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The Banff Challenge: Statistical Detection
of a Noisy Signal
A. C. Davison and N. Sartori

Abstract. Particle physics experiments such as those run in the Large
Hadron Collider result in huge quantities of data, which are boiled down
to a few numbers from which it is hoped that a signal will be detected. We
discuss a simple probability model for this and derive frequentist and nonin-
formative Bayesian procedures for inference about the signal. Both are highly
accurate in realistic cases, with the frequentist procedure having the edge for
interval estimation, and the Bayesian procedure yielding slightly better point
estimates. We also argue that the significance, or p-value, function based on
the modified likelihood root provides a comprehensive presentation of the
information in the data and should be used for inference.

Key words and phrases: Bayesian inference, higher-order asymptotics,
Large Hadron Collider, likelihood, noninformative prior, orthogonal para-
meter, particle physics, Poisson distribution, signal detection.

1. INTRODUCTION

Particle physics experiments such as those con-
ducted in the Large Hadron Collider entail the de-
tection of a signal in the presence of background
noise. This essentially statistical topic has been dis-
cussed intensively in the recent literature (Mandelkern,
2002, Fraser, Reid and Wong, 2004, and the references
therein) and at a series of meetings involving statisti-
cians and physicists; see Lyons (2008) for more details
and further references. One key issue is the setting of
confidence limits on the underlying signal, based on
data from independent observation channels.

In the simplest version of the problem there is just
one channel, the observation from which is the num-
ber of times a particular event in a particle accelerator
has been observed. This is supposed to have a Pois-
son distribution with mean γψ + β , where the posi-
tive known constants β and γ represent respectively
a background rate at which the event occurs and the
efficiency of the measurement device. There is a sub-
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stantial physical literature about inference for the focus
of interest, the unknown parameter ψ . Typically fre-
quentist inference is preferred to Bayesian approaches,
but this is the subject of a lively debate among the
scientists involved. In order to compare properties of
various procedures for inference about ψ , it was de-
cided at the workshop on Statistical Inference Prob-
lems in High Energy Physics and Astronomy held at
the Banff International Research Station in 2006 that
one participant would create artificial data that should
mimic those that might arise when the Large Hadron
Collider is running, and that other participants would
attempt to set confidence limits for the known un-
derlying signal. Thus was the Banff Challenge (http:
//newton.hep.upenn.edu/~heinrich/birs/) born.

For a single channel the challenge may be stated as
follows: the available data y1, y2, y3 are assumed to be
realizations of independent Poisson random variables
with means γψ + β,βt, γ u, where t, u are known and
the parameters ψ,β,γ are unknown. This expands the
formulation above to allow for uncertainty about the
values of the background β and the efficiency γ , which
are supposed to be estimable from subsidiary experi-
ments of known lengths t and u. The goal is to sum-
marize the evidence concerning ψ , large estimates of
which will suggest presence of the signal. The parame-
ters β and γ are necessary for realism, but their values
are only of concern to the extent that they impinge on
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inference for ψ .
This is a highly idealized version of one of many sta-

tistical problems that will arise in dealing with data
from the Large Hadron Collider. The model is very
simple, but important inferential issues arise nonethe-
less: how is evidence about the value of ψ best sum-
marized? How should one deal with the nuisance pa-
rameters β,γ ? This second issue is even more critical
in the case of multiple channels, where the number of
nuisance parameters is much larger. Below we follow
Fraser, Reid and Wong (2004) in arguing that the evi-
dence concerning ψ is best summarized through a so-
called significance function, and in Section 2 describe
the general construction of significance functions that
yield highly accurate frequentist inferences even with
many nuisance parameters; such a significance func-
tion is equivalent to a set of confidence intervals at var-
ious levels. In Section 3 we give results for the Poisson
model for the two cases laid out in the Banff Challenge,
with one channel and with ten channels.

Statisticians are in broad agreement that the like-
lihood function is central to parametric inference.
Bayesian inference uses the likelihood to update prior
information to give a posterior probability density that
summarises what it is reasonable to believe about
the parameters in light of the data (Jeffreys, 1961,
O’Hagan and Forster, 2004). This approach is attrac-
tive and widely used in applications, but scientists
with different priors may arrive at different conclusions
based on the same data. One might argue that this is in-
evitable given the varied points of view held within
any scientific community, but this lack of uniqueness
is awkward when an objective statement is sought. One
way to unite this multiplicity of possible posterior be-
liefs is to base inference on a noninformative prior,
which we discuss in Section 4 for the Poisson model
described above.

One aspect we discuss only peripherally is the choice
of the Poisson distribution to represent the variation
of the observed events. Statisticians typically regard a
model as one of many possibilities, whereas physicists
tend to argue from first principles and the known prop-
erties of the systems that they study toward a strong be-
lief that certain models, such as the Poisson law used
here, are correct. Under the Banff Challenge the Pois-
sonness of the observations is taken as given.

