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There have been several studies of the genome-wide temporal transcrip-
tional program of viruses, based on microarray experiments, which are gen-
erally useful in the construction of gene regulation network. It seems that
biological interpretations in these studies are directly based on the normal-
ized data and some crude statistics, which provide rough estimates of limited
features of the profile and may incur biases. This paper introduces a hierarchi-
cal Bayesian shape restricted regression method for making inference on the
time course expression of virus genes. Estimates of many salient features of
the expression profile like onset time, inflection point, maximum value, time
to maximum value, area under curve, etc. can be obtained immediately by
this method. Applying this method to a baculovirus microarray time course
expression data set, we indicate that many biological questions can be for-
mulated quantitatively and we are able to offer insights into the baculovirus
biology.

1. Introduction.

1.1. Transcription program of virus. With a custom made baculovirus DNA
microarray, Jiang et al. (2006) investigated the temporal transcription program of
one of the best characterized baculoviruses, AcMNPV, in its host lepidopteran Sf21
cells. They uncovered sequential viral gene expression patterns, which are possibly
regulated by different mechanisms during different phases of infection, compared
the transcription profile of a mutant virus with that of the wild type, and suggested
that the array strategy taken in the study points to a very productive direction for
constructing a baculovirus gene regulation network.
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The experiments of Jiang et al. (2006) are briefly summarized as follows. They
use single color cDNA microarray experiments with external controls for data nor-
malization. Each chip has exactly four spots for each of the 156 open reading
frames, referred to as genes henceforth, of baculovirus; total RNA samples of bac-
ulovirus genes were taken at several different time points during the 72 hours fol-
lowing infection; the sample for each time point is hybridized to a single chip. The
normalized time course expression data are shown to be in good agreement with
those obtained by the real-time PCR method for five randomly chosen genes; the
data for each gene used in the study of temporal transcription is based solely on
the normalized expression levels at these time points and on the crude estimates of
its onset time and the time that its expression attains its maximum.

A rough idea regarding virus gene expression is that genes of a virus have their
time course expression level being zero initially, then increasing after a while and
finally decreasing; because viruses do not have their own machinery for gene tran-
scription, their genes start to express only after getting into cells, and cells may
eventually malfunction when infected. It is of interest and feasible to make use of
this idea to profile the time course expression of each virus gene, based on mi-
croarray data, to estimate salient features of the profile like onset time, time to
maximum value, maximum value, area under the profile curve, etc. and to test the
shape hypotheses on the profile curve like unimodality on certain time intervals. It
is hoped that this approach to gene expression analysis of viruses would eventu-
ally provide a sound basis for the study of the temporal transcription program of
viruses.

The purpose of this paper is to propose a Bayesian shape restricted regression
model based on the above property of a virus, illustrate this model by profiling
the time course expression of genes of baculovirus, and indicate that this approach
does provide more insights into baculovirus, compared with the crude statistics
used in Jiang et al. (2006). Among others, a prominent example in this regard
is that this new approach seems to support the widely accepted conjecture that
structural genes of the virus may have a larger amount of total expression level,
which is hard to examine by the method in Jiang et al. (2006).

This method is illustrated on the dataset for the baculovirus Bac-PH-EGFP in
Jiang et al. (2006). With 16 time points, this dataset seems to hold a promising
opportunity to capture the main features of the transcription profile. We note that
the other two datasets in Jiang et al. (2006) have only 6 time points and 5 of them
are in the initial two hours post infection and it is hard to infer some of the main
features of the profile based on them.

Because microarray experiments offer feasible approaches to the studies of
the genome-wide temporal transcriptional program of viruses, which are gener-
ally useful in the construction of gene regulation network, there have been many
genome-wide expression studies of virus genes. See, for example, Yang et al.
(2002), Iwanaga et al. (2004), Duplessis et al. (2005), van Munster et al. (2006),
Majtan et al. (2007), Smith (2007) and references therein; they considered different
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viruses and/or different host cells. It seems that all the biological interpretations in
these studies are directly based on the normalized data and crude statistics, which
seem to provide only naive estimates of limited features of the profile, and there
are some discrepancies reported in the literature; see, for example, Smith (2007).
It is of great interests to compare the transcriptional studies based on different but
related strains of viruses and/or different and related host cells so as to build a gene
regulation network. We note that comprehensive comparisons depend on compre-
hensive and rigorous time course expression profiling of genes in each study. The
focus of this paper is the latter.

1.2. Statistical modeling strategy. Preliminary examination of the Bac-PH-
EGFP data suggests that two of the 156 genes seem to have their expression levels
being zero finally as well as initially and the rest of the 154 genes being zero
only initially, probably because no data were taken at time point beyond 72 hours
and the life cycle of baculovirus is longer than 72 hours, according to Friesen and
Miller (2001). To make the presentation concise, we limit our attention to these
154 genes in this paper; the other two genes can be studied similarly.

Let A denote the set of all smooth functions on [0,1] that are zero initially, start
to increase after a while, and stay positive onward. The task of profiling the time
course expression level of virus genes will be considered a shape restricted regres-
sion problem with the regression function belonging to A. Let g = 1,2, . . . ,154
index the 154 genes of the baculovirus. For g = 1, . . . ,154, we assume that, given
Fg in A,

Yjkg = Fg(Xk) + εjkg.(1.1)

Here {Xk | k = 0, . . . ,K} are constant design points in [0,1], {Yjkg | j =
1, . . . ,mk, k = 0, . . . ,K,g = 1, . . . ,154} are response variables, and for every
j = 1, . . . ,mk, k = 0, . . . ,K,g = 1, . . . ,154, εjkg are independent normal errors
with mean μg and variance

σ 2
kg = σ 2

g

(
Fg(Xk) + μg

)ξg(1.2)

for some ξg = 0, 1 or 2.
In this paper Xk represents a time point at which the mRNA sample is taken for

microarray experiments; Yjkg is the expression level, in terms of fluorescent inten-
sity, obtained at the j th spot of the gth gene for the sample taken at time point Xk .
More specifically, in our data, let [0,1] denote the time period of 72 hours, then
K = 15, mk = 4, (X0,X1, . . . ,X15) = (0,1/216,1/108,1/72,1/36,1/24,1/12,

1/8,1/6,5/24,1/4,1/3,5/12,2/3,5/6,1).
The variance structure in (1.2) is a simple way to take into consideration the

observation that for single color cDNA microarray experiments, larger intensities
often incur larger variances when considering replicates. The reason for not as-
suming εjkg having zero mean is that there are always background intensities due
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to nonspecific hybridization and, hence, E(Yjkg) may not be zero even when the
expression level Fg(Xk) is zero.

