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Causal Inference Through Potential
Outcomes and Principal Stratification:
Application to Studies with “Censoring”
Due to Death1

Donald B. Rubin

Abstract. Causal inference is best understood using potential outcomes.
This use is particularly important in more complex settings, that is, obser-
vational studies or randomized experiments with complications such as non-
compliance. The topic of this lecture, the issue of estimating the causal effect
of a treatment on a primary outcome that is “censored” by death, is another
such complication. For example, suppose that we wish to estimate the effect
of a new drug on Quality of Life (QOL) in a randomized experiment, where
some of the patients die before the time designated for their QOL to be as-
sessed. Another example with the same structure occurs with the evaluation
of an educational program designed to increase final test scores, which are
not defined for those who drop out of school before taking the test. A fur-
ther application is to studies of the effect of job-training programs on wages,
where wages are only defined for those who are employed. The analysis of
examples like these is greatly clarified using potential outcomes to define
causal effects, followed by principal stratification on the intermediated out-
comes (e.g., survival).

Key words and phrases: Missing data, quality of life, Rubin causal model,
truncation due to death.

PROLOGUE

This article is the written version of two presenta-
tions that I had the privilege of giving in 2005, the
first at Carnegie Mellon University on September 16,
the Morris DeGroot Memorial Lecture, and the sec-
ond at the Washington, D.C., Chapter of the Ameri-
can Statistical Association’s Morris Hansen Memorial
Lecture, November 2. Both were truly enjoyable and
stimulating occasions for me, not only the presenta-
tions themselves, but the warm events following them.

Donald B. Rubin is John L. Loeb Professor of Statistics,
Department of Statistics, Harvard University, Cambridge,
Massachusetts 02138, USA (e-mail:
rubin@stat.harvard.edu).

1Discussed in 10.1214/088342306000000286,
10.1214/088342306000000277 and
10.1214/088342306000000295; rejoinder
10.1214/088342306000000303.

I am extremely grateful to the two selection commit-
tees for inviting me, to the relatives of both Morrises,
and to the very good friends who shared time with me
in Pittsburgh and Washington.

The basic material in the talk had been presented a
couple of previous times before the first “Morris” talk
in Pittsburgh, so it was fairly polished, I thought, and
thus worthy of memorial lectures honoring these two
wonderful statisticians and good friends. Also, the con-
tent was rather broadly accessible and relevant to both
men’s interests.

I do not know whether Morrie (DeGroot) or Morris
(Hansen) knew each other well or not; they tended to
travel in different statistical circles, Morrie more in the
Bayesian decision theory, academic statistics world,
and Morris more in the survey design, government sta-
tistics world, but they were both very influential and
widely admired.
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A few words about Morrie first, partly because the
Morrie talk was first, but also because I met Morrie
first, although I was certainly familiar with both names
as a graduate student at Harvard in the late 1960s. In
1976 Morrie became Editor of Journal of the Ameri-
can Statistical Association, Theory and Methods, and
he contacted me to stay on as an Associate Editor—
of course, I was thrilled and agreed. But I wondered
why because I didn’t really know him at all. He ex-
plained that when he had been a JASA Associate Ed-
itor earlier, he had sent me various papers to review,
and he liked the reports that I wrote. In particular, one
sequence of papers that he sent me to review was on a
topic that I had felt was completely old-fashioned and
unimportant, and my reviews repeatedly said so. I had
asked Morrie at that time why he kept sending them
to me since I didn’t like them. And he replied that be-
sides me, there appeared to be only two kinds of pos-
sible reviewers: the vast majority who refused to read
the submissions because they were negative about the
area and didn’t want to waste their own time; and a
very few who loved the boring material because it was
what they did and therefore would uncritically recom-
mend publication. Morrie wanted ammunition to rec-
ommend rejection, which would be difficult with only
positive reviews, and I was providing that ammunition!
As Editor, he promised to use me more efficiently ex-
cept when a paper on this particular topic arrived.

There are many other Morrie stories available, some
from the very early Bayesian meetings in Valencia,
a quarter of a century ago. One has Morrie explaining
at his after-dinner talk how he could manage to stay up
partying every night until the wee hours of the morn-
ing, consuming alcohol and smoking cigars, and still
arise for an early breakfast, more jovial and energetic
than those half his age—he explained that it was sim-
ple: practice, practice, practice. Good advice I’ve tried
to follow.