2. LIKELIHOOD AND SIGNIFICANCE

There are many published accounts of modern like-
lihood theory. The outline below is based on Brazzale,
Davison and Reid (2007), wherein further references
may be found.

We consider a probability density function f (y;ψ,

λ) that depends on two parameters. The interest pa-
rameter ψ is the focus of the investigation; one may
wish to test whether it has a specific value ψ0, or to
produce a confidence interval for the true but unknown
value of ψ . Often ψ is scalar, as here: ψ represents
the signal central to our enquiry. The nuisance para-
meter λ is not of direct interest, but must be included
for the model to be realistic. In the single-channel case
the vector λ = (β, γ ) represents the background signal
and measurement efficiency. Let θ = (ψ,λ) denote the
entire parameter vector.

The log likelihood function is defined as �(θ) =
logf (y; θ). The maximum likelihood estimator θ̂ sat-
isfies �(θ̂) ≥ �(θ) for all θ lying in the parameter
space �θ , which we take to be an open subset of R

d .
We suppose that ψ may take values in the interval
(ψ−,ψ+), where one or both of the limits ψ−,ψ+ may
be infinite. A natural summary of the support for ψ

provided by the combination of model and data is the
profile log likelihood

�p(ψ) = �(θ̂ψ) = �(ψ, λ̂ψ) = max
λ

�(ψ,λ),

where λ̂ψ is the value of λ that maximizes the log like-
lihood for fixed ψ .

Under regularity conditions on f under which a ran-
dom sample of size n is generated from f (y; θ0),
the estimator θ̂ has an approximate normal distribu-
tion with mean θ0 and variance matrix j (θ̂)−1, where
j (θ) = −∂2�(θ)/∂θ ∂θT is the observed information
matrix. This result can be used as the basis of con-
fidence intervals for ψ0, based on the limiting stan-
dard normal, N (0,1), distribution of the Wald pivot
t (ψ0) = jp(ψ̂)1/2(ψ̂ − ψ0), where

jp(ψ) = −∂2�p(ψ)

∂ψ2 = |j (ψ, λ̂ψ)|
|jλλ(ψ, λ̂ψ)| ,

| · | indicates determinant, and jλλ(θ) denotes the (λ,λ)

corner of the observed information matrix. In many
ways a preferable basis for confidence intervals is the
likelihood root

r(ψ) = sign(ψ̂ − ψ)[2{�p(θ̂) − �p(θ̂ψ)}]1/2,

which may also be treated as an N (0,1) variable.
If it is required to test the hypothesis that ψ = ψ0
against the one-sided hypothesis that ψ > ψ0, then the
quantities 1 − 
{r(ψ0)} and 1 − 
{t (ψ0)} are treated
as significance probabilities, also known as p-values,
small values of which will cast doubt on the belief that
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ψ = ψ0. Throughout the paper 
 represents the cumu-
lative probability function of the standard normal dis-
tribution.

The monotonic decreasing function 
{r(ψ)} is an
example of a significance function, from which we may
draw inferences about ψ . An approximate lower confi-
dence bound ψα for ψ0 is the solution to the equation

{r(ψ)} = 1 − α; the confidence interval (ψα,ψ+)

should contain ψ0 with probability 1 − α. An approx-
imate upper bound ψ1−α is obtained by solution of

{r(ψ)} = α, giving confidence interval (ψ−,ψ1−α),
and the two-sided interval (ψα,ψ1−α) will contain ψ0
with probability approximately (1 − 2α). Using these
so-called first-order approximations, these one-sided
intervals in fact contain ψ0 with probability 1 − α +
O(n−1/2), while the two-sided interval contains ψ0
with probability (1−2α)+O(n−1). Significance func-
tions may be based on the Wald pivot t (ψ) or on re-
lated quantities involving the log likelihood derivative
∂�/∂ψ , which also have approximate N (0,1) distrib-
utions for large n, but the intervals based on r(ψ) are
preferable because they always yield confidence sets
that are subsets of (ψ−,ψ+). Further, they are invari-
ant to invertible interest-preserving reparametrization,
of the form (ψ,λ) �→ (g(ψ),h(λ,ψ)): if I is a con-
fidence interval for ψ in the original parametrization,
then g(I) is the corresponding interval in the new para-
metrization; this property is not possessed by intervals
based on the Wald pivot, for example.

