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Model-Based Inferences from Adaptive Cluster

Sampling

V.E. Rapley∗ and A. H. Welsh†

Abstract. Adaptive cluster sampling is useful for exploring populations of rare
plant and animal species which cluster together because it allows sampling effort
to be concentrated in areas where observed values are high. This allows more
useful data to be collected with less effort than simpler sampling methods which
ignore the population structure. In this paper, we take a model based approach
in a Bayesian framework to make inference about the number of individuals in
a sparse, clustered population. This approach allows us to use knowledge of the
population to inform both the sampling design and inference, thereby making
coherent use of the data in the analysis and resulting in improved population
estimates. The methodology is compared to the design-based modified Horvitz-
Thompson estimator through analysis of the examples presented in the defining
paper of Thompson (1990).

Keywords: Informative sampling, MCMC, spatial sampling, zero-inflated count
data

1 Introduction

Thompson (1990, 1992, 1991a,b, 2002) and Thompson and Seber (1996) introduced
adaptive cluster sampling as a refined method for estimating the size of sparse, clustered
populations of plants or animals. Thompson (1990) formalised the appealing strategy of
increasing survey effort around where a plant or animal of interest is found, developed a
design-based analysis of the resulting sampling scheme and showed that adaptive clus-
ter sampling is more efficient than the simpler, traditional grid cell sampling. In this
paper, we model the data obtained by adaptive cluster sampling and then develop a
model-based Bayesian analysis for adaptive cluster sampling. The use of the Bayesian
framework is a natural extension of the key idea behind adaptive cluster sampling which
incorporates the prior knowledge that a population is clustered into the inference as well
as into the sampling design.

Suppose that the plants or animals of interest are spatially distributed in a region R.
Suppose further that in the same way as Thompson (1990), we superimpose a grid on
R. Following the construction of Thompson, we take the grid to be regular so that the
M grid cells are square and of equal size. Let Q denote the set of all M grid cells and
let Ni denote the grid cell count which is the number of plants or animals of interest
in the ith grid cell, i = 1, . . . ,M . The objective is to estimate N =

∑M
i=1Ni, the total
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number of plants or animals of interest in R.

Grid cell sampling methods involve the selection of a subset q of m < M grid cells
and the observation of Ni in the selected grid cells. For sparse, clustered populations,
most of the samples with small m/M will consist of mainly empty grid cells (for which
Ni = 0), resulting in many samples yielding poor estimates of N . Adaptive cluster
sampling overcomes this difficulty by allowing an increase in survey effort in the neigh-
bourhood of any nonempty grid cells (for which Ni ≥ 1) in the sample. Specifically,
when we find a nonempty grid cell, we also survey the neighbours of that grid cell and
continue to survey neighbours of nonempty neighbours until we obtain a set of con-
tiguous nonempty grid cells surrounded by empty grid cells; selected empty grid cells
attract no additional survey effort. Intuitively, this type of sampling scheme maximises
survey effort where it is most valuable and minimises survey effort elsewhere. It per-
forms better for sparse, clustered populations than standard grid cell sampling methods.
However, to be effective, adaptive cluster sampling does require some prior knowledge
about the structure of the underlying population, including the number, size and spatial
extent of clusters. This information (which may be obtained from a preliminary survey)
is implicitly balanced against practical issues such as difficulties in marking, accessing
and surveying grid cells and is then incorporated into the sampling design through the
choice of grid cells.

Following Thompson (1990), sets of contiguous nonempty grid cells and their neigh-
bouring empty grid cells are together called clusters. The set of contiguous nonempty
grid cells within a cluster is called a network. We also define empty cells as networks of
size one so the networks (unlike clusters which can overlap) form an exhaustive partition
of R. The distinction between clusters and networks is fundamental to adaptive cluster
sampling. The insight in Thompson (1990) was to base the analysis on networks rather
than clusters and to treat the empty edge units as unobserved unless they were selected
in their own right rather than simply as neighbours. For initial grid cells selected by
simple random sampling without replacement, Thompson (1990) derived inclusion and
joint inclusion probabilities for the networks observed in the sample. He then used these
probabilities to construct design-unbiased estimators of N and to construct estimates
of their design-variances.