My experience with Morris was more limited, and
involved discussions and meetings often stimulated by
survey nonresponse issues, or by his advisory roles at
the Census, or on government committees. He was al-
ways warm but principled, with a keen desire to see sta-
tistics used to address important real-world problems.
In many ways, he reminded me of my wonderful Ph.D.
advisor, Bill Cochran, with respect to having similar
attitudes toward the field of statistics and the problems
it should be addressing.

I think that the topic of today’s talk, and I hope, the
presentation itself, would be of interest to both of these
pillars of twentieth century statistics.

1. INTRODUCTION TO DATA THAT ARE
“CENSORED” OR “TRUNCATED” DUE TO DEATH

There are several themes in this presentation that are
quite general. First, the proper analysis of complicated
randomized experiments can often take on many of the
features of the proper analysis of nonrandomized (ob-
servational) data; in both, covariates play an important
role, which is often unappreciated. Second, it is critical
to give adequate conceptual thought to any nonstan-
dard statistical problem before attacking it with math-
ematical analysis or available computer programs. As
Picasso said: “computers are worthless; they only give
answers.” (Thanks to Stuart Baker for first pointing out
this great quote.) And third, intermediate outcome vari-
ables, which arise frequently in practice but often re-
main unrecognized, are not easy to handle well; in fact,
the giant of statistics, Sir Ronald Fisher, gave flawed
advice about them throughout his career (Rubin, 2005).
To be fair, however, nearly all researchers I have read
have also failed to provide good advice on this tricky
topic of intermediate outcome variables, and Fisher ap-
peared never to have focused any real attention on it.

One generic example of a complicated randomized
experiment with an intermediate outcome variable is
the specific topic of this presentation, and can be la-
beled as involving “censoring” or “truncation” of data
due to death. For instance, the patient in the experiment
dies after treatment assignment, but before the primary
outcome variable, say Quality of Life (QOL) two years
after assignment, can be measured. An artificial exam-
ple of this will be used throughout this presentation.

Examples of such censoring also exist in other fields.
For instance, suppose that we were interested in the ef-
fect of a special educational intervention in high school
on final test scores, and some of the students in a
randomized experiment evaluating this intervention do
not finish high school. Or in some economics situa-
tions, interest focuses on the causal effect of a job-
training program on wages (not income), which are
only well defined for those people who are employed;
thus, people who are unemployed when wages are
measured have their wage outcome data “censored” or
“truncated.” Or, suppose in a study of the effects of hor-
mone replacement therapy (HRT) on five-year cancer-
free survival, some women die before five years, but
are cancer-free when they die, say, of heart disease at
three years. As this short list of examples makes clear,
this type of complication can and does arise in many
circumstances.

My first contact with this specific issue was in the
context of a consulting project in the early 1990s for
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AMGEN for a product for the treatment of ALS (amy-
otrophic lateral sclerosis) or “Lou Gehrig’s Disease”—
see a brief discussion in Rubin (2000), and prior to that
in Rubin (1998). ALS is a progressive neuromuscu-
lar disease that eventually destroys motor neurons, and
death follows, typically from lungs that are unable to
operate. No good treatments were (or are) available. In
the AMGEN example, the active treatment, say prod-
uct T, was to be compared to the control treatment, C,
where the primary outcome was QOL two years post-
randomization, as measured by “forced vital capacity”
(FVC), essentially, how big a balloon you can blow up
when you are alive. When FVC is large, you can typi-
cally get on fairly well, whereas when this is small, you
are in very bad shape. In fact, many people do not reach
the end-point of two-year post-randomization survival,
and so two-year QOL is “truncated” or “censored” by
death. I was brought into this project because, as some-
times is the case, the unavailable QOL data were trying
to be fit into a “missing data” framework.

Before continuing with this example, it is helpful
to state that the general attack on this problem be-
ing presented here uses the framework of “principal
stratification” (Frangakis and Rubin, 2002). The spe-
cific technical work on this topic was initiated in a
Ph.D. thesis at Harvard University (Zhang, 2002), and
follow-up work appears in Zhang and Rubin (2003)
and Zhang, Rubin and Mealli (2005, 2006). These ref-
erences provide discussion of other techniques that
have been proposed to attack this problem, and why
those techniques are generally deficient relative to the
principal stratification approach presented here. We
only briefly review these other deficient approaches
later, after setting up a correct framework.

