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Majorization: Here, There and Everywhere
Barry C. Arnold

Dedication

This article is written for Ingram Olkin on the occasion of his 80th birthday.
Ingram has provided inspiration for me over the last 40 years and continues to
inspire. I am indebted to him for his encouragement and support throughout
my career. I am contributing this humbly in the sure knowledge that he could
have written it better than I.

Abstract. The appearance of Marshall and Olkin’s 1979 book on inequal-
ities with special emphasis on majorization generated a surge of interest in
potential applications of majorization and Schur convexity in a broad spec-
trum of fields. After 25 years this continues to be the case. The present article
presents a sampling of the diverse areas in which majorization has been found
to be useful in the past 25 years.
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1. INTRODUCTION

Prior to the appearance of the celebrated volume In-
equalities: Theory of Majorization and Its Applications
(Marshall and Olkin, 1979) many researchers were un-
aware of the rich body of literature related to majoriza-
tion that was scattered in journals in a wide variety of
fields. Indeed, many majorization concepts had been
reinvented and often rechristened in different research
areas (e.g., as Lorenz or dominance ordering in eco-
nomics), complicating the difficulties for the researcher
when trying to relate current research to the extant cor-
pus. Of course, the appearance of the Marshall and
Olkin volume changed all that. They heroically had
sifted the literature and endeavored to arrange ideas
in order, often providing references to multiple proofs
and multiple viewpoints on key results, with reference
to a variety of applied fields. Many of the key ideas
relating to majorization were already discussed in the
(also justly celebrated) volume entitled Inequalities by
Hardy, Littlewood and Pólya (1934). Indeed, this slim
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volume still merits occasional revisits since there re-
main in it many “seedlings for further research” (to
borrow Kingman’s apt descriptive phase). Of course
the Hardy, Littlewood and Pólya volume, though slim
and printed on small pages, was all meat and no gravy:
more like a series of insightful telegrams. Only a rela-
tively small number of researchers were inspired by it
to work on questions relating to majorization.

But things were different after 1979. Marshall and
Olkin sold the product much more effectively. When-
ever a situation was encountered in which a solution
or an extreme case involved a discrete uniform distrib-
ution, the possibility of a majorization proof was now
apparent if not to all, certainly to many, and certainly
in many different areas of research. Moreover, if a uni-
form allocation or distribution was in a sense optimal,
then the concept of majorization frequently could be
used to order competing allocations or distributions.

Naturally extensions of the majorization concept
were possible and indeed many have been fruitfully in-
troduced. The focus of the present article is, however,
on classical majorization. The goal is to provide a hint
(via selected examples from the post-1979 literature)
of the vast array of settings in which majorization pro-
vides a useful and interpretable ordering. In no sense
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can such a survey be complete. I apologize, in advance,
to researchers who, quite legitimately, can point to pa-
pers of their own which they feel would be even bet-
ter illustrations of the theme: Majorization, here, there
and everywhere. Nevertheless it is my hope that the
examples selected will be found to be interesting, to
be sufficiently diverse in order to illustrate the poten-
tial ubiquity of dispersion ordering (a.k.a. majoriza-
tion) concepts and, perhaps, to inspire researchers to
seek even more research niches in which majorization
and Schur convexity will play a useful role.

2. SOME NEEDED DEFINITIONS

We will say that a vector x ∈ Rn majorizes an-
other vector y ∈ Rn and write x � y if for each k =
1,2, . . . , n − 1 we have

k∑
i=1

xi : n ≤
k∑

i=1

yi : n

and
n∑

i=1

xi : n =
n∑

i=1

yi : n.

In the above we denote the ordered coordinates of a
vector x ∈ Rn by x1 : n ≤ x2 : n ≤ · · · ≤ xn : n.

A function g : Rn → R is said to be Schur convex if
x � y implies g(x) ≥ g(y). For additional details and
alternative characterizations of majorization and Schur
convexity, we naturally refer to Marshall and Olkin
(1979).

In short, the vector x majorizes y if the coordinates
of x are more dispersed than are the coordinates of y,
subject to the constraint that the sum of the coordinates
of x and of y is the same.

A Schur convex function then is one that increases as
dispersion increases (where the concept of dispersion
used is specifically linked to the majorization order).

