

∑
�≥0 1{Ẑ� = z,

ρ� < TB̃(z)} is distributed as a geometric variable with success probability h−1
N . The

application of the strong Markov property at the successive times Hz
m, 0 ≤ m ≤ k,

and (4.28) then shows that

under P0,
∑

�≥0 1{Ẑ� = z,ρ� < τz
k } is distributed as the sum of k + 1

independent geometric variables with success parameter h−1
N .

(4.29)
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Thus, choosing k = [ Nd

(d+1)hN
(u∗∗ + δ

2)] and α = Nd

(d+1)
(u∗∗ + 3

4δ), we see that the
probability which appears in (4.26) is equal to

P0

[∑
�≥0

1{Ẑ� = z,ρ� < τz
k } ≥ α

]

≤ e−λ/hNα

(
eλ/hN

hN

1

1 − eλ/hN (1 − 1/hN)

)k+1

(4.30)

if λ > 0 and eλ/hN

(
1 − 1

hN

)
< 1,

where we have used (4.29) and the exponential Chebyshev inequality. If λ < 1
is small and fixed, for large N the logarithm of the right member of (4.30) is
equivalent to

− λ

hN

Nd

(d + 1)

(
u∗∗ + 3

4
δ

)
+ Nd

(d + 1)hN

(
u∗∗ + δ

2

)
log

(
1

1 − λ

)
,

and this expression tends to −∞. This concludes the proof of (4.26). �

With Lemma 4.5, we see that, for given L ≥ 1, the limsup over N of the proba-
bility in (4.4) is bounded above by the lim sup over N of the corresponding prob-
ability where τ z

[Nd/((d+1)hN )(u∗∗+δ/2)] is replaced by γ z

[Nd/(d+1)(u∗∗+3/4δ)]. Hence,
the claim (4.4) will follow once we show that

lim
L

lim
N

P0

[
inf

z=�/LNd,|�|≤L2
γ z

Nd/(d+1)(u∗∗+3/4δ)

(4.31)
> inf

z∈Z
γ z

Nd/(d+1)(u∗∗+δ)

]
= 0.

If we now introduce an integer K ≥ 1, and write l̃im in place of limK limLlimN ,
we see that the above expression is smaller than

l̃imP0

[
ρKN2d ≥ inf

z=�/LNd,|�|≤L2
γ z
Nd/(d+1)(u∗∗+3/4δ)

> inf
z∈Z

γ z
Nd/(d+1)(u∗∗+δ)

]

+ l̃imP0
[
γ 0
Nd/(d+1)(u∗∗+3/4δ)

> ρKN2d

]
(4.32)

≤ l̃imP0

[
sup

k≤KN2d

sup
z∈Z

inf
z′∈{�/LNd ;|�|≤L2}

|L̂z
k − L̂z′

k | ≥ Nd

(d + 1)

δ

8

]

+ l̃im
K

lim
N

P0

[
L̂0

KN2d <
Nd

(d + 1) (u∗∗+3/4δ)

]
.

With (1.20) of [2], one can construct on an auxiliary probability space (�,A,P )

a coupling of the local time L̂ of Ẑ with a jointly continuous version L(·, ·) of the
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Brownian local time so that

P -a.s., sup
z∈Z,k≥1

|L̂z
k − L(z, k)|
k1/4+η

< ∞ for all η > 0.(4.33)

As a result, we see that the last member of (4.32) is smaller than

l̃imP

[
sup

t≤KN2d

sup
z∈Z

inf
z′∈{�/LNd ;|�|≤L2}

|L(z, t) − L(z′, t)| ≥ Nd

(d + 1)

δ

16

]

+ lim
K

lim
N

P

[
L(0,KN2d) ≤ Nd

(d + 1)
(u∗∗ + δ)

]
scaling≤ lim

K
lim
L

P

[
sup
s≤K

sup
v∈R

inf
v′∈{�/L,|�|≤L2}

|L(v, s) − L(v′, s)| ≥ δ

16(d + 1)

]

+ lim
K

P

[
L(0,K) ≤ u∗∗ + δ

d + 1

]
.