We now explain that Bernstein polynomials can be used to study the above
shape restricted regression model. For integers 0 ≤ i ≤ n, let ϕi,n(t) = Cn

i t i(1 −
t)n−i , where Cn

i = n!/(i!(n − i)!). The set {ϕi,n | i = 0, . . . , n} is called the Bern-
stein basis for polynomials of order up to n. Let B = [0,1] × ⋃∞

n=3({n} × R
n−1).

Define F : B × [0,1] −→ R
1 by

F(c, n, b2,n, . . . , bn,n; t) =
n∑

i=2

bi,nϕi,n

(
t − c

1 − c

)
I(c,1](t),(1.3)

where (c, n, b2,n, . . . , bn,n) ∈ B and t ∈ [0,1]. We also denote (1.3) by Fc,bn(t) if
bn = (b2,n, . . . , bn,n). We will see in Section 2 that Fc,bn(·) is a member of A if 0 ≤
minl=2,...,n bl,n < maxl=2,...,n bl,n, and every member of A can be approximated
by Fc,bn(·) satisfying these restrictions on bn. This observation suggests that, by
means of (1.3), Bernstein polynomials form a useful tool to introduce priors on A
for a Bayesian analysis.

We will consider Bayesian hierarchical models based on (1.3). With priors on a
space of smooth functions satisfying certain shape restrictions and parameters in
the priors based on crude estimates from data, our approach has the advantage of
utilizing prior knowledge from biology; with 154 correlated and possibly similar
profiles to study, hierarchical regression models take advantage of the possibility
of data driven shrinkage-type estimates.

We note that Bayesian shape restricted inference with priors introduced by
Bernstein polynomials was studied by Chang et al. (2005), which provides a
smooth estimate of an increasing failure rate based on right censored data, and
by Chang et al. (2007), which compares the Bernstein polynomial method with the
density-regression method [Dette, Neumeyer and Pilz (2006)] in estimating an iso-
tonic regression function and a convex regression function. It was also shown there
that these Bayesian estimates perform favorably, in addition to the facts that these
priors easily take into consideration geometric information, select only smooth
functions, can have large support, and can be easily specified. We note that Petrone
(1999) made use of these nice properties in her study of random Bernstein polyno-
mials and for sampling the posterior distribution, proposed algorithms that regards
the construction of the Bernstein–Dirichlet prior as a histogram smoothing.

The present paper indicates that the expression profiles of virus genes can also
be efficiently studied by random Bernstein polynomials, making use of the shape
restrictions described above. We will estimate salient features of the profile like
onset time, inflection point, maximum value, time to maximum value, area under
the profile, etc., utilizing the fact that the derivative of a polynomial has a closed
form. We will also test the hypothesis on the shape of the time course expression
profile; for example, we will examine whether it is unimodal on the region [0, τ ]
for some τ < 1. In fact, by calculating both the posterior probability and the prior
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probability that it is unimodal on [0, τ ], we offer an assessment of the strength
of the evidence in favor of the hypothesis. We note that this direct approach to
hypothesis testing is markedly different from the frequentist p-value approach,
as discussed in Kass and Raftery (1995) and Lavine and Schervish (1999), for
example.

There is a large literature on shape restricted inference since Hildreth (1954) and
Brunk (1955). Most of them treat isotonic and concave regressions from the fre-
quentist viewpoint. Readers are referred to Gijbels (2003) for an excellent review
and to Dette, Neumeyer and Pilz (2006) for some of the more recent developments.
For the Bayesian approach, there are the works of Lavine and Mockus (1995),
Dunson (2005) and Chang et al. (2007), among others. This paper illustrates the
use of the Bernstein polynomial in investigating the strength of the evidence pro-
vided by the data in favor of the hypothesis on the shape of the regression function,
in addition to its use in estimation.

This paper is organized as follows. Section 2 presents the Bernstein polynomial
geometry and the hierarchical regression model. Algorithms for Bayesian infer-
ence are given in the Appendix. Section 3 illustrates the method by simultaneously
analyzing all the data for these genes and indicates that this method does bring in-
sights into baculovirus biology. Section 4 concludes with a brief discussion.

2. Bayesian inference.

2.1. Bernstein polynomial geometry. Let Fc,a(t) = ∑n
i=0 aiϕi,n(

t−c
1−c

)I(c,1](t),
where a = (a0, . . . , an). Proposition 1 provides a sufficient condition on a un-
der which Fc,a is in A. Proposition 2 complements Proposition 1 and provides
Bernstein–Weierstrass type approximations for functions in A. In this paper deriv-
atives at 0 and 1 are meant to be one-sided. All the proofs of the propositions in
this paper are omitted, because they are similar to those in Chang et al. (2005) and
Chang et al. (2007).

PROPOSITION 1. Let n ≥ 3 and c ∈ [0,1). If 0 = a0 = a1 ≤ minl=2,...,n al <

maxl=2,...,n al , then Fc,a is continuously differentiable, constantly 0 on [0, c], and
larger than 0 on (c,1).