The extremal case under the majorization order cor-
responds to the choice xi = (

∑n
j=1 xj )/n. In partic-

ular then, a Schur convex function will take on a
larger value when there is some variability in x than it
does when there is no variability [i.e., when xi = x̄ =
(
∑n

j=1 xj )/n, i = 1,2, . . . , n].
Many examples of Schur convex functions can of

course be found in the literature. Perhaps the simplest
example is what is called a separable convex function.
It is of the form

g(x) =
n∑

i=1

h(xi),

where h is a convex function.
We now begin our tour of examples in the literature

in which majorization makes cameo and/or starring ap-
pearances.

One can even consider a variation of the children’s
game “Where’s Waldo?”. In that game a very compli-
cated picture is provided in which, hidden away, is a
picture of the hero Waldo. He is always there, but he
is often hard to find. Similarly we can view various
areas of statistical research and/or applications as be-
ing rather complicated scenes in which perhaps Waldo,
a.k.a. majorization, may well be lurking. The search
begins.

3. COVERING A CIRCLE WITH RANDOMLY
PLACED ARCS

Suppose that n arcs of lengths �1, �2, . . . , �n are
placed independently and uniformly on the unit circle
(a circle with unit circumference). Let P(�) denote the
probability that the unit circle is completely covered
by these arcs. The problem is only interesting when
the total length of the arcs L = ∑n

i=1 �i exceeds 1,
the circumference of the circle. We therefore assume
that L > 1. In the special case in which the arcs are of
equal lengths (say �̄ = L/n), the required probability
was provided by Stevens (1939). Specifically we have

P(�̄1) =
n∑

k=0

(−1)k
(

n

k

)
(1 − k�̄)n−1+ .(3.1)

At the other extreme, if one arc is of length L and the
others of length 0, coverage is certain. It would appear
then that, in this situation, increasing the variability
among the �i’s subject to the sum being equal to L,
might well be associated with an increase in the cov-
erage probability. Proschan conjectured that P(�) is a
Schur convex function. It is indeed Schur convex but
it is not that easy to verify. Details were provided by
Huffer and Shepp (1987). Not surprisingly, the argu-
ment is based on studying the effect on P(�) of mak-
ing a small change in two unequal �i ’s (to make them
more alike) holding the other lengths fixed. Waldo is
here, but he is not easily unmasked.

4. WAITING FOR A PATTERN

If we seat a monkey at a keyboard and have him type
letters, spaces and punctuation marks at random, it is
common knowledge that eventually he will produce a
perfectly typed version of the Gettysburg Address and,
for that matter, the entire contents of the 2004 edition
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of the Encyclopedia Brittanica. But we would have to
wait a rather long time to see this.

The mathematical formulation of the monkey’s ac-
tivities involves observing a sequence X1,X2, . . . of
independent identically distributed random variables
with possible values 1,2, . . . , k and associated positive
probabilities p1,p2, . . . , pk . Let N denote the wait-
ing time until a particular consecutive string of out-
comes is observed, or one of a particular set of outcome
strings is observed. If we are waiting for the string
t1, t2, . . . , t� where each tj is a number chosen from the
set 1,2, . . . , k, there are several ways in which variabil-
ity can affect the waiting time random variable N . The
random variable will be affected by variability among
the pi ’s, the probabilities of the individual possible val-
ues of the X’s. It will be also affected by the variability
among the tj ’s appearing in the string whose appear-
ance we are awaiting. For example, we might expect
to have to wait longer for a string of � consecutive like
outcomes than for a string of � distinct outcomes. Pos-
sibilities for a role for majorization abound here.

In particular, Ross (1999) considers the waiting
time N until we observe a run of k observed values
of the Xi’s that includes all k of the possible values of
the Xi’s, as a function of p = (p1, . . . , pk). Here in-
deed it is possible to verify that for every n,P (N > n)

is a Schur convex function of p, and consequently that
E(N) is also Schur convex as a function of p. The
shortest waiting time is thus associated with the case in
which the pj ’s are all equal to 1/k.

5. PAIRED COMPARISONS

The theory of paired comparisons has found consid-
erable application in the study of professional sporting
contests. At the end of a typical season each of the k

teams in the league will have played each other team
a given number, say p, of times. For simplicity, we ig-
nore such factors as home field advantage and we as-
sume that the rules of the league exclude the possibility
of ties. Similar analysis might well be applied to taste-
testing experiments and other paired comparison sce-
narios, but we will follow Joe (1988) and focus on the
sports setting.

