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Today’s call center managers face multiple operational decision-making
tasks. One of the most common is determining the weekly staffing levels
to ensure customer satisfaction and meeting their needs while minimizing
service costs. An initial step for producing the weekly schedule is forecasting
the future system loads which involves predicting both arrival counts and
average service times.

We introduce an arrival count model which is based on a mixed Poisson
process approach. The model is applied to data from an Israeli Telecom com-
pany call center. In our model, we also consider the effect of events such as
billing on the arrival process and we demonstrate how to incorporate them as
exogenous variables in the model.

After obtaining the forecasted system load, in large call centers, a manager
can choose to apply the QED (Quality-Efficiency Driven) regime’s “square-
root staffing” rule in order to balance the offered-load per server with the
quality of service. Implementing this staffing rule requires that the forecasted
values of the arrival counts and average service times maintain certain levels
of precision. We develop different goodness of fit criteria that help determine
our model’s practical performance under the QED regime. These show that
during most hours of the day the model can reach desired precision levels.

1. Introduction. Many companies invest significant resources in order to pro-
vide high quality customer service, with much or all customer interactions based
on telephone or internet access. Telephone Call Centers, and their multimedia ex-
tensions called Contact Centers, support these interactions between companies and
their customers. Such service centers accumulate vast amounts of data, which can
be analyzed and utilized for short-term operational decisions, medium-term tacti-
cal decisions or long-term strategic decisions.

Over recent years, the service industry has expanded dramatically. Estimates
from 2005 indicated that call center costs exceeded $300 billion worldwide [Gilson
and Khandelwal (2005)]. It is estimated that there are 4 million call center agents
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in the USA, 800 thousand in the UK, 500 thousand in Canada and 500 thousand in
India [Holman, Batt and Holtrewe (2007)].

One of the main challenges in operating a telephone call center is determin-
ing staffing levels that meet future demand, given desired levels of service qual-
ity and efficiency. A prerequisite for such a task is the forecasting of the sys-
tem workload over the periods of the day, for several days in advance. The
workload, or what is technically called the offered-load, depends on the arrival
process and the service times that each arrival (customer) requires. For planning
a staffing schedule, call center operators utilize forecasts of the arrivals and ser-
vice times at a sufficient resolution—say for every half hour. Given that infor-
mation, jointly with some understanding of customer patience characteristics [Zel-
tyn (2005)] and increasingly prevalent software tools (e.g., 4CallCenters Software,
http://ie.technion.ac.il/serveng/4CallCenters/Downloads.htm), an operator can de-
termine the required number of agents for each period.

A common approach for achieving proscribed service quality and efficiency
[Zeltyn (2005)] is via the square-root staffing rule. Assume for simplicity a con-
stant arrival rate of λ calls per minute, and let the average service time be E[S]
(in minutes). The offered-load R is defined to be R = λ × E[S]: it is the average
amount of work (in service time) that arrives to the system (per unit of time). With
a forecast of R, one sets the number of agents to be N = R +β

√
R, for some para-

meter β (typically −1 ≤ β ≤ 2) that reflects the required balance between service
quality (short waiting times, few abandonments) and service efficiency (utilization
of agents). Selecting a value for β is the manager’s way of achieving a required
call center performance (see Section 6.2).

The purpose of the present paper is to describe an implementation of the above
described program, from statistical modeling of the arrival and service processes,
through using these models for forecasting, and finally applying the forecasts to
predict workload and thus staffing requirements.

We use Gaussian linear mixed model formulations to describe both a suitably
transformed version of the arrival process and the average service times. Mixed
models allow us the much needed flexibility to describe different seasonality ef-
fects using correlation structures in both models. Moreover, they provide more
realistic prediction intervals than those obtained ignoring correlations in the se-
ries. Mixed models also allow us to incorporate exogenous variables in a “natural”
manner.

Since forecasting3 is an error prone activity, we also analyze the ramifications of
forecasting errors on system performance, when compared with the desired level
of performance as determined under the QED regime.

This paper describes both the analysis of a particular call center and the method-
ological approach that can be used as a blueprint for other call centers. Signifi-

3In this paper we shall use the terms forecasting and predicting interchangeably.

http://ie.technion.ac.il/serveng/4CallCenters/Downloads.htm
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cantly, the forecasting models considered can be implemented using standard sta-
tistical software—such as SAS®/STAT [SAS (2004) used here] or R [R Develop-
ment Core Team (2005)].

We start with a review of past and recent studies that have been conducted
on call center arrival processes. We then describe our case study data set (Sec-
tion 3), and explain the component models used for workload forecasting (Sec-
tions 4 and 5). Finally, we consider the forecasting of offered-load, its application
to staffing, and the effects of forecasting error on performance, all in Section 6.

2. Literature review. For a review of research on the operational aspects of
call centers, readers are referred to Gans Koole and Mandelbaum (2003). A more
recent survey focusing on the multiple disciplines required to support call center
research is Aksin, Armony and Mehrota (2007).

Queueing models: The operational reality of a basic call center can be well
captured by the Mt/G/N + G queue [Whitt (2007)]. Here one assumes i.i.d. (in-
dependent and identically distributed) customers and i.i.d. servers (agents), with a
time-varying arrival-rate of calls. Formally: (i) Mt indicates that the arrival process
is nonhomogeneous Poisson with a deterministic arrival rate function λ(t); (ii) The
first G indicates that the service times are i.i.d., independent of the arrival process,
each distributed as a random variable (to be generically denoted S) with cumu-
lative distribution function G(x) and finite mean 1

μ
≡ E(S); (iii) N is the num-

ber of servers, which is allowed to be a time-dependent deterministic function;
and (iv) the second G indicates that customers can abandon while waiting to be
served; customers’ impatience times (times to abandon) are i.i.d., independent of
the arrival process and the service times, and with finite mean 1

θ
.

The Mt/G/N + G model is intractable analytically. Fortunately, for practi-
cal purposes it is often reducible to the tractable Mt/M/N + M model [Brown
et al. (2005)], in which service time distribution is exponential(μ) and patience is
exponential(θ). In Section 6 we describe how to use the Mt/M/N + M model,
often referred to as Erlang-A, to assess the accuracy of our proposed forecasting
method.

Call arrivals: Early forecasting studies applied classical Box and Jenkins, Auto-
Regressive-Moving-Average (ARMA) models, for example, the Fedex study [Xu
(2000)] and L. L. Bean [Andrews and Cunningham (1995)]. The latter study con-
siders two arrival processes, each with its own characteristics: it incorporates ex-
ogenous variables along-side MA (Moving Average) and AR (Auto-Regressive)
variables, using transfer functions to help predict outliers such as holidays and spe-
cial sales promotion periods. Antipov and Meade (2002) also tackled the problem
of including advertising response and special calender effects by adding exogenous
variables in a multiplicative manner.

More recently, Taylor (2008) applied several time series models to two sources
of data, including seasonal ARMA models, double exponential smoothing meth-
ods for seasonality and dynamic harmonic regression. His results indicated that,
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for practical forecasting horizons (longer than one day), a very basic averaging
model outperforms all of the suggested more complex alternatives.

Beyond Poisson: Recent empirical work has revealed several important charac-
teristics that underly the arrival process of telephone calls:

• Time-variability: Arrival rates vary temporally over the course of a day, see Tanir
and Booth (1999). For example, peak hour arrival rate can be significantly higher
than the level of the average daily arrival rate [Brown et al. (2005)];

• Over-dispersion: Arrival counts exhibit variance that substantially dominates
the mean value. This goes against the assumption that the arrival process is
Poisson. A mechanism that accounts for over-dispersion was suggested by Jong-
bloed and Koole (2001). They proposed the Poisson mixture model which in-
corporates a stochastic arrival rate process to generate the additional variability;

• Inter-day correlation: There is significant dependency between arrival counts
on successive days. Brown et al. (2005) suggest an arrival forecasting model
which incorporates a random daily variable that has an autoregressive structure
to explain the inter-day correlations;

• Intra-day correlation: Successive periods within the same day exhibit strong
correlations. This intra-day correlation was modeled and analyzed by Avramidis,
Deslauriers and L’Ecuyer (2004), using Dirichlet distributions.

Forecasting methods: In recent years, technological advances have enabled re-
searchers to employ sophisticated Bayesian techniques to call forecasting. These
yield the forecasted arrival counts, as well as their distribution, thus providing far
more information than just point estimates.

For example, Soyer and Tarimcilar (2008) analyzed the effect of marketing
strategies on call arrivals. Their Bayesian analysis is based on the Poisson distribu-
tion of arrivals over time periods measured in days, with cumulative rate function.
They model the rate function using a mixed model approach. Their conclusion is
that the random effects model fits much better than the fixed effects model; indeed,
the data cannot be adequately described by assuming a fixed model without some
additional random variability source. The mixture model also provides within ad-
vertisement correlations over different time periods.

Another model of incoming call arrivals to a US Bank call center, also employ-
ing Bayesian techniques, was proposed in Weinberg, Brown and Stroud (2007).
In that paper the authors use the Normal-Poisson stabilization transformation to
transform the Poisson arrival counts into normal variates. The normally trans-
formed observations allowed them the necessary flexibility to incorporate con-
jugate multivariate normal priors with a wide variety of covariance structures.
The authors provide a detailed description of both the one-day-ahead forecast
and within-day learning algorithms. Both algorithms use Gibbs sampling tech-
niques and Metropolis–Hastings steps to sample from the forecast distributions.
These techniques, although very modern, nevertheless still require long process-
ing times (since the procedure requires meeting the convergence criteria as well
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as “overcoming” the auto-correlations between successive samples). For our pro-
posed model the run time is actually quite short since we implement it using a
two-stage approach (which will be discussed in detail in Section 4.1.2).