The key idea of principal stratification is to stratify
on the intermediate outcome, here the indicators for
two-year survival, but not on the observed two-year
survival, which is an outcome generally affected by the
treatment received. Rather we should stratify on the bi-
variate outcome: survival if assigned active treatment,

survival if assigned control treatment. This bivariate
outcome is not affected by the treatment received, even
though which of the two outcomes is actually observed
is affected by the treatment received. Thus, in our run-
ning example there are four principal strata represent-
ing four types of people: those who will live no matter
how treated (LL), those who will die no matter how
treated (DD), those who will live if treated but die if not
treated (LD), and those who will die if treated but live
otherwise (DL). A specific artificial case is displayed
in Table 1 and will be used for most of this article. It
is chosen to be relatively extreme to make points more
dramatically; it does not realistically represent any data
from the AMGEN trial, which originally motivated this
approach.

2. THE RUNNING EXAMPLE

Table 1 presents the hypothetical truth, and dis-
plays what would happen to the group of people in
each principal stratum under both the active treatment
and the control treatment. Of course, for any person
we can only observe the “potential outcomes” under
one or the other treatment, not both—the fundamen-
tal problem facing (Rubin, 1978, § 2.4; Holland, 1986,
§3). Holland called the general perspective to causal
inference presented here the “Rubin Causal Model”
(RCM) for a series of papers written in the 1970s
expounding and expanding this perspective (Rubin,
1974, 1975, 1976, 1977, 1978, 1979, 1980); Table 1
assumes “SUTVA” (Rubin, 1980, 1990), the stable-
unit-treatment-value assumption, or stability; this as-
sumption is very commonly made.

The first row of Table 1 shows that 20% of the pop-
ulation will live under either treatment, as indicated by
the survival potential outcomes S(T ) = L and S(C) =
L; S(T ) is the potential outcome for survival when as-
signed treatment and S(C) is the potential outcome for
survival when assigned control. For these LL people,
the average Y (i.e., QOL) if all were treated would

TABLE 1
Principal strata among the patients

% Principal Treatment Control Treatment effect

population stratum Si(T) Ȳi(T) Si(C) Ȳi(C) on QOL

20 LL L 900 L 700 200
40 LD L 600 D * *
20 DL D * L 800 *
20 DD D * D * *
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be 900, which is good, but would be 700 if not treated,
which is fair. Therefore, the average causal effect of
the treatment for the LL stratum is 900 − 700 = 200,
as indicated in the last column. This will be called
the SACE—the survivor average causal effect. Criti-
cally, a causal effect must be a comparison of treat-
ment potential outcomes, Y(T ), and control potential
outcomes, Y(C), on a COMMON subset of units, here
the set of LL units.

The LD units, displayed in the second row of Table 1,
are those who would die under control but live under
treatment [i.e., S(T ) = L and S(C) = D], and they
comprise 40% of the population. If these units were
all treated, their average QOL would be 600, which is
poor, but if they were not treated, they would die, and
their QOL would be undefined (or defined on the sam-
ple space of the positive real numbers extended to in-
clude an asterisk). To assign a particular value to QOL
when dead is to assume we know how to trade off a par-
ticular QOL and being dead (and out of misery). Not
only do we not know how to do this, but the trade-off
could vary by individual, so we prefer simply to repre-
sent the actual truth at this point, and not bring in such
extraneous value judgments.

The third row of Table 1 is for those who would
die under treatment but live under control, those in the
DL group with S(T ) = D and S(C) = L. These sub-
jects comprise 20% of the population, and their aver-
age QOL under control is a quite decent 800. And the
final 20% represented in the fourth row are in the DD
group, who would die no matter which treatment they
received.

A well-defined real value for the average causal ef-
fect of the active treatment versus the control treatment
on QOL exists only for the LL group. For the LD and
DL groups, the average causal effect on QOL involves
the aforementioned trade-offs with death, and for the
DD group there is no QOL to compare, so the causal
effect on QOL for them must be zero. The most that we
can ever hope to learn in any study of this population of
values under these two treatments is recover this table
of values.

Before considering how to do this, however, let us
examine this table a bit more. First, the active treatment
is better for survival than the control treatment because
60% (20% LL + 40% LD) would survive when treated,
whereas only 40% (20% LL + 20% DL) would survive
if not treated (control).

Thus the active treatment is better for overall sur-
vival, and the active treatment is better for QOL for the
subset of people where it is well defined, the LL group,

by +200. Therefore, with no more information about
possible subgroup differences, such as differences be-
tween males versus females, the treatment is preferable
for the population.