In modeling this scenario, it is convenient to consider
a k × k matrix P = (pij ) in which, for i �= j,pij de-
notes the probability that team i will beat team j in
a particular game. Of course we have pij + pji = 1,
recalling our assumption that ties do not occur. We
leave the diagonal elements of P empty so that P has
n(n − 1) nonnegative elements. The strength of a par-
ticular team, say team i, is to some extent measured

by its corresponding row total pi = ∑
j �=i pij . For a

given vector p of team strengths, we can consider the
class P(p) of all probability matrices P with only off-
diagonal elements defined and with row totals given
by p.

It is reasonable to assume that if team i is better than
team j (i.e., if pij ≥ 0.5) and if team j is better than
team k, then team i should be better than team k.

Joe calls the matrix P weakly transitive if pij ≥ 0.5
and pjk ≥ 0.5 imply pik ≥ 0.5. A stronger condition is
also plausible. He defines P to be strongly transitive if
pij ≥ 0.5 and pjk ≥ 0.5 imply pik ≥ max(pij ,pjk).

Where does majorization come into this picture?
Each matrix P in P (p) can be rearranged as an n ×
(n − 1)-dimensional row vector denoted by P ∗. We
will write P ≺ Q iff P ∗ ≺ Q∗ in the usual sense of
majorization. A matrix P ∈ P (p) is said to be mini-
mal if Q ≺ P implies Q∗ = P ∗ up to rearrangement.
Joe (1988) verifies that any strong transitive P is mini-
mal. Variations in which ties and home field advantage
are considered are also discussed in Joe (1988).

6. PHASE TYPE DISTRIBUTIONS

In a continuous-time Markov chain with (n + 1)

states, of which n states (1,2, . . . , n) are transient and
state n + 1 is absorbing, the time T until absorption
in state n + 1 is said to have a phase type distrib-
ution (Neuts, 1975). Such distributions are parame-
terized by an initial distribution vector for the chain,
α = (α1, α2, . . . , αn) (we assume that the probability
of beginning in state n + 1 is 0), and a matrix of in-
tensities of transitions among the n transient states Q.
The elements of Q satisfy qii < 0, i = 1,2, . . . , n, and
qij ≥ 0, j �= i. In such a setting T is said to have a
phase type distribution with parameters α and Q and
we write T ∼ PH(α,Q). A very simple example is the
one in which α = α∗ = (1,0,0,0, . . . ,0) and Q = Q∗
where q∗

ii = −δ,∀ i and q∗
ij = δ for j = i + 1 while

qij = 0 otherwise. In this situation the chain begins
in state 1, and then successively moves through states
2,3, . . . , n, spending an exponential (δ) time in each
state. Consequently the time to absorption, say T ∗, will
be a sum of n i.i.d. exponential random variables and so
T ∗ ∼ gamma(n, δ) (in queueing contexts this is often
called the Erlang distribution rather than the gamma
distribution).

We say that a phase type distribution is of order n if
n is the smallest integer such that the distribution can
be identified with the absorption time of a chain with n

transient states and one absorbing state. It appears that,
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in some sense, T ∗ exhibits the most regular behavior
of any phase type distribution of order n. This can be
made precise in terms of what is called the Lorenz or-
der, a natural extension of majorization.

Let L denote the class of nonnegative random vari-
ables with finite positive expectations. (This can be ex-
tended to allow the random variables to assume neg-
ative values, but for our present purposes this is not
needed.) For X and Y in L, we will write X ≤L Y

iff E(g(X/E(X))) ≤ E(g(Y/E(Y )) for every contin-
uous convex function g. Majorization can be iden-
tified as a special case here by choosing X and Y

to each have n equally likely values x1, x2, . . . , xn

and y1, y2, . . . , yn, respectively, with E(X) = E(Y ).
More detailed discussion of the Lorenz order on L
may be found in Arnold (1987). Aldous and Shepp
(1987) showed that T ∗ [with its gamma(n, δ) distrib-
ution] has the smallest coefficient of variation among
phase type distribution of order n, that is, it minimizes
E(( T

E(T )
)2). More generally, O’Cinneide (1991) veri-

fied that T ∗ ≤L T for any variable T that is phase type
of order n, thus confirming the fact that T ∗ exhibits the
least “variability” (as measured by the Lorenz order).