The Bayesian model also requires carrying out sensitivity analyses with respect
to the hyper-parameters. This fine tuning of the parameters can be a much more
tedious and burdensome process than the adjustments we implement in our model
(described in Section 4).

Taking a non-Bayesian approach, Shen and Huang (2005) analyzed and mod-
eled call center arrival data using a Singular Value Decomposition (SVD) method.
The SVD algorithm allowed them to visually analyze the data. Expanding on the
same idea, Shen et al. take advantage of this technique to reduce the dimension of
the data and also create a prediction model which provides inter-day forecasting
and an intra-day updating mechanism for the arrival rate profiles [Shen and Huang
(2008b)]. In a more recent paper Shen and Huang (2008a) incorporate the previous
idea (i.e., SVD) but make use of Poisson regression to give better predictions of
the arrival counts and their prediction intervals.

In our model we demonstrate how to incorporate covariates. This process of
adding exogenous variables is quite “natural” and easy under the mixed model
settings. It is not quite clear how one would add these exogenous variables under
the Bayesian setting proposed by Weinberg et al. or using the SVD approach by
Shen and Huang.

Our arrival count prediction model is a natural extension of the model which
was initially explored by Brown et al. (2005). However, we do offer some key
modifications, such as adding exogenous variables and modeling both intra- and
inter-day correlation using an auto-regressive process.

For a detailed bibliography on the subject of forecasting telephone call arrivals,
as well as other call centers’ related papers, readers are referred to Mandelbuam
(2004).

3. Case study data. Our data originate from an ongoing research project that
is conducted at the Technion’s SEE Laboratory SSE (http://ie.technion.ac.il/Labs/
Serveng/). This project [Feigin et al. (2003)], entitled DataMOCCA (Data MOdels
for Call Center Analysis), has created a repository of multiyear histories from sev-
eral call centers, at the individual-call level. The present study focuses on data
from an Israeli Telecom company, as will be now described. See the supplemental
material for further details about the data Aldor-Noiman, Feigin and Mandelbaum
(2009).

3.1. Arrival process. The call center handles calls from several main queues:
Private clients; Business clients; Technical Support problems; Foreign languages
queues; and a few minor queues. In general, queues are operated by separate ser-
vice provider groups. Almost 30% of the incoming calls join the Private customers

http://ie.technion.ac.il/Labs/Serveng/
http://ie.technion.ac.il/Labs/Serveng/
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queue, which is catered by a dedicated team of 150 telephone agents. The load gen-
erated from each of the remaining queues is much smaller (e.g., the second largest
queue is the Business queue, which generates 18% of the overall incoming load).
Hence, we shall limit our analysis to the Private queue (and bear in mind that our
modeling techniques are applicable to the other queues as well).

The Private queue’s call center operates six days a week, closing only on Sat-
urdays and Jewish holidays. On regular weekdays, operating hours are between
7 a.m. and 11 p.m. and on Fridays it closes earlier, at around 4 p.m.

The data includes arrivals between mid-February, 2004 and December 31, 2004.
We divide each day into half-hour intervals. There are two alternative justifications
for choosing a half-hour analysis resolution: (a) currently, shift scheduling is car-
ried out at this resolution; and (b) from a computational complexity point of view,
taking shorter intervals significantly increases the computing time for many mod-
els and may make their implementation completely impractical.

In the sequel we consider, for each day, the 24 half-hourly intervals between
10 a.m. and 10 p.m., as this is when the call center is most active.

Note that if the arrival rate was very inhomogeneous during a particular half-
hour interval, then using the average arrival rate could lead to under-staffing.
Specifically, the staff level assigned to meet the average load would not be able
to cope with the peak load in that particular half-hour interval. We do basically
assume in the sequel that the within interval inhomogeneity is mild—it is further
evaluated in Section 4.4.

Figure 1 demonstrates the arrival counts between April, 2004 and September,
2004. Higher resolution analysis of this graph gives rise to the following weekly
patterns: Sundays and Mondays have the highest arrival counts; the number of ar-
rivals gradually decreases over the week until it reaches its lowest point on Fridays;
and, there are quite a few outliers which occur in April.

Examination of outlying observations singles out twenty-two days with unusual
arrival counts. Among these days, 17 days were holidays and five days exhibited
different daily patterns and unusual daily volumes when compared to similar reg-
ular weekdays.

As mentioned earlier, April 2004 has an unusual weekly pattern. Out of the list
of twenty-two outliers, nine occur in April, which explains the peculiar pattern that
we see in Figure 1. These nine outliers can be attributed to Holidays and a coun-
trywide change in phone number prefixes. In conclusion, the outlying days were
excluded from the learning stage of our model but were kept for later evaluation
purposes.

Study of intra-day arrival patterns for regular days also reveals some interesting
characteristics:

• The weekdays Monday through Thursday have a similar pattern. Figure 2 il-
lustrates the last fact by depicting the normalized weekday patterns—each half
hour is divided by the mean half-hour arrival rate for that day, and the nor-
malized values for corresponding weekdays are averaged. There are two major
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FIG. 1. Daily arrivals, including holidays, to the Private queue between April 1st, 2004 and Sep-
tember 1st, 2004.

peaks during the day: one at around 2 p.m. and the higher one at around 7 p.m.
The higher peak is probably due to the fact that people finish working at around
this hour and so are free to phone the call center. From 7 p.m. onward there is a
gradual decrease (except for a small increase at around 9 p.m.).

• Fridays have a completely different pattern from the rest of the weekdays. This
can be seen in Figure 2. For each day of the week, arrivals in the 24 periods
were smoothed using the default smoothing method in the R Development Core
Team (2005). Because Friday is a half work day for most people in Israel, it is
very reasonable for its daily pattern to differ from the rest of the weekdays.

• Sunday’s pattern also differs from the rest of the weekdays. Figure 2 exhibits
how Sunday has an earlier increase than the other weekdays (Monday through
Thursday), possibly as a result of customers who were not able to contact the
call center on the weekend (Saturday).

The above three properties lead us to consider, in Section 4.3.2, models with
three intra-day patterns to capture the average behavior of all six weekdays.

3.2. Billing cycles. The Private queue customers are assigned to one of four
billing cycles when they purchase a service contract. The telecom company’s major
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FIG. 2. Normalized intra-day arrival patterns—averaged over weeks and smoothed.

complaint regarding their current forecasting algorithm is that it does not incorpo-
rate billing cycles’ effects. Indeed, their own experience leads them to believe that
on billing days the number of incoming calls is higher than on nonbilling days.

Each billing cycle is defined according to two periods: the delivery period—
prior to the bank billing day, each customer receives a letter detailing his expenses;
and the billing period—the day on which the customer’s bank account will be deb-
ited. The delivery period extends over two working days (depending solely on the
Israeli postal services). The billing period usually covers only one day. There is
usually a full week between the delivery period and the billing period but this can
vary due to weekends and holidays. We decided therefore to describe each cycle
using two indicators: a delivery indicator—marking the two working days of the
delivery period; and a billing indicator—marking the day of the billing period and
zero otherwise. By describing each cycle using two indicators we actually differ-
entiate between the influence of the actual billing date and that of the delivery of
the bill. According to the telecom company’s past experience, the different queues
are affected by different periods. For example, the Private queue is strongly af-
fected by the delivery periods and not so much by the billing periods. On the other
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hand, the Finance queue is strongly affected by the billing periods and less by the
delivery periods. Section 4.3.1 demonstrates how we examined which indicators
are significant for the Private queue’s arrival process.

3.3. Average service times. The various customer queues are generally served
by dedicated groups of agents. Here, we concentrate on the average service times
of the Private queue agents.

Different weekdays demonstrate different daily patterns of average service
times. Figure 3 demonstrates the smoothed average service times for a typical
week. Most weekdays have a similar nonconstant pattern. Friday has a distinct
downward-sloping pattern.

3.4. Staffing predictions. The Israeli Telecom company utilizes arrivals fore-
cast for determining weekly staffing schedules. Each Thursday, using the past six
weeks of data as the learning data, it predicts the week starting on Sunday ten
days ahead. We will refer to this forecasting strategy as the ten-day-ahead weekly

FIG. 3. A typical week of average service times.
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predictions. Accordingly, we define three periods: the learning period; the predic-
tion lead-time, which is the duration between the last learning day and the first
predicted day; and the forecast period.

In an attempt to mimic the challenges that the company faces, we will predict the
arrivals to the Private queue for each day between April 11, 2004 and December 24,
2004 (D = 222 days). For each day, we predict the arrivals for the K = 24 half-
hour intervals between 10 a.m. and 10 p.m., using six weeks of learning data and a
lead-time period of seven days. (In Section 4.5 we also consider shorter lead times
and their effect on prediction accuracy.)

We have a total of n = 222 · 24 = 5328 predicted values. Excluding the 19
irregular days (which occur during the mentioned period), we evaluate the results
using a total of 203 days or 203 · 24 = 4872 observations.

Note that although we exclude the irregular days, we preserve the numerical
distance between days in the data set by indexing them by true dates. Later, the
AR(1) correlation structure (in Section 4.3.3) is fitted using the power transforma-
tion option with true distances between days.

Our goal is to combine the arrival-process predictions with the service-time
estimates in order to predict the offered-load. We shall then be able to estimate the
staffing required in order to achieve desired service levels.

4. Modeling the arrival process. Our approach to predicting the arrival
process is to create a parametric model for the process, then estimate its para-
meters based on historical data. We discuss here the types of models considered,
how they are estimated, how they are compared and how a particular model is ul-
timately chosen. Attention is also paid to justifying the resolution (period length)
used and to the dependence of the prediction accuracy on lead-time.

