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A Bayesian Structural Equations Model for

Multilevel Data with Missing Responses and

Missing Covariates

Sonali Das∗, Ming-Hui Chen†, Sungduk Kim‡ and Nicholas Warren§

Abstract. Motivated by a large multilevel survey conducted by the US Veterans
Health Administration (VHA), we propose a structural equations model which in-
volves a set of latent variables to capture dependence between different responses, a
set of facility level random effects to capture facility heterogeneity and dependence
between individuals within the same facility, and a set of covariates to account for
individual heterogeneity. Identifiability associated with structural equations mod-
eling is addressed and properties of the proposed model are carefully examined. An
effective and practically useful modeling strategy is developed to deal with missing
responses and to model missing covariates in the structural equations framework.
Markov chain Monte Carlo sampling is used to carry out Bayesian posterior com-
putation. Several variations of the proposed model are considered and compared
via the deviance information criterion. A detailed analysis of the VHA all employee
survey data is presented to illustrate the proposed methodology.

Keywords: DIC, Latent variable, Markov chain Monte Carlo, missing at random,
random effects, VHA all employee survey data

1 Introduction

It is challenging to model a large scale survey, conducted to evaluate system dynam-
ics. Often, such modeling requires the implementation of structural equations modeling
(SEM) as they are a powerful multivariate regression technique to handle scenarios in
which the predictor and outcome variables can both be either latent or observed. This
feature of SEM has been appealing to many researchers, especially in the fields of behav-
ioral sciences (Bollen (1989), Bentler and Wu (2002), Jöreskog and Sörbom (1996), and
Sánchez et al. (2005)). SEM has been extensively used to model survey data arising in
the fields of sociology, psychology, health and economics – with increasing applications
where self assessment questionnaires are the means to collect data. A very compre-
hensive application of latent variables in psychology and social sciences is available in
Bollen (2002).

The data we investigate are from the Veterans Health Administration (VHA), which
is the largest integrated health care provider in the United States of America and has
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initiated substantive efforts to improve quality and safety of patient care over the last
decade, with considerable success (Jha et al. (2003), Greenfield and Kaplan (2004), and
Asch et al. (2004)). The focus of the VHA All Employee Survey (AES) was to ascertain
areas of organizational climate and performance that need attention in the workplace,
with the larger objective being to improve the quality of service provided by the VHA.
In this paper, we propose a structural equations model to analyze and assess an all
employees survey conducted by the VHA in 1997 to evaluate organizational climate and
performance that need attention with primary focus on 3 outcome variables. The main
objective is to develop an individual level model that captures the association between
a set of variables of interest, via a set of latent variables, taking into account the natural
pattern of heterogeneity in the sample that is due to the nesting of individuals into their
respective higher hospital cluster.

The rest of the paper is organized as follows. Section 2 provides a detailed description
of the VHA AES 1997 data. The development of the structural equations model for
such survey data is given in Section 3. The likelihood, the prior, and the posterior
based on the proposed model are discussed in Section 4. Models are assessed using the
Bayesian Deviance Information Criterion (DIC), and the appropriate deviance function
is derived in Section 5. A comprehensive data analysis of the AES 1997 data is given in
Section 6. We conclude the paper with a discussion of the various issues encountered in
this development in Section 7. Details of the computational algorithm to sample from
the posterior distributions are given in the Appendix.

2 Data

To maintain and improve quality of service, the VHA needs the understanding of em-
ployee working conditions, and to that effect the first such Veterans Health Adminis-
tration All Employee Survey was conducted in 1997. The survey was conducted via
questionnaires that participants had to self report. Here the workplaces are the various
hospitals under the VHA, called facilities, and the target participants were all employ-
ees. Based on the findings, regional networks and individual facilities are expected
to undertake intervention measures to improve areas of weakness. Of course, not all
employees participated from each of the facilities. Moreover, as in most large scale
surveys, there was a lot of missing data even in questionnaires of those who did partic-
ipate. One feature of this survey is that due to the sensitive nature of many questions,
a labor/management confidentiality agreement was reached where the identification of
individual respondents was not recorded. However, the identification of the hospital
(facility) to which a respondent reported was traceable. Each facility has a distinct
character, and ignoring this natural heterogeneity due to the clustering of individual
employees into facilities can lead to misleading conclusions. In fact, we can also assume
that there exists an interaction effect between facility and response to question.

With the overall objective being to capture the association between variables that
characterize organizational climate at the individual level, our primary focus is on 3
outcome variables, viz., — Customer satisfaction, Employee satisfaction and Quality,
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via their relationship to 3 important and intrinsic workplace characteristics or traits,
viz., — Leadership, Support and Resources. These 3 traits are theoretical constructs,
or latent variables, and as such are not directly measurable. Hence, we identify 21 other
observed variables that can be considered as manifestations of the 3 latent variables, and
thus, by combining the 3 variable types – outcome, observed and latent, via structural
equations modeling, as we will elaborate in Sections 3 and 4, we aim to capture the
objective of this investigation.

The part of the AES 1997 data we work with has 111,249 individuals belonging to
one of 154 facilities. The variables under consideration in the data include a facility
identifier, 3 outcome variables, and 21 other manifest variables. We also consider 3
demographic variables as covariates for each individual, viz., — Age, Gender and Years
of service with the VA. For this subset of the AES 1997 data, the 21 observed manifest
variables were composite or aggregate variables, which can be considered continuous.
Once again, the survey has its share of missing data in both the observed response
variables as well as the covariates. Brief descriptive statistics comprising mean, standard
deviation (SD) and the missing percentage for each of the variables considered are
presented in Tables 1 and 2.