Let In = {Fc,a | c ∈ [0,1), a = (a0, . . . , an) satisfying 0 = a0 = a1 ≤
minl=2,...,n al < maxl=2,...,n al}. For two continuously differentiable functions f

and f̃ , define e(f, f̃ ) = ‖f − f̃ ‖∞ + ‖f ′ − f̃
′‖∞, where f ′ denotes the deriv-

ative of f , and ‖ · ‖∞ is the sup-norm for functions on [0,1]. Then we have the
following:

PROPOSITION 2. Let D = ⋃∞
n=3 In. Then D is dense in A, under e.
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2.2. Bayesian regression model.
(i) Hierarchical prior
For each g = 1, . . . ,154, we will introduce probabilities πg on A as follows.

We first describe the framework and then the specific priors to be used. Let π1,g

be a probability density function on [0,1], meant to be the prior on the onset time
c of gene g; π2,g be a probability mass function on the set of positive integers
{3,4, . . .}; for each n, π3,g(·|n) be a probability density function on R

n−1 of bn.
The probability density/mass functions π1,g , π2,g and π3,g jointly define a proba-
bility π̃g on B by the product π1,g(c)×π2,g(n)×π3,g(bn|n); this in turn defines a
probability measure on A by (1.3). Let π4,g be a probability density on R

1 for μg ,
the mean of εjkg . Then πg = π̃g × π4,g is the prior density we will use on B × R

1.
We now describe the strategies to specify π1,g , π2,g , π3,g and π4,g . Because our

preliminary studies based on a single gene suggest that the posterior distributions
of several features do not vary much with the prior order of the Bernstein polyno-
mial so long as it is not too small, we take π2,g to have probability 1 for n = 15,
which has the advantage of lessening the computational burden. The priors π1,g ,
π3,g and π4,g are defined in the following by crude estimates based on all the 154
genes.

For each g = 1, . . . ,154, let Y (0)g ≤ Y (1)g ≤ · · · ≤ Y (15)g be the order statis-
tics for {Y 0g, Y 1g, . . . , Y 15g}, where Y kg = ∑4

j=1 Yjkg/4. The prior π4,g is the

uniform distribution on [0, 2Y 0g].
We now define π1,g for onset time. Let k̃(g) be the integer such that Y

k̃(g)g
=

Y (15)g ; let k(g) = max{k | k = 0,1, . . . , k̃(g) satisfying Y kg ≤ 2Y 0g} + 1. Let
X̃g = Xk(g) and X̂g equals X

(k(g)+k̃(g))/2 if (k(g) + k̃(g))/2 is even, and equals
X

(k(g)+k̃(g)+1)/2 otherwise. Let α1 and α2 be chosen so that the beta distribution

Beta(α1, α2) has mean
∑154

g=1(X̃g/X̂g)/154 and variance

[(
max

g=1,...,154
{X̃g/X̂g} − min

g=1,...,154
{X̃g/X̂g}

)/
4
]2

.

Let φ11 = α1 − 0.5, φ12 = α1 + 0.5, φ21 = α2 − 0.5 and φ22 = α2 + 0.5. We note
that for the present dataset, α1 = 2.7771 and α2 = 2.4481, thus, φ11 = 2.2771,
φ12 = 3.2771, φ21 = 1.9481 and φ22 = 2.9481.

Let φ1 and φ2 be two random variables having distributions respectively
Uniform(φ11, φ12) and Uniform(φ21, φ22). Let U1, . . . ,U154 be a random sam-
ple of size 154 such that the conditional distribution of Ug given φ1 and φ2 is
Beta(φ1, φ2) for each g = 1, . . . ,154. We assume that conditional on φ1 and φ2,
the prior density π1,g of the onset time of gene g is the probability density function
of X̂g × Ug . In particular, we assume the onset time is in the interval [0, X̂g]; this
assumption results from examining the data closely.

We next define π3,g(·|n), which takes into consideration the range of the ob-
served expression levels and is motivated by the propositions in Section 2.1.
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Let Yj [k′]g = Yjkg , if Y (k′)g = Y kg . Denote by Y(1[k])g ≤ Y(2[k])g ≤ Y(3[k])g ≤
Y(4[k])g the order statistics of {Y1[k]g, Y2[k]g, Y3[k]g, Y4[k]g}. Let φ3 and φ4 be
two random variables having distributions respectively Uniform(φ31, φ32) and
Uniform(φ41, φ42), where φ31, φ32, φ41 and φ42 are constants to be assigned
later. Let V2,g, . . . , V15,g be a random sample such that the conditional dis-
tribution of each Vi,g given φ3 and φ4 is Beta(φ3, φ4). We assume that con-
ditional on φ3 and φ4, the prior density function π3,g(·|n) of the coefficients
bn,g = (b2,n,g, . . . , bn,n,g) is the joint probability density function of 2Y(4[15])g •
(V2,g, . . . , Vn,g). In the present study, φ31 = φ41 = 0.5 and φ32 = φ42 = 1.5, which
give a large support of the prior. Let φ = (φ1, φ2, φ3, φ4), which are the hyperpa-
rameters.

Thus, under the assumption that (cg, n, bn,g,μg) ∈ B × R
1 are conditionally

independent given φ, the posterior density ν of all the parameters and hyperpara-
meters, given the data, is proportional to{ 154∏

g=1

K∏
k=0

mk∏
j=1

g̃kg

(
Yjkg − Fcg,bn,g (Xk)

)
πg(cg, n, bn,g,μg|φ)

}
× ψ(φ),(2.1)

where g̃kg is the normal density of εjkg specified in (1.2) and ψ(φ) = ∏4
i=1(φi2 −

φi1)
−1 is the joint hyperprior density function.