4.1. Models. The family of models we consider allow for individual day-of-
the-week effects, period effects (possibly together with their interactions) and ex-
ogenous effects, as well as between days and within day (between period) de-
pendence structures. The latter are incorporated using random effects (or mixed
model) formulations.

4.1.1. Mixed model. Let Ndk denote the number of arrivals to the queue on
day d = 1, . . . ,D, during the time interval [tk−1, tk), where k = 1, . . . ,K denotes
the kth period of the day. Our basic model assumption is that Ndk follows a Poisson
distribution, with expected value (λdk). As suggested by Brown, Zhang and Zhao
(2001), we take advantage of the following variance stabilizing transformation for

Poisson data: if Ndk ∼ Poisson(λdk), then ydk =
√

Ndk + 1
4 has approximately a

mean value of
√

λdk and a variance of 1
4 . As λdk → ∞, ydk is approximately

normally distributed. In our data, λdk has values around 500 per half hour, hence,
it is reasonable to apply this approximation.
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The transformed observations ydk allow one to exploit the benefits of the
Gaussian linear mixed modeling approach. We model the expected value of these
observations, that is,

√
λdk (since their variance is known). In the mixed model the

square root of the arrival rate (
√

λdk) is regarded as a linear function of both fixed
and random effects.

Our response variable, y, is a vector containing the transformed observations
for each period within each day, that is, y = (y1,1, . . . , y1,K, y2,1, . . . , yD,1, . . . ,

yD,K)T . In the following paragraphs we will introduce each component of our
model, starting with the different fixed effects.

Fixed effects: The fixed effects include the weekday effects and the interaction
between them and the period effects. With these two effects, we capture the week-
day differences in daily levels and intra-day profiles (over the different periods).

We begin by modeling the day-level fixed effects (and later we also discuss
the intra-day level fixed effects). Formally, let qd ∈ {1,2,3,4,5,6} denote the
weekday which corresponds to day d ∈ {1, . . . ,D} in the data. Using this nota-
tion, introduce a matrix W = [wd,j ] (of dimensions D × 6), which is the design
matrix4 for day-of-the-week fixed-effects: wd,j = I{qd=j}, for d ∈ {1, . . . ,D} and
j ∈ {1, . . . ,6}.

In our model we may also add exogenous variables to the above day-level fixed
effects (e.g., explanatory variables for the billing cycles in our case study). In the
next section we shall elaborate on these additional variables but, for now, let FD

denote a (D × r) design matrix for the other explanatory day-level variables.
Combing the two matrices, W and FD , produces the day-level fixed effects

design matrix, XD = [W,FD] ⊗ 1K , where 1K = (1, . . . ,1)T ∈ R
K and ⊗ is the

Kronecker product (often referred to as the outer product).
As mentioned before, we also consider fixed intra-day effects. Let XP denote

the corresponding design matrix. This matrix has DK rows and m columns. The
value of m can be up to 6K if we assume a separate period effect for each period
of each day of the week—that is, XP = W ⊗ IK , where IK is the K × K identity
matrix.

Random effects: The random effects are Gaussian deviates with a prespecified
covariance structure. One random effect is the daily volume deviation from the
fixed weekday effect. In concert with other modeling attempts, a first-order au-
toregressive covariance structure (over successive days) has been considered for
this daily deviation. It involves the estimation of one variance parameter (σ 2

G) and
one autocorrelation parameter (ρG). Let γ = (γ1, . . . , γD)T denote the random
day effects with covariance matrix G where gi,j = σ 2

G · ρ|i−j |
G . The corresponding

design matrix can be written as Z = (ID ⊗ 1K), where ID is the D-dimensional
identity matrix.

The other random effects, ε, are called the noise or residual effects, and refer to
the period-by-period random deviations from the observed values after accounting

4A linear model can be written as follows: Y = Xβ + ε. X is referred to as the design matrix.
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for the fixed weekday, period effects and the random day effects. Let R∗ be the
within-day period-by-period error covariance matrix. We assume that this matrix
is of the form R +σ 2 · IK , where R = [ri,j ] has a first order autoregressive process

covariance structure, that is, ri,j = σ 2
R · ρ|i−j |

R . Imposing this covariance structure
means that if, for example, at a certain period of the day the call center experiences
a drop in the amount of incoming calls, then we would also expect a decrease in
calls during the following periods of that day. Alternate correlation structures for
R will be discussed in Section 4.3.3.

On the basis of the square-root transformation, σ 2 should have a value of about
0.25.

The general formulation of our linear mixed model can be now written as fol-
lows:

y = XDβD + XP βP + Zγ + ε,(1)

var(γ ) = G,(2)

var(ε) = ID ⊗ R∗ = ID ⊗ (R + Ik · σ 2),(3)

E(ε) = 0, E(γ ) = 0, ε⊥γ ,(4)

where:

• y = (y1,1, . . . , y1,K, y2,1, . . . , yD,1, . . . , yD,K)T .
• βD is a (6 + r)-vector of fixed effects day-level coefficients.
• βP is a m-vector of fixed effects period-level coefficients.
• γ is a (D)-vector of random day-level effects.
• ε is a (DK)-vector of random residuals effects.

Using the above notation, we can specify the covariance matrix of y in the fol-
lowing manner:

V = G ⊗ JK + ID ⊗ R + ID×k · σ 2 where JK = 1K1T
K.(5)

4.1.2. The two-stage mixed model. Computational problems arise when trying
to implement the model in (1) for the data presented in Section 3. We encountered
convergence problems when we tried to specify a parametric structure of a simple
first-order auto regression for both R and G.

Therefore, we consider an alternative analysis based on first modeling the daily
averages in a way that is consistent with the original model. This stage provides
an estimated covariance matrix for G that later can be used when performing the
second stage analysis during which the fixed day-level and period-level effects, as
well as R, are estimated.

Left multiplying y by M = (ID ⊗ 1
K

1T
K) provides a vector containing the aver-

age number of incoming calls per period, for each day. Here is the daily-average



WORKLOAD FORECASTING FOR A CALL CENTER 1415

model formulation:

My = [W,FD]βD + X∗
P βP + MZγ + Mε,(6)

var(γ ) = G,(7)

var(ε) = ID ⊗ (R + Ik · σ 2),(8)

where X∗
P = M · XP . Considering the random terms, we note that

var(My) = MV MT = G + u · ID,(9)

where

u = 1

K
·
(

1

K
1T
KR1K + σ 2

)
= 1

K
·
(

1

K

∑
i,j

rij + σ 2

)
.(10)

Thus, the first stage model, as presented above in (6), provides an estimated
covariance matrix G, denoted by Ĝ together with an estimate of u.

In the second stage we use the full model referred to in (1), but fix the matrix G

using Ĝ from the first stage. In this stage we get estimators for all the daily fixed
effects and the periods’ random effects.

The value of σ 2 should be about 0.25 if the Poisson model holds. If the esti-
mated value of σ 2 is close to 0.25, then we are led to believe that the model has
discovered the majority of the predictive structure in the data, and that what is left
is purely random and unpredictable variation (at least in terms of the underlying
Poisson model). The two-stage strategy enables us to fix σ 2 at the theoretical value
of 0.2 and also enables us to obtain estimates for this parameter. We analyze these
estimated values in Section 4.3.4.

Another advantage of this two-stage approach is its computational efficiency.
Predicting the 203 days in our data set took approximately 50 minutes. This makes
our method valid for practical usage since predicting a full week will take several
minutes.

4.1.3. Benchmark models. An elementary prediction model would simply av-
erage past data for the corresponding weekday in order to produce a forecast.
This model will be referred to as the industry model. Denote Wi,D = {d :d ≤
i and qD = qd} and let |Wi,D| denote the cardinality of Wi,D . Then the forecast of
the arrival count, ND+h,k , utilizing the information up to day D, can be expressed
as

N̂D+h,k =
∑

d∈WD,D+h
Nd,k

|WD,D+h| .(11)

Based on this intuitive approach, we develop two similar baseline models. These
models will serve as benchmarks for our more complicated models.

The first basic model only considers the weekday fixed effects and their inter-
actions with the periods. Basically, this model states that each day of the week has
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its own baseline level and its own intra-day pattern and that consecutive days and
periods are uncorrelated [as opposed to our initial correlated mixed model defined
in (1)]. The formulation of this model can be written as follows:

y = Xpβ + ε,(12)

var(ε) = IDK · (σ 2
R + σ 2),(13)

where σ 2 has a value of about 0.25 and Xp is the intra-weekday fixed effects
design matrix. This model basically corresponds to the industry model [defined in
(11)].

Alternatively, one can think of a different benchmark model which is similar to
the above model and also includes exogenous variables. As a result, our second
benchmark model also incorporates exogenous variables such as the billing cycles
variables. Using the above notation, we can define the second benchmark model
in the following manner:

y = XDβD + XP βP + ε,(14)

var(ε) = IDK · (σ 2
R + σ 2),(15)

where σ 2 has a value of about 0.25. The fixed effect matrices, XD and XP , have
the same structures as indicated in (1).

This second benchmark model (similarly to the first benchmark model) has an
underlying assumption that all of its observations are uncorrelated. Hence, it rep-
resents a baseline to our more elaborate, correlated model.

Both of the benchmark models are, in fact, linear regression models and are
quite fast and efficient in providing the necessary predictions using standard pro-
grams such as R [R Development Core Team (2005)] and SAS®/STAT [SAS,
2004].