Variable Mean SD Missing Variable Mean SD Missing
REW IND 2.69 1.05 1159 LEAD INV 2.86 0.96 112

REW SERV 2.80 1.08 1220 RES SKLL 2.78 1.03 255
DIV ZERO 3.30 1.05 551 RES SUPP 2.65 0.99 569
DIV DIFF 3.77 0.96 6628 RES SAFE 3.34 0.87 406

CUST NDS 3.36 1.06 3966 WORK FAM 3.04 0.93 1801
CUST INF 3.49 0.91 5225 COOP TEAM 2.99 1.02 218
PAY SAT 3.00 1.06 747 PLAN EVL 3.25 0.79 59

EMP DEVL 3.18 0.96 17 DIV MGRS 3.32 1.01 5568
INNOV 2.86 0.91 18 SUP SUPT 2.94 1.06 1053

LEAD GOAL 3.00 0.96 258 CUST SAT 3.45 0.97 2193
COOP RES 3.65 1.12 1982 EMP SAT 3.42 1.06 1971
CONF RES 2.69 1.13 3582 QUALITY 3.96 0.91 1114

Table 1: Descriptive Statistics of Manifest and Outcome Variables of AES 1997

Among those who responded, a majority of 57% were females, about two thirds were
49 years or younger, and about 70% were with the VA for more than 5 years. There were
21078 (18.9 %) individuals with at least one manifest information missing, 6383 (5.7 %)
individuals with at least one covariate missing, and overall, there were 24723 (22.2 %)
individuals with at least one of manifest or covariate information missing. Thus, there
were about 2.4% of respondents with one response from both manifest variables and
covariate information missing. By considering complete-response (CR) over all-cases

(AC) we loose about 18.9% of the data, and by considering complete-cases (CC) only,
we loose a further 2.4% of the data.
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Covariate Category Frequency Percentage
Female 62819 57%

Gender Male 43574 39%
Missing 4856 4%

≤ 49 years 72914 65%
Age > 49 years 34197 31%

Missing 4138 4%
≤ 5 years 28258 25%

Years in VA > 5 years 79468 71%
Missing 3523 4%

Table 2: Descriptive Statistics of the 3 Covariates Considered in the AES 1997

3 Model

Latent variable modeling has gained increased attention recently (Sammel and Ryan
(1996) and Muthén (2002)). Latent variable models for multilevel data that account
for heterogeneity are often appropriate because many experimental and survey data are
nested. A unified framework for generalized multilevel structural equations modeling
is introduced and discussed in Rabe-Hesketh et al. (2004). Bayesian methods to han-
dle heterogeneity in SEM have shown that ignoring heterogeneity can result in inflated
estimates of measurement reliability, wrong signs of factor covariances, and can yield
inappropriate model fit and standard errors (Ansari et al. (2000)). Modeling the ef-
fect of covariates on latent variables or on outcome variables is a recent development
(Sammel et al. (1997) and Arminger and Küsters (1988)). Bayesian methods for ana-
lyzing raw data with clustered structure via SEM are investigated by Dunson (2000),
Ansari et al. (2000), and Dunson and Perreault (2001). Computationally, Lee and Shi
(2001) and Lee and Song (2004a) developed the efficient Monte Carlo EM algorithms for
maximum likelihood estimation for multilevel latent variable models with mixed contin-
uous and discrete data. Issues of Bayesian estimation via SEM or nonlinear SEM are dis-
cussed in Scheines et al. (1999) and Song and Lee (2004). Furthermore, Lee and Song
(2004b) carried out Bayesian model comparison via Bayes factor of nonlinear SEM with
missing response data.

Capturing heterogeneity in SEM can be handled in different ways depending on the
focus of investigation. If the focus is on the aggregate level, latent variable modeling
can be devised to investigate differences between populations with respect to the within
and between group covariance matrix. However, in our investigation, the focus is on
individual level modeling, along with accounting for any facility level effects, and all
inferences thereof are at the individual level. There are two major issues in an analysis
of survey data: first, most models considered for comparison are nested, and second,
there is a problem of missing data. Missing data can arise because of missing response,
missing covariate, or both. Moreover, as latent variables are important in SEM, they
may also be viewed as missing data. We proceed to address all these issues in the
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development of the model.

To capture the association structure of a set of latent variables and a set of responses
of interest, we need to identify a set of response variables that can be considered as rea-
sonable manifestations of the latent variables. We recall that latent variables represent
the constructs we want to study, and are forced to do so via a set of observable variables
we can study. Let yijk be the kth response by the jth individual belonging to the ith

facility for i = 1, 2, . . . , I , j = 1, 2, . . . , ni, and k = 1, 2, . . . , K, where I denotes the total
number of the facilities, ni is the number of individuals within the ith facility, and K is
the total number of responses considered. We propose the measurement model part of
the SEM as follows

yijk = µk + τi + τik + β′
kωkηij + φ′

kZij + εijk , (1)

where εijk
iid∼ N (0, σ2

k) for k = 1, 2, . . . , K, µk is the mean effect due to response k, βk

is a pk-dimensional column vector of coefficients loading on ηij , a r-dimensional vector
of zero mean latent variables, ωk is the pk × r fixed loading matrix that controls the
dependence of response k on the set of latent variables, and φk is the q-dimensional vec-
tor of regression coefficients corresponding to Z ij , a q-dimensional vector of covariates.
In (1), τi and τik are random components to capture facility effect due to an individ-
ual j belonging to facility i, and the facility i and response k interaction, respectively.

We assume that τi
iid∼ N(0, σ2

τ ), τik
iid∼ N(0, σ2

τ∗), and τi, τik , and εijk are mutually
independent for i = 1, . . . , I , j = 1, 2, . . . , ni, and k = 1, . . . , K.

Based on the SEM given by (1), the mean and variance of yijk conditional on
(µk, βk, φk, zij) are

µijk = E(yijk |µk, βk, φk, zij) = µk + φ
′
kzij (2)

and

σ2
ijk = Var(yijk |µk, βk, φk, zij) = β′

kωkVar(ηij)ω
′
kβk + σ2

τ + σ2
τ∗ + σ2

k .

For the same individual indexed by i and j, the covariance between answering different
questions can be quantified as

Cov(yijk , yijk′ ) = β′
kωkVar(ηij)ω

′
k′βk′ + σ2

τ

for k 6= k′; for different individuals in the same facility i answering different ques-
tions, this covariance equals Cov(yijk , yij′k′) = σ2

τ for j 6= j′ and k 6= k′; while the
covariance between two individuals in the same facility i answering the same question
is Cov(yijk , yij′k) = σ2

τ + σ2
τ∗ for j 6= j′. Observe that the covariance structure reflects

the response pattern of different individuals belonging to the same facility who answer
different questions, as well as different individuals within the same facility who answer
the same question. The variability in response in the former is solely due to the random
effect due to facility effect. However, in the latter, the variability is accounted for by
the facility randomness as well as an additional component from the variability due to
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individual effect as they respond to the same question. While in the former the covari-
ation between responding to different questions by the same individual in a particular
facility is accounted for by the facility effect variability, in the latter the variability is
accounted for by the structural dependency as well as the facility effect.