There have been a number of discussions of the relative merits of the design-based
and model-based approaches to the analysis of survey data; see for example
Royall (1976); Brus and de Gruijter (1997); R. Valliant and Royall (2000); Brewer (1963);
Thompson (2002) etc. The philosophical differences between the approaches are impor-
tant but are not our present concern. At a pragmatic level, in very simple, general
terms, the design-based approach trades off efficiency for wide applicability while the
model-based approach which is usually more efficient when the assumed model holds,
trades off wide applicability for increased efficiency. A Bayesian approach to inference
is then a natural way to work with the model as it allows the incorporation of the
prior knowledge used in constructing the sampling design into the analysis as well. Our
viewpoint is that there is no model-based approach to the analysis of data collected by
adaptive cluster sampling so it is interesting and challenging, both philosophically and
practically, to develop such an approach.
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While we believe that the specific distributions we use in this paper are widely ap-
plicable, it is perhaps useful to emphasize that these can be changed and our main
contribution is the clarification and development of a general approach to the model-
based analysis of adaptive cluster samples. Our approach involves (i) the use of the
insight in Thompson (1990), that the analysis can be based on networks rather than
clusters; (ii) the use of a spatial hurdle (Mullahy 1986), two-part (Heilbron 1994) or
conditional (A.H. Welsh and Lindenmayer 1996) model in which we first model pres-
ence/absence and then conditional on presence, model abundance to accommodate the
fact that most network counts are zero; (iii) the setting up of a model for the popula-
tion of network counts which deals with the fact that, because the size and number of
networks is not known in advance, adaptive cluster sampling is informative about the
network counts; (iv) the introduction of prior distributions for the unknown parameters
in the model to incorporate prior beliefs about the population such as sparseness, clus-
tering etc. and to facilitate the use of the Markov-Chain Monte Carlo (MCMC) methods
(see for example Tanner (1996)) to integrate out the unobserved stochastic quantities
in the model; and (v) the construction of posterior predictive distributions for making
inference about N . Our treatment of informative sampling is informed by the literature
on successive sampling discovery models (for example, G. Kaufman and Kruyt (1975);
Nair and Wang (1989); West (1996)). Our modelling is informed by the likelihood ap-
proach of Breckling et al. (1994) to modelling survey data and the final model can be
interpreted as a Bayesian modification to that approach. Finally, as we use the insight
in Thompson (1990) explicitly by modelling network rather than grid cell counts, our
model depends explicitly on the grid size. This enables us to finesse any need to discuss
the underlying point process and to derive the distribution of grid cell/network counts
(which would also depend on the grid size) from it. Thus working with networks has
roughly the same importance to the model-based analysis as it does to the design-based
analysis of Thompson (1990).

We introduce the model and use it to construct predictions of the population size N
in Section 2. We discuss how to fit the model in Sections 3 and 4. We then illustrate its
use on examples like those suggested by Thompson (1990) in Section 5. We conclude
with a brief discussion of our experience with the model-based approach to adaptive
cluster sampling in Section 6.

2 A Model for Network Counts

Recall that we consider a region R containing a sparse, clustered population ofN points.
We superimpose a regular grid on R so that R is partitioned into M square, equal sized
grid cells. A grid cell is nonempty if it contains at least one point and empty otherwise.
Let X ≤ M be the number of nonempty grid cells in R. Let P ≤ X be the number of
nonempty networks in R and let Y = (Y1, . . . , YP ) denote the number of nonempty grid

cells within each network so that X =
∑P

i=1 Yi. As there are M −X empty grid cells
which are defined to be empty networks of size one, there are M−X+P networks in R.
The variables Y1, . . . , YP describe the number of grid cells in each nonempty network.
It is notationally convenient to extend the P -vector Y to the (M − X + P )-vector
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Z = (YT ,1T
M−X)T , where 1M−X is the (M −X)-vector of ones, by defining Zi = Yi for

each nonempty network and Zi = 1 for each empty network. Note that Z and Y contain
the same information about the networks. Let N1, . . . , NM−X+P denote the network
counts which represent the number of points within each network. Only P of these
counts are nonzero so it is convenient to write (N1, . . . , NM−X+P ) = (NT ,0T

M−X)T ,
where N is the set of nonzero network counts and 0M−X is the (M−X)-vector of zeros.
The ultimate goal of the analysis is to make inferences about the population size

N =

M−X+P∑

i=1

Ni =

P∑

i:Ni>0

Ni

which is a random variable in our model-based approach.

We construct a model for the network counts by specifying the joint distribution of
X , P , Y and N for the entire population and the sampling mechanism which leads to
a particular sample s = {i1, . . . , im} of m out of M −X+P networks. A crucial aspect
of our approach is that the network structure is determined by X , P and Y and we do
not need to model the spatial locations of the networks. This does not entail any loss
of information about N because, under the model, the population size does not depend
on where the networks are located. We therefore finesse a potentially difficult problem
and are able to proceed relatively simply.

The sampling mechanism describes the selection of networks, so can only be defined
conditionally on the network structure described by X , P and Y. That is, we for-
mulate the model using what Breckling et al. (1994) call the target parameterisation.
Thompson (1990) computed network inclusion probabilities under an initial simple ran-
dom sample of grid cells chosen without replacement. This is slightly inconvenient as the
same network can be selected more than once, a problem he dealt with by allowing mul-
tiple inclusions of networks. In contrast, we treat the sampling mechanism as sampling
networks directly via a sequential procedure in which the ordered sample of networks
is selected without replacement. We implement this sampling procedure by selecting
a grid cell in the set of M grid cells, surveying that grid cell and, if it is nonempty,
the entire network containing the selected grid cell. We then remove this network from
the population, select one of the remaining grid cells and continue in this way until we
have selected m networks in the sample. That is, we are effectively sampling networks
by probability proportional to size without replacement. Note that the probability of
selecting a network in the sample depends on its size Zi and not on its network count
Ni. The sampling is informative because the random variables Z are only observed for
the sampled networks after their selection in the sample.