4.2. Model evaluation criteria. Suppose now that we aim to predict arrivals
over DP days, for each of the K periods in those days; altogether n = DP K pre-
dicted values. Let N̂dk denote the predicted value of Ndk , which is the number of
arrivals in the kth period for day d . We define two measures to compare between
the observed and the predicted values:

• Squared Error: SEdk = (N̂dk − Ndk)
2,

• Relative Error: REdk = 100 · |N̂dk−Ndk |
Ndk

.

The following two measures are used to evaluate confidence statements con-
cerning Ndk :

• Coverdk = I(Ndk ∈ (Lowerdk,Upperdk)),
• Widthdk = Upperdk −Lowerdk .
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In the above, Lowerdk and Upperdk denote the lower and upper (nominally
95%) confidence limits. We obtain these limits using conditional multivariate
Gaussian theory. We can use this theory since we assume that the observations
ydk follow the Gaussian distribution. For further details on how these limits are
computed, the reader is referred to Henderson (1975).

The comparison between different forecasting models is performed over the
entire set of n predicted values or out-of-sample predictions. For each day we
predict the arrival counts for each of the twenty-four periods based on six weeks
of past data and a lead-time of one week. This procedure is carried out 203 times
since there are 203 regular weekdays between April 11, 2004 and December 25,
2004. Then we average the following measures for each day over the K periods:

• RMSEd =
√∑K

k=1 SEdk

K
,

• APEd =
∑K

k=1 REdk

K
,

• Coverd =
∑K

k=1 Coverdk

K
,

• Widthd =
∑K

k=1 Widthdk

K
.

This procedure results in 203 daily values for each of these measures. We then
report for each measure the lower quartile, the median, the mean and the upper
quartile values of these daily summary statistics.

These four measures reflect different aspects of prediction accuracy. The RMSE
represents an average prediction error, while the APE is the average percentage
error. They both give a sense of how well our point estimates are performing. The
coverage probability and the prediction interval width relate to prediction intervals.
The width of the prediction intervals are constructed using a nominal confidence
level of 95%. Hence, we expect the mean coverage probability to be close to 95%.
A model which performs well will have a narrow prediction width with coverage
probabilities close to 95%.

4.3. Choosing the model. In practice, there may be several proposed exoge-
nous variables that may have an effect on the call arrival process. Our strategy for
screening those variables is to first work with models at the daily level, that is, to
find those exogenous variables that have an impact on the daily counts. It is typ-
ically too burdensome to use a full mixed model analysis in order to screen for
exogenous day-level variables.

After having chosen the day-level exogenous variables, the next step is to fit full
mixed models and to evaluate different covariance structures at both the between-
day and the within-day (between-period) levels. For further discussion on the the-
ory of mixed models, the reader is referred to Demidenko (2004).

We illustrate these steps for our case study data.
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4.3.1. Exogenous variables. As mentioned in the data description, in our case
study there are eight indicators which represent the four major billing cycles (i.e.,
four delivery period indicators and four billing period indicators). Based on the
company’s information, we were made aware that some of these indicators might
not have a significant influence on the Private queue’s arrival process. The purpose
of this preliminary examination is to highlight those indicators which are signif-
icant so they may later be incorporated in the final forecasting model. For this
coarse investigation, we use the aggregated daily arrivals between February 14th,
2004 and December 31st, 2004 (excluding all twenty-two outliers).

Let Nd denote the number of arrivals to the Private queue on day d = 1, . . . ,D.
As before, let qd denote the weekday corresponding to day d . The daily arrivals
are modeled using a Poisson log-linear model [for further details on this approach,
the reader is referred to McCullagh and Nedler (1989)]. Our initial model is of the
following form:

Nd ∼ Poisson(λd),(16)

log(λd) =
6∑

l=1

Wl · Xl
qd

+ ∑
j∈cycles

Bj · Pj
d + ∑

j∈cycles

Dj · Uj
d ,

where

Wl is the lth weekday coefficient,

Xl
qd

=
{

1, if l = qd ,
0, otherwise,

Bj is the j th billing period coefficient,

Pj
d =

{
1, if cycle j ’s billing period falls on the dth day,
0, otherwise,

Dj is the j th delivery period coefficient,

Uj
d =

{
1, if cycle j ’s delivery period falls on the dth day,
0, otherwise.

The model may be implemented using the GENMOD procedure in SAS®/STAT
[Aldor-Noiman, Feigin and Mandelbaum (2009)] based on the 254 observations in
the current learning set. Some of the results are summarized in Table 1.

The results indicate the following: the six weekdays have significantly different
effects, each having a different baseline mean; the delivery period indicators are
significant and have a positive effect on the mean value of the number of incoming
calls; on the other hand, most of the billing period indicators seem less signifi-
cant, which confirms the telecom company’s beliefs. The Cycle 14 billing period
seems to have an exceptional effect. First, it is statistically significant as opposed
to the billing indicators of the rest of the cycles. Furthermore, its estimator is the
only negative value among those of all of the effects. This noticeable result would
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TABLE 1
Analysis of parameter estimates for the Poisson log-linear model

Parameter Category Estimate Chi-square Pr > ChiSq

Wq Sunday 9.5358 718,177 < 0.0001
Wq Monday 9.4977 541,484 < 0.0001
Wq Tuesday 9.4880 572,102 < 0.0001
Wq Wednesday 9.4719 649,509 < 0.0001
Wq Thursday 9.4326 677,894 < 0.0001
Wq Friday 9.0385 453,474 < 0.0001

D1 · 0.0586 11.59 0.0007
D7 · 0.0327 3.71 0.0540
D14 · 0.0449 5.39 0.0202
D21 · 0.0935 17.98 < 0.0001
B1 · 0.0242 2.10 0.1473
B7 · 0.0279 2.17 0.1403
B14 · −0.0592 6.83 0.0090
B21 · 0.0276 2.54 0.1109

suggest that the number of incoming calls is reduced during the Cycle 14 billing
period. We could not attribute this phenomenon to any outlying data problems.
One possibility is that this negative value can be compensating for other oversized
billing cycle effects, which could arise due to the overlap of delivery and billing
days among the 4 cycles.

These results led us to believe that some of the explanatory variables are sta-
tistically redundant. We proceeded by comparing different models with this initial
model [defined in (16)] using the “contrast” statement in the GENMOD procedure
(which computes likelihood-ratio statistics). The different models were variations
of the initial model. They excluded different covariates in order to establish the
significance of the omitted variables.

The results indicated that billing periods 1, 7 and 21 are redundant. It is there-
fore clear that there are three main factors contributing to the daily volumes: the
weekday, the delivery periods and billing period of Cycle 14. This analysis led
to two possible modeling alternatives: (i) The first model includes the weekday
effect, Cycle 14 billing period indicator and the four delivery period indicators;
(ii) The second model includes the weekday effect, Cycle 14 billing period indica-
tor and the one global delivery period indicator (which takes the value one when at
least one of the cycles is during its delivery period). The results of the two models
are shown in Table 2. In the next section we will explore both of these setups and
choose the one which yields better out-of-sample results.

4.3.2. Adjusting the fixed effects. Our process of model selection does not rely
on classical inference methods or measures, such as F -test or Akaike’s Information
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TABLE 2
Log-linear models contrasts analyses. Each row depicts a different model which is compared to the
initial model. Comparing models 1 and 2 to the initial model shows that the extra variables are not

significant at a significance level of 5%

Numerator
degrees of
freedom

Denominator
degrees of
freedom

The alternative model
explanatory variablesModel no. F Pr > F

1 Weekday, 6 240 1.89 0.0834
billing 14 period indicator,
global delivery period indicator

2 Weekday, 3 240 2 0.1152
billing 14 period indicator,
four delivery period indicators

Criteria [Sakamoto, Ishiguro and Kitagawa (1999)]. These methods rely on the
learning-set and its dimension but do not consider the models forecasting qualities.

Therefore, we decide to explore the influence of the models’ elements on the
prediction performance based on the 2004 validation-set. The evaluation criteria
were detailed in Section 4.2.

Keeping the parsimony5 concept in mind, Figure 2 suggests that some weekday
patterns resemble others. Mainly, Monday through Thursday have similar intra-day
period profiles. We shall explore two alternatives for the weekday pattern setting:
(i) a model which includes a different period profile for each weekday—we re-
fer to this setting as the Multi-Pattern setting; (ii) a model which includes three
intra-day patterns (i.e., one for Sunday, one for Friday and one for the rest of the
weekdays)—we refer to this setting as the Three-Pattern setting.

Combining the two different settings for the intra-day effects with the two set-
tings of the billing cycles effects (detailed in Section 4.3.1) results in four differ-
ent models: (i) Model 1—is a Three-Pattern model which also includes Cycle 14
billing period and one global delivery period indicator; (ii) Model 2—is a Three-
Pattern model which also includes Cycle 14 billing period and four delivery period
indicators; (iii) Model 3—is a Multi-Pattern model which also includes Cycle 14
billing period and one global delivery period indicator; (iv) Model 4—is a Multi-
Pattern model which also includes Cycle 14 billing period and four delivery period
indicators.

For now, we shall set the between-periods (within-day) correlation structure ac-
cording to a first-order autoregressive structure. We choose this specific structure
for its simplicity. In the next section we will also consider other correlation struc-
tures. We also fix the value of σ 2 to its 0.25 theoretical value.