The structural part of the model is given by

ηij = Γηij + ξij , (3)

where ξij = (ξij1, ξij2, . . . , ξijr)
′ ∼ N (0, diag(σ2

η1
, . . . , σ2

ηr
)), and ξij is assumed to be

independent of εijk , τi, and τik. In writing the structural part as in (3), we deviate a
little from the conventional representation by considering a single loading matrix for
endogenous and exogenous latent variables together as Γ, ηij is the vector of latent
variables associated with individual j in facility i and is of length r. In (3), Γ is the
r× r loading matrix. The special feature of Γ is that the diagonal elements are all zero,
and the rows corresponding to the exogenous latent variables are all zero since a latent
variable cannot define itself, and an exogenous variable does not depend on any other
variables within the system. We assume that I − Γ is invertible.

Now we return to discuss further the nature of the covariance matrix associated with
η. Let Var(ηij) = Vη . In (3), we run into the scaling problem between the variance of
ηij and the scale of βk. Specifically, if the variances of ηijr ’s become large, then βk in
(1) becomes smaller. To circumvent this problem, we set the variances of all components
of the latent variables ηij to 1, with the aim to cut this circular dependence between
β’s and the elements of Γ. To this end, we assume that we have a structural model (3)
in terms of η∗ and ξ∗ as

η∗
ij = Γ∗η∗

ij + ξ∗
ij or η∗

ij(I − Γ∗) = ξ∗
ij , (4)

where ξ∗
ij ∼ N (0, Ir). Assume that the matrix (I − Γ∗) is invertible. Then, from (4),

we obtain
Var(η∗

ij) = (I − Γ∗)−1
[
(I − Γ∗)′

]−1
. (5)

We define a diagonal matrix D whose r∗th diagonal element is the inverse of the
r∗th diagonal element of (5) for r∗ = 1, 2, . . . , r. We use this diagonal matrix D to

re-parameterize (4) by pre-multiplying (4) by D
1

2 on both sides to get

D
1

2 η∗
ij = D

1

2 Γ∗η∗
ij + D

1

2 ξ∗
ij . (6)

We write D
1

2 η∗
ij = ηij and D

1

2 ξ∗
ij = ξij . Then (6) can be written as

ηij = D
1

2 Γ∗η∗
ij + ξij = D

1

2 Γ∗D− 1

2 ηij + ξij = Γηij + ξij ,

where Γ = D
1

2 Γ∗D− 1

2 . Thus, ξij ∼ N (0, D) and the variance of the latent variables ηij
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can be evaluated as

Vη = Var(ηij) =
(
I − D

1

2 Γ∗D− 1

2

)−1
D
{(

I − D
1

2 Γ∗D− 1

2

)′}−1

= D
1

2 (I − Γ∗)−1
[
(I − Γ∗)′

]−1
D

1

2 , (7)

which by the way we defined D ensures that the diagonal elements of (7) are exactly all
equal to unity. In addition, we have diag(σ2

η1
, . . . , σ2

ηr
)) = D.

For the AES 1997 data, the loading of the 21 manifest variables and 3 outcome
variables in the measurement model, as well as the structural model of the SEM is illus-
trated in Figure 1. We note that (3) is a conventional representation of the structural
part of the SEM, which is used in SAS PROC CALIS and also discussed in detail in
Hatcher (2000).

Figure 1: Path diagram for the AES 1997.

We illustrate the re-parameterization for the structural part of the SEM in Figure 1
as

η∗
ij1 = γ1η

∗
ij2 + ξ∗ij1,

η∗
ij2 = ξ∗ij2,

η∗
ij3 = γ2η

∗
ij2 + γ3η

∗
ij1 + ξ∗ij3,

(8)
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where ξ
∗
ij ∼ N (0, I3). From (8) we have

Γ∗ =




0 γ1 0
0 0 0
γ3 γ2 0


 and (I − Γ∗) =




1 −γ1 0
0 1 0

−γ3 −γ2 1




=⇒ D =




1
1+γ2

1

0 0

0 1 0
0 0 1

1+γ2

3
+(γ2+γ1γ3)2


 .

After reparameterization, we have

ηij = D
1

2 η∗
ij ∼ N (0, Vη), ξij = D

1

2 ξ∗
ij ∼ N (0, D),

and

Vη = D1/2 ×




1 + γ2
1 γ1 γ3 + γ1(γ2 + γ1γ3)

γ1 1 γ2 + γ1γ3

γ3 + γ1(γ2 + γ1γ3) γ2 + γ1γ3 γ2
3 + (γ2 + γ1γ3)

2 + 1


× D1/2

=




1 γ1√
1+γ2

1

γ1γ2+(1+γ2

1
)γ3√

1+γ2

1

√
1+γ2

3
+(γ2+γ1γ3)2

γ1√
1+γ2

1

1 γ2+γ1γ3√
1+γ2

3
+(γ2+γ1γ3)2

γ1γ2+(1+γ2

1
)γ3√

1+γ2

1

√
1+γ2

3
+(γ2+γ1γ3)2

γ2+γ1γ3√
1+γ2

3
+(γ2+γ1γ3)2

1


 .

Now, the structural model of the SEM can be explicitly written as

ηij1 = γ1√
1+γ2

1

ηij2 + ξij1,

ηij2 = ξij2,

ηij3 = γ2√
1+γ2

3
+(γ2+γ1γ3)2

ηij2 +

√
(1+γ2

1
)γ3√

1+γ2

3
+(γ2+γ1γ3)2

ηij1 + ξij3,

(9)

where ξij1
iid∼ N

(
0, 1

1+γ2

1

)
, ξij2

iid∼ N (0, 1), and ξij3
iid∼ N

(
0, 1

1+γ2

3
+(γ2+γ1γ3)2

)
. Observe

that the diagonal elements of Vη above all turn out to equal unity.

As discussed in Section 2, there were missing values in both response variables yijk ’s
and covariates Zijq ’s. With the protection of the labor/management confidentiality
agreement, it is unlikely that missing responses are due to the sensitive nature of ques-
tions as the identification of individual respondents was not recorded. In addition, it
does not appear that there were any apparent systematic patterns in the missing values
of yijk ’s or Zijq ’s in the AES 1997 data. Therefore, it is reasonable to assume that any
missingness in yijk and covariates Zijq is missing at random (MAR) (Rubin (1976) and
Little and Rubin (2002)). Letting yij = (yij1, yij2, . . . , yijK)′, we thus partition the re-

sponse vector y′
ij into (y′

ij,obs, y
′
ij,mis), and the vector of corresponding covariates Z ′

ij as

(Z ′
ij,obs, Z

′
ij,mis), where suffix obs corresponds to the collection of observed elements of

the respective vectors, and suffix mis corresponds to the collection of missing elements



Das, Chen, Kim, and Warren 205

of the respective vectors. Further, we introduce an indicator δijk for the observed and
missing response in the data as

δijk =
{ 1 if yijk is observed

0 if yijk is missing
.