A large body of literature on higher-order paramet-
ric asymptotics, both Bayesian and frequentist, has
converged on a few key formulae that are useful for
inference. There are numerous derivations of these
formulae in different cases, for example by Laplace
approximation to posterior densities or by saddle-
point approximation to conditional densities; see Reid
(2003) or Davison (2003, Sections 11.3.1, 12.3.3).
Fuller accounts are given by Brazzale, Davison and
Reid (2007), Severini (2000), Pace and Salvan (1997)
and Barndorff-Nielsen and Cox (1994). Perhaps the
most practicable route to these improved inferences is
through significance functions based on the modified
likelihood root

r∗(ψ) = r(ψ) + 1

r(ψ)
log

{
q(ψ)

r(ψ)

}
,(1)

where

q(ψ) = |ϕ(θ̂) − ϕ(θ̂ψ)ϕλ(θ̂ψ)|
|ϕθ(θ̂)|

{ |j (θ̂)|
|jλλ(θ̂ψ)|

}1/2

(2)

is determined by a local exponential family approxi-
mation whose canonical parameter ϕ(θ) is described

below, and ϕθ denotes the d ×d matrix ∂ϕ/∂θT of par-
tial derivatives. The numerator of the first term of (2)
is the determinant of a d × d matrix whose first col-
umn is ϕ(θ̂) − ϕ(θ̂ψ) and whose remaining columns
are ϕλ(θ̂ψ). For continuous variables, one-sided con-
fidence intervals based on the significance function

{(r∗(ψ)} have coverage error O(n−3/2) rather than
O(n−1/2).

For a sample of independent continuous observa-
tions y1, . . . , yn, we define

ϕ(θ)T =
n∑

k=1

∂�(θ;y)

∂yk

∣∣∣∣
y=y0

Vk,

where y0 denotes the observed data, and V1, . . . , Vn

is a set of 1 × d vectors that depend on the observed
data alone. If the observations are discrete, then the
theoretical accuracy of the approximations is reduced
to O(n−1), and the interpretation of significance func-
tions such as 
{r∗(θ)} changes slightly. In the dis-
crete setting of this paper we take (Davison, Fraser and
Reid, 2006)

Vk = ∂E(Yk; θ)

∂θT

∣∣∣∣
θ=θ̂

,(3)

where E denotes expectation. An important special
case is that of a log likelihood with independent contri-
butions of curved exponential family form,

�(θ) =
n∑

k=1

{αk(θ)yk − ck(θ)},(4)

where αk(θ)yk denotes scalar product. In this case

ϕ(θ)T =
n∑

k=1

αk(θ)Vk.(5)

Inference using (1) is easily performed. If functions
are available to compute �(θ) and ϕ(θ), then the maxi-
mizations needed to obtain θ̂ and θ̂ψ and the differenti-
ation needed to compute (2) may be performed numer-
ically.

Inferences based on (1) are invariant to addition to
the log likelihood of quantities dependent only on the
data, which lead to affine transformations of ϕ(θ) by
quantities that are parameter independent and which
therefore leave (2) unchanged.

As with other uses of approximations in applied
mathematics, asymptotic results like those sketched
above in which n → ∞ are intended for use with sam-
ples whose size is fixed and finite. The key is that some
measure of information, which may depend on the pa-
rameter values as well as on sample size, becomes
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large; in the present case information also accumulates
as the Poisson means increase. Both general theory
and the simulations described below suggest that the
higher-order approximations outlined above are highly
accurate even when little information is available.

3. LIKELIHOOD INFERENCE

3.1 Model Formulation

Under the proposed model, the observation for the
kth channel is assumed to be a realization of Yk =
(Y1k, Y2k, Y3k), where the three components are in-
dependent Poisson variables with respective means
(γkψ +βk,βktk, γkuk), for k = 1, . . . , n. Here Y1k rep-
resents the main measurement, Y2k and Y3k are respec-
tively subsidiary background and efficiency measure-
ments, and tk and uk are known positive constants.

The signal parameter ψ is of interest, and (β1, γ1,

. . . , βn, γn) is treated as a nuisance parameter. In prin-
ciple the nuisance parameters are positive and ψ ≥ 0,
but it is mathematically reasonable to entertain nega-
tive values for ψ , provided ψ > maxk{−βk/γk}. Be-
low we use this extended parameter space for numeri-
cal purposes, but restrict interpretation of the results to
the physically meaningful values ψ ≥ 0, as suggested
by Fraser, Reid and Wong (2004).

For computational purposes we take λ = (λ11, λ21,

. . . , λ1n, λ2n), with (λ1k, λ2k) = (logβk − logγk,

logβk), so that exp(λ1k) > −ψ and λ2k ∈ R, k =
1, . . . , n. The invariance properties outlined in the pre-
vious section imply that inferences on ψ are unaffected
by this reparametrization.

The log likelihood function for θ = (ψ,λ) has
curved exponential family form (4) with

αk(θ)T = {log(ψeλ2k−λ1k + eλ2k ),

λ2k, (λ2k − λ1k)},
(6)

yT
k = (y1k, y2k, y3k),

ck(θ) = (ψ + uk)e
λ2k−λ1k + (1 + tk)e

λ2k .