(ii) Sampling the posterior distributions
Based on the hierarchical model, we use a Metropolis-within-Gibbs algorithm

to generate the posterior distributions for inference; details of the algorithm are
in the Appendix. The software is written in Matlab, which is available from the
author upon request. The variance σ 2

kg in (1.2) to be used in the algorithm is

decided as follows. Let σ̃ 2
kg = ∑4

j=1(Yjkg − Y kg)
2/3 and ξ̂g ∈ {0,1,2} be the

number that minimizes L(ξg) = ∑15
k=0(Qkg − Qg)

2/15 with Qkg = σ̃ 2
kg/Y

ξg

kg and

Qg = ∑15
k=0 Qkg/16 for ξg = 0,1 and 2. With x(t) denoting the current state of the

Markov chain and μ̂g the background noise in the current state x(t), we use

σ̂ 2
kg = σ̂ 2

g

(
F̂g(Xk) + μ̂g

)ξ̂g

for the σ 2
kg in (1.2) when updating x(t+1), where σ̂ 2

g = ∑15
k=0(σ̃

2
kg/Y

ξ̂g

kg)/16 and F̂g

is the Fg determined by x(t).
We run 5 MCMC chains with initial values chosen randomly from the hyperpri-

ors and the priors of each gene g, and monitor convergence by the Gelman–Rubin
statistic R̂, following the suggestion in Gelman and Rubin (1992) and Gelman
et al. (2004), pages 294–297. For each of the 154 genes, the Gelman–Rubin sta-
tistics R̂ is calculated for six estimands of interest, which are onset time (Ton),
time to maximum (Tmax), maximum (Max), time at which the slope is the highest
(Tslope), the highest slope (Slope) and the area under the curve on [0,1]. Each
of the five chains is run with 126,000,000 MCMC iterations and with a burn-in
period of 12,600,000 iterations, in which almost all the R̂ are less then 1.1. The
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56,700 updates, collected by taking one for every 10,000 updates in the last 90%
of updates of these 5 sequences, are considered the sample from the posterior dis-
tribution, which form the basis for inference.

(iii) Numerical performance
To evaluate the numerical performance of the above hierarchical Bayesian

method, we studied a similar, but not hierarchical, Bayesian method for the analy-
sis of the time course expression of a single virus gene. This nonhierarchical
Bayesian method, modeling the expression profile also by Bernstein polynomi-
als, is more flexible in the sense that it allows nontrivial prior probability on the
order of the Bernstein polynomial and is amenable to simulation studies. In fact,
the simulation studies indicate its excellent numerical performance. Details of this
method and the simulation studies are in the supplementary article [Chang et al.
(2008)]. We will evaluate the performance of the hierarchical Bayesian method by
comparing it with that of the nonhierarchical Bayesian method, in the context of
analyzing our baculovirus expression data. The genes that we chose to conduct
this evaluation are selected by the criterion described in the following paragraph;
this choice serves also the purpose of comparing the results from our hierarchi-
cal Bayesian method and that in Jiang et al. (2006), in addition to evaluating the
numerical performance of our method.

For each gene, we consider the differences between the times obtained from
the hierarchical Bayesian method and those in Jiang et al. (2006). Figure 1 gives

FIG. 1. The differences between the Ton (Tmax) based on the hierarchical Bayesian method and
the crude estimate. The first (second) coordinate of a dot is the onset time (time to maximum) of a
gene obtained from hierarchical Bayesian method minus that of the same gene using naive method.
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TABLE 1
Estimates of the onset time based on the naive estimate, hierarchical

Bayesian method and Bayesian method

Jiang et al. Hierarchical
(2006) Bayesian Bayesian

ID (Name) Estimate Mean Stdv Mean Stdv

ID 130 (p10) 0.0697 0.0724 0.0080 0.0756 0.0043
ID 143 (pe38) 0.0335 0.0293 0.0110 0.0211 0.0119
ID 145 (pk-1) 0.1785 0.1931 0.0025 0.1930 0.0025
ID 146 (pk-2) 0.0552 0.0349 0.0091 0.0292 0.0104
ID 152 (v-cath) 0.1374 0.1836 0.0072 0.1802 0.0095

a rough idea of the differences. The first (second) coordinate of a dot in Figure 1
is the onset time (time to maximum) of a gene obtained from the hierarchical
Bayesian method minus that of the same gene using the naive method. A gene
is selected if either its difference in onset times or that in times to maximum is
larger than 10 hours; we note that a difference of this size may cause concerns in
biological interpretation. There are in total five such genes and their differences
in onset times are not as large as their differences in the time to maximum; we
carry out time course expression for these five genes separately by the nonhierar-
chical Bayesian method. The onset times and the times to maximum of these five
genes are shown in Table 1 and Table 2 respectively. The first column of Table 1
gives the ID and the name of these genes; column 2 gives the onset times from
Jiang et al. (2006); column 3 gives the means and standard deviations (Stdv) of the
posterior distributions of the onset times from the hierarchical Bayesian method;
column 4 gives those from the nonhierarchical Bayesian method. The entries in Ta-
ble 2 bear similar meanings as those in Table 1. It is clear from these tables that the

TABLE 2
Estimates of the time to maximum based on the naive estimate,

hierarchical Bayesian method and Bayesian method

Jiang et al. Hierarchical
(2006) Bayesian Bayesian

ID (Name) Estimate Mean Stdv Mean Stdv

ID 130 (p10) 0.7343 0.5855 0.0079 0.5859 0.0068
ID 143 (pe38) 0.2185 0.3536 0.0248 0.3479 0.0230
ID 145 (pk-1) 0.3515 0.5293 0.0046 0.5285 0.0051
ID 146 (pk-2) 0.2127 0.4163 0.0179 0.4171 0.0166
ID 152 (v-cath) 0.3564 0.4990 0.0082 0.4924 0.0101
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results from the hierarchical Bayesian method and those from the nonhierarchical
Bayesian method are in quite good agreement. This suggests that the hierarchical
Bayesian method seems to produce reliable results in the study of baculovirus gene
expression.

We note that one of the genes, ph, was knocked out and we included it in the
hierarchical Bayesian analysis as a way to see if our method is capable of identi-
fying it. Indeed, it does; it has its time course expression profile much lower than
all the others; details are omitted. We also note that we compared other features
of several genes obtained from the hierarchical Bayesian method and those from
the nonhierarchical Bayesian method and find them in very good agreement. To
shorten the paper, we do not report the comparison.