Notice also in this example that even if all four
groups had been the same size, each representing a
quarter of the population, the treatment still would have
been preferred to control. The reason is that, although
there would have been no treatment versus control dif-
ference on overall survival, treatment would have a
positive causal effect on QOL for the only subgroup
where it is well defined. If, in this case, an * were im-
puted with 0, the conclusion would have been that there
is no benefit to the active treatment for either survival
or QOL because the last column would have averaged
to zero (200 + 600 − 800 + 0)/4 = 0, a conclusion that
conflates facts with value judgments. This conclusion
would be especially deceptive if conclusions from this
population were to be generalized to future healthier
populations dominated by people like those in the LL
group; this often can occur in real-world clinical tri-
als, where experimental drugs are first tried with sicker
patients, and approval is based on results with these
patients, but if approved, the drugs are used in broader
and healthier populations.

Continuing with the examination of Table 1, under
treatment the healthiest group is the LL group, fol-
lowed by the LD group; the DL and DD groups both
die when treated. However, under control the DL group
is healthier than the LL group, and both of these groups
are healthier than the LD and DD groups, whose mem-
bers die under control. Can this be realistic? The an-
swer is “yes” for at least two reasons: First, some
drugs do have negative side effects for some subgroups
of people, and so here that would be the DL sub-
group, who would survive if untreated. Another possi-
ble reason is that the active treatment may make some
people feel so much better, even though it does not af-
fect their disease progression, that they “overdo” it—
play tennis, go to parties, have normal sex lives, and so
on. There are some drugs that can have effects like this;
Epogen, another product made by AMGEN, substan-
tially increases red blood cell production and is of sub-
stantial apparent benefit to dialysis and chemotherapy
patients, who can have much more energy with the ex-
tra oxygen-carrying capability created by Epogen. For
example, Epogen has become an issue in recent years
in some professional sports (e.g., bicycling with Lance
Armstrong recently, and Jerome Chiotti before him).
These situations reinforce the related points made ear-
lier about the trade-offs between a potentially higher
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quality of life versus an earlier death. For example,
a weak 90-year-old may consider a QOL of 600 prefer-
able to death, whereas an Olympic athlete who is used
to running ten miles a day may prefer death to a com-
pletely sedentary and deteriorating QOL.

A related point is that Table 1 is only a summary of
the individuals’ potential outcomes in this hypotheti-
cal population because it only gives the mean values
of the survival and QOL potential outcomes within
each principal stratum. The more complete version
of Table 1 would also provide the marginal distrib-
utions of all four potential outcomes, in addition to
their means, and moreover, would provide the joint
four-dimensional distribution of the potential outcomes
within each principal stratum. Having such informa-
tion would allow individuals to make the trade-off be-
tween death and QOL, but it is far more difficult to
estimate such a table of joint distributions than simply
the means, because treatment and control potential out-
comes are never jointly observed. We return briefly to
this topic after understanding the simpler problem of
estimating the means given in Table 1 from observable
data.

For now let us accept Table 1 with just Y means in
all four principal strata as truth, and consider next how
we learn about this table from observable data.

3. WHAT WOULD BE OBSERVED IN A
RANDOMIZED EXPERIMENT?

Suppose that we conducted a huge completely ran-
domized experiment on a huge random sample from
this population: half get randomized to active treatment
and half get randomized to the control. Even though
not blocked on the unknown principal strata, in expec-
tation, half of each principal stratum will be exposed to

each treatment. This is reflected in Table 2 where each
row in Table 1 is split in half, with the top one in each
half getting the active treatment, indicated by Z = 1,
and the other getting the control treatment, indicated
by Z = 0. Of course, we do not get to observe all the
values in Table 2, and in fact, do not know the principal
strata to which individual people actually belong.

Suppose now that we permute the rows in Table 2
so that rows that have the same observed treatment and
the same observed survival are adjacent. We trivially
obtain Table 3, but of course we still do not know the
splits between the pairs of adjacent rows. That is, for
the first pair of rows, we observe that all these are peo-
ple who got treated and lived, and that these comprise
30% of the people in the experiment; consequently,
the observed survival rate in the random half assigned
treatment is 60% (= 2 × 30%). The average QOL for
this group will be a 1/3 + 2/3 mixture of LL and LD,
that is, of the averages 900 and 600, and so the ob-
served average for those who got assigned treatment
and lived will equal 700. We do not observe any control
potential outcomes for these people because they are
all treated. For the second pair of rows in Table 3, we
have that they are observed to be treated and die, and
comprise 20% of the population, or 40% of the treated
group dies. Again, no control potential outcomes are
observed for these people.