To motivate the notation for the probability of selecting a given sample, consider a
population consisting of ten networks of size {5, 5, 1, 1, 1, 3, 3, 1} from which we obtain
the (ordered) sample {5, 1, 5, 3} by selecting units by probability proportional to size
sampling without replacement. The probability of selecting the first unit is the proba-
bility of selecting a unit of size 5 (because the two units are indistinguishable) which is
10/20, the probability of selecting a unit of size 1 at the second step given the previous
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step is 4/15 and so on so that the probability of selecting the specified sample is

10

20
×

4

15
×

5

14
×

6

9
=

5 × 2

20
×

1 × 4

20 − 5
×

5 × 1

20− 5 − 1
×

3 × 2

20− 5 − 1 − 5
.

At each step, the numerator is the size of the unit selected at that step times the number
of units of that size still unselected in the population at that step and the denominator
is the sum of the sizes of the still unselected units in the population at that step. The
denominator at a step can also be expressed as the sum of the sizes of all units in the
population minus the sum of the sizes of the already selected units in the population up
to that step. Thus, in general, the probability of selecting the sample s = {i1, . . . , im}
of m networks is

[{i1, . . . , im}|X,P,Y] =

m∏

j=1

zij × gij ,j∑M−x+p
i=1 zi −

∑j−1
k=0 zik

(1)

where gi,j is the number of networks of size zi unselected after j−1 networks have been
selected. The incorporation of gi,j modifies the expressions used in Nair and Wang
(1989) and West (1996) for the discreteness of network sizes.

Next, we specify the joint distribution of X , P , Y and N for the entire population.
Conceptually, we first model the nonempty/empty network structure (determined by X ,
P and Y) and then, conditionally on the network structure, model the network counts
N in the non-empty networks. The specific distributions we adopt are chosen to give a
simple structure to the model and alternative choices could be made. To avoid degen-
eracy, we assume that there is at least one network in R and, as nonempty networks
consist, by definition, of at least one grid cell, we left-truncate distributions at one. In
particular it should be noted that the method of overlaying a distribution of population
counts on top of the network framework allows considerable flexibility. If specific knowl-
edge is held about the population of interest this distribution can be modified without
changing the underlying structure or altering the inference methodology. Specifically,
we first assume that

X |α ∼ Truncated binomial(M,α), X = 1, . . . ,M

P |X, β ∼ Truncated binomial(x, β) P = 1, . . . , x and

Y|X,P ∼ 1p + Multinomial(x− p,
1

p
1p), Yi = 1, . . . , x− p,

p∑

i=1

Yi = x,

where 1p is the p-vector of ones. (The offset like formulation is used because it is simpler
to use than the truncated multinomial distribution. A similar approach could be used
instead of truncation for the binomial distributions.) Using the convention that the
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density of a random variable P is denoted [P ], we have the population level model

[X,P,Y|α, β] = [X |α][P |X, β][Y|X,P ]

=

(
M

x

)
αx(1 − α)M−x

1 − (1 − α)M

(
x

p

)
βp(1 − β)x−p

1 − (1 − β)x
(x− p)!

p∏

i=1

1

(yi − 1)!

(
1

p

)yi−1

=
M !

(M − x)!p!

αx(1 − α)M−x

1 − (1 − α)M

βp(1 − β)x−p

1 − (1 − β)x

p∏

i=1

1

(yi − 1)!

(
1

p

)yi−1

. (2)

The parameter α controls the expected number of nonempty grid cells (Mα/{1− (1 −
α)M}) and β controls the conditional expected number of nonempty networks Xβ/{1−
(1−β)M}. As we are surveying sparse populations, both these parameters will typically
be small. The multinomial probabilities are taken as known (because we will not have
much sample information to estimate unknown probabilities) and equal (because there is
no convincing reason for, or way to describe heterogeneity before doing any sampling) for
simplicity. Under our model, the conditional expected network size is 1 + (X−P )/P =
X/P .

Finally, we adopt a conditional log-linear model for the counts N in which

N1, . . . , NP |P,Y,γ ∼ independent truncated Poisson(exp{γ0 + γ1h(yi)}),

where h is a known function and γ = (γ0, γ1) are unknown parameters. The function
h will typically be specified as the identity or the log function; in the latter case, the
expected conditional network counts exp{γ0 + γ1h(yi)} are a multiplicative function of
Yi. The truncation is needed to take into account the fact that each grid-cell in a network
must contain at least one plant or animal of interest so that Ni ≥ Yi, i = 1, ..., P . We
obtain

[N|P,Y,γ]

=

P∏

i=1

exp{− exp(γ0 + γ1h(yi)) + ni(γ0 + γ1h(yi))}

ni![1 −
∑yi

j=1 exp{− exp(γ0 + γ1h(yi)) + j(γ0 + γ1h(yi)) − log(j!)}]
,

ni = yi, yi + 1, . . . . (3)

While we can in principle extend the truncated Poisson specification to incorporate
overdispersion and/or replace the truncated Poisson specification by any model for
count data, it is important to keep in mind that we expect P to be small, so it may be
difficult to estimate the parameters in such models. If P is so small that it is difficult
to estimate both parameters in the Poisson specification, we may choose to fit the null
version of the model with γ1 = 0 or the no intercept model with γ0 = 0.