7. CATCHABILITY

An island community contains an unknown number
ν of species of butterflies. Butterflies are sequentially
trapped until n individuals have been captured. Denote
by r , the number of distinct species represented among
the captured butterflies. We may well use r (and n) to
help us estimate ν.

A typical stochastic model for this problem is based
on the assumption that butterflies from species j, j =
1,2, . . . , ν, enter the trap according to a Poisson (λj )

process and that these Poisson processes are indepen-
dent. Define pj = λj/

∑ν
i=1 λi . The probability that a

particular butterfly trapped is from species j is then
given by pj , j = 1,2, . . . , ν. The pj ’s can be inter-
preted as measures of “catchability” of the various
species. The simplest model is that of equal catchabil-
ity (i.e., pj = 1/ν, j = 1,2, . . . , ν). If we assume that
ν ≤ n, then, under the equal catchability model, a min-
imum variance unbiased estimate of ν, based on r , ex-
ists. It is given by

ν̂ = S(n + 1, r)/S(n, r)(7.1)

where S(n, x) is a Stirling number of the second kind.
What happens when the species vary in catchability? In
an extreme case in which one particular species is eas-
ily trapped and the others are extremely difficult to trap,

we will usually observe r = 1 and will consequently
badly underestimate ν. Indeed as Nayak and Christman
(1992) observe, the random number R of species cap-
tured has a distribution which is a Schur convex func-
tion of p. Thus the estimate (7.1) and other estimates
which are sensible under equal catchability will be neg-
atively biased with the bias increasing as the catchabil-
ity becomes more variable.

8. DISEASE TRANSMISSION

Tong (1997) identifies an interesting majorization
feature of a disease transmission model due to
Eisenberg (1991). Consider a closed population of
n + 1 individuals. One individual (number n + 1) is
susceptible to the disease but as yet is uninfected.
The other n individuals are carriers of the disease.
If individual n + 1 has a single contact with individ-
ual i, we denote the probability of avoiding infection
by pi, i = 1,2, . . . , n.

It is assumed that individual n + 1 makes a to-
tal of J contacts with individuals in the popula-
tion in accordance with a preference vector α =
(α1, α1, α2, . . . , αn), where αi > 0, i = 1,2, . . . , n,
and

∑n
i=1 αi = 1. In addition, individual n + 1 has

a lifestyle vector k = (k1, k2, . . . , kJ ) where the ki ’s
are nonnegative integers summing to J . For given vec-
tors α and k, the individual n + 1 proceeds as follows.
He/she first picks a partner from among the n carriers
according to the preference vector α. Thus he/she will
select individual 1 with probability α1, individual 2
with probability α2, and so on. He/she then makes k1
contacts with this partner. Then he/she selects a sec-
ond partner (it could be the same one) according to
the preference vector α and has k2 contacts with this
partner. The process terminates after all J = ∑J

i=1 ki

contacts have been made. Denote the probability of es-
caping infection by H(k,α,p), depending as it does
on lifestyle (k), preference (α) and variable nontrans-
mission probabilities (p).

There are several possible roles for majorization
here. Variability among the coordinates of k,α and/or
p can be expected to affect H(k,α,p). Tong (1997) fo-
cuses on the lifestyle vector k. Two extreme lifestyles
are readily identified. The first one corresponds to k =
(J,0,0, . . . ,0) which could be called a monogamous
style. Here a partner is randomly chosen according
to the preference vector α and all contacts are made
with this individual. The second extreme lifestyle has
k = (1,1,1, . . . ,1). In this case each contact is made
with a randomly chosen individual. The probability
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of escaping infection with k = (J,0, . . . ,0) is clearly∑n
i=1 αip

J
i while the probability of escaping infection

using the lifestyle (1,1,1, . . . ,1) is (
∑n

i=1 αipi)
J . It

follows via Jensen’s inequality that one has a larger
probability of escaping infection with the “monoga-
mous” lifestyle (J,0, . . . ,0) than with the “random”
lifestyle (1,1,1, . . . ,1). This holds for every α and
every p. But of course these two lifestyles are ex-
treme cases with regard to majorization. It is then quite
plausible that the probability of escaping infection is a
Schur convex function of the lifestyle vector k. Indeed,
Tong (1997) confirms this conjecture. He also is able
to get some results when the number J of contacts is
a random variable. Several interesting aspects of this
problem remain open.