Since lims→∞ L(0, s) = ∞, P -a.s., the last term vanishes, and since P -a.s. the
restriction to R × [0,K] of L(v, s) is continuous and compactly supported, the
lim sup over L of the probability in the previous line equals 0. Combining our
estimates, we see that we have shown (4.31), and hence Proposition 4.3. �

As mentioned above (4.3), with Propositions 4.2 and 4.3, coming back to (4.2),
we see that we have proved (4.1). This completes the proof of Theorem 4.1. �

As an application of Theorem 4.1, we will now derive an upper bound on TN ,
which will, in particular, show that the variables TN/N2d are tight. We recall from
(0.10) the notation

ζ(u) = inf
{
t ≥ 0; sup

v∈R

L(v, t) ≥ u
}

for u ≥ 0,

with L(·, ·) a jointly continuous version of the local time of the canonical Brownian
motion. Denoting with W the Wiener measure, one has the scaling property:

for u ≥ 0, ζ(u) and u2ζ(1) have same law under W.(4.34)

With [1] or [5] (cf. Proposition 5, page 89), as recalled in (0.12), one knows that,
for θ,u ≥ 0,

EW [
e−θ2/2ζ(u)] = θu

(sinh(θu/2))2

I1(θu/2)

I0(θu/2)
(4.35)

with Iν the modified Bessel function of order ν; cf. [9], page 60.
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COROLLARY 4.6 (d ≥ 2).

For γ > 0, lim
N

P0[TN ≥ γN2d ] ≤ W

[
ζ

(
u∗∗√
d + 1

)
≥ γ

]
,(4.36)

and, in particular, the laws of TN/N2d are tight.

PROOF. Consider 0 < γ ′ < γ , and δ > 0. With Theorem 4.1, we see that

lim
N

P0[TN ≥ γN2d ] ≤ lim
N

P0

[
inf
z∈Z

γ z

Nd/(d+1)(u∗∗+δ)
≥ γN2d

]
.(4.37)

When N ≥ 3, the sequence ρk , k ≥ 0 [cf. below (0.2)], has the same distribution
under P0 as the partial sums of independent geometric variables with success prob-
ability 1

d+1 (this distribution is independent of N ). It follows from the strong law
of large numbers that P0-a.s., limk

ρk

k
= d + 1 and, hence, the right-hand side of

(4.37) is smaller than

lim
N

P0

[
inf
z∈Z

γ z

Nd/(d+1)(u∗∗+δ)
> ρ[γ ′/(d+1)N2d ]

]

≤ lim
N

P0

[
sup
z∈Z

L̂z

[γ ′/(d+1)N2d ] <
Nd

d + 1
(u∗∗ + δ)

]

(4.33)≤ lim
N

W

[
sup
z∈Z

L

(
z,

[
γ ′

d + 1
N2d

])
<

Nd

d + 1
(u∗∗ + 2δ)

]
(4.38)

scaling= lim
N

W

[
sup
z∈Z

L

(
z

Nd
,

[
γ ′

d + 1
N2d

]/
N2d

)
<

u∗∗ + 2δ

d + 1

]

continuity≤ W

[
sup
v∈R

L

(
v,

γ ′

d + 1

)
≤ u∗∗ + 2δ

d + 1

]
.

Letting γ ′ tend to γ and δ tend to 0, the above expression tends to

W

[
sup
v∈R

L

(
v,

γ

d + 1

)
≤ u∗∗

d + 1

]
scaling= W

[
sup
v∈R

L(v, γ ) ≤ u∗∗√
d + 1

]
.

One also knows (cf. [5], page 89 above Proposition 5) that, for u ≥ 0,

W -a.s., ζ(u) = inf
{
t ≥ 0; sup

v∈R

L(v, t) > u
}

(4.39)

and, therefore, the above expression equals W [ζ( u∗∗√
d+1

) ≥ γ ], and this is an upper
bound on the left-hand side of (4.37). This concludes the proof of Corollary 4.6.

�

REMARK 4.7. (1) Combined with the results of [4], Corollary 4.6 implies that
when d is large enough, that is, d ≥ 17, the laws of TN/N2d under P0 with N ≥ 2
are tight on (0,∞); see also (0.11).
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(2) A natural question stemming from the present work is whether in fact

TN/N2d converges in distribution to ζ( u∗√
d+1

) as N → ∞.(4.40)

This question should be complemented by the further question whether it also
holds that

u∗∗ = u∗(4.41)

(one knows that 0 < u∗ < ∞ for d + 1 ≥ 3 (cf. [10] and [12]), and that u∗ ≤
u∗∗ < ∞, for d + 1 ≥ 3, as shown in Lemma 1.4). These are just a few examples
of the natural questions pertaining to the interplay between disconnection by a
random walk of discrete cylinders and percolation for the vacant set of random
interlacements.
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