The sampling procedure entails observing Yi and Ni for the networks labelled
{i1, . . . , im}. It is convenient to use the subscript ‘0’ to identify the observed component
and ‘1’ the unobserved component, and write N = (N0,N1), Y = (Y0,Y1), X =
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X0 +X1 and P = P0 + P1 to distinguish between observed and unobserved quantities.
Here X0 is the observed number of nonempty grid cells and P0 is the observed number
of nonempty networks in the sample.

The sampling design satisfies the condition

[{i1, . . . , im}|X,P,Y,N] = [{i1, . . . , im}|X,P,Y], (4)

so we can write the product of (1), (2) and (3) as

[{i1, . . . , im}, X, P,Y,N|α, β,γ] = [{i1, . . . , im}|X,P,Y,N][X,P,Y,N]

= [{i1, . . . , im}|X,P,Y][X,P,Y,N|α, β,γ ]

= [{i1, . . . , im}|X,P,Y][X,P,Z|α, β][N|X,P,Y,γ ]

= [{i1, . . . , im}X,P,Y|α, β][N|P,Y,γ ]. (5)

That is, the model factorises into two terms and, at the population level, (α, β) and γ are
orthogonal parameters. However, as described in Breckling et al. (1994), the likelihood
at the sample level is obtained by summing over the quantities which are unknown and
not otherwise observed in the selected sample to obtain

[X0, P0,Y0,N0|α, β,γ] =
∑

N1

∑

Y1

∑

P1

∑

X1

[{i1, . . . , im}, X, P,Y,N|α, β,γ] (6)

=
∑

N1

∑

Y1

∑

P1

∑

X1

[{i1, . . . , im}, X, P,Y|α, β][N|P,Y,γ].

Thus, at the population level, the model can be interpreted as a spatial version of the
models of Mullahy (1986); Heilbron (1994) or A.H. Welsh and Lindenmayer (1996) for
modelling count data with many zeros but the same factorisation does not hold at the
sample level. Even if we set γ1 = 0 so there is no relationship between N and Y, we still
have [N|P,Y,γ ] = [N|P,γ] in (3) so the factors are linked by the common unobserved
P1.

The sums we need to evaluate to obtain the sample level likelihood are too compli-
cated to be evaluated analytically. We have therefore chosen to use a Markov Chain
Monte-Carlo (MCMC) approach to estimate the unknown parameters α, β and γ in
the model and the unobserved quantities X1, P1, Y1 and N1. In difficult problems
such as adaptive cluster sampling the Bayesian approach has several advantages: i)
we can improve estimation of quantities for which there is little sample information by
incorporating other information such as the underlying population is sparse; ii) we can
propagate the uncertainty in our estimates through to the final predictions; and iii)
we can obtain a natural predictive distribution for predicting N . In this problem it
is natural to use the prior distributions to incorporate the knowledge about the pop-
ulations assumed in the sampling design into the analysis and this is one of the key
improvements to the original technique. However, it is not the purpose of this paper to
address whether Bayesian inference should be used and it can therefore be noted that, in
principle, non-informative priors could be chosen to make the inference ‘likelihood-like’;
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there is a cost in that the model is then much more difficult to fit. Whichever approach
we use, note that a natural predictor of N is

N̂ = 1
T
P0

N0 + 1
T
P̂1

N̂1

and that its distribution can be obtained from the MCMC output.

3 Model Fitting

Assume that the three unknown parameters α, β and γ are a priori independent and
denote their marginal prior distributions by π(α), π(β) and π(γ) respectively. The
summand in the expression (6) for [X0, P0,Y0,N0|α, β,γ] is the product of (1), (2) and
(3). If we then incorporate the prior information, the modified summand becomes the
joint distribution of all the quantities in the model (including the parameters) which is

[X,P,Y,N, α, β,γ]

=

m∏

j=1

zij × gij ,j∑M−x+p
i=1 zi −

∑j−1
k=0 zik

×

(
M

x

)
αx(1 − α)M−x

1 − (1 − α)M
π(α)

×

(
x

p

)
βp(1 − β)x−p

1 − (1 − β)x
π(β) × (x− p)!

p∏

i=1

1

yi − 1

(
1

p

)yi−1

×

p∏

i=1

exp{− exp(γ0 + γ1yi) + ni(γ0 + γ1yi)}

ni![1 −
∑yi

j=1 exp{− exp(γ0 + γ1Yi) + j(γ0 + γ1Yi) − log(j!)}]

×π(γ). (7)

The steps in the Gibbs sampler which we use to fit (7) are

1) Specify initial values for the unsampled components X1, P1 and Y1.

2) Generate α from the conditional distribution [α|X,P,Y,N, β,γ ] = [α|X ].

3) Generate β from the conditional distribution [β|X,P,Y,N, α,γ ] = [β|X,P ]

4) Generate γ from the conditional distribution of [γ|X,P,Y,N, α, β] = [γ|P,Y]

5) Generate (X1, P1,Y1,N1) from the conditional distribution
[X1, P1,Y1,N1|X0, P0,Y0,N0, α,γ]

6) Iterate from 2).
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3.1 Generating α

The conditional distribution of α given everything else in the model is formed from all
of the terms in the model (7) in which α appears so

[α|X,P,Y,N, β,γ ] ∝
αx0+x1(1 − α)M−x0−x1

1 − (1 − α)M
π(α).