One referee raised the question of whether our procedure automatically identi-
fies genes having different shapes like the two singled out by initially examining
the data. Indeed, based on the posterior distributions, we get these two genes iden-
tified by performing posterior predictive checking, as described in Gelman (2003)
and Gelman, Meng and Stern (1996).

3. Applications to the baculovirus data. Based on the samples from the pos-
terior distribution obtained in Section 2, this section carries out a genome-wide
expression analysis of the baculovirus and compares the results with those in Jiang
et al. (2006). It seems that the method of this paper reveals more insights into virus
biology than the naive method and in case the results from this paper and those in
Jiang et al. (2006) are significantly different, it is more often than not that the re-
sults from this paper are in better agreement with biology. Since one of the genes,
ph, was knocked out, the analysis in Jiang et al. (2006) was based on 155 genes
and the following studies regard the expression of the 153 genes.

3.1. Times to maximum. According to Table 2, the differences in times to max-
imum for 5 genes are larger than ten hours. Except for the gene p10, our method
gives larger times to maximum. The following comments seem to suggest that
the times to maximum from the current approach allow better or equally sensible
interpretation, based on their gene product function.

pe38 encodes a transcription factor important for virulence of the baculovirus
[Milks et al. (2003)]. It was shown that it expresses from the immediate early
phase throughout the late phase [Knebel-Morsdorf et al. (1996)]. Larger time to
maximum might reflect this fact more satisfactorily.

pk-1 is a component of AcMNPV very late gene transcription complex [Mishra,
Chadha and Das (2008)]. Reilly and Guarino (1994) indicated that the transcription
of pk-1 peaks in the very late stage of the infection cycle. Larger time to maximum
seems more consistent with these observations. Although there is no report on the
transcription time of pk-2, we tend to think that it is similar to pk-1 and hence
transcribes also in the late stage of the infection cycle.
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v-cath encodes a papain type cysteine proteinase with cathapsin L-like property.
Its proteinase activity is required for the breakdown of host tissues during the later
stages of virus infection/pathogenesis [Hill, Kuzio and Faulkner (1995)]. Larger
time to maximum better reflects the needs for its protein expression during this
stage, when the host has been exhausted completely and the virus can be spread to
other hosts most efficiently.

For the well-known late gene p10, although the hierarchical Bayesian method
gives a smaller time to maximum than that in Jiang et al. (2006), we note that this
smaller time to maximum is still the third largest among all the times to maximum
of the 153 genes and hence seems to cause less concern.

3.2. Time course expression analysis. To illustrate the use of our method, we
now present, in Table 3, the features of the expression profile of the gene v-cath,
which is one of the genes selected to evaluate the numerical performance of our
method. Figure 2 presents the data and the posterior mode of its time course ex-
pression. Most of these features can not be reliably obtained by the naive method.
This illustration also helps to appreciate that the data have substantial contribution
in the inference on these features of v-cath. Table 3a reports the posterior probabil-
ity and the prior probability that the parameter represents a unimodal curve on the
interval [0, τ ] for τ = 0.6667,0.8333,1.0000; the last two rows give respectively
the ratio of the posterior probability to the prior probability and the Bayes factor.
Table 3a presents strong evidence, provided by the data, in favor of the unimodal-
ity of the time course profile. The posterior probability and the prior probability
that the parameter represents a curve that is increasing before reaching its global

TABLE 3
Data analysis for the gene v-cath

Table 3a. Posterior probability (Po), prior probability (Pr), the ratio of Po to Pr, and the Bayes factor
(Bf) of being unimodal on [0, τ ].

[0, τ ] [0, 0.6667] [0, 0.8333] [0, 1.0000]

Po 1.0000 0.3280 0.0280
Pr 0.4158 0.2658 0.0972
Po/Pr 2.4050 1.2340 0.2881
Bf ∞ 1.3482 0.2676

Table 3b. Posterior probability (Po), prior probability (Pr), the ratio of Po to Pr, and the Bayes factor
(Bf) that it is increasing before reaching its global maximum.

Po 1.0000
Pr 0.3719
Po/Pr 2.6889
Bf ∞
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Table 3c. The Ton, Tmax, Max, Tslope, Slope, L1-norm and Tend of the mode of the posterior
density ν in (2.1) is given in the third column in the table. The sample mean, sample Stdv and
support of the posterior probability distribution and the prior probability distribution of these features
are respectively given in the fourth, fifth and sixth column.

Estimand Mode Mean Stdv Support

Ton Posterior 0.1819 0.1836 0.0072 (0.1197, 0.2079)
Prior 0.1329 0.0510 (0.0023, 0.2498)

Tmax Posterior 0.5093 0.4990 0.0082 (0.4444, 0.5231)
Prior 0.7902 0.2278 (0.2083, 1.0000)

Max Posterior 1.7779 1.6797 0.0877 (1.2713, 1.9397)
Prior 2.1139 0.5189 (0.3668, 3.0793)

Tslope Posterior 0.2176 0.2358 0.0420 (0.1944, 0.4074)
Prior 0.4236 0.3499 (0.0509, 1.0000)

Slope Posterior 8.1613 8.7394 1.0778 (5.6079, 13.5625)
Prior 15.0351 9.1052 (1.7144, 59.4057)

L1-norm Posterior 0.6206 0.6005 0.0298 (0.5004, 0.7357)
Prior 1.0878 0.3419 (0.1173, 2.2368)

Tend Posterior 0.8380 0.8400 0.0720 (0.7500, 1.0000)
Prior 0.9366 0.1217 (0.3611, 1.0000)

FIG. 2. The data and the posterior mode of the time course expression of the gene v-cath.
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maximum are reported in Table 3b; similarly, the last two rows give respectively
the ratio of the posterior probability to the prior probability and the Bayes factor;
Table 3b strongly suggests that the expression profile increases before its global
maximum.