As discussed in Ibrahim et al. (1999) and Ibrahim et al. (2005), for MAR missing
response yijk we do not need to model the missing data mechanism. We write

f(yijk |µk, τi, τik , βk, ηij , φk, σ2
k, Zij)

=
1√

2πσk

exp
{
− 1

2σ2
k

[yijk − (µk + τi + τik + β′
kωkηij + φ′

kZij)]
2
}
. (10)

Let µ = (µ1, µ2, . . . , µK)′, β = (β′
1, β

′
2, . . . , β

′
K)′, φ = (φ′

1, φ
′
2, . . . , φ

′
K)′, σ2 = (σ2

1 , σ2
2 ,

. . . , σ2
K)′, and τ ∗

i = (τi1, τi2, . . . , τiK)′. Given µ, τi, τ
∗
i , β, ηij , φ, σ2, and Zij , yij1, yij2,

. . . , yijK are independent. Thus, we have

∫
f(yij,mis|µ, τi, τ

∗
i , β, ηij , φ, σ2, Zij)dyij,mis = 1,

where f(yij,mis|µ, τi, τ
∗
i , β, ηij , φ, σ2, Zij) is the joint conditional probability density

function of yij,mis given µ, τi, τ
∗
i , β, ηij , φ, σ2, and Zij .

We denote the distribution of the covariates Z ij by f(Zij |α), which may be specified
by a sequence of q one-dimensional conditional distributions proposed by
Lipsitz and Ibrahim (1996) and Chen et al. (2008). Specifically, we write the distribu-
tion of the q-dimensional covariate vector Z ij = (zij1, zij2, . . . , zijq)

′ as

f(zij1, zij2, . . . , zijq |α)

= f(zijq |zij1, . . . , zij,q−1, αq)f(zij,q−1|zij1, . . . , zij,q−2, αq−1) . . . f(zij1|α1), (11)

where αl is a vector of parameters for the lth conditional distribution, the αl’s are
distinct, and moreover, α = (α′

1, α
′
2, . . . , α

′
q)

′. Lipsitz and Ibrahim (1996) have shown
that the covariate model described as above closely approximates the joint log-linear
model for the covariates, and that the ordering of the covariates has no significant effect
on the parameter estimation in the sampling scheme. It is important to note that such
a model needs to be specified only for the AC and the CR scenarios. In the Bayesian
framework, the specification of the covariate distribution in (11) has other attractive
features, such as easing the prior elicitation of the α, since Gaussian priors are often
suitable. The other advantage of writing the joint covariate distribution as in (11) is
that it eases the computational burden on the Gibbs scheme since at each instance
only a one-dimensional conditional covariate distribution is considered. Furthermore,
if each conditional distribution belongs to the exponential family, we have the desired
log-concave property of the posterior distributions as long as the priors are log-concave.
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4 Prior and Posterior Distributions

Our parameters of interest are θ = (µ, β, φ, γ, σ2, σ2
τ , σ2

τ∗ , α)′, where γ = (γ1, γ2, . . . , γr)
′

is a r-dimensional vector of the parameters in (3). Let η = (η′
ij , j = 1, 2, . . . , ni, i =

1, 2, . . . , I)′, τ = (τ1, τ2, . . . , τI)
′, and τ ∗ = ((τ ∗

1)
′, (τ ∗

2)
′, . . . , (τ ∗

I)
′)′. Also let Dobs =

(yobs, Zobs) denote the observed data, where yobs = (y′
ij,obs, j = 1, 2, . . . , ni, i =

1, 2, . . . , I)′ and Zobs = (Zij,obs, j = 1, 2, . . . , ni, i = 1, 2, . . . , I)′. Then, based on the
model given in Section 3, the likelihood function for θ, η, τ , and τ ∗ given Dobs is

L(θ, η, τ , τ ∗|Dobs)

=

∫ I∏

i=1

{ ni∏

j=1

[ K∏

k=1

f δijk (yijk |µk, τi, τik , βk, ηij , φk, σ2
k, Zij)

]
f(ηij |γ)

×f(Zij,obs, Zij,mis|α)
}[ K∏

k=1

f(τik|σ2
τ∗)
]
f(τi|σ2

τ )dZmis, (12)

where Zmis = (Zij,mis, j = 1, 2, . . . , ni, i = 1, 2, . . . , I)′, f(yijk |µk, τi, τik, βk, ηij , φk,

σ2
k, Zij) is given by (10), f(τi|σ2

τ ) = 1√
2πστ

exp
{
− τ2

i

2σ2
τ

}
, f(τik |σ2

τ∗) = 1√
2πστ∗

exp
{
−

τ2

ik

2σ2

τ∗

}
, f(ηij |γ) = 1

(2π)
r
2 |Vη |1/2

exp
{
− 1

2η′
ijV

−1
η ηij

}
, and f(Zij,obs, Zij,mis|α) is given

in (11).

We take the joint prior for θ as

π(θ) = π(µ)π(β)π(φ)π(γ)π(σ2)π(σ2
τ )π(σ2

τ∗)π(α). (13)

The detailed specification for each prior on the right hand side of (13) is given as

follows. For location parameters, we take µk
iid∼ N (µ0, σ

2
0), k = 1, 2, . . . , K, for π(µ),

βk
iid∼ N (β0, Σβ0

), k = 1, 2, . . . , K, for π(β), φk
iid∼ N (φ0, Σφ0

), k = 1, 2, . . . , K, for

π(φ), and γl
iid∼ N(γ0, σ

2
0γ), l = 1, 2, . . . , r, for π(γ). For the scale parameters, we

assume inverse gamma priors as follows: σ2
k

iid∼ IG(a0, b0), k = 1, 2, . . . , K, for π(σ2),
σ2

τ ∼ IG(a1, b1) for π(σ2
τ ), and σ2

τ∗ ∼ IG(a2, b2) for π(σ2
τ∗). For π(α), we assume

π(α) =
∏q

l=1 π(αl), where the prior specification for each π(αl) depends on the form
of the one-dimensional conditional distribution for zijl in (11).