We take the prior distribution π(α) to be a conjugate beta(a, b) distribution with a = 3
and b = 15. The parameters of the Beta distribution are chosen to reflect the fact that α
is necessarily small in a sparse, clustered population. The robustness of this prior choice
and those following is examined in section 5. The conditional distribution is not truly
a beta distribution (due to the truncation term) so a Metropolis-Hastings accept-reject
step is used to sample for α. However, the conditional distribution is close to a beta
distribution so we will use the beta(x0 + x1 + a− 1,M − x0 − x1 + b− 1) distribution
as the proposal distribution.

3.2 Generating β

The conditional distribution of β given everything else in the model is

[β|X,P,Y,N, α,γ ] ∝
βp0+p1(1 − β)x0+x1−p0−p1

1 − (1 − β)x0+x1
π(β).

We again take the prior distribution π(β) to be a beta(a, b) distribution with a = 1
and b = 9. In this case β is necessarily small, otherwise the population would not be
clustered. We use the beta(p0 + p1 +a− 1, x0 +x1 − p0 − p1 + b− 1) distribution as the
proposal distribution in a Metropolis-Hastings accept-reject step.

The incorporation of these prior distributions allows coherence through the inference,
reflecting the same data in the sampling as in the modelling. However, the specific
parameters for the beta can be varied under the assumptions and the robustness of the
inference to this is explored in section 4.

3.3 Generating γ

The conditional distribution of γ given everything else in the model is

[γ|X,P,Y,N]

∝

p0+p1∏

i=1

exp{− exp(γ0 + γ1h(yi)) + ni(γ0 + γ1h(yi))}

1 −
∑yi

j=1 exp{− exp(γ0 + γ1h(yi)) + j(γ0 + γ1h(yi)) − log(j!)}
π(γ).

We take the prior distribution π(γ) to be the product of two Gamma distributions (say
Gamma(2, 7) or Gamma(2, 5)) and use the normal distribution centred at the posterior
mode with variance 16 as the proposal distribution in a Metropolis-Hastings accept-
reject step. Simulations (not presented here) show that the inference is not sensitive to
the prior choice for γ, this reinforces the fact that the distribution for the number of
objects in a cluster is independent of the model set-up and can be chosen as desired.
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3.4 Generating X1, P1, Y1 and N1

The conditional distributions of X1, P1, Y1 and N1 given everything else in the model
can be obtained from (7) but the expressions are complicated and do not suggest simple
methods of generating the required random variables. The joint conditional distribution
of (X1, P1,Y1,N1) given everything else in the model is

[X1, P1,Y1,N1|X0, P0,Y0,N0, α, β,γ]

∝

m∏

j=1

gij ,j∑M−x0−x1+p0+p1

i=1 zi −
∑j−1

k=0 zik

×
αx1(1 − α)−x1

(M − x0 − x1)!

×
1

(p0 + p1)!

βp1(1 − β)x1−p1

1 − (1 − β)x0+x1
×

p1∏

i/∈s

1

(yi − 1)!

(
1

p0 + p1

)∑p0+p1
i=1 (yi−1)

×

p1∏

i/∈s

exp{− exp(γ0 + γ1h(yi)) + niγ1h(y)i}

ni![1 −
∑yi

j=1 exp{− exp(γ0 + γ1h(yi)) + j(γ0 + γ1h(yi)) − log(j!)}]
(8)

which is also complicated to sample from but can be used in a Metropolis-Hastings
algorithm for sampling (X1, P1,Y1,N1) jointly; we construct a proposal distribution
from which it is straightforward to sample (X1, P1,Y1,N1) and jointly accept or reject
these values using (8) as the target distribution.

It is convenient to generate X1 using a discrete random walk; i) given the past
value X∗ for X , at each step to generate a new X by sampling from the discrete
uniform distribution centred at X∗ with support {X∗±k : k = 1, . . . , 5} and a reflecting
boundary at X0 and M to ensure that X stays within bounds X1 = X − X0, and
ii) we set X1 = X − X0. Next, given X1 and β, we note that P0 is the number
of observed nonempty networks formed out of X0 observed non-empty grid cells and
P1 is the additional number of non-empty networks formed out of the remaining X1

nonempty grid cells, so we generate P1 by sampling from the truncated binomial(X1, β)
distribution. Given X , P1 and Y0, we note that Y1 is the number of nonempty grid
cells in each of the P1 additional networks, so we generate Y1 from the distribution of
Y1|Y0, X, P which is the 1P1+ multinomial(X1−P1,

1
P1

1P1) distribution. Finally, given
P1, Y1 and γ, we generate N1 as independent truncated Poisson(exp{γ0 + γ1h(yi)})
random variables. The proposal distribution is therefore

[X1, P1,Y1,N1]prop

=
1

10
×
x1!

p1!