Let τ0 (Tend) denote the largest time point t such that the time course expression
profile is unimodal on [0, t]. Let L1-norm denote the area under the time course
expression profile on [0, τ0]. Table 3c reports Ton, Tmax, Max, Tslope, Slope,
L1-norm and Tend of the mode of the posterior density ν in (2.1) and the sample
mean, sample standard deviation (Stdv) and support of these features on the sample
respectively from the posterior and prior distributions. Comparing the Stdv and the
support from the posterior and the prior, we know that the data have substantial
contribution in the inference on these features.

It is customary in microarray literature to cluster genes according to their ex-
pression profiles for biologists to use. Using the Ton and Tmax of the mode of the
posterior distribution, we apply the cluster analysis algorithm proposed by Hall and
Heckman (2002) to cluster the 153 genes into six groups, which are I (early on-
set and early to maximum), IV (mid-course onset and early to maximum), V (late
onset and mid-course to maximum), VI (late onset and early to maximum), and II
and III (mid-course onset and late to maximum). The scatterplot in Figure 3 reports
the cluster analysis result; genes with known functions are listed according to the
clusters to which they belong.

While Figure 3 helps to shed light on the gene groups, it would be interesting
to see if genes in the same group have a more similar overall expression profile.
Using the rank correlation of two time course expression profiles as the distance
between two genes, Table 4 shows that the means of the rank correlation for two
genes randomly chosen from the same one of the clusters are smaller than that
from the set of all 153 genes. We note that the rank correlation is a measure of
similarity between functions studied by Heckman and Zamar (2000). This seems
to suggest that genes in the same group have a more similar expression profile.

Based on the time course expression profile of the 153 genes obtained by the
posterior mode, we use the K-means algorithm along with the sample rank correla-
tion matrix to cluster them; as in Jiang et al. (2006), we also consider five clusters.
The five gene clusters are contained in Figure 4.

We note that clustering is an important step toward gaining insights from high-
throughput expression data and there is usually some arbitrariness in forming clus-
ters. Since clustering in Figure 3 is based only on onset times and times to max-
imum, it is easier to cluster and to interpret, but Figure 4 is more informative in
general. For example, Cluster 5 in Figure 4 consists of three genes; one of the
most obvious features of these three genes seems to be their large expression lev-
els; thus, it is interesting to note that they are also in such close proximity to each
other in Figure 3 and they form exactly the Groups II and III in Figure 3.
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Group I (early onset and early to maximum) 35K/p35, egt, me53, 39K/pp31,
pcna, 94K, ie-2, lef1, pnk/pnl, he65, ie-01, ie-1, lef6, pk-2, DNA-pol, gp64, pe38,
lef3, p48, lef7, p26, ctx, helicase, lef11, lef2, p15, tlp, orf-603

Groups II and III (mid-course onset and late to maximum) orf-1629, p10, p74
Group IV (mid-course onset and early to maximum) gta, p40, ptp, iap1, p43,

alk-exo, cg30, odv-e18, PE/pp34
Group V (late onset and mid-course to maximum) pk-1, v-cath
Group VI (late onset and early to maximum) gp41, p47, p6.9, vlf-1, chitinase,

ie-0, pkip, sod, lef9, odv-ec27, lef5, env-prot, lef4, lef8, p95, vp39, gp16, 38K, bro,
fgf, fp, HisP, iap2, odv-e56, v-ubi, 49K, odv-e25, vp80, gp37, lef10, p24, odv-e66

FIG. 3. A classification methodology for the 153 genes based on Ton and Tmax. Selected known
genes in each classified group are listed at the bottom.
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TABLE 4
Mean and standard deviation of the rank correlation of the time

course expression of two genes chosen from specific groups

Rank correlation

Group Number of genes Mean Stdv

I 60 0.8070 0.1578
II 2 0.9793 0.0000

III 1 NA∗ NA
IV 15 0.8852 0.0807
V 6 0.9108 0.0594

VI 69 0.8981 0.0867
All 153 0.7717 0.2023

∗NA means not applicable.

3.3. Total expression amount and structure genes. It is of great interest to
study the widely discussed conjecture that the virus has a great demand of struc-
tural proteins. While we cannot provide a definitive answer to this question, we
think the method of this paper can shed some light on it. One of the salient fea-
tures of the expression profile obtained by our method is the area under the time
course expression profile (L1-norm); roughly speaking, the L1-norm of a gene is
the sum of the lives of all the mRNA molecules transcribed during the time interval
ended at Tend; the life of an mRNA molecule is the time length from its transcrip-
tion to its degradation or its Tend. Although the relation between the L1-norm and
the total number of the proteins translated is complex, we expect they are posi-
tively correlated. We indicate in the following that structure genes seem to have
larger L1-norms. There are 74 baculovirus genes with known names, in which
15 of them are structure genes and the rest are not. We find that, in terms of the
L1-norm, four of the five largest genes are structure genes, giving an odds ratio of
21.1; among the ten largest genes, five of them are structure genes, giving an odds
ratio of 5.4; among the 20 largest genes, 7 of them are structure genes, giving an
odds ratio of 3.1. We also study by the Wilcoxon statistic the null hypothesis that
there is no difference in the L1-norm between structural genes and nonstructural
genes. We find the statistic has value 1.73 and using the one-sided Wilcoxon test,
it has p-value 0.0418. This seems to reinforce the conjecture that structural genes
tend to have larger L1-norms. We note it seems hard to estimate the L1-norms and
to study this conjecture by the method of Jiang et al. (2006).