5Parsimony refers to the philosophic rule where the simplest of competing theories/models be
preferred to the more complex.
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TABLE 3
RMSE results for the three fixed effects models and two benchmarks models

RMSE

N = 203 Model 1 Model 2 Model 3 Benchmark 1 Benchmark 2

1st quartile 31.80 32.28 32.55 33.24 32.39
Median 39.30 40.16 40.19 40.54 39.98
Mean 44.78 47.19 45.49 46.51 45.45
3rd quartile 51.63 58.29 52.38 54.88 53.16

In addition, we compare the four models with the performance of the two bench-
mark models, mentioned in Section 4.1.3. The first benchmark model only includes
the weekday effect and the weekday period profiles. The alternative benchmark
model has the Multi-Pattern fixed effects and two additional billing cycles’ indica-
tors: one global delivery indicator and the billing period indicator associated with
Cycle 14. The reason why these specific fixed effects settings were chosen will be
explained later in this section.

These six models are evaluated using the same out-of-sample prediction proce-
dure previously discussed.

We use the SAS®/STAT Mixed procedure in order to implement and evaluate the
candidate models. Convergence problems occurred when we tried to implement
Model 4 with the Multi-Pattern and the billing cycles effects. Therefore, this model
was subsequently excluded from the analysis.

Tables 3, 4, 5 and 6 present the results of the three different fixed model setups.
Out of the three different models, the 1st alternative seems to exhibit the best re-
sults. Its results are generally better than the benchmark models. One might argue
that the shorter confidence intervals imply that the benchmark models outperform
the first model. However, since their coverage probabilities are very far from the
nominal 95%, we conclude that these narrow intervals are unreliable and probably
result from an underestimated error variance, that is, σ 2

R . This phenomenon can

TABLE 4
APE results for the four fixed effects models and two benchmarks models

APE

N = 203 Model 1 Model 2 Model 3 Benchmark 1 Benchmark 2

1st quartile 6.51 6.57 6.74 6.81 6.77
Median 8.13 8.45 8.12 8.24 8.09
Mean 9.27 9.75 9.41 9.58 9.41
3rd quartile 11.27 11.75 11.34 11.29 11.31
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TABLE 5
Coverage probabilities for the four fixed effects models and two benchmarks models

Coverage probability

N = 203 Model 1 Model 2 Model 3 Benchmark 1 Benchmark 2

1st quartile 0.92 0.88 0.92 0.33 0.33
Median 0.96 0.96 0.96 0.50 0.50
Mean 0.93 0.92 0.93 0.49 0.49
3rd quartile 1 1 1 0.63 0.63

occur when not all of the sources of variability are accounted for in the model and,
in particular, when correlation structure in the data is ignored.

The second benchmark model includes the same billing cycles’ settings as the
first model. It can be thought of as a “fixed” version of the first model, that is,
without the random effects. It is interesting to see that introducing the intra- and
inter-day correlations generally improves the forecasting results. Intuitively speak-
ing, the additional correlation parameters result in wider confidence intervals to
compensate for the extra uncertainty.

Following these analyses, the models considered in the next subsection will
all have the fixed effects of the 1st model. These fixed effects include the Three-
Pattern intra-day effect and the two indicators of the billing cycles.

4.3.3. Dependence structures. Having chosen the fixed effects that will be in-
corporated in our model, we now discuss the modeling of the random effects. There
are two sources of variation in our model: one is from the daily volume effect γ

and the other is the within-day error vector ε.
We begin by examining different structures for the matrix R which is the within-

day covariance matrix where the residuals’ variance (i.e., σ 2) is confined to its the-
oretical value of 0.25. Based on previous research [e.g., Avramidis, Deslauriers and
L’Ecuyer (2004)], we consider two simple time series structures for R which both
can account for the strong intra-day correlations. The first is an AR(1) (first order

TABLE 6
Confidence interval widths for the three fixed effects models and two benchmarks models

Width

N = 203 Model 1 Model 2 Model 3 Benchmark 1 Benchmark 2

1st quartile 150.03 149.14 149.13 52.62 51.44
Median 168.99 169.22 168.81 59.67 58.80
Mean 175.47 178.24 174.31 62.92 61.44
3rd quartile 195.27 194.61 197.81 68.95 67.86
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TABLE 7
Different within-day errors covariance structure.

RMSE results

N = 203 RMSE

R covariance structure AR(1) ARMA(1,1)

1st quartile 31.80 31.85
Median 39.30 39.36
Mean 44.78 44.81
3rd quartile 51.63 51.26

auto-regressive) implying that ri,j = σ 2
R · ρ|i−j |. The second is an ARMA(1,1)

(auto-regressive moving averages) which means that ri,j = σ 2
R · δ · ρ|i−j |−1 (the

covariance between periods i and j where i �= j ) and ri,i = σ 2
R (which is the

variance of period i). Other covariance structures theoretically may also be in-
corporated here, but since most of them are more complex (such as the Toeplitz
form, which includes more parameters), we did not consider them because of com-
putational limitations. Note also that most other forms of covariance matrices in
SAS®/STAT are not directly related to time series structures.

We evaluate and compare the models using the same technique we developed
for selecting the fixed effects. We use the same learning data as before.

The results are shown in Tables 7, 8, 9 and 10. The results for the ARMA(1,1)

show only slight improvements in the coverage probability compared to the AR(1)

structure. However, it seems that the point predictions are slightly better using the
AR(1) structure. Another factor that should be taken into consideration is that the
CPU time was higher for the ARMA(1,1) model. In conclusion, the model chosen
for R in this approach is the AR(1) model for the residual error vector.

The last source of variability is the daily volume effect, G. We assume that its
covariance structure also has a first-order autoregressive form. This basic assump-
tion means that if on a certain day the call center experienced a rise in the amount

TABLE 8
Different within-day errors covariance structure.

APE results

N = 203 APE

R covariance structure AR(1) ARMA(1,1)

1st quartile 6.51 6.52
Median 8.13 8.12
Mean 9.27 9.28
3rd quartile 11.27 11.20
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TABLE 9
Different within-day errors covariance structure

comparison. Coverage results

N = 203 Coverage probability

R covariance structure AR(1) ARMA(1,1)

1st quartile 0.92 0.92
Median 0.96 1
Mean 0.93 0.94
3rd quartile 1 1

of incoming calls (compared to the fixed effects prediction), then we would also
expect to see a similar increase during the following days. As the days become
farther apart from that day, we expect its influence to decline.

We investigated the influence of the γ correlations by comparing our mixed
model with an alternative model which does not include this random effect. Using
the company’s current strategy for prediction which includes a relatively long lead-
time of one week, one would hardly expect to see any difference between the two
models. The results are summarized in Tables 11, 12, 13 and 14. The results show
a slight improvement after incorporating an AR(1) structure.

To examine the influence of the between-day random effect, we further explore
the results of the above two models by changing the lead-time period. This analysis
is presented in Section 4.5. The analysis reveals that the model incorporating the
AR(1) inter-day covariance structure produces better results.

4.3.4. Final model choice—goodness of fit. Our final model includes an intra-
day pattern for each weekday, two billing cycles indicators and a first order auto-
regressive structure for both the intra-day and the inter-day correlations. Figure 4
presents the QQ-plot for the residuals of our final model. It appears that the as-
sumption of normally distributed residuals is reasonable.

TABLE 10
Different within-day errors covariance structure.

Width results

N = 203 Width

R covariance structure AR(1) ARMA(1,1)

1st quartile 150.03 154.93
Median 168.99 174.01
Mean 175.47 179.96
3rd quartile 195.27 204.09
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TABLE 11
Testing the influence of the daily random effect. RMSE results

RMSE

Model with AR(1)

daily random effect
Model without a

daily random effectN = 203

1st quartile 31.80 31.92
Median 39.30 39.67
Mean 44.78 44.83
3rd quartile 51.63 50.40

As mentioned in previous sections, the theoretical value of σ 2, described in (1),
is 0.25. We reran our chosen model, but this time we did not specify the value of
σ 2 in advance. Instead we computed the estimated value of this parameter. Since
we predict 203 days in our database (each time based on 6 weeks data with a
lead-time of 7 days), we can obtain 203 values of this parameter. Based on these
values, the mean estimated value was 0.29. Since the estimated value of σ 2 is
close to 0.25, we are inclined to believe that the model has discovered the majority
of the predictive structure in the data, and that what is left is purely random and
unpredictable variation.

4.4. Justifying the half-hour periods. An interesting debate might be held be-
tween practitioners and theoreticians as to what is the appropriate interval reso-
lution to analyze. Theoreticians might say that in order to fully maintain the ho-
mogeneity assumption the intervals should be as small as possible. Alternatively,
from a practitioner’s point of view, the resolution should be determined as a func-
tion of managerial flexibility: for example, if it is feasible to change the number
of available agents every 5 minutes, then this should be the appropriate interval
resolution. (Such high flexibility can occur, e.g., in large call centers where there
are typically agents who are occupied with various off-line tasks and who can be

TABLE 12
Testing the influence of the daily random effect. APE results

APE

Model with AR(1)

daily random effect
Model without a

daily random effectN = 203

1st quartile 6.51 6.46
Median 8.13 8.15
Mean 9.27 9.28
3rd quartile 11.27 11.09
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TABLE 13
Testing the influence of the daily random effect. Coverage results

Coverage probability

Model with AR(1)

daily random effect
Model without a

daily random effectN = 203

1st quartile 0.92 0.88
Median 0.96 0.96
Mean 0.93 0.92
3rd quartile 1.00 1.00

made immediately available for service.) However, our experience suggests that
call centers commonly plan their daily schedule according to either half-hour or
15-minute resolutions.

Our Gaussian mixed model can be easily modified to deal with different inter-
val resolutions. An interesting question is how much worse are predictions based
on lower-level resolutions than 15-minute predictions, when evaluated at the 15-
minute period level. For example, if one predicted accurately the arrival count over
a half-hour period, but in that period the first 15 minutes had 0.5 times the aver-
age arrival rate, and the second 15 minutes had 1.5 times the average arrival rate,
then using the half-hour prediction (by dividing it equally over each 15-minute
interval) would lead one to seriously overstaff during the first 15 minutes and un-
derstaff during the second 15 minutes. This problem would not have happened if
one had good predictions at the 15-minute resolution.