In general, θ̂ and θ̂ψ must be computed numerically. It
is convenient to compute θ̂ψ first, and then obtain θ̂ by
maximizing the profile log likelihood �(θ̂ψ).

The dimension of the nuisance parameter may be re-
duced by a conditioning argument that applies to Pois-
son responses, but for simplicity of exposition we use
the Poisson formulation here. The trinomial model that
emerges from the conditioning is used below in Sec-
tion 4.2. Properties of the Poisson model imply that nu-
merical results from the two formulations are identical.

3.2 One Channel

When data from only one channel are available, that
is, n = 1, the log likelihood has full exponential form.
The canonical parameter ϕ(θ) given by (6) is then
equivalent to (5) in the sense that any affine transfor-
mation of the canonical parameter gives the same q(ψ)

in (2) and the same inference for ψ .
A standard way to summarize the evidence concern-

ing ψ is to present the profile log likelihood �p(ψ)

and the significance function 
{r(ψ)} (Fraser, Reid
and Wong, 2004), but, as mentioned above, more ac-
curate inferences are obtained from the modified like-
lihood root, r∗(ψ). As the profile log likelihood equals
−r(ψ)2/2, the quantity −r∗(ψ)2/2 can be regarded as
the adjusted profile log likelihood corresponding to the
significance function 
{r∗(ψ)}.

For illustration we consider data with y1 = 1, y2 = 8,
y3 = 14 and t = 27, u = 80, for which Figure 1 shows
the profile and the adjusted profile log likelihoods
and the corresponding significance functions, and a
Bayesian solution whose construction is explained in
Section 4. The maximum likelihood estimate, ψ̂ =
4.021, may be determined from the significance func-
tion as the solution to the equation 
{r(ψ̂)} = 0.5. The
analogous estimate obtained using the modified likeli-
hood root, the median unbiased estimate ψ̂∗ = 4.966,
satisfies 
{r∗(ψ̂∗)} = 0.5. The corresponding estima-
tor has equal probabilities of falling to the left or to the
right of the true parameter value, a property preferable
to classical unbiasedness because it does not depend on
the parametrization.

One minus the value of the significance function at
ψ = 0 gives the significance probability for testing the
presence of a signal, namely the p-value for testing
the hypothesis ψ = 0 against the one-sided hypothe-
sis ψ > 0. In the present example, 
{r(0)} = 0.837
and 
{r∗(0)} = 0.873, thus giving p-values respec-
tively equal to 0.163 and 0.127, both weak evidence of
a positive signal. This is hardly surprising, as y1 = 1:
just one event has been observed.

As explained in Section 2, the significance function
provides lower and upper bounds for any desired con-
fidence level. Figure 1 indicates the choice of lower
and upper bounds for level 0.99. In particular, for the
modified likelihood root, we get 
{r∗(ψ∗

0.01)} = 0.99
and 
{r∗(ψ∗

0.99)} = 0.01, with ψ∗
0.99 = −2.603 and

ψ∗
0.01 = 36.519. It is possible for these limits to be

negative, as happens in the present case for the lower
bound. In such instances, we take as a limit the maxi-
mum max(ψ∗

α,0) of the actual limit, ψ∗
α , and the lower
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FIG. 1. Inferential summaries for the illustrative single-channel data. Left panel: profile relative log likelihood �p(ψ) − �p(ψ̂) (dashes),
−r∗(ψ)2/2 (solid) and −r∗

B(ψ)2/2 (dots). Right panel: 
{r(ψ)} (dashes), 
{r∗(ψ)} (solid) and 
{r∗
B(ψ)} (dots). Horizontal lines are at

values 0.99, 0.01 and 0.5, and give respectively the lower and upper bounds of a confidence interval of level 0.98, and a median unbiased
estimate of ψ . The intersection of a significance function with the vertical line at ψ = 0 gives the corresponding p-value for testing the
hypothesis ψ = 0 against ψ > 0.

physically admissible value of zero. The fact that the
lower bound is zero in this case is coherent with the
p-value for testing a positive signal. In fact, a right-
tail confidence interval of level 0.99 in this case con-
tains all possible parameter values, also including 0;
thus it is [0,+∞). A left-tail confidence interval is
[0,36.510), although its usual interpretation makes it
ill-suited to claim the presence of signal. The analo-
gous limits obtained using the likelihood root r(ψ) are
ψ0.99 = −2.644 and ψ0.01 = 33.835.

In extreme situations confidence limits at any stan-
dard choice of α may be negative, thus giving confi-
dence intervals including only the value ψ = 0. We see
this feature of the method as a perfectly sensible fre-
quentist answer (see also Cox, 2006, Example 3.7). In
such instances the p-value for testing ψ = 0 against
the alternative ψ > 0 would be very close to 1, thus
strongly suggesting that there is no positive signal.
However, doubt is cast on the model when no physi-
cally realistic parameter value is supported by the ob-
served data.