From (12) and (13), the joint posterior distribution of θ, η, τ , and τ ∗ given Dobs is
thus given by

π(θ, η, τ , τ ∗|Dobs) ∝ L(θ, η, τ , τ ∗|Dobs)π(θ). (14)

Although the analytical evaluation of the posterior distribution in (14) is not possible
due to the complexity of the structural equation model as well as the presence of missing
responses and covariates, an efficient computational algorithm via Markov chain Monte
Carlo (MCMC) sampling can be easily developed. The detailed steps of the MCMC
sampling algorithm to sample from π(θ, η, τ , τ ∗|Dobs) is given in the Appendix.
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5 Model Assessment

The model developed in Section 3 accounts for both facility effects as well as covariate
effects. We refer to this as the saturated model and denote it by M1. It is of great
practical interest to investigate how the inclusion of the two random terms introduced
in M1 contributes to the fit of the data. To do so, we consider three other models,
which are sub-models of M1. Specifically, we will investigate sub-models resulting from
excluding facility effects, covariate effects and both effects from model M1. The forms
of these models are given as follows:

M1 (Facility and covariates effects): yijk = µk + τi + τik + β′
kωkηij + φ′

kZij + εijk ;

M2 (Facility effect, no covariates): yijk = µk + τi + τik + β′
kωkηij + εijk ;

M3 (No facility effect, but covariates effect): yijk = µk + β′
kωkηij + φ′

kZij + εijk ; and

M4 (Neither facility nor covariates effects): yijk = µk + β
′
kωkηij + εijk .

We carry out a formal comparison of these competing SEMs via the Bayesian De-
viance Information Criteria (DIC) proposed by Spiegelhalter et al. (2002). The use of
DIC for missing data models has been discussed in detail in Celeux et al. (2006). The
DIC is defined as follows

DIC = D(θ̄∗) + 2p
D
, (15)

where θ∗ is the vector of all model parameters, D(θ∗) is a deviance function and θ̄
∗

=
E[θ∗|Dobs] is the posterior mean of θ∗. In (15), p

D
is the effective number of model

parameters, which is calculated as p
D

= D(θ∗)−D(θ̄
∗
), where D(θ∗) = E[D(θ∗)|Dobs].

Since the responses yijk ’s are of primary interest in the SEM, we define the deviance
function as follows. For model M1, we treat all facility effects, τi and τik , and missing co-
variates, Zij,mis, as parameters. Thus, we define θ∗ = (µ, β, φ, γ, σ2, σ2

τ , σ2
τ∗ , τ , τ ∗, Zmis)

and D(θ∗) = −2 log
[∏I

i=1

∏ni

j=1 Lij(θ
∗)
]
, where Lij(θ

∗|Dobs) =
∫ {∏K

k=1

[
f(yijk |µk, τi,

τik , βk, ηij , φk, σ2
k, Zij)

]δijk
}

f(ηij |γ)dηij . After some algebra, we obtain

Lij(θ
∗|Dobs)

=
[ K∏

k=1

( 1√
2πσ2

k

)δijk
]
× |Vη |−1/2

∣∣∣V −1
η +

K∑

k=1

δijk

σ2
k

ω′
kβkβ′

kωk

∣∣∣
− 1

2

× exp
{
− 1

2

K∑

k=1

δijk

σ2
k

(
yijk − µk − τi − τik − φ′

kZij

)2}

× exp
{
− 1

2

( K∑

k=1

δijk

σ2
k

(yijk − µk − τi − τik − φ′
kZij)β

′
kωk

)

(
V −1

η +
K∑

k=1

δijk

σ2
k

ω′
kβkβ′

kωk

)−1( K∑

k=1

δijk

σ2
k

(yijk − µk − τi − τik − φ′
kZij)

)
ω′

kβk

}
.
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Thus, the deviance function for model M1 is

D(θ∗) = −2 log
[ I∏

i=1

ni∏

j=1

Lij(θ
∗|Dobs)

]

=
I∑

i=1

ni∑

j=1

{ K∑

k=1

δijk log(2πσ2
k) + log |Vη | +

K∑

k=1

δijk

σ2
k

(yijk − µk − τi − τik − φ′
kZij)

2

+ log |V −1
η +

K∑

k=1

δijk

σ2
k

ω′
kβkβ′

kωk| +
[∑

k

δijk

σ2
k

(yijk − µk − τi − τik − φ′
kZij)β

′
kωk

]

×
(
V −1

η +
∑

k

δijk

σ2
k

ω′
kβkβ′

kωk

)−1
[ K∑

k=1

δijk

σ2
k

(yijk − µk − τi − τik − φ′
kZij)ω

′
kβk

]}
.

Following Huang et al. (2005), in D(θ̄
∗
), instead of (E[φk|Dobs])

′E[Zij |Dobs], we com-
pute E[φ′

kZij |Dobs] in the presence of missing covariates, which yields a more appro-
priate dimensional penalty p

D
.

Similarly, the deviance function for model M2 is

D(θ∗) =

I∑

i=1

ni∑

j=1

{ K∑

k=1

δijk log(2πσ2
k) + log |Vη | +

K∑

k=1

δijk

σ2
k

(yijk − µk − τi − τik)2

+ log |V −1
η +

K∑

k=1

δijk

σ2
k

ω′
kβkβ′

kωk| +
[ K∑

k=1

δijk

σ2
k

(yijk − µk − τi − τik)β′
kωk

]

(
V −1

η +
∑

k

δijk

σ2
k

ω′
kβkβ′

kωk

)−1
[∑

k

δijk

σ2
k

(yijk − µk − τi − τik)ω′
kβk

]}
,

where θ∗ = (µ, β, γ, σ2, σ2
τ , σ2

τ∗ , τ , τ ∗). The deviance function for model M3 is given
by

D(θ∗) =

I∑

i=1

ni∑

j=1

{ K∑

k=1

δijk log(2πσ2
k) + log |Vη | +

K∑

k=1

δijk

σ2
k

(yijk − µk − φ′
kZij)

2

+ log |V −1
η +

∑

k

δijk

σ2
k

ω′
kβkβ′

kωk| +
[ K∑

k=1

δijk

σ2
k

(yijk − µk − φ′
kZij)β

′
kωk

]

×
(
V −1

η +
K∑

k=1

δyijk

σ2
k

ω′
kβkβ′

kωk

)−1
[ K∑

k=1

δijk

σ2
k

(yijk − µk − φ′
kZij)ω

′
kβk

]}
,
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where θ
∗ = (µ, β, φ, γ, σ2, Zmis). Finally, the deviance function for model M4 is

D(θ∗) =
I∑

i=1

ni∑

j=1

{ K∑

k=1

δijk log(2πσ2
k) + log |Vη | +

K∑

k=1

δijk

σ2
k

(yijk − µk)2

+ log |V −1
η +

∑

k

δyijk

σ2
k

ω′
kβkβ

′
kωk| +

[∑

k

δyijk

σ2
k

(yijk − µk)β′
kωk

]

(
V −1

η +

K∑

k=1

δijk

σ2
k

ω′
kβkβ′

kωk

)−1
[∑

k

δyijk

σ2
k

(yijk − µk)ω′
kβk

]}
,

where θ∗ = (µ, β, γ, σ2).