Hence, we are interested in analyzing the effect of the interval resolution on the
forecast accuracy at the finest practical resolution.

To this end, we use our Israeli Telecom data and predict the arrival counts be-
tween 10 a.m. and 10 p.m. during the 203 regular weekdays between April 11 and
December 24, 2004. The forecast procedure is the same as before, meaning that we

TABLE 14
Testing the influence of the daily random effect. Width results

Width

Model with AR(1)

daily random effect
Model without a

daily random effectN = 203

1st quartile 150.03 144.20
Median 168.99 163.49
Mean 175.47 165.95
3rd quartile 195.27 186.43
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FIG. 4. The model residuals QQ plot.

used 6 weeks of past data as learning data to predict the day which begins seven
days ahead.

Our baseline data resolution is 15-minute intervals. We compared 15-minute
intervals with three additional interval resolutions: half-hour, one-hour and four-
hours. In order to fairly assess the behavior of the different interval widths, we
scaled the predictions into 15-minute blocks: the lower-resolution forecasts were
simply equally distributed among the 15-minutes intervals. For example, we took
the predicted arrival count for a specific hour (on a certain day) and equally divided
it over its four quarter hours.

Tables 15 and 16 describe the results for both the RMSE and APE, respectively.
Using the RMSE measure, we see that the half-hour resolution predictions are
virtually as precise as the 15-minute ones, and somewhat better than the one-hour
resolution predictions. However, using the RMSE measure puts the forecasts based
on wider intervals at a disadvantage and, thus, we also take a look at the APE
results.

The APE measure results are not as conclusive as the RMSE. We see that some-
times it is better to use half-hour intervals and sometimes it is even better to use
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TABLE 15
Prediction accuracy as a function of interval resolution. We compare the RMSE result of the mixed

model for four different resolutions: 15-minute, half-hour, one-hour and four-hour

RMSE

15-minutes Half-hour One-hour Four-hour

Min 12.28 12.07 14.13 32.18
1st quartile 19.67 19.81 20.86 38.18
Median 22.48 22.59 23.56 41.37
Mean 24.97 25.06 25.87 42.80
3rd quartile 28.45 28.29 29.18 46.14
Max 60.00 60.01 60.21 73.12

the hour intervals and not the 15-minutes ones. However, it is also noticeable that
the differences between the three resolutions are usually quite small. The four-
hour resolution results are quite bad in comparison with the other interval reso-
lutions. These results can be used to justify the use of half-hour intervals in our
case study—only a minor improvement to precision might be achieved by using a
higher resolution.

In our comparisons, we have used the same AR(1) and ARMA(1,1) autocor-
relation structure between periods no matter what their length. (Of course, the
parameters were estimated independently for each.) A reviewer has pointed out,
it is feasible that allowing a different correlation structure for 15-minute periods
may achieve better performance than that based on half-hour periods. Due partly to
computational convergence problems for more complicated correlation structures,
these were not considered here.

4.5. Dependence of precision on forecast lead-time. Our prediction process
has three user defined elements: the learning time; the prediction lead-time; and

TABLE 16
Prediction accuracy comparison as a function of interval resolution. We compare the APE result of

the mixed model with four different resolutions: 15-minute, half-hour, one-hour and four-hour

APE

15-minutes Half-hour One-hour Four-hour

Min 5.68 5.57 5.36 7.17
1st quartile 8.01 8.03 8.14 9.74
Median 9.30 9.34 9.33 11.20
Mean 10.59 10.59 10.67 12.65
3rd quartile 12.08 12.24 12.15 14.70
Max 27.33 27.18 26.84 30.78
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the forecasting horizon. During our model’s training stage we did not change these
parameters.

Academic studies such as Weinberg, Brown and Stroud (2007) and Shen and
Huang (2008b) concentrate on producing one-day-ahead predictions or sometimes
online updating forecasting algorithms. These methods, however, do not address
the industry problem of attaining good predictions in order to produce the weekly
schedule sufficiently ahead of time. Trying to cope with this problem, our Telecom
Company actually uses a two stage process. It first produces a somewhat inaccurate
(rough) forecast ten days ahead of the desired week, and then it generates another
forecast five days before. The second forecast, we are being told, is essential in
order to adequately schedule agents. One interesting question that arises from this
practice is the extent to which prediction lead-time effects forecasting accuracy.

In order to study prediction lead-time effects, we ran our forecasting procedure
using seven different lead times, ranging from one-day-ahead to seven-days-ahead.
The learning period and the forecasting horizon stay the same, that is, six weeks
and one day, respectively. We ran this prediction procedure using two models:
one is with a between-day covariance structure; and one without it (just as we did
in Section 4.3.3). This allows us to further examine the effect of this covariance
structure.

We analyzed the prediction results of the two models for each weekday sepa-
rately. We do this in order to examine if certain weekdays are more influenced by
the change in forecast lead time.

Figures 5 and 6 present the boxplots of individual RMSEs and APEs for each
weekday, as a function of the forecast lead time.

Surprisingly, the results indicate that shorter lead times do not always improve
predictions’ accuracy. However, it is also important to notice that the difference
between the lead-time results for each weekday are small for both the APE and the
RMSE. This property may be useful for call center managers who want to know if
they should update their week-ahead forecasts one or two days ahead.

Another conclusion that can be derived is that incorporating the AR(1) inter-
day covariance structure generally improves the prediction results. For example,
looking at Figures 5 and 6, we can see that the median RMSE and APE6 of the
model with the AR(1) covariance structure generally both have values less than or
equal to the median RMSE and APE of the model without it.

5. Modeling expected service times. In addition to predicting arrival rates,
forecasting the workload of a queuing system requires also predicting the average
service patterns (or alternatively the service rate pattern over each day). Since our

6The median is indicated by a black horizontal short line inside the boxplots.
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FIG. 5. Comparison of RMSE as a function of the prediction lead time. The blue (left) boxplot
corresponds to the model with AR(1) correlation structure between days and the yellow (right)
boxplot corresponds to the model without it.
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FIG. 6. Comparison of APE as a function of the prediction lead time. The blue (left) boxplot cor-
responds to the model with AR(1) correlation structure between days and the yellow (right) boxplot
corresponds to the model without it.
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arrival’s model applies a specific resolution (30 minutes), one must predict average
service times during those same time intervals (periods).

Our model involves two explanatory variables that may affect service rates: the
weekday and the period. We compare two alternative models where one is a gen-
eralization of the other.

In Figure 3, the average service time patterns resemble a quadratic curve.
Hence, the first model describes the average service time using a quadratic re-

gression in the periods, with interactions with the weekday effect, where the period
is included as a numeric variable (rather than as a categorical variable). Intuitively
speaking, this model states that the daily service time curves differ among the dif-
ferent weekdays but they are confined to be of a quadratic form.

This model formulates the average service time during period k, that is, zdk in
the following manner:

Model 1: zdk = αqd
+ β1 · k2 + β2 · k + γ1,qd

· k2

(17)
+ γ2,qd

· k + φ · d + εdk; εdk ∼ N(0, σ 2),

where αq is the constant term related to the qth weekday; β1 and β2 are, re-
spectively, the quadratic and linear coefficients; γ1,qd

and γ2,qd
are the weekday-

specific quadratic and linear period effects and make up the weekday-period inter-
action effects. The last effect is a postulated linear daily trend coefficient denoted
by φ. We naturally added a random error term denoted by εdk .

The second model is a generalization of the first model and it assumes that the
period’s variable is a categorial variable. It basically assumes that each weekday
has its own average service times pattern with no other restriction on its shape.
Hence, it is a generalization of the previous quadratic profile model. It is a more
complicated model which involves many more parameters. We add both the linear
daily trend effect to this model and the error term as well. This model can be
formulated in the following manner:

Model 2: zdk = ρqd,k + φ · d + εdk; εdk ∼ N(0, σ 2),(18)

where ρq,k is the interaction between the weekday and the effect of the kth period.
We estimate parameters of the two average service times models using the

SAS® GLM procedure. The learning data include dates between mid-February,
2004 and the end of December, 2004. Examining the first model results shows that
the interaction between the quadratic period term and the weekday is not signifi-
cant. Consequently, we also examined the first model excluding the insignificant
term. This last model is referred to as Model 3. Since our data has a large number
of observations (6096 which correspond to 254 regular days), we use the asymp-
totic log-likelihood ratio chi-square test to compare the models. Table 17 summa-
rizes the results of the different models. We compare Model 3 against Model 2 to
check if the generalized model is significantly better than the reduced quadratic
model. The relevant chi-square statistic equals 13.524 and the appropriate p-value
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TABLE 17
Average service time models. Model 1 assumes a different

quadratic curve for each weekday. Model 3 is the same as Model 1
excluding the interaction between the quadratic period term and
the weekday. Model 2 is the generalized model which assumes a

different pattern for each weekday

Model no. No. of parameters Error SS

1 18 588.907
2 144 575.884
3 13 589.408

is approximately one. It thus seems that the generalized model (i.e., Model 2) is
not significantly better in modeling the average service times. Hence, we choose
Model 3 as our forecasting model.

Figure 7 shows the predicted pattern for each weekday between August 8, 2004
and August 13, 2004 versus the true average service times using Models 2 and 3.

By comparing the predictions to the true service means in the same manner as
we did with the arrival process analysis, we calculate the mean APE. Its value is
7.68%. The predictions and the mean APE value will later be used to estimate
alternative measures of system loads.