For the third pair of rows, we observe that they are
assigned to control and live, and comprise 20% of
the population, implying a survival rate in the popu-
lation under control of 40%. Also they have an ob-
served average QOL of 750, which arises from the
1/2 + 1/2 mixture of LL and DL with means 700 and
800, respectively. In these two rows the treated poten-
tial outcomes are not observed because the people were

TABLE 2
Principal strata among the patients, each split by treatment assignment

% Principal Assignment Treatment Control Treatment effect

population stratum Zi Si(T) Ȳi(T) Si(C) Ȳi(C) on QOL

10 LL T L 900 L 700 200
10 LL C L 900 L 700 200

20 LD T L 600 D * *
20 LD C L 600 D * *

10 DL T D * L 800 *
10 DL C D * L 800 *

10 DD T D * D * *
10 DD C D * D * *
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TABLE 3
Permuted table for principal strata among the patients, each split by treatment assignment

% Principal Treatment Control Treatment effect

population stratum Zi Si(T) Ȳi(T) Si(C) Ȳi(C) on QOL

10 LL T L 900 L 700 200
20 LD T L 600 D * *

10 DL T D * L 800 *
10 DD T D * D * *

10 LL C L 900 L 700 200
10 DL C D * L 800 *

20 LD C L 600 D * *
10 DD C D * D * *

assigned control. Finally, the last pair of rows were as-
signed control, and they were observed to die, and they
comprise 30% of the population, implying a death rate
in the control group of 60%. No treated potential out-
comes are observed for these people.

The discussion in the previous two paragraphs is
summarized in Table 4, which displays only what is
actually observed in the study. Several features are
noteworthy. First, suppose that we decide to assess the
causal effect of the active control treatment on survival,
the “intermediate” outcome. We get the correct answer:
60% survive when treated versus 40% when untreated,
just as in Table 1. Next suppose that we decide to as-
sess the causal effect of active treatment versus control
treatment on QOL using only the subjects for whom
we have observed QOL: we would compare the ob-
served average of 700 for the treated group versus the
observed average of 750 for the control group and con-
clude that, although the active treatment is good for
survival, it is bad for QOL if you do survive—but this
is simply wrong! The causal effect of the active treat-
ment versus the control is positive (+200) for the LL
group, which is the only group for which QOL is well
defined.

TABLE 4
Observed data for the example of Tables 1–3

% Treatment Control

population Zi Si(T) Ȳi(T) Si(C) Ȳi(C)

30 T L 700 ? ?
20 T D * ? ?
20 C ? ? L 750
30 C ? ? D *

What went wrong with this last analysis comparing
mean QOL for survivors? The answer is that the com-
parison does not estimate a causal effect. Rather than
comparing treated and control potential outcomes [i.e.,
Y(1) and Y(0)] on a common subset of units (like the
LL group), it compares the average observed treatment
potential outcome Y(1) of 700, which comes from a
1/3 + 2/3 mixture of LL and LD, with the average ob-
served control potential outcome Y(0) of 750, which
comes from a 1/2 + 1/2 mixture of LL and DL. These
are different groups of people, having only some LL
people in common, but even these are in different frac-
tions.

This method of attack, comparing QOL when it is
observed and dropping people who died, although pop-
ular in some settings, is simply wrong in general. But
then what should we do? If we knew the labels of the
principal strata for all the people, we could simply ana-
lyze the data within each stratum, in particular compare
Y(1) and Y(0) in the LL stratum, but we do not have
this information. As Table 5 displays, instead, each of
our observed groups defined by observed treatment as-
signment Z and observed survival Sobs, comprises a

TABLE 5
Group classification based on observed treatment assignment and
observed survival indicator OBS(Z,Sobs), and associated data

pattern and possible latent principal strata

Observed group Possible latent
OBS(Z,Sobs) Z Sobs Yobs principal strata

OBS(T ,L) T L ∈ R LL, LD
OBS(T ,D) T D * DL, DD
OBS(C,L) C L ∈ R LL, DL
OBS(C,D) C D * LD, DD
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mixture of people from two unobserved, or latent, prin-
cipal strata.

4. POSSIBLE APPROACHES

One possible approach is to treat the problem as one
of missing data, and try to impute, or multiply impute,
the “missing data” that are “censored” by death. But
we really already rejected this idea in the discussion
of Section 2: the Y outcomes are not missing; they are
undefined, or defined to be ∗. Maybe adding some sim-
plifying assumptions would help?