3.4. Motif and onset time. Biologists tend to think that genes participating in
the same biological process may be transcriptionally coregulated. One preliminary
step in studying this phenomenon might be to examine whether upstream sequence
motifs of a gene have something to do with its transcription time. In the baculovirus
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FIG. 4. Cluster analysis for the 153 viral gene expression profiles.

literature [Ayres et al. (1994) and Friesen and Miller (2001), for example], motifs
A(A/T)CGT(G/T) and CGTGC are called the early motif; motif TAAG is called
the late motif; genes having motif CATG are usually believed to express early.
Jiang et al. (2006) studies this by reporting the proportions of these motifs in the
5 gene clusters obtained from clustering the time course expression crude data.
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TABLE 5
Motifs have to do with onset time. Comparing the onset times of genes having specific
motifs with those without by the Wilcoxon statistic, which is asymptotically standard

normal. Minus (plus) values indicate the former (latter) is smaller (larger)

Motif With Without Wilcoxon statistic p-value

Early∗ 64 66 −2.65 0.00402
TAAG 70 60 4.04 0.00003
CATG 69 61 −2.66 0.00391
Early/CATG 110 20 −2.54 0.00554

∗The early motif (Early) consists of motifs A(A/T)CGT(G/T) and CGTGC.

While we can conduct a similar study by means of the clusters obtained from our
Bayesian method, we propose to ignore the clusters and take a more direct and
relevant approach to address this issue.

Based on the onset times of this paper, we study the hypotheses that, with a
given motif, there is no difference between the onset times of the genes with this
motif and those without this motif. We study them by the Wilcoxon statistic. Ta-
ble 5 summarizes the numbers of genes having or not having these motifs and
reports the Wilcoxon statistics and their p-values for testing the corresponding
one-sided null hypothesis. For example, the second row shows that 70 genes have
TAAG and 60 genes do not have it, its Wilcoxon statistic is 4.04 and the p-value
is smaller than 0.0001, which seem to suggest that the genes having TAAG tend to
have later onset times. It seems Table 5 supports the idea that motifs have some-
thing to do with onset times.

3.5. Colocalization. Because functionally correlated or coregulated genes in
an operon of a bacterial genome may be located in nearby loci of the physical
genome [Lagreid et al. (2003)], Jiang et al. (2006) investigated whether a similar
gene organization exists in the AcMNPV genome. Based on the time course ex-
pression normalized data, Jiang et al. (2006) clustered genes into five clusters and
noted six colocalized clusters. A colocalized cluster is defined as a genome region
that contains at least five consecutive genes from the same gene cluster where no
more than one interruption occurs by a gene from other gene clusters in either the
plus or minus strand. Using the same definition of a colocalized cluster, we find
there are nine colocalized clusters, based on the five clusters exhibited in Figure 4.
These nine colocalized clusters are shown in Figure 5. This seems to suggest that
expression profiles from our sophisticated method reveals more signals than the
naive method.

The phenomenon that genes with similar expression profile tend to be located
near each other is referred to as colocalization in Jiang et al. (2006). Since the
above definition of a colocalized cluster is somewhat arbitrary, we present a more
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FIG. 5. Genome map view of the five gene clusters color tagged in the baculovirus genome. Red,
green, blue, black and yellow represent respectively genes in the cluster 1, 2, 3, 4, 5 in Figure 4.

systematic study on this in Table 6. Column two and column three of Table 6 give
respectively the probability of two (three, four, five) randomly chosen genes that
belong simultaneously to the same one of the five clusters and the probability of
two (three, four, five) randomly chosen neighboring genes that belong simultane-
ously to the same one of the five clusters. Because the numbers in column 2 are
smaller than those in column 3, it seems that colocalization does exist.

From the viewpoint of evolution, it might also be appealing to see if genes close
to each other on the genome have a similar expression pattern. One relevant null
hypothesis would be that there is no difference in the rank correlation of expression
profiles from nearby genes and that from far away genes. For integer 0 ≤ Z ≤ 76 =
(153 − 1)/2, let Nei(g,Z) denote the set of genes whose distance from gene g is

TABLE 6
The probability that N randomly chosen (neighboring)

genes belong to the same cluster in Figure 4

N Randomly chosen Neighboring

2 0.3835 0.4837
3 0.1820 0.2680
4 0.0926 0.1373
5 0.0484 0.0719
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TABLE 7
Comparing the rank correlation of the time course expression profiles from nearby genes and that
from far away genes. Rn(Z) is the set of rank correlations for genes having no more than Z genes

lying between them; RCn(Z) is that for genes having at least Z genes lying between them

Rn(Z) RCn(Z) Wilcoxon statistic p-value

Rn(2) RCn(12) 8.81 0.0000
Rn(4) RCn(14) 5.82 0.0000
Rn(6) RCn(16) 5.09 0.0000
Rn(8) RCn(18) 2.72 0.0033
Rn(10) RCn(20) 2.01 0.0221
Rn(12) RCn(22) 0.84 0.2002
Rn(14) RCn(24) 1.25 0.1051
Rn(16) RCn(26) 2.31 0.0105
Rn(18) RCn(28) 1.59 0.0558
Rn(20) RCn(30) 0.23 0.4078
Rn(22) RCn(32) 0.55 0.2913
Rn(24) RCn(34) 1.45 0.0737
Rn(26) RCn(36) 0.25 0.4014

no larger than Z; here the distance between two genes is the number of genes
lying strictly between them. Let Rn(Z) denote the set of rank correlations of the
time course expression profile of a gene g and that of a gene in Nei(g,Z). Let
RCn(Z) denote the set of rank correlations of the time course expression profile
of a gene g and that of a gene not in Nei(g,Z). In terms of this notation, the
null hypothesis becomes that there is no statistical difference between Rn(Z1) and
RCn(Z2). We studied the hypothesis by the Wilcoxon statistic for many choices
of Z1 and Z2. Table 7 reports the Wilcoxon statistics and their p-values for testing
the corresponding one-sided null hypothesis for several choices of Z1 and Z2. It
suggests that nearby genes do have a higher chance to have a similar expression
pattern.

4. Discussion. We have illustrated a hierarchical Bayesian shape restricted re-
gression method for the inference on the genome-wide time course expression of
virus genes and, based on the profiles provided by this method, we have examined
salient features on the time course expression curves, studied some hypotheses on
and thus brought insights into baculovirus biology. It is to be noted that our method
helps to formulate biological questions quantitatively so as to make modern sta-
tistics methods applicable. Although we looked at colocalization, the relation be-
tween upstream motifs and onset times, and that between area under curve and
gene function, these are, nevertheless, preliminary investigations. Further studies
are needed to give a more complete account of these aspects of the baculovirus.