The DIC defined above is a Bayesian measure of predictive model performance,
decomposed into a measure of fit and a measure of model complexity (p

D
). The smaller

the value the better the model will predict new observations generated in the same
way as the data. The other properties of the DIC can be found in Spiegelhalter et al.
(2002). Note that it is important to integrate out all latent variables ηij in the deviance
calculation as this yields a more appropriate dimensional penalty p

D
, since they add a

nuisance dimension penalty of the order (
∑

i ni) × r.

6 Analysis of the AES data

The AES 1997 was an all employees survey that was conducted via self reported ques-
tionnaire to evaluate organizational climate and locate intervention points. The main
focus was on the three outcome variables investigated via three work place traits. These
traits are latent constructs, and thus, observed responses from the questionnaire were
identified that were considered as manifestations of the latent constructs. The specific
dimension of all the response (outcome + manifest) variables is K = 3 + 21 = 24, the
number of latent traits is r = 3, and the number of facilities is I = 154.

The variables, Customer satisfaction, Employee satisfaction and Quality, are the
primary responses of interest, and they are theoretically motivated to load on all the
three system latent variables, namely, Leadership, Support and Resource. Besides the
outcome variables, 21 other manifest variables were identified to be the manifestations
of the three latent variables. The loading of these 21 was motivated by a number of
reasons. First, we do not load all the the 21 manifest variables on all the three latent
variables simply because the clear definition of each latent trait will vanish. Second, we
do not load three disjoint subsets of the 21 manifest variables to different latent variables
simply because this will make the definition of the latent variables too tight. Thus, we
load only two manifest variables singly on their most closely matched latent variable
definition, and then load the remaining 15 (= 21 – 3× 2) manifest on all the three latent
variables. This is a more moderate stand than the two extremes mentioned before. This
strategy also matches the feedback from the field investigators in the VHA that only
a few manifest variables can be clearly tagged as effect of the latent traits versus the
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others. The identification of the three specific pairs of manifest variables were also
clearly identified via a preliminary factor analytic EDA. The schematic representation
has been laid out in Figure 1.

6.1 Specification of the Model and Priors

The dimensions of the vectors involved are as follows: for the single loading manifest
variables pk = 1, k = 1, 2, . . . , 6. For the 15 manifest variables and three outcome
variables pk = 3, k = 7, 8, . . . , 24. The corresponding loading matrices are: ω1 = ω2 =
(1, 0, 0)′; ω3 = ω4 = (0, 1, 0)′; ω5 = ω6 = (0, 0, 1)′ and ωk = I3, k = 7, 8, . . . , 24. In
the structural part of the model, the dimension of the latent variable vector is r = 3.
The proposed measurement model (1) is essentially a confirmatory factor analysis (CFA)
model discussed in Bollen (1989). The above specification of loading matrices ωk’s along
with the unity diagonal elements of Vη for the latent vector ηij ensures the measurement
model (1) identifiable as our resulting CFA model satisfies the t-rule as well as the two-
indicator rule of Bollen (1989). Note that under the two-indicator rule discussed in
Bollen (1989), one of these βk’s is fixed while the variance of ηijr∗ is set to be free.
Equivalently, we set βk to be free but set the variance of ηijr∗ to be 1.

The other prior distributions have been described in Section 4. We specify the
hyperparameters as follows. A N (0, 1000) or N (0, 1000I) prior is used for all location
parameters including µk, βk, φk, γ1, γ2, and γ3. For the scale parameters, the hyper-
parameters are a0 = a1 = a2 = 1 and b0 = b1 = b2 = 0.001. As mentioned in Section 3,
if the response is missing, we do not need to model the missing data mechanism. On the
other hand, for missing covariates we can model them via a sequence of one-dimensional
conditional distributions. Let (Zij1, Zij2, Zij3) correspond to the covariates ‘gender’,
‘age’, and ‘years in VA’. Since the Zijs’s are all dichotomized, we specify

f(zij1|α1) = α
zij1

1 (1 − α1)
1−zij1 , f(zij2|zij1, α21, α22) =

exp{zij2(α21 + α22zij1)}
1 + exp(α21 + α22zij1)

,

f(zij3|zij1, zij2, α31, α32, α33) =
exp{zij3(α31 + α32zij1 + α33zij2)}
1 + exp(α31 + α32zij1 + α33zij2)

.

The prior distribution for α1 is Beta(0.001, 0.001), and the priors distributions of α21,
α22, α31, α32, and α33 are all N (0, 1000) independently.

6.2 Posterior Computation

In all the computations below, we used 20,000 Gibbs samples, after a burn-in of 1000 for
each model, to compute all the posterior estimates, including posterior means, posterior
standard deviations (SDs), 95% highest posterior density (HPD) intervals and DICs.
Codes were written for the FORTRAN 95 compiler, and we used IMSL subroutines
with double precision accuracy. The convergence of the Gibbs sampler was checked
using several diagnostic procedures as recommended by Cowles and Carlin (1996). The
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trace plots and auto-correlation plots for β24,1, γ1, σ2
τ , and σ2

τ∗ under model M1 are
displayed in Figure 2, which indicate good convergence and mixing for those parameters.

6.3 Model Comparison

We calculated the DICs defined in Section 5 as in Huang et al. (2005). Table 3 shows
the DIC values for the four models under consideration.

Model D(θ) pD DIC
M1 6032315.7 3548.3 6035864.1
M2 6041745.6 3332.4 6045077.7
M3 6063755.4 332.6 6064088.5
M4 6073386.4 110.6 6073496.8

Table 3: DIC Values for Different Models for the All-Cases Data

The clear trend in the DIC values suggests that with the all cases data, i.e., all the
111,249 cases, M1 is the best in spite of it having the largest penalty for dimension. This
indicates that the inclusion of the facility level effects, the facility-response interaction
effects, and the covariates improves the predictive performance of the model. Between
the facility effect and the facility-response interaction on one hand (M2) and the just
covariates on the other (M3), the former has a smaller DIC value, again in spite of the
higher penalty for larger dimension of the parameters. The model with the largest DIC
among those considered is model M4 that does not consider either of the effects. It
is interesting to note here that in organizational parlance, there is a concept of ‘plant
effect’ that is attributed to the differences between plants, here facilities, and our analysis
corroborates this fact. Hence, in spite of not having any covariates to characterize the
facilities, the introduction of the random effect terms did capture this heterogeneity.