βp1(1 − β)x1−p1

1 − (1 − β)x1
×

p1∏

i/∈s

1

(yi − 1)!

(
1

p1

)∑p1
i/∈s

(yi−1)

×

P∏

i=1

exp{− exp(γ0 + γ1h(yi)) + ni(γ0 + γ1h(yi))}

ni![1 −
∑yi

j=1 exp{− exp(γ0 + γ1h(yi)) + j(γ0 + γ1h(yi)) − log(j!)}]
.

By construction, it is straightforward to sample from the proposal distribution.
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Letting C denote the proportionality constant, the logged ratio of the target distri-
bution over the proposal distribution is given by

log

(
[X1, P1,Y1,N1|X0, P0,Y0,N0, α, β,γ]

[X1, P1,Y1,N1]prop

)

= log(10C) +

m∑

j=1

log

(
gij ,j∑M−x0−x1+p0+p1

i=1 zi −
∑j−1

k=0 zik

)

− log

(
(M − x0 − x1)!(p0 + p1)!x1!

p1!

)
+ x1 log

(
α

1 − α

)

+ log

(
1 − (1 − β)x1

1 − (1 − β)x0+x1

)
−

p0∑

i∈s

(yi − 1) log(p0 + p1)

+

p1∑

i/∈s

(yi − 1) log

(
p1

p0 + p1

)

so defining X ′
1, P

′
1, Y

′
1 and N

′ to be the new proposed variables respectively, the
Metropolis-Hastings test criterion is

log

(
[X ′

1, P
′
1,Y

′
1,N

′
1|X0, P0,Y0,N0, α, β,γ][X1, P1,Y1,N1]prop

[X ′
1, P

′
1,Y

′
1,N

′
1]prop[X1, P1,Y1,N1|X0, P0,Y0,N0, α, β,γ]

)
.

Note that in this expression, the gijj are recalculated at each step as they are functions
of Y1.

4 Results

To examine the performance of the Bayesian estimator, we sampled several simulated
clustered populations and estimated the population totals from the samples. The pop-
ulation estimates were then compared with the true underlying population totals to
evaluate the performance of the model.

Each population was created in a 20×20 grid ofM = 400 cells to be directly compara-
ble to the populations considered in Thompson (1990). The populations were generated
using the assumed model for 16 sets of values (α, β) with α, β ∈ {0.05, 0.1, 0.15, 0.2} and
γ = (1.0, 0.3). Using these fixed parameter values means that the prior distributions
were not used to generate the data and allows a limited exploration of the sensitivity
of the prior. For each parameter setting, 30 populations were simulated and each was
sampled from 5 times by adaptive cluster sampling with the first stage a simple random
sample with replacement of size n = 15 giving 90 estimates for each parameter setting
and 16 × 150 = 2400 estimates in total.
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Figure 1 shows the difference between the actual and estimated population totals
computed using a Beta(3, 15) prior for α, a Beta(1, 9) prior for β and a Gamma(2, 7)
prior for γ plotted against against the range of underlying parameter settings. (The
horizontal axis in Figure 1 is actually the run number but the ordering is the same as
in Figure 2.)
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Figure 1: Plot showing the best overall fit under the π(α) = Beta(3, 15), π(β) =
Beta(1, 9) and π(γ) = Gamma(2, 7) priors. The labels on the x-axis give the run
number.

The positive gradient in Figures 1 and 2 shows that the performance of the estimator
is dependent on the underlying values of α and β (which are increasing from left to right
in the plots). For small α and β the population total is overestimated while for large α
and β the population total is increasingly underestimated. This makes intuitive sense;
we are assuming that we are modelling sparse clustered data and if α and β are large
then we have many small clusters which does not accord well with this assumption. (In
this case we have a much more evenly distributed population; with larger grid cells the
same population could be thought of as randomly scattered single units rather than
clusters as the clusters will be of a similar size.) In addition, the steeper the slope, the
more sensitive the estimates to the choice of prior. As the variances do not change much
with the values of α and β, it is clear that these parameters mainly affect the bias of
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Medians of the differences between actual 
 and  predicted population totals

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

-300

-150

0

150

300

0.20.1 0.150.05

Figure 2: Plot showing the medians of the best overall fit under the π(α) = Beta(3, 15),
π(β) = Beta(1, 9) and π(γ) = Gamma(2, 7) priors. The labels on the x-axis in (a) give
the run number and in (b) the top row is α and the bottom row is β. The interval bars
represent the 95% confidence interval.

the estimator.

Figure 1 also gives insight into the effect of changing the grid size. The important
quantity is the relationship between the size of the cells and the size of the clusters so
the effect of increasing the grid size while holding the cluster size fixed is similar to that
of holding the grid size fixed and decreasing the cluster size. Letting α and β increase
as we have done shows the effect of increasing the grid size; the amount by which the
estimates underestimate the total increases as the grid size increases.