6. Forecasting offered-loads in support of staffing. In this section we begin
with a brief review of how we obtained estimators for the expected load using our
data. We then introduce measures that evaluate the performance of forecasts of
the offered-load (R) with respect to the QED “square-root staffing” rule. We also
show how to use these measures to evaluate the impact of prediction errors (in the
offered-loads) on call center operational performance.

6.1. Estimating expected load. In an Mt/G/N + G queueing system, the
offered-load Rt at time t is defined to be the average number of servers (agents)
that would be busy at time t , in the corresponding infinite server system Mt/G/∞
(with the same arrival process and same service times). One can show [see, e.g.,
Whitt (2007)] that Rt has the following two representations:

Rt = E

∫ t

t−S
λ(u)du = Eλ(t − Se) · ES;(19)

here S is a generic service-time, and Se is a random variable with the stationary-
excess cdf associated with the service time cdf G, namely,

Pr(Se ≤ t) ≡ 1

E(S)

∫ t

0
[1 − G(u)]du, t ≥ 0.(20)
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FIG. 7. The predicted average service pattern for typical weekdays as a function of period using
Models 2 and 3. The points represent the (true) estimated average service times. The (blue) dotted
line represents the predicted average service times using Model 2 and the (red) line represents the
appropriate predictions using Model 3.

The offered-load at time t plays a central role in the planned staffing at that
time, as will be explained in the next section. Whitt (2007) employs Taylor-series
approximations to justify the first-order approximation Rt ≈ λ(t −E(Se))E(S). If
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the system reaches a steady-state or if the arrival rate λ is constant, then the offered-
load is exactly given by R = λ ·ES. However, under time-varying arrivals, the two
representations above demonstrate that staffing at time t must take into account
the arrivals prior to t (over the stochastic time interval (t − S, t]), which manifests
itself through Whitt’s approximation [the arrival rate λ at time (t − E(Se)].

In our model we assume that the arrival process is an inhomogeneous Poisson
process but that during each 30-minute interval the arrival rate remains constant.
Hence, we predict the offered-load at day d during the kth interval by the following
natural statistic:

R̃dk = λ̃dk · S̃dk

30
, d = 1, . . . ,D, k = 1, . . . ,K,(21)

where λ̃dk is the predicted arrival count at day d during the kth interval, and Ŝdk

is the estimated average service time during that same interval. (The division by
30 is to convert the predicted arrival rate into the same units as the average ser-
vice time—minutes). In concert with the above, we also assume that performance
during each time interval can be predicted via the queueing model M/G/N + G.

Whitt (2005) shows that, for practical parameter values, the performance of the
M/G/N + G model is rather insensitive to the service-time distribution, whereas
the time to impatience distribution has a far greater impact. This reduces perfor-
mance analysis to that of the tractable M/M/N +G queue. But, furthermore, in the
desired regimes for call centers’ operations, M/M/N + G can be in fact approxi-
mated (with a suitable transformation of parameters) by M/M/N +M (Erlang-A),
as articulated in Zeltyn (2005) and Manedelbaum and Zeltyn (2007). These obser-
vations will be used in the next section to evaluate system performance.

6.2. Error in β and implications. The square-root staffing rule, described in
the Introduction, gives rise to the so-called Quality and Efficiency Driven (QED)
operational regime Gans Koole and Mandelbaum (2003). Here, the number of ser-
vice providers (agents), denoted N , is determined by the relation

N = ⌈
R + β · √R

⌉
,(22)

where R is the offered-load defined previously. The value of β determines a call
center’s operational regime: it is Quality-Driven with large beta, Efficiency-Driven
with small, and QED if β is near zero [typically within (−2,1)]. In order to main-
tain the latter regime, the system manager strives to achieve a careful balance be-
tween service quality and efficiency. For a discussion on how to determine β , as a
function of operating costs (staffing and congestion costs), see Manedelbaum and
Zeltyn (2007), Zeltyn (2005), Borst, Mandelbaum and Reiman (2004).

Define βu as the user (say, call center manager) chosen β . In order to forecast
the number of required agents, Ñ , the user will use the predicted values of the
arrival and service rates to forecast the offered-load, and set

Ñ = R̃ + βu ·
√

R̃,(23)
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where R̃ is the forecasted offered-load.
In practice, the assigned agents will face the true (realized) value (λ) of the

arrival rate and the actual service rate (μ). With these real values of λ, μ, and the
corresponding value of R and the pre-determined number of agents Ñ , the call
center is in effect operating under a different value of β . This adjusted value of β

will be referred to as β̃a , which is determined via

β̃a = Ñ − R√
R

.

The above expression can be rewritten as

Ñ = R + β̃a

√
R.(24)

Since the number of pre-assigned agents (Ñ ) is the same in both equations (23)
and (24), we can equate them and conclude the following:

R + β̃a · √R = R̃ + βu ·
√

R̃,

β̃a − βu ·
√

R̃

R
= R̃ − R√

R
.

The mean APE for average service time is 0.0768, which means that
√

μ̃
μ

has a

value of approximately 1. The mean APE arrival rate is 0.0927, indicating that
√

λ̃
λ

also has a value of approximately 1. Considering these two values, we conclude

that
√

R̃
R

≈ 1, which allows us to make the following approximation:

�β � β̃a − βu≈ R̃ − R√
R

.(25)

The quantity �β measures the standardized difference between the predicted
offered-load and the true offered-load. Examining its values can help assess fore-
casting quality. It enables one to answer questions such as follows: does this fore-
casting algorithm usually overestimate or under-estimate the number of arrivals?;
and, by how many agents will one under or overstaff? Note that the ideal value of
�β is zero, indicating a perfect point prediction of the realized offered-load.

In Figure 8 we examine the averaged �β values across the 24 periods of the
day using our final mixed model predictions. To obtain these averaged values of
the estimated �β , we first estimate �β for each day in our learning data during
each period. These were averaged for each period separately over all the days,
excluding holidays and irregular days.

Small absolute values of �β (a user’s βu close to the actual β̃a) indicate that
our model does quite well in predicting the values of offered-load. The estimated
average values are close to zero but are usually smaller than zero, which means
that for most parts of the day the predictions would lead to some under-staffing.
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FIG. 8. The average estimated �β as a function of period.

After examining the values of average �β , one can also examine the disper-
sion of �β throughout the day. To this end, consider the boxplots for each period,
as shown in Figure 9. We note that most of the �β values have absolute value
less than 1. (There seems to be an outlier in the 13th period. This corresponds to
one day, October 10th, where the average service time was particularly short for
some unexplained reason.) The boxplots reveal that 50% of �β values are between
−0.75 and 0.75 and on average are zero. Given that practical values of β are be-
tween −1 and 2, on a large fraction of the periods our mixed model will not make
a gross error in predicting the offered-load.

We now proceed to analyze how deviations in �β affect a call center’s oper-
ational performance. Specifically, we examine three performance measures: the
probability of being delayed for service, Pr(W > 0); the probability of abandon-
ment, Pr(Ab); and the average waiting time, E(W). We then compute these mea-
sures in an M/M/N + G environment, using the asymptotic results in Zeltyn
(2005), Manedelbaum and Zeltyn (2007). The relevant formulae require knowl-
edge of the value of β , as well as the ratio between the service rate μ = 1/E(S)
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FIG. 9. Boxplots of �β for the different periods.

and an (im)patience rate parameter θ . [One can think of 1/θ as some measure of
average (im)patience.]

We compute performance measures for three values of the ratio between service
rate and patience rate: 0.1—corresponding to impatient customers; 1—average
customer patience is the same as their average service time; and 2—implying that
customers are rather patient. (Based on our experience, a value of 2 for this ratio
is quite realistic.) For further discussion on these issues refer to Zeltyn (2005),
Manedelbaum and Zeltyn (2007).

Since �β only provides us with the deviation between βa and βu, we must
determine one of them in order to compute the other. Hence, we choose three
reasonable values for βu: −1,0,1. Using these values and �β , we can calculate
βa . The next step is to compute performance measures using the two different β’s,
the predicted offered-load and the observed offered-load. This provides us with the
three performance measures for each period during each day, for βu and βa .

To analyze the outcomes, we averaged each performance measure over the 203
days. This provides us with all three average performance measures for each period
using βu and βa , and for each of the three different settings of the ratio between
μ and θ . Tables 18 and 19 show the average performance measures for two se-
lected periods: the 6th, 13:00–13:30, and the 16th, 18:00–18:30. (When looking
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TABLE 18
Average Performance Measures for the period between 13:00–13:30 using βu = −1,0,1 and

μ/θ = 0.1,1,2

Pr(W > 0) Pr(Abandon) E(W) (sec)
μ
θ

= 0.1 μ
θ

= 1 μ
θ

= 2 μ
θ

= 0.1 μ
θ

= 1 μ
θ

= 2 μ
θ

= 0.1 μ
θ

= 1 μ
θ

= 2

βu = −1 0.442 0.841 0.931 0.199 0.167 0.160 3.882 32.528 62.223
β̃a 0.428 0.754 0.819 0.210 0.180 0.174 4.099 35.741 69.173
Ratio 0.968 0.896 0.900 1.055 1.077 1.087 1.055 1.098 1.111

βu = 0 0.240 0.5 0.586 0.087 0.057 0.047 1.7023 11.091 18.377
β̃a 0.252 0.487 0.550 0.010 0.076 0.070 1.993 15.270 27.94
Ratio 1.05 0.974 0.938 0.115 1.333 1.490 1.171 1.377 1.520

βu = 1 0.083 0.159 0.179 0.024 0.011 0.008 0.476 2.173 2.975
β̃a 0.113 0.224 0.257 0.038 0.024 0.020 0.760 4.850 8.558
Ratio 1.361 1.409 1.436 1.583 2.182 2.500 1.596 2.232 2.876

at Figure 8, one observes that the smallest average absolute �β occurs around the
6th period and the largest deviation occurs at around the 16th, which is why these
two periods were chosen.)