The penalty due to dimension p
D

can be readily appreciated via model M4 where we
have, with ηijk ’s integrated out, 6 β coefficients for the single loading manifest variables,
18×3 β coefficients for manifest and outcome variables that load on all the three latent
variables, 24 σ2

k ’s corresponding to the 24 measurement equations in the SEM, 3 γ’s from
the structural part of the SEM, and 24 µ’s that add up to 111 parameters. From the DIC
results, this is 110.6. We also subjected the best model M1 to the complete-responses

(CR) data and the complete-cases (CC) data (Tables 5 and 6).

In addition, we consider the quantity

MSE =
1

N

I∑

i=1

ni∑

j=1

K∑

k=1

δijk(yijk − ŷijk)2,

where ŷijk is the fitted value of yijk , which is E[µijk |Dobs] and µijk is defined in (2), and

N =
∑I

i=1

∑ni

j=1

∑K
k=1 δijk . The quantity, MSE, measure the absolute goodness-of-fit

of a given model. For the AES 1997 data, we obtained that the MSEs are 0.46233,
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0.46374, 0.46758, and 0.46903 corresponding to models M1 to M4, respectively. These
four values are indeed quite different as N = 2, 629, 304 is large. These results clearly
indicate that M1 yields the fitted values closest to the observed data among the four
models under consideration. It is interesting to mention that these results are very
consistent with the DICs shown in Table 3.

6.4 Posterior Estimates

There are a number of ways to describe the association between two variables in the
structural equations framework. The simplest is the direct effect, that is the direct
path from one variable to the other. The other is the total effect measure that takes
into account the direction and all possible path coefficients between two variables in the
system (Bollen (1987)). Using (9), the corresponding total effect between yijk and ηij

is calculated as follow:

βT
yijk ,η

ij
= β′(I3 + Γ + Γ2 + . . .

)

=
(
βk1, βk2, βk3

)
I3 +

(
βk1, βk2, βk3

)



0 γ1

a 0
0 0 0

aγ3

b
γ2+γ1γ3

b 0




=




βk1 + βk3
aγ3

b

βk1
γ1

a + βk2 + βk3
γ2+γ1γ3

b
βk3


 ,

where a =
√

1 + γ2
1 , b =

√
1 + γ2

3 + (γ2 + γ1γ3)2, since Γg = 0 for g ≥ 3 and k =
1, 2, . . . , 24.

We note that if neither is exogenous, then total effect fails to capture the upstream
effect due to other connected relationships in the model. Another measure is the so-
called superbeta measure defined as:

βsb
D∗,I∗ = Superbeta(D∗, I∗) =

Cov(D∗, I∗)

Var(I∗)
, (16)

where I∗ is the cause variable (either endogenous or exogenous) and D∗ is the effect
variable (endogenous) in the relationship. The superbeta measure does take into account
not only the direction of the relationship between the variables but also any upstream
relationship that the I∗ variable may have as part of the structural equation system,
and thus measures the overall association between the two variables. Thus, if I∗ itself is
an endogenous variable, then it is incorporated unless the final variable is exogenous. In
fact, the total effect is the covariance between the dependent variable D∗ and the root
error term associated with the I∗ variable, taking into account all the path coefficients.
If I∗ is exogenous, then the superbeta equals the corresponding total effect. Below a
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superbeta calculation is shown between yijk and ηijr∗ , r∗ = 1, 2, 3:

βsb
(yijk ,ηij1) = Cov(yijk , ηij1)/Var(ηij1) = Cov(βk1ηij1 + βk2ηij2 + βk3ηij3 + εijk , ηij1)

= βk1 + βk2
γ1

a
+ βk3

[γ1γ2

ab
+

γ3 a

b

]
,

βsb
(yijk ,ηij2) = Cov(yijk , ηij2)/Var(ηij2)

= Cov(βk1aηij1 + βk2ηij2 + βk3ηij3 + εijk , ηij2)

= βk1
γ1

a
+ βk2 + βk3

[γ2

b
+

γ1γ3

b

]
,

and

βsb
(yijk ,ηij3) = Cov(yijk , η3)/Var(ηij3) = Cov(βk1ηij1 + βk2ηij2 + βk3ηij3 + εijk , ηij3)

= βk1

[γ1γ2

ab
+

γ3a

b

]
+ βk2

[γ2

b
+

γ1γ3

b

]
+ βk3

for k = 1, 2, . . . , 24.

In Table 4, we present the posterior estimates of direct effect, total effect, superbeta,
µk, φk, and σ2

k corresponding to outcome variables yijk , k = 22, 23, 24, α, γ, and σ2
τ

and σ2
τ∗ under model M1 as it fits the data much better than the others. Also symbols

used in Table 4 are as follow — βk: direct effect; βT
k : total effect; and βsb

k : superbeta.

There are some interesting findings from the results presented in Table 4. For out-
come variable Customer satisfaction, the superbeta measure was strongest with Re-
sources, followed by Support and Leadership. This suggests that when a respondent
answers questions regarding their perception of service received, the responses to ques-
tions regarding resources in the facility are more important over other intrinsic traits
like support in the work place and the leadership qualities in the workplace. For the
outcome variable Employee satisfaction, based on the superbeta measure, when the re-
spondent answers questions regarding their experience as employees within the system,
Resources in the system are valued highest, followed by Leadership and Support. This
reflects that as a worker in the VHA system, an employee gives higher priority to traits
like resources available to them and leadership in the workplace over the general support
in the workplace. For the outcome variable Quality, based on the superbeta measure,
respondents most highly valued the available resources, followed by the support in the
system, and finally leadership. The above observations reflect an expected behavior.
That is, in answering questions relating to the outcome variables Customer satisfaction
and Quality, the respondent’s perception is from the perspective of a service receiver,
and hence traits like Resources and Support, that affect quality of service, are more
important than Leadership. On the other hand, when the respondent answers ques-
tions relating to their being an employee, or service provider, he or she values the traits
that affect their immediate work environment. Hence questions relating to Resources
and Leadership that affect their immediate working conditions are more important over
questions relating to Support. Focusing on the total-effect measure (βT ) except for one
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Variable Mean SD 95% HPD Variable Mean SD 95% HPD
Customer satisfaction