There are some assumptions that are relatively stan-
dard in similar settings, in particular, where the inter-
mediate outcome variable indicates compliance with
assigned drug (Angrist, Imbens and Rubin, 1996). In
Tables 1–4, the four principal strata could be called
compliers, never-takers, always-takers and defiers, cor-
responding to LD, DD, LL and DL, respectively. The
analogy here is that people who would live under treat-
ment but would die under control are “complying” with
the encouragement of the active treatment to help them.

The first standard assumption (after SUTVA) that is
made in the noncompliance setting is called “monoto-
nicity” or the “no-defier” assumption, which rules out
the DL group. The no-defier assumption can be rea-
sonable in our QOL setting, but is wrong in the context
of our numerical example because there exist both LD
and DL groups.

The next assumption that is often made in the non-
compliance setting is called “exclusion,” which as-
serts that if treatment assignment cannot change the
intermediate outcome, D, it cannot change the final
outcome, Y ; here, that would mean that there is no
treatment effect on Y = QOL for either the LL group
or the DD group. But the causal effect on QOL for the
LL group is precisely what we want to estimate, and

TABLE 6
Bounds for treatment effect on QOL in LL for numerical example

Monotonicity Stochastic
assumption dominance [Lower Bound, Upper Bound]

No No [−200, 200]
Yes No [−150, 0]
No Yes [−100, 150]
Yes Yes [−50, 0]

The first column shows whether the monotonicity assumption (A1)
is made, and the second column shows whether the stochastic dom-
inance assumption (A2) is made. The last column shows the bounds
for the numerical example of Tables 1–4.

so we cannot assume it to be zero! So the exclusion
assumption does us absolutely no good. When both
monotonicity and exclusion hold, however, the classi-
cal instrumental variables estimate (IVE) can be used
to estimate the “complier average causal effect”; see
Angrist, Imbens and Rubin (1996) for extended discus-
sion. In simple settings, the IVE is the simple treatment
minus control estimate for the mean of Y divided by the
simple treatment minus control estimate for the mean
of D, so here would require some imputation of the
“missing” Y values for those who are observed to die.
If we imputed zero for the QOL for those who die, we
would have that IVE = (420−300)/(0.6−0.4) = 600,
unrelated to anything real, which is not surprising be-
cause the underlying assumptions justifying the IVE
are both wrong in our example.

Another possible assumption, considered in Zhang
and Rubin (2003), is “stochastic dominance,” which
implies that, on average, the LL group is healthier un-
der control than the DL group, and the LL group is
healthier under treatment than the LD group. Again,
this condition is violated in our numerical example, as
was noted in Section 2 earlier. Large-sample bounds on
the Survivor Average Causal Effect (i.e., the causal ef-
fect in the LL group) are derived in Zhang and Rubin
(2003) under monotonicity and stochastic dominance,
but are not very useful in our example, as displayed
in Table 6, because none of the assumptions holds. In
other examples, they could be quite useful.

5. THE ROLE FOR COVARIATES

A more successful general approach is to collect and
use covariates that are predictive of both the intermedi-
ate potential outcomes (e.g., here survival) and the final
potential outcomes (e.g., here QOL). This was done in
the actual AMGEN application because there were sev-
eral measurements of baseline FVC (= baseline QOL).
Thus at baseline measurements of each patient’s cur-
rent FVC and the rate of deteriorating FVC were avail-
able, and these were highly predictive of both survival
and of two-year-later QOL if surviving.

To amplify this point, consider Table 7, which is
identical to Table 1 except with an added left-most col-
umn, labeled X, for a covariate, baseline QOL in the
hypothetical example. The hypothetical means of X

are displayed, and we will assume that the hypothet-
ical variances of X within each principal stratum are
small relative to the differences between the means. We
again pretend that we conduct a huge randomized ex-
periment, with 50% treated and 50% control, to obtain
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TABLE 7 (= Table 1 with Key Covariate)
Principal strata among the patients

% Principal Treatment Control Treatment effect

X population stratum Si(T ) Ȳi (T ) Si(C) Ȳi(C) on QOL

800 20 LL L 900 L 700 200
500 40 LD L 600 D * *
900 20 DL D * L 800 *
300 20 DD D * D * *

Table 8, which parallels Table 2 with treated and con-
trol pairs of rows. Trying to permute the rows in this
table to bring groups adjacent that are observed to be
the same (with respect to observed X, observed treat-
ment assigned, and observed survival) leaves the table
unchanged because, for example, although the first and
third rows are both treated and survive, they are dis-
tinguishable by their differing baseline QOL distribu-
tions. The observed data then are as in Table 9, from
which we reach the following conclusions.