5 Prior Choice and Convergence

As we noted in the Introduction, it is generally difficult to carry out adaptive cluster
sampling successfully in the complete absence of any prior information about the pop-
ulation of interest because this information is used implicitly in the sampling design.
In particular, we need to know that the population is sparse and clustered to justify



730 Model-Based Adaptive Cluster Sampling

using adaptive cluster sampling – if the population is not actually sparse or clustered,
then neither our Bayesian approach nor the frequentist Horvitz-Thompson approach de-
scribed in the next section will out-perform standard non-clustered methods – and we
need knowledge of the size of objects, the size and the likely number of clusters of these
objects to determine the size, layout (and hence number) of grid cells, a choice which is
critical to the success of the approach. The Bayesian analysis we have developed goes
further by incorporating this information explicitly into the analysis as well.

The priors used in the next Section are informative, but they are based on informa-
tion which we feel we already need to ensure the design is meaningful and our choices
are relatively robust over the ranges of the underlying parameters α and β we have
considered. This means that they can be used even if the only knowledge that can be
obtained about the underlying population is that it is sparse and clustered. If a clearer
idea of the type or structure of the population can be obtained (i.e. a rough estimate of
the expected number of clusters in an area) then better estimates can be achieved for
specific values. A full list of the priors explored and when they can be applied can be
found in Rapley (2004).

On the other hand, completely non-informative priors under-perform in comparison
to the priors we suggest, largely because the kind of sparse, clustered data we are trying
to model does not contain much information about the parameters, particularly α. One
perspective on varying the prior for α is that it allows us to quantify just how much
extra information we have to provide to make the analysis practically useful.

Throughout this work the convergence of the Gibbs samplers was assessed using
CUSUM plots Yu and Mykland (1998) as this method can be run using the sample
outputs, thereby limiting the additional calculations needed. The ‘burn-in’ length in
all runs was taken to be 2000 as in all cases examined convergence had been reached
within 500 samples.

We present two of the plots obtained in our calculations: Figure 3 shows the CUSUM
for α and Figure 4 shows the CUSUM for β. The plots are compared to a benchmark
plot of independent and identically distributed random normal variates with the mean
and variance of the estimated parameters.

The plot comparisons indicate that the sampler has converged. The more quan-
titative measure of convergence proposed by Brooks (1996) was also calculated. This
measure takes values in [0, 1] with a value of 0.5 indicating ‘perfect’ convergence. In our
example the measure for α in 0.501 and for β is 0.536. This again indicates that the
samples have converged.

6 Comparison with Thompson (1990)

The idea of this paper is to improve on the population estimates obtained by Thompson
through the use of Bayesian model-based inference. To assess the effectiveness of our
methodology, we compare results for our approach to those obtained in Thompson
(1990) for the design-based approach. We use a reduced version of the setting described
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Figure 3: An example of a CUSUM plot for α compared with a plot generated from
independent and identically distributed normal variates with the mean and variance
estimated from α.
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Figure 4: An example of a CUSUM plot for β compared with a plot generated from
independent and identically distributed normal variates with the mean and variance
estimated from β.
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in Section 4 with 16 parameter settings each generating 15 populations from which we
draw 2 samples giving 480 different runs. We used the same set of values for α and β
but now set γ = (0, 5) to obtain larger populations which are more like those used by
Thompson (1990). Note that again the prior distributions were not used to generate
the populations. We considered an additional factor in that we allowed the first sample
(chosen by simple random sampling without replacement) to have a sample size of
n = 10 or n = 15; the second sample was chosen by adaptive sampling as described
previously in this paper. We also tried larger initial sample sizes but found that then
we frequently observed all the clusters leaving nothing to estimate.

The results in Table 1 below are obtained using the π(α) =Beta(3, 15),
π(β) =Beta(1, 9), π(γ) =Gamma(2, 5) prior distributions. As stated above these priors
are not those that produce the best estimates for particular scenarios but are the priors
we recommend as useful for a range of typical adaptive cluster sampling situations. The
results are averaged over the range of settings.

Sample
Size

(rHT∗) (rB) med(rB) var(rHT∗) var(rB) v̂ar(tHT∗) v̂ar(tB)

10 -86.53 44.79 35.00 16884.48 8617.66 40510.35 7801.35

15 -47.39 29.86 17.50 13750.54 7264.52 21442.58 8231.73

Table 1: Comparison between design-based and model-based estimates with
priors π(α) =Beta(3, 15), π(β) =Beta(1, 9) and π(γ) =Gamma(2, 5). Here
B denotes the Bayesian estimator and HT∗ the modified Horvitz-Thompson
estimator; r denotes the average difference between the true and predicted
population totals. Both the mean and median for B are presented to show that
the posterior distribution is not symmetric. Also, var is the variance of the
difference between the true values and the estimator over all populations and
ˆvar is the average variance of the estimator calculated from each sample.

The model-based method produces estimates with smaller actual variances than the
design-based method of Thompson (1990). The estimator is also on average closer
to the true values in these particular cases so has smaller mean squared error than
the design-based estimator. We have not presented the efficiency statistic given in
Thompson (1990) as the variances are large in comparison to the very small variance of
the expansion estimator. The expansion estimator gives small variances in all cases but
the population estimates are so biased as to make the method useless under adaptive
cluster sampling. The average mean squared error of the expansion estimator of the
population total is 48866, while the average variance is 1.458.