In the Banff Challenge only coverage of left-tail con-
fidence intervals (upper bounds) was tested, though we
regard p-values and lower bounds as more appropri-
ate for inference on ψ . Figure 2 shows the coverage of
0.90 and 0.99 confidence limits as functions of ψ for
a set of 39,700 simulated datasets with large variabil-
ity in the values of the nuisance parameters. The cov-
erage is very good, with only minor undercoverage in
the 0.99 upper bounds when the parameter ψ is small.

Similar results were obtained for another set of simu-
lated datasets, with smaller variability in the nuisance
parameters. We also performed some simulation stud-
ies with a variety of parameter values, and found that
our procedure is typically highly accurate. Table 1 dis-
plays results in the worst scenario that we found. Apart
from some minor issues in the right tail, r∗ performs
extremely well.

In some boundary cases with y1 = 0 it is impossible
to compute the quantities needed for (2). In these rare
cases we replaced r∗(ψ) with r(ψ).

3.3 Several Channels

Our approach extends easily to multiple channels.
When there are n > 1 channels, the nuisance para-
meters (λ1k, λ2k) are channel-specific, so the profile
log likelihood is simply the sum of profile log likeli-
hood contributions for the individual channels, which
is then maximized numerically to get the overall esti-
mate θ̂ = (ψ̂, λ̂).

The remaining ingredient needed to compute the
modified likelihood root r∗(ψ) is the 2n + 1-dimen-
sional canonical parameter ϕ(θ), which can be ob-
tained using (5) and (3). The first element of ϕ(θ) is

n∑
k=1

eλ̂2k−λ̂1k log(ψeλ2k−λ1k + eλ2k ),

and the 2n other elements are

ψ̂eλ̂2k−λ̂1k log(ψeλ2k−λ1k + eλ2k )
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FIG. 2. Coverages of 0.90 (left panel) and 0.99 (right panel) upper bounds from 39,700 simulated datasets from a single channel, with
large uncertainty in the nuisance parameters, from the Banff Challenge. The solid and dashed lines correspond respectively to r∗(ψ) and
r∗
B(ψ). The ideal coverage is shown by the horizontal lines.

+ uj (λ2k − λ1k)e
λ̂2k−λ̂1k ,

eλ̂2k log(ψeλ2k−λ1k + eλ2k ) + tj λ2ke
λ̂2k ,

k = 1, . . . , n.

Any affine transformation of ϕ(θ) would give the same
modified likelihood root.

Figure 3 gives the profile and adjusted profile log
likelihoods for ψ and the corresponding significance
functions for an illustrative dataset with n = 10 chan-
nels shown in Table 2. The interpretation of these
plots is the same as for Figure 1. The modified like-
lihood root gives a p-value of 7.709 × 10−7 for test-
ing the presence of a signal, whereas that based on

TABLE 1
Empirical coverage probabilities in a single-channel simulation
with 10,000 replications, ψ = 1, logβ = 1.1, logγ = 0, t = 33

and u = 100

Probability r r∗ r∗
B

0.0100 0.0080 0.0092 0.0104
0.0250 0.0225 0.0253 0.0263
0.0500 0.0437 0.0500 0.0514
0.1000 0.0887 0.0995 0.1019
0.5000 0.4669 0.5054 0.5045
0.9000 0.8947 0.9051 0.9036
0.9500 0.9186 0.9461 0.9320
0.9750 0.9736 0.9809 0.9785
0.9900 0.9816 0.9816 0.9816

Figures in bold differ from the nominal level by more than simula-
tion error.

the likelihood root is 3.124 × 10−7. The estimates
are ψ̂∗ = 11.682 and ψ̂ = 11.487 and the lower and
upper bounds are ψ∗

0.99 = 4.572, ψ∗
0.01 = 23.191 and

ψ0.99 = 4.496, ψ∗
0.01 = 22.907. There is strong evi-

dence of a positive signal from these data, though the
modified likelihood root r∗(ψ) gives weaker support
than does the ordinary likelihood root r(ψ). In fact the
evidence here corresponds to significance near to the
“5σ ” level used by particle physicists when deciding
whether or not to announce a discovery (Lyons, 2008).

Boundary samples also arise in the multiple-channel
case, though less frequently than with a single channel.
In such cases we again used the likelihood root r(ψ)

for inference on ψ .
Figure 4 shows coverages of the 0.90 and 0.99 left-

tail confidence intervals (upper bounds) computed with
the modified likelihood root from 70,000 simulated
datasets with n = 10 from the Banff Challenge. Our
approach seems to perform satisfactorily even with as
many as 20 nuisance parameters, though there is again
some undercoverage for small values of ψ . Table 3 re-
ports coverage probabilities for limits at various con-
fidence levels for a simulation performed with ψ = 2.
The results for the modified likelihood root are always
within simulation error of the nominal levels, thus giv-
ing very accurate inference for ψ .