People with baseline FVC around 800, which is
pretty good, comprise 20% of the population, and they
all survive no matter how treated; the causal effect on
QOL of active versus control for them is 900 − 700 =
+200—this conclusion agrees with the truth in Ta-
bles 1 and 7. Next, consider the 40% of the popula-
tion with baseline QOL around 500, which is quite
poor. They will survive if treated, with an average QOL
of 600, better than at baseline, but still poor; with-
out the active treatment, however, they will die; again,
some may prefer death to poor QOL. For the 20% with
baseline FVC around 300, which is very poor, neither
active treatment nor control can prevent death. And fi-
nally, for the 20% with the best baseline FVC, around

900, which is quite good, we see that if not actively
treated, their QOL will decline to 800, still not bad,
whereas if treated they will die. This is unexpected
and requires follow-up interviews with their individual
doctors (and/or friends and spouses) to determine the
reasons for their deaths, possibly negative side effects
of the drug, or overactivity due to the drugs’ dramatic
effects on perceived health. But the point is that a “su-
per” covariate has allowed the recovery of the truth in
Table 1.

Notice that collecting more measurements of out-
comes does not help in the same way as collecting
covariates, because outcome measurements have dif-
ferent potential outcomes depending on the treatment
exposures, and so using outcomes to improve inference
will require some serious modeling efforts involving
new assumptions. Some work on this topic appears in
Zhang (2002), but is an important area for statistical re-
search because it is common, and often easy, to collect
such repeated measurements post-randomization.

Another source of information that can be utilized is
the distributional shape of the outcome in the different
groups and treatments. For example, if we knew that
QOL measurements were approximately normally dis-

TABLE 8 (= Table 2 with Key Covariate)
Principal strata among the patients, each split by treatment assignment

% Principal Treatment Control Treatment effect

X population stratum Zi Si(T ) Ȳi(T ) Si(C) Ȳi(C) on QOL

800 10 LL T L 900 L 700 200
800 10 LL C L 900 L 700 200

500 20 LD T L 600 D * *
500 20 LD C L 600 D * *

900 10 DL T D * L 800 *
900 10 DL C D * L 800 *

300 10 DD T D * D * *
300 10 DD C D * D * *
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TABLE 9 (= Table 4 with Key Covariate observed)

Principal Treatment Control

X stratum Zi Si(T ) Ȳi (T ) Si(C) Ȳi(C)

800 LL T L 900 ? ?
800 LL C ? ? L 700

500 LD T L 600 ? ?
500 LD C ? ? D *

900 DL T D * ? ?
900 DL C ? ? L 800

300 DD T D * ? ?
300 DD C ? ? D *

tributed across subjects within each principal stratum
and treatment condition, this could be very helpful be-
cause it would allow standard mixture modeling tools
to be used to help disentangle the normal components
(e.g., Dempster, Laird and Rubin, 1977; Titterington,
Smith and Makov, 1985). This approach is used in the
example in Section 6.

6. THE ROLE FOR DISTRIBUTIONAL
ASSUMPTIONS, SUCH AS NORMALITY

Here we extend the example in Table 1 to include the
distribution of QOL within each of the four principal
strata to illustrate how such information can be used to
help recover the information in Table 1. This extension
will also lead to a brief discussion of the more difficult
issue of the role of the joint distribution of the never
jointly observed potential outcomes under T and un-
der C.

Again, our example will be extreme to illustrate
ideas, and the actual methods of analysis with real ex-
amples will nearly always involve methods of analysis
based on EM or MCMC methods for mixture models
(e.g., Dempster, Laird and Rubin, 1977; Titterington,
Smith and Makov, 1985; Aitkin and Rubin, 1985).
Specifically, suppose the four marginal distributions
of the QOL potential outcomes within each of three
principal strata where they are well defined are normal
(Gaussian): N(900,702) and N(700,502) for LL when
treated and not, N(600,402) for LD when treated, and
N(800,602) for LD when not treated. Suppose also
that the investigators are confident that the distribu-
tions are normal, which could occur, for example, if the
QOL scores were based on the average of a large set of
test items about activities that the individuals can and
cannot perform. The hypothetical variances tend to be
larger under the active treatment because the drug has a

nonadditive effect, being more effective for some than
for others.