β22,1 -0.115 0.0061 (-0.126, -0.103) φ22,1 0.128 0.0064 ( 0.116, 0.1408)
βT
22,1 0.120 0.0046 ( 0.111, 0.129) φ22,2 0.021 0.0060 ( 0.009, 0.0322)

βsb
22,1 0.335 0.0031 ( 0.329, 0.342) φ22,3 0.025 0.0067 ( 0.012, 0.0384)

β22,2 0.143 0.0052 ( 0.132, 0.153) φ23,1 0.189 0.0070 ( 0.175, 0.2025)
βT
22,2 0.412 0.0031 ( 0.406, 0.418) φ23,2 -0.072 0.0067 (-0.085, -0.0587)

βsb
22,2 0.412 0.0031 ( 0.406, 0.418) φ23,3 0.002 0.0073 (-0.012, 0.0163)

β22,3 0.554 0.0057 ( 0.543, 0.565) φ24,1 0.098 0.0060 ( 0.086, 0.1098)
βT
22,3 0.554 0.0057 ( 0.543, 0.565) φ24,2 -0.056 0.0056 (-0.066, -0.0442)

βsb
22,3 0.568 0.0030 ( 0.562, 0.574) φ24,3 0.065 0.0063 ( 0.053, 0.0773)

Employee satisfaction µ22 3.398 0.0120 ( 3.374, 3.421)
β23,1 0.177 0.0067 ( 0.164, 0.190) µ23 3.390 0.0122 ( 3.367, 3.415)
βT
23,1 0.352 0.0049 ( 0.343, 0.362) µ24 3.934 0.0116 ( 3.911, 3.956)

βsb
23,1 0.533 0.0033 ( 0.527, 0.540) σ2

22
0.572 0.0029 ( 0.566, 0.578)

β23,2 0.138 0.0055 ( 0.127, 0.148) σ2

23
0.688 0.0032 ( 0.681, 0.694)

βT
23,2 0.508 0.0034 ( 0.501, 0.515) σ2

24
0.611 0.0030 ( 0.605, 0.617)

βsb
23,2 0.508 0.0034 ( 0.501, 0.515) γ1 0.841 0.0072 ( 0.827, 0.855)

β23,3 0.413 0.0066 ( 0.400, 0.426) γ2 0.486 0.0106 ( 0.464, 0.506)
βT
23,3 0.413 0.0066 ( 0.400, 0.426) γ3 0.453 0.0089 ( 0.435, 0.469)

βsb
23,3 0.613 0.0037 ( 0.609, 0.620) σ2

τ 0.008 0.0011 ( 0.006, 0.010)

Quality σ2

τ∗ 0.008 0.0897 ( 0.008, 0.009)
β24,1 -0.126 0.0062 (-0.138, -0.114) α11 0.401 0.0015 ( 0.398, 0.404)
βT
24,1 0.009 0.0047 (-0.001, 0.018) α21 -0.899 0.0086 (-0.915, -0.882)

βsb
24,1 0.255 0.0030 ( 0.249, 0.261) α22 0.244 0.0133 ( 0.217, 0.269)

β24,2 0.272 0.0052 ( 0.262, 0.282) α31 0.915 0.0097 ( 0.895, 0.933)
βT
24,2 0.388 0.0029 ( 0.382, 0.394) α32 0.981 0.0175 ( 0.947, 1.015)

βsb
24,2 0.388 0.0029 ( 0.382, 0.394) α33 -0.252 0.0144 (-0.280, -0.224)

β24,3 0.319 0.0059 ( 0.307, 0.330)
βT
24,3 0.319 0.0059 ( 0.307, 0.330)

βsb
24,3 0.405 0.0031 ( 0.399, 0.412)

Table 4: Posterior Estimates for the AES 1997 Data for M1 - All Cases

outcome-latent combination, all other are positive and significant as their 95% HPD in-
tervals do not contain 0. Specifically, the total-effect between outcome variable Quality
and Leadership is insignificant as its corresponding 95% HPD interval contains 0. This
suggests that ignoring the heterogeneity and/or covariates gives different conclusions
based on the total-effect measure.

Also from Table 4, we see that for outcome variable Customer satisfaction, all the
3 covariate coefficients are significantly positive, suggesting that male respondents, se-
nior respondents and longer serving respondents were more satisfied customers. For
outcome variable Employee satisfaction — coefficient corresponding to Gender is sig-
nificantly negative (0 corresponded to female; 1 corresponded to male), suggesting that
as an employee, females are more satisfied than males (it is also interesting that more
female employees participated in the survey); where as for covariate Age, the coefficient
was positive suggesting that as an employee, senior respondents were more satisfied
than recent recruits; for covariate Years in VA, the coefficient was not significant. For
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outcome variable Quality — Age and Years in VA were significantly positive suggesting
that senior respondents with longer service rated overall quality of service higher; while
for covariate Gender, the coefficient was significantly negative suggesting that female
respondents rated overall quality of service higher than male respondents. The variabil-
ity associated with Employee satisfaction was largest among the 3 outcome variables,
suggesting that as service providers respondents were more heterogeneous, which in
turn could be reflecting the natural heterogeneity due to clustering of individuals into
facilities.

In the structural model part of all the four SEMs, all the coefficients were positive.
The coefficient between Leadership and Support was strongest. The posterior esti-
mates of Corr(ηij1, ηij3) are the strongest among all the 3 pairwise correlations between
the elements of ηij . Specifically, they were 0.647 (0.004), 0.654 (0.005), 0.659 (0.004)
and 0.667 (0.004) for the models M1, M2, M3 and M4, respectively. The figures in
parenthesis are the corresponding posterior standard deviations. As we strip random
effect terms and covariate effect terms from model M1 sequentially, observe that the
Corr(ηij1, ηij3) increases, suggesting that keeping the terms helps to separate the iden-
tities of the latent traits. In fact, the corresponding 95% HPD intervals of model M1

and M4 are completely disjoint.

In Tables 5 and 6 we present the posterior estimates of the parameters of interest for
M1 for the CR and CC cases. Comparing the estimates of the full model M1 under the
AC with the CR and CC data, we observe the following. First, comparing superbeta’s,
all the βsb coefficients in CR and CC data sets are consistently higher than the AC
data. This indicates that ignoring response with missing data results in an inflation of
the associations between the outcome variables and the latent variables. Second, the
total effect between Quality and Support in AC was negative, while it is positive for
the CR and CC case. While all the superbeta measures were in the same direction