In view of the facts that genome-wide expression studies of virus genes are
gaining popularity, all the previous works in this area use at most crude statistics
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for biological interpretation, and the existing discrepancies between the studies
need to be resolved, we think our method is useful not only in one single expression
study of virus genes but also in comparing these studies, which would enhance
our understanding of the gene regulation network. We note that our method can
be used to provide comprehensive comparison of the time course transcription
profiles from different experiments when even their time points are not identical,
as long as there are enough of them to capture their respective main features.

As for future methodological development, we think the Bernstein–Dirichlet
prior of Petrone (1999) and the related samplers are also useful in this context;
studies in this line and comparison with the approach in this paper deserve our
attention.

APPENDIX: METROPOLIS-WITHIN-GIBBS ALGORITHM FOR THE
POSTERIOR

Let Bn = {bn ∈ R
n−1 :Fc,bn ∈ In for some c ∈ [0,1)}. Denote (b2,n,g, . . . ,

bn,n,g) = bn,g by (a2,g, . . . , an,g) = ag . Let c = (c1, . . . , c154); a = (a1, . . . , a154);
u = (μ1, . . . ,μ154).

Let B = {φ, c,a,u | φ = (φ1, φ2, φ3, φ4) ∈ [2.2771,3.2771] × [1.9481,

2.9481] × [0.5,1.5] × [0.5,1.5], cg ∈ [0, X̂g], ag ∈ Bn,μg ∈ [0,2Y 0g]}. Our com-
putational strategy consists of the following five MCMC algorithms to update φ, c,
a and u consecutively. Let x(t) = (φ(t), c(t),a(t),u(t)) ∈ B denote the current state
of the MCMC chain for sampling the posterior distribution.

(i) Update φ1 and φ2

1. Let φ̃1 and φ̃2 be two random samples from Uniform(φ11, φ12) and
Uniform(φ21, φ22) respectively;

2. let y = (φ̃1, φ̃2, φ
(t)
3 , φ

(t)
4 , c(t),a(t),u(t));

3. set

x(t+1) =
⎧⎨
⎩y, with prob. ρ = min

{
1,

ν(y)

ν(x(t))

}
,

x(t), otherwise.

(ii) Update φ3 and φ4

1. Let φ̃3 and φ̃4 be two random samples from Uniform(φ31, φ32) and
Uniform(φ41, φ42) respectively;

2. let y = (φ
(t)
1 , φ

(t)
2 , φ̃3, φ̃4, c(t),a(t),u(t));

3. set

x(t+1) =
⎧⎨
⎩y, with prob. ρ = min

{
1,

ν(y)

ν(x(t))

}
,

x(t), otherwise.
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(iii) Update c
There are 154 components (c1, . . . , c154) in c; we update them one at a time in

the order of the coordinates. Suppose c
(t)
1 , . . . , c

(t)
g−1 have been just updated and we

now want to update c
(t)
g .

1. Let U be a random sample from Beta(φ
(t)
1 , φ

(t)
2 );

2. let c̃g = X̂g ×U ; let π1,g(c̃g|φ(t)
1 , φ

(t)
2 ) denote the prior density π1,g of c̃g given

φ
(t)
1 and φ

(t)
2 ;

3. let y = (φ(t), c
(t)
1 , . . . , c

(t)
g−1, c̃g, c

(t)
g+1, . . . , c

(t)
154,a(t),u(t));

4. set

x(t+1) =
⎧⎪⎨
⎪⎩

y, with prob. ρ = min
{

1,
ν(y)π1,g(c

(t)
g |φ(t)

1 , φ
(t)
2 )

ν(x(t))π1,g(c̃g|φ(t)
1 , φ

(t)
2 )

}
,

x(t), otherwise.

(iv) Update a
We update one coordinate of a each time in the order of the coordinates. Sup-

pose we have updated a
(t)
2,g, . . . , a

(t)
i−1,g and we now want to update a

(t)
i,g .

1. Let V be a random sample from Beta(φ
(t)
3 , φ

(t)
4 );

2. let ãi,g = 2Y(4[15])g × V ; let π3,g(ãi,g|φ(t)
3 , φ

(t)
4 ) denote the prior density

π3,g(·|n) of the coefficient ãi,g given φ
(t)
3 and φ

(t)
4 ;

3. let y be the same vector as x(t) except replacing a
(t)
i,g by ãi,g ;

4. set

x(t+1) =

⎧⎪⎪⎨
⎪⎪⎩

y, with prob. ρ = min
{

1,
ν(y)π3,g(a

(t)
i,g|φ(t)

3 , φ
(t)
4 )

ν(x(t))π3,g(ãi,g|φ(t)
3 , φ

(t)
4 )

}
,

x(t), otherwise.

(v) Update u
There are 154 components (μ1, . . . ,μ154) in u; we update them one at a time

in the order. Suppose we have updated μ
(t)
1 , . . . ,μ

(t)
g−1 and we now want to update

μ
(t)
g .

1. Let μ̃g be a random sample from Uniform(0,2Y 0g);

2. let y = (φ(t), c(t),a(t),μ
(t)
1 , . . . ,μ

(t)
g−1, μ̃g,μ

(t)
g+1, . . . ,μ

(t)
154);

3. set

x(t+1) =
⎧⎨
⎩y, with prob. ρ = min

{
1,

ν(y)

ν(x(t))

}
,

x(t), otherwise.
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SUPPLEMENTARY MATERIAL

Profiling time course expression of a single virus gene (DOI: 10.1214/09-
AOAS258SUPP; .pdf). This nonhierarchical Bayesian method, using also Bern-
stein polynomials, allows nontrivial prior probability on the order of the Bernstein
polynomial and is amenable to simulation studies, which indicate its excellent nu-
merical performance.
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