We can also compare the coverage properties of confidence intervals based on the
Horvitz-Thompson estimates and credibility intervals based on the model-based esti-
mates. In both cases, we use normal approximations to set the intervals and report the
empirical coverage, namely the proportion of times the population total lies within the
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interval. This is the standard method of constructing design-based confidence intervals
based on the Horvitz-Thompson estimator but it is not the recommended method of
constructing Bayesian credibility intervals; using the MCMC output to estimate pos-
terior quantiles directly. However, due to the requirement for a direct comparison to
Horvitz-Thompson and the computationally intensive nature of the calculations for mul-
tiple populations, we feel the normal approximation is justified for this comparison. Our
results for the Bayesian credibility intervals are therefore only suggestive and should be
interpreted cautiously.

n 10 15
Standard Nominal
Deviation Level

HT∗ B HT∗ B

1 0.67 0.87 0.52 0.79 0.63

2 0.95 1.00 0.81 0.97 0.86

3 0.99 1.00 0.89 1.00 0.91

Table 2: Coverage properties of the approximate confidence interval based
on the Horvitz-Thompson estimator and the approximate Bayesian credibility
interval. Both intervals are based on normal approximations. The estimated
coverage is the proportion of times the population total lies within an interval
of half-length the stated number of standard deviations.

Table 2 shows that the Horvitz-Thompson confidence interval has much higher cover-
age than the nominal level, whereas the Bayesian credibility interval has lower coverage.
The Horvitz-Thompson intervals are on average 2.11 times larger than the Bayes inter-
vals when n = 10 and 1.32 times larger when n = 15. The Horvitz-Thompson estimator
has large variance but the design-based estimates of the variance tend to be quite con-
servative (particularly with small n) so the intervals are larger than they need be and
therefore have higher than nominal coverage levels. On the other hand, the Bayesian
estimator has smaller variance which is estimated quite well. This suggests that the
observed lower than nominal coverage levels are largely due to the weakness of the nor-
mal approximation to the posterior distribution and that more sophisticated credibility
intervals would perform better.

For balance, we also include a comparison of our estimator with the Horvitz-
Thompson estimator when a prior which is not robust to parameter changes is used;
in other words, a prior which gives poor results for some parameter combinations. The
Beta(1, 25) prior for α puts more weight on small values of α than our recommended
Beta(3, 15) prior. The effect of this change is to increase the bias in the Bayesian
estimates, leave their variability unchanged but decrease the estimate of the variance
so that it is over-optimistic. The properties of the Horvitz-Thompson have changed
only slightly showing that the inter-simulation variability is small. While the Horvitz-
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Thompson estimator on average produces less-biased estimates of the population total,
it still has a larger variance than our procedure.

Sample
Size

(rHT∗) (rB) med(rB) var(rHT∗) var(rB) v̂ar(tHT∗) v̂ar(tB)

15 -44.58 89.61 77.50 21480.4 1314.2 14080.44 8257.69

Table 3: Comparison between design-based and model-based estimates with
priors π(α) =Beta(1, 25) and π(β) =Beta(1, 9). Here B denotes the Bayesian
estimator and HT∗ the modified Horvitz-Thompson estimator; r denotes the
average difference between the true and predicted population totals. Both the
mean and median of B are presented to show that the posterior distribution
is asymmetric. Also, var is the variance of the difference between the true
values and the estimator over all populations and ˆvar is the average variance
calculated from each sample.

Other calculations (not reported here) show that the modified Horvitz-Thompson
estimator improves its performance when used with populations in which there are more
small networks. This makes sense as it is based on simple random sampling so the closer
the population comes to being randomly distributed rather than clustered the better it
will perform. This is in contrast to our methodology which assumes that there are a
few networks and so does better in clustered cases.

Summarizing our empirical results, our estimator out-performs the modified Horvitz-
Thompson estimator using a general prior and can significantly out-perform with more
specific priors. However, if a poor choice of prior is made the results can under-perform
in comparison to Horvitz-Thompson. Thus, if we have an accurate idea of the size and
structure of the population which we can incorporate into our priors then we can predict
very well. If we do not have this information then we can seriously underestimate the
population total and it would be better to restrict our inference to that using the general
prior described above. Note that the choice of the appropriate grid size to place on the
region also requires knowledge of the population so neither procedure can be expected
to perform well in the absence of such prior knowledge. Even with the worst choice
of prior our estimates are still as good (in terms of mean squared error) as those used
previously to estimate population totals from this kind of data.

7 Conclusion

We have considered the problem of estimating the number of individuals in a rare,
clustered population in a specified region. We impose a regular grid on the region
and enumerate the number of individuals within grid cells selected by adaptive cluster
sampling as described by Thompson (1990). Our approach is to model the observed
counts in the selected grid cells and then use a model-based analysis based on this
model. The resulting likelihood involves integrals which we cannot evaluate explicitly
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so we used Markov Chain Monte Carlo (MCMC) methods to obtain the estimators.
The methodology is compared to the design-based modified Horvitz-Thompson estima-
tor of Thompson (1990) by means of a small simulation study. The performance of
our estimator can be substantially better than that of the modified Horvitz-Thompson
estimator when good prior information is available.
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