4. BAYESIAN INFERENCE

4.1 Noninformative Priors

There is a close link between the modified likelihood
root and analytical approximations useful for Bayesian
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FIG. 3. Inferential summaries for the simulated multiple-channel data in Table 2. For details, see caption to Figure 1.

inference. Suppose that posterior inference is required
for ψ and that the chosen prior density is π(ψ,λ). Then
it turns out that replacing (2) with

qB(ψ) = �′
p(ψ)jp(ψ̂)−1/2

{ |jλλ(θ̂ψ)|
|jλλ(θ̂)|

}1/2 π(θ̂)

π(θ̂ψ)

in formula (1), where �′
p is the derivative of �p(ψ) with

respect to ψ , leads to a Laplace-type approximation to
the marginal posterior distribution for ψ , that we will
denote by r∗

B(ψ). This may be used to include prior in-
formation, but, as mentioned above, the choice of prior
density can be vexing. In this section we discuss non-
informative Bayesian inference for ψ .

For models with scalar ψ and a nuisance parameter
ξ that is orthogonal to ψ in the sense of Cox and Reid
(1987), Tibshirani (1989) shows that up to a certain de-
gree of approximation, a prior density that is noninfor-

TABLE 2
Simulated multiple-channel data

Channel y1 y2 y3 t u

1 1 7 5 15 50
2 1 5 12 17 55
3 2 4 2 19 60
4 2 7 9 21 65
5 1 9 6 23 70
6 1 3 5 25 75
7 2 10 10 27 80
8 3 6 12 29 85
9 2 9 7 31 90

10 1 13 13 33 95

mative about ψ is proportional to

|iψψ(ψ, ξ)|1/2g(ξ) dψ dξ,(7)

where iψψ(ψ, ξ) denotes the (ψ,ψ) element of the
Fisher information matrix, and g(ξ) is an arbitrary pos-
itive function that satisfies mild regularity conditions.
Under further mild conditions (7) is a Jeffreys prior
for ψ , and it is also a matching prior: following Welch
and Peers (1963), Reid, Mukerjee and Fraser (2002)
show how (7) yields (1 − α) one-sided Bayesian pos-
terior confidence intervals that contain ψ with proba-
bility (1 − α) + O(n−1) in a frequentist sense. Unfor-
tunately (7) requires one to express the model in terms
of an orthogonal parametrization, and this may be im-
possible. Below we rewrite it in terms of an arbitrary
parametrization.

Suppose therefore that the model is parametrized in
terms of a scalar interest parameter ψ and a column
vector nuisance parameter ζ = ζ(ψ, ξ), with the log
likelihood written as �∗{ψ,ζ(ψ, ξ)} = �(ψ, ξ). Then
the elements of the Fisher information matrices in the
two parametrizations are related by the equations

iψψ = i∗ψψ + 2ζT
ψi∗ζψ + ζT

ψi∗ζ ζ ζψ,

iξψ = ζT
ξ i∗ζψ + ζT

ξ i∗ζ ζ ζψ,(8)

iξξ = ζT
ξ i∗ζ ζ ζξ ,

where iξψ = E(−∂2�/∂ξ∂ψT), i∗ζ ζ = E(−∂2�∗/
∂ζ∂ζ T), ζψ = ∂ζ/∂ψ , and so forth, with E again de-
noting expectation. Parameter orthogonality implies
that iξψ ≡ 0, so provided ζξ is not identically zero,
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FIG. 4. Empirical coverages of 0.90 (left panel) and 0.99 (right panel) upper bounds from 70,000 simulated multiple-channel datasets
from the Banff Challenge. The solid and dashed lines correspond respectively to r∗(ψ) and r∗

B(ψ).

ξ = ξ(ψ, ζ ) is determined by the partial differential
equation

ζψ = −i∗−1
ζ ζ i∗ζψ,(9)

which always has a set of solutions for scalar ψ . On
substituting (9) into the first expression in (8), we find
that in terms of the original parametrization the re-
quired element of the Fisher information matrix may
be written as

iψψ = i∗ψψ − i∗ψζ i
∗−1
ζ ζ i∗ζψ,

whence the noninformative prior (7) may be written as

|i∗ψψ − i∗ψζ i
∗−1
ζ ζ i∗ζψ |1/2

(10)
· g{ξ(ψ, ζ )}|∂ξ/∂ζ |dψdζ,

TABLE 3
Empirical coverage probabilities in a multiple-channel simulation
with 10,000 replications, ψ = 2, β = (0.20,0.30,0.40, . . . ,1.10),