Nothing essential changes in Tables 1–3, except with
the addition of the standard deviation associated with
each mean. But Table 4, giving the observed data, is
changed in an important way when the distributions are
given. First, the treated group that lives is still observed
to have mean 700, but its distribution is markedly non-
normal, with one-third having mean 900 and standard
deviation 70 and two-thirds having mean 600 and stan-
dard deviation 40. These components are easily ob-
servable as different because of the assumed normality
and the small within-component standard deviations.
In more subtle situations, we would have to use far
more sophisticated analysis methods, which general-
ize standard mixture modeling techniques cited earlier.
Although, in this extreme example, we can distinguish
between the one-third and two-thirds mixture compo-
nents in the treated group that lives, we do not yet know
which is LL and which is LD, however. But we do know
that LL + LD comprise 60% of the population, because
60% live in the random half exposed to the active treat-
ment; thus, either LL is one-third of the 60%, that is,
20% of the population, with a N(900,702) distribu-
tion when treated, or is two-thirds of the 60%, that is,
40% of the population, with a N(600,402) distribution
when treated.

Moving on to the observed QOL distribution for the
40% who survive in the control group, we will ob-
serve a mean of 750 arising from a half/half mixture
of N(800,602) and N(700,502), where one compo-
nent represents LL and one component represents DL,
but which is which? Before addressing this question,
we note that here, decomposing the two components
within the surviving subjects in the control group is not
as obvious as in the treated group, because in the con-
trol the means of the two components are only about
one standard deviation apart—but this is a standard
problem using the aforementioned mixture modeling
algorithms. Now each component in the surviving con-
trol group is observed to be one-half of the 40% who
live under control; thus, from the control data, both LL
and DL comprise 20% of the population. But from the
treatment group, we know that LL is either 20% or 40%
of the population; so combining both pieces of infor-
mation, LL must be 20%. Also, LL’s QOL distribution
when treated must therefore be N(900,702) and LD’s
QOL distribution when treated must be N(600,402).

Furthermore, when not actively treated, from the sur-
viving control group, LL’s QOL distribution must be
either N(700,502) or N(800,602)—the observed data
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cannot distinguish these two possibilities because both
LL and DL are exactly the same size, 20% of the pop-
ulation. Of course, if we knew which of LL or LD had
a higher mean QOL under control or which had the
larger variance under control, we would know which
was N(800,602). This points out a fragility in the es-
timation: as the principal strata get closer to each other
in size or closer in means and variances, the estimation
becomes more difficult.

Nevertheless, we have recovered much of Table 1.
What are uncertain are the mean values of the QOL
column under control and the SACE: under control, the
mean QOL is either 800 for LL and 700 for DL, or 700
for LL and 800 for DL; and the SACE is either +100 or
+200; in either case treatment is preferable to control.

7. DISCUSSION

It is not surprising that if we have distributional in-
formation and good covariates, the estimation of the
principal strata can be sharpened, even without as-
sumptions such as stochastic ordering of the groups.
Of course, in general, estimation must involve Markov
chain Monte Carlo techniques, likelihoods generally
will not be regular, and models may need to be as-
sessed using posterior predictive checks (Rubin, 1984;
Gelman, Meng and Stern, 1996; Gelman, Carlin, Stern
and Rubin, 2004).

It is also important to realize that the joint con-
ditional distribution of treatment potential outcomes
(Si(1), Yi(1)) and control potential outcomes
(Si(0), Yi(0)) given covariates is inestimable in the
sense that the likelihood is free of parameters govern-
ing this joint conditional distribution (i.e., the posterior
distribution of these parameters equals their prior dis-
tribution). To address this situation, sensitivity analyses
(e.g., Rosenbaum and Rubin, 1983) and the creation of
large-sample bounds (e.g., Manski, 2003; Zhang and
Rubin, 2003, in this specific problem) could well be
quite helpful and informative. This joint distribution
can be relevant to an individual’s decision-making for
treatment versus control. Knowing the detail provided
by Table 1 beyond that in Table 4, however, can be
helpful for this decision, even without knowledge of
the inestimable joint distribution. For example, a per-
son may decide that he is in better health than the
typical patient and is therefore more likely to have out-
comes like those either in the LL stratum, who are the
healthiest group when treated, or in the LD stratum,
who are the healthiest group when not treated. Conse-
quently, such a person would be particularly interested

in learning why those in DL die when treated (e.g., neg-
ative side effects versus enjoying a too vigorous life),
and then use this information to make a more informed
choice than directly available from Table 4.

In conclusion, I think that causal inference model-
ing using potential outcomes and principal stratifica-
tion, with its explicit and transparent assumptions, has
helped clarify situations that statisticians must confront
when there exists censoring of outcomes due to death
of units, and has led to the creation of an approach to
estimation that can be quite beneficial in a variety of
difficult settings across a variety of disciplines.
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