In Figures 10, 11 and 12, we summarize the ratios between the three perfor-
mance measures, using β̃a and βu. It is clear that the ratios of each measure vary
along the day. The graphs examine not only how the ratios change when the user
(call center manager) chooses different values of βu but also when the ratio be-
tween the service rate, μ, and the (im)patience rate, θ , varies. The following con-

TABLE 19
Average Performance Measures for the period between 18:00–18:30 βu = −1,0,1 and

μ/θ = 0.1,1,2

Pr(W > 0) Pr(Abandon) E(W) (sec)
μ
θ = 0.1 μ

θ = 1 μ
θ = 2 μ

θ = 0.1 μ
θ = 1 μ

θ = 2 μ
θ = 0.1 μ

θ = 1 μ
θ = 2

βu = −1 0.442 0.841 0.931 0.214 0.179 0.172 4.100 34.355 65.716
β̃a 0.475 0.798 0.854 0.172 0.230 0.225 5.182 46.597 91.144
Ratio 1.05 0.989 0.917 0.804 1.285 1.308 1.264 1.356 1.387

βu = 0 0.240 0.5 0.586 0.092 0.060 0.0501 1.764 11.606 19.229
β̃a 0.299 0.562 0.627 0.131 0.105 0.098 2.666 21.556 40.434
Ratio 1.246 1.124 1.070 1.424 1.750 1.956 1.511 1.857 2.103

βu = 1 0.083 0.159 0.179 0.025 0.012 0.008 0.490 2.255 3.095
β̃a 0.149 0.295 0.337 0.054 0.037 0.032 1.116 7.699 13.395
Ratio 1.795 1.855 1.883 2.160 3.083 4.000 2.278 3.414 4.328
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FIG. 10. The average waiting probability ratio over periods. Each of the three plots has three
curves. Each curve corresponds to a different βu value (i.e., −1,0,1). The plots examine the ratio of
the average waiting probabilities using β̃a and βu. The three plots, from left to right, show the results
when using ratios of μ

θ = 0.1, μ
θ = 1 and μ

θ = 2, respectively.

clusions can be drawn from the graphs and tables:

• The average waiting probability ratios show more variability for higher values
of βu. However, when we examine the average waiting probability ratios across
different ratios of μ and θ , there is little variation.

FIG. 11. The average abandonment probability ratio over periods. Each of the three plots has three
curves. Each curve corresponds to a different βu value (i.e., −1,0,1). The plots examine the ratio of
the average abandonment probabilities using β̃a and βu. The three plots, from left to right, show the
results when using ratios of μ

θ = 0.1, μ
θ = 1 and μ

θ = 2, respectively.
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FIG. 12. The average waiting time ratio over periods. Each of the three plots has three curves.
Each curve corresponds to a different βu value (i.e., −1,0,1). The plots examine the ratio of the
average waiting time using β̃a and βu. The three plots, from left to right, show the results when using
ratios of μ

θ = 0.1, μ
θ = 1 and μ

θ = 2, respectively.

• The average abandonment probability ratios vary more for higher values of βu,
and also for higher values of the ratio between μ and θ . From the tables we see
that the probabilities of abandonment are not large (usually smaller than 0.1).

• The average waiting time ratios vary more for higher values of βu and this is
also true for higher values of the ratio between μ and θ . From the tables we see
that the average waiting times are not long (usually less than 1 minute).

6.3. Error in number of servers. The actual error in the number of servers,
due to forecasting error, is also of interest. Using the same methodology as before,
one can assume that β has been chosen to achieve specified quality and efficiency
goals. Then, based on the predicted values R̃ of the true offered-load R, the number
of required agents Ñ is estimated via

Ñ = R̃ + β ·
√

R̃.(26)

Knowing the true offered-load, R, the appropriate number of agents is N—the
correct number of agents required to handle the actual system load at the desired
quality and efficiency trade-off. Formally,

N = R + β · √R.(27)

From the above two formulae and the conclusions that were derived in Section 6.2,
one deduces the following relations:

�N � N̂ − N ≈ R̃ − R ≈ �β · √R.(28)
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FIG. 13. The average estimated �N as a function of period.

The measure �N enables one to evaluate the difference between the actually
deployed and the desired number of agents.

We proceed with calculating �N , using the same data as before. Figure 13
demonstrates the results.

Not surprisingly, the outcomes are quite similar to the graphs we observed when
examining �β . We are underestimating the offered-load and hence under-staffing
the call center. However, the deviation between the required and the predicted
number of agents for most periods is less than 1 agent, which is encouraging.
This seems to indicate that our prediction models offer a rather good solution for
estimating the offered-load in the QED regime.

6.4. Lead-time effect. In Section 4.5 we examined the effect of forecast lead
time on the precision of arrival counts predictions. The analysis revealed that the
forecast lead time has no significant influence on precision. Now we would like
to examine how the forecast lead time affects �β and �N . Intuitively, one would
expect both of these measures to decrease in their absolute value as we shorten
lead times.
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FIG. 14. The average estimated �β as a function of period for different forecast lead times.

Figure 14 shows the smoothed average �β for each period, using one-day-ahead
predictions and a week-ahead predictions. Figure 15 presents the average �N un-
der the two different forecast lead-time alternatives.

The differences between the average results of the two measures are not very
significant. However, we observe that the one-day-ahead results are better than the
week-ahead results since the absolute values of the deviations in both �β and �N

are smaller. Also, both measures indicated that the week-ahead predictions were
fairly accurate to begin with and, hence, we did not expect them to improve by
much.

7. Conclusions and further research. Our mixed model was customized to
the specific requirements of an Israeli Telecom company. The company requires
that the weekly forecast be available to the decision makers a few days in advance
and should be based on six weeks of past data. Recent research, on the other hand,
has focused on producing one-day-ahead forecasts or within-day learning algo-
rithms. These issues are very important and may be very useful for call centers
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FIG. 15. The average estimated �N as a function of period for different forecast lead times.

that can mobilize their agents on short notice. As we show, our mixed model does
contain the much needed practical flexibility to also support long lead times and
short learning periods. It is also relatively easy to implement with standard soft-
ware such as SAS® and yields a computationally efficient solution.

The mixed model incorporates fixed effects, such as day-of-week and its inter-
action with the daily periods; but it also models the day-to-day and the period-to-
period correlations. We have detailed how to determine the significance of such
effects. The modeling approach allowed us to incorporate billing cycle informa-
tion as exogenous variables after a preliminary examination was carried out to
help reduce the parameter vector dimension.

Unfortunately, we could not obtain the Israeli Telecom company’s predictions
for the learning data used in this paper since the company does not regularly main-
tain its past predictions. However, we were able to attain the company’s predic-
tions for the week between November 4th, 2007 and November 9th, 2007. Based
on these predictions, it seems that our mixed model and the company’s algorithm
both produce similar results for most periods of the day. Yet, during periods of the
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day which exhibit more instability (mainly early morning and late evening), their
algorithm performs worse than our mixed model.

The mixed model results were examined under different lead times. From a
practical perspective, a manager might wish to consider a two-stage prediction
forecast: first, producing an early weekly forecast for the scheduling process; and
next, producing another forecast one day before the week begins. This later pre-
diction might provide a more reliable forecast. Using this one-day-ahead forecast,
the manager of a call center might be able to incorporate immediate changes into
the weekly schedule.

We investigated the interval resolution effect on the prediction accuracy. This
analysis showed that, for practical implementations, one can use a half-hour reso-
lution with only little loss to the prediction accuracy levels. Using this resolution
can simplify the problem when compared with the 15-minute resolution. It is also
a practical time interval which call center managers often use for determining their
weekly staff schedule.

Our original forecast problem was to predict the system load based on the av-
erage service times and the arrival rates. To model the average service times, we
suggested and fitted a fairly easy quadratic regression model which incorporates
weekdays and period effects.

Having both the average service times’ predictions and the arrival counts, we
constructed QED regime performance measures. Using these measures, we ana-
lyzed the effect of our models results on a call center’s operational performance
(i.e., the probability of being delayed for service, the probability of abandonment
and the average waiting time). Our results indicate that during busy periods, when
the QED regime’s “square-root staffing” rule is relevant, the system will perform
at a desired level commensurate with the actual load or very close to it. This result
gives some evidence that one can ensure a prespecified QED regime using load
forecasts that are sufficiently precise.

An interesting future research question is how to estimate and predict the sys-
tem load function R(t) directly (instead of predicting the average service times
and arrival rates separately). Such estimation problems can be approached using
nonparametric methods or parametric models. It will be interesting to learn if such
prediction methods yield better results than the method proposed here. [For further
discussion about the effects of time-varying system load on determining staffing
levels, the reader is referred to Feldman et al. (2008).]
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ing and helpful suggestions. We also want to thank a number of reviewers for
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SUPPLEMENTARY MATERIAL

Supplement: Israeli Telecom company call center data set and forecasting
code (DOI: 10.1214/09-AOAS255SUPP; .zip). The zip folder contains three files:

http://dx.doi.org/10.1214/09-AOAS255SUPP
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a readme file which describes the data set in detail; the Israeli Telecom company
data set both in text format and SAS format; and the SAS®/STAT [SAS (2004)]
code which was used to create our final forecasting model.
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