γ = (0.20,0.25,0.30, . . . ,0.65), t = (15,17,19, . . . ,33) and
u = (50,55,60, . . . ,95)

Probability r r∗ r∗
B

0.0100 0.0099 0.0101 0.0109
0.0250 0.0244 0.0255 0.0273
0.0500 0.0493 0.0519 0.0542
0.1000 0.0967 0.1012 0.1035
0.5000 0.4869 0.5043 0.5027
0.9000 0.8900 0.9013 0.8942
0.9500 0.9421 0.9499 0.9427
0.9750 0.9687 0.9759 0.9689
0.9900 0.9875 0.9913 0.9864

Figures in bold differ from the nominal level by more than simula-
tion error.

which requires that the orthogonal parameter ξ be ex-
pressed in terms of the original parameters; cf. expres-
sion (5) of Tibshirani (1989). In the next section we
derive (10) for the single- and multiple-channel mod-
els of Section 3.

4.2 Application to Poisson Model

The single-channel model may be reparametrized in
terms of ψ , γ and ζ = β/γ , in which case Y1, Y2, Y3
are independent Poisson variables with means γ (ψ +
ζ ), ζγ t, γ u. This implies that the trinomial density of
(Y1, Y2, Y3) conditional on the total S = Y1 + Y2 + Y3
does not depend on γ , and there is no loss of informa-
tion on ψ and ζ if we base inference on the trinomial
or more generally the multinomial model (Barndorff-
Nielsen, 1978, Chapter 10). In particular, frequentist
inferences on ψ based on the original model or on the
conditional trinomial model lead to exactly the same
results. Here ζ is scalar. Apart from additive constants,
the corresponding log likelihood is

�∗(ψ, ζ ) = y1 log(ψ + ζ ) + y2 log ζ

− s log(ψ + ζ + u + ζ t), ψ + ζ, ζ > 0,

and E(Y1 | S = s) = s(ψ + ζ )/π , E(Y2 | S = s) =
stζ/π , where π = ψ +ζ +u+ζ t . Thus in this parame-
trization the Fisher information matrix for the trinomial
model has form

i∗(ψ, ζ )

= s

π2(ζ + ψ)

·
(

u + ζ t u − ψt

u − ψt {ψt(ψ + u) + ζu(1 + t)}/ζ
)

,
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and the orthogonal parameter is a solution of the equa-
tion

ζψ = ζ(ψt − u)/{ψt(ψ + u) + ζu(1 + t)},
such as

ξ(ψ, ζ ) = t log ζ + log(ζ + ψ)

− (1 + t) log(ψ + ζ + u + ζ t).

It is impossible to express ζ explicitly as a function of
ψ and ξ , and hence to use the noninformative prior in
the form (7), but (10) is readily obtained, and after a
little algebra turns out to be proportional to[

ψt(ψ + u) + ζu(1 + t)

ζ 2(ζ + ψ)2(ψ + ζ + u + ζ t)3

]1/2

· g
{

(ζ + ψ)ζ t

(ψ + ζ + u + ζ t)1+t

}
dψ dζ,(11)

ζ,ψ + ζ > 0,

for an arbitrary but smooth and positive function g.
If data (y1k, y2k, y3k, tk, uk) are available for n in-

dependent channels, then the conditioning argument
above yields n independent trinomial distributions for
(y1k, y2k, y3k) conditional on the sk = y1k + y2k + y3k ,
whose probabilities depend on the parameters ψ,ζk .
Apart from an additive constant the log likelihood is

�∗(ψ, ζ1, . . . , ζn)

=
n∑

k=1

{y1k log(ψ + ζk)

+ y2k log ζk − sk log(ψ + ζk + uk + ζktk)},
where ψ > −min(ζ1, . . . , ζn) and ζ1, . . . , ζn > 0. Cal-
culations like those leading to (11) reveal that the non-
informative prior for ψ is proportional to∣∣∣∣∣

n∑
k=1

sktkuk/(ζk + ψ + uk + ζ tk)

· {ψ(ψ + uk)tk + ζkuk(1 + tk)}
∣∣∣∣∣
1/2

(12)

·
n∏

k=1

ψ(ψ + uk)tk + ζkuk(1 + tk)

ζk(ζk + ψ)(ζk + ψ + uk + ζktk)
,

times an arbitrary function of the quantities

ξk(ψ, ζk) = tk log ζk + log(ζk + ψ)

− (1 + tk) log(ψ + ζk + uk + ζktk),

k = 1, . . . , n.

Although (12) depends on the data through s1, . . . , sn,
these are constants under the trinomial model, as are
the tk and uk under both Poisson and trinomial mod-
els. The presence of sktkuk in the first term of (12) has
the heuristic explanation that a channel for which this
product is large will contain more information about its
nuisance parameters.