9. APPORTIONMENT IN PROPORTIONAL
REPRESENTATION

The ideal of one man–one vote is often approached
by the device of proportional representation. Thus if
there are N seats available and if a political party
received 100q% of the votes, then ideally that party
should be assigned Nq seats. But fractional seats can-
not be assigned (or better yet are not assigned, since
there seems to be no reason why they could not be
assigned, except perhaps for aesthetic considerations).
Which method of rounding should be used to arrive
at an assignment of integer-valued numbers of seats
to every party in a manner essentially reflecting pro-
portional representation? This is not a new problem.
Several very well-known American politicians have
proposed methods of rounding for use in this situation.
Balinski and Young (2001) provide a good survey of
the methods usually considered. Marshall, Olkin and
Pukelsheim (2002) highlight the role of majorization
in comparing the various candidate rounding meth-
ods. John Quincy Adams proposed a method that was
kind to small parties (rounding up their representa-
tion), while at the other extreme Thomas Jefferson
urged rounding down, which favors large parties. Other
popular intermediate strategies are associated with the
names Dean, Hill and Webster.

It is easiest to describe all of these apportionment
methods in terms of a sequence of signposts which
determine rounding decisions. The signposts s(k) are
numbers in the interval [k, k + 1] such that s(k) is
a strictly increasing function of k. The corresponding
rounding rule is that a number in the interval [k, k + 1]
is rounded down if it is less than s(k) and is rounded
up if it is greater than s(k). If the number is exactly

equal to s(k), then we may round up or down. So-
called power-mean signpost sequences have been pop-
ular. They are of the form

sp(k) =
(

kp

2
+ (k + 1)p

2

)1/p

,
(9.1)

−∞ ≤ p ≤ ∞.

The five most popular apportionment methods can all
be viewed as having been based on a particular power-
mean signpost sequence. The Adams rule (rounding
up) corresponds to p = −∞, the Dean rule corre-
sponds to p = −1, the Hill rule corresponds to p = 0,
the Webster rule to p = 1 and finally the Jefferson
rule (rounding down) corresponds to p = ∞. Marshall,
Olkin and Pukelsheim (2002) show that the seating
vector produced by a power-mean rounding rule of or-
der p will always be majorized by the seating vector
produced by a power-mean rounding rule of order p′ if
and only if p ≤ p′. Consequently, among the five popu-
lar apportionment rules, the change when moving from
the Adams rule toward the Jefferson rule is a change in
favor of large parties in a majorization sense. The move
from an Adams apportionment toward a Jefferson ap-
portionment can actually be accomplished by a series
of single seat reassignments from a poorer party (with
fewer votes) to a richer party (with more votes) [par-
alleling reverse Robin Hood (a.k.a. Pigou–Dalton) in-
come transfers in an economic setting].

10. MAJORIZATION IN STATISTICAL MECHANICS

The state space of a physical system, Sn, can be
identified with the set of all probability vectors p =
(p1,p2, . . . , pn)

′ where pi ≥ 0 and
∑n

i=1 pi = 1.
A useful partial order in this context is related to the in-
formation content of the states. For two states p and q ,
it is prescribed that p ≺ q iff there exists a doubly
stochastic matrix T with p = T q . But of course, ap-
pealing to the classical result of Hardy, Littlewood and
Pólya (1929), this is in fact the majorization partial or-
der (and the notation is thus consistent with our usage
in earlier sections of this paper). In this context separa-
ble concave functions are called generalized entropies.

A related partial order is defined on k-tuples of
states. For two k-tuples (p

1
,p

2
, . . . , p

k
) and (q

1
, q

2
,

. . . , q
k
) we define

(p
1
,p

2
, . . . , p

k
) ≺(k) q

1
, q

2
, . . . , q

k
)

iff there exists a stochastic matrix T such that p
i
=

T q
i
, i = 1,2, . . . , k. In particular when k = 2, a par-

tial ordering defined with respect to a reference state s
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becomes of interest. The partial order relative to s is
defined by

p ≺s q iff (p, s) ≺(2) (q, s).(10.1)

It may be noted that if s is chosen to be equal to
e = ( 1

n
, . . . , 1

n
), then the corresponding partial order

(relative to e) coincides with the usual majorization or-
der. Thus the partial ordering ≺s is a genuine extension
of the classical majorization order.

Dynamic processes in the state space Sn can be
identified with indexed families of stochastic matrices.
Such processes which preserve the s-partial order have
been studied in some detail. A convenient introductory
reference is Zylka (1985).