4.3 Numerical Results

We first consider the single-channel data analyzed in
Section 3.2, with y1 = 1, y2 = 8, y3 = 14, and t = 27,
u = 80. The dotted lines in Figure 1 show the approx-
imate posterior function, −r∗

B(ψ)2/2, and the corre-
sponding significance function obtained using the non-
informative prior (11), with g taken to be a constant
function.

Typically the prior density yields larger lower bounds
and smaller upper bounds than those obtained from
the frequentist solution, because the effect of the prior
is to inject information about the parameter of inter-
est. In the present case, the estimate ψ̂∗

B = 4.9182,
which satisfies 
{r∗

B(ψ̂∗
B)} = 0.5, is smaller than the

corresponding estimate obtained using r∗(ψ), and the
0.99 lower and upper bounds are respectively given
by 
{r∗

B(ψ∗
B;0.01)} = 0.99 and 
{r∗

B(ψ∗
B;0.99)} = 0.01,

with ψ∗
B;0.99 = −1.820 and ψ∗

B;0.01 = 35.094.
The p-value for testing the hypothesis ψ = 0 against

the one-sided hypothesis ψ > 0 is equal to 1 −

{r∗

B(0)} = 0.1063, which is again a weak evidence
of a positive signal.

The coverage properties of the noninformative
Bayesian solution are similar to but not quite so good
as those of the frequentist solution, as shown in Fig-
ure 2 and by the simulation results reported in the last
column of Table 1.

Similar behavior is seen in the multichannel case.
Figure 3 shows the approximate posterior function,
−r∗

B(ψ)2/2, and the corresponding significance func-
tion obtained using the noninformative prior (12) times
a constant function of ξk(ψ, ζk), k = 1, . . . , n, for
the data in Table 2. The approximate Bayesian so-
lution gives a p-value of 4.865 × 10−8 for testing
the presence of a signal, smaller than that obtained
from the frequentist solutions in Section 3.3. The es-
timate is ψ̂∗

B = 11.632 and the lower and upper bounds
are ψ∗

B;0.99 = 4.699 and ψ∗
B;0.01 = 23.030. There is

stronger evidence of a positive signal from this ap-
proach than from the modified likelihood root r∗(ψ)

and the ordinary likelihood root r(ψ). However, sim-
ulation results reported in Figure 4 and Table 3 show
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that the coverage of confidence sets based on the ap-
proximate Bayesian solution is not quite so good as for
sets based on the modified likelihood root.

5. DISCUSSION

In this paper we propose procedures based on mod-
ern likelihood theory for detecting a signal in the pres-
ence of background noise, using a simple statistical
model. We suggest the use of the significance func-
tion based on the modified likelihood root as a compre-
hensive summary of the information for the parameter
given the model and the observed data, from which p-
values and one- or two-sided confidence limits can be
obtained directly.

Even when there are 20 nuisance parameters, our fre-
quentist procedure appears to give essentially exact in-
ferences for the signal parameter ψ . Its noninformative
Bayesian counterpart performs slightly worse in terms
of coverage of confidence intervals and levels for tests,
but provides slightly better point estimates as solutions
to the equation 
{r∗

B(ψ)} = 0.5, analogous to median
unbiased estimates. The most serious departures from
the correct coverage are for small values of ψ , corre-
sponding to weak signals, and arise because in such
cases very low counts y1 corresponding to the observed
signal are quite likely to arise. The case of a weak sig-
nal seems to be of little practical interest, because in
such cases no strong significance can be obtained. Al-
though the Banff Challenge concerned significance at
the 90% and 99% levels, both general theory and the
accuracy of our results suggest that similar precision
can be expected for much more extreme significance
levels.

If y1 = 0 our higher-order approaches break down,
though a closely related first-order inference is avail-
able. Such cases are scientifically uninteresting, but to
avoid difficulties it is tempting to replace y1 by y1 + c,
where c is a small positive quantity. Firth (1993) in-
vestigates under what circumstances this modification
yields an improved estimate of the interest parameter
in exponential family models, taken on the canonical
scale of the exponential family. Our model is not a lin-
ear exponential family, but ideas of Kosmidis (2007)
might be used to choose c to yield an improved esti-
mate of ψ . Our main interest is in confidence intervals
and tests, however, and since Firth’s correction corre-
sponds to use of a default Jeffreys prior and we have
found that use of a noninformative prior does not im-
prove coverage properties of our method, one should
not be optimistic about the effect of this correction in
our context.

In some instances the method may lead to empty
confidence intervals or intervals including only the
value ψ = 0. Though galling to the experimenters, this
is not a critical problem from a frequentist perspec-
tive. On the one hand, even in such extreme samples
the confidence function would yield a p-value to test
for the presence of a signal, and on the other hand, the
concentration of the likelihood and significance func-
tions in a region of physically meaningless values of
the parameter might suggest that the model is inappro-
priate.
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