Schur convex functions and analogous s-Schur con-
vex functions turn out to have useful thermodynamic
interpretation in this context.

11. CONNECTED COMPONENTS
IN A RANDOM GRAPH

Ross (1981) considers a random graph with nodes
numbered 1,2, . . . , n. Suppose that X(1),X(2), . . . ,

X(n) are independent identically distributed random
variables each with possible values 1,2, . . . , n and with
common distribution defined by

P
(
X(i) = j

) = pj , j = 1,2, . . . , n,(11.1)

where pj ≥ 0,∀j and
∑n

j=1 pj = 1. We construct
the random graph by drawing the n random arcs
(i,X(i)), i = 1,2, . . . , n. In this manner, one arc em-
anates from each node. However, of course, several
arcs can terminate at the same node. The resulting
graph will have a random number of connected com-
ponents. A connected component of the graph is a
set of nodes such that any pair of them is linked by
an arc in the graph, and there are no arcs joining
any nodes in the set with any node outside the set.
Let us denote the random number of such connected
subsets by M . The distribution of M will of course
be influenced by the probability vector p, appearing
in (11.1), which governs the distribution of the random
arcs X(1),X(2), . . . ,X(n).

For example, if p = (1,0,0, . . . ,0), then all arcs will
terminate at node 1 and there will be a single connected
subset of nodes in the random graph, that is, M = 1.

The following expression for the expected value of
M is provided by Ross:

E(M) = ∑
S

(|S| − 1)! ∏
j∈S

pj(11.2)

where the summation extends over all nonempty sub-
sets of {1,2, . . . , n}. It is then possible, using this
expression, to verify that E(M) is a Schur concave
function of p. Consequently the expected number of
connected components of the graph is maximized if
pj = 1/n, j = 1,2, . . . , n.

12. A STOCHASTIC RELATION BETWEEN THE
SUM OF TWO RANDOM VARIABLES

AND THEIR MAXIMUM

Suppose that X = (X1,X2) is a random vector with
nonnegative coordinate random variables X1,X2. It is
often of interest to compare the tail behavior of X1,X2
with that of max(X1,X2). In the context of construc-
tion of confidence intervals for the difference between
normal means with unequal variances (a Behrens–
Fisher setting), Dalal and Fortini (1982) identified a
sufficient condition for stochastic ordering between
X1 +X2 and

√
2 max(X1,X2) that involves Schur con-

vexity. Specifically they prove that a sufficient condi-
tion for

P(X1 + X2 ≤ c) ≥ P
(√

2 max(X1,X2) ≤ c
)

for any c ≥ 0, is that the joint density of (X1,X2), say
f (x1, x2), is such that f (

√
x1,

√
x2 ) is a Schur con-

vex function of x. The proof involves conditioning on
X2

1 + X2
2 and observing that on any curve x2

1 + x2
2 = t ,

the joint density f (x1, x2) increases as one moves
away from the line x1 = x2.

An important special case in which the hypothe-
ses are satisfied is the situation in which (X1,X2) =
(|Y1|, |Y2|) where Y ∼ N(2)(0, σ 2(1 ρ

ρ 1

)
).

A related n-dimensional result is also provided by
Dalal and Fortini (1982). They show that if X1,X2,

. . . ,Xn are i.i.d. positive random variables with com-
mon density f and if logf (

√
x ) is concave and

f (x)/x is nonincreasing, then

n∑
i=1

Xi ≤st

√
nmax(X1,X2, . . . ,Xn).

13. FURTHER EXAMPLES

The list could be continued. Schur convexity and ma-
jorization can be found in many other settings. To con-
clude our short survey, we will merely mention briefly
a few more interesting settings in which Waldo ap-
pears:

(i) the study of peakedness of univariate and mul-
tivariate distributions,
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(ii) admissibility of tests in multivariate analysis of
variance,

(iii) probability content of regions for a Schur con-
cave joint density,

(iv) the study of diversity in ecological environ-
ments,

(v) income and wealth inequality measurement
(with multivariate extensions).

As observed in the Introduction, there are many more
examples in the literature and there is no reason to
believe that the search for new applications of ma-
jorization and Schur convexity will falter in the next
25 years. When the Inequalities volume celebrates its
golden jubilee, an even more extensive and fascinating
array of appearances can be confidently predicted. The
search for Waldo will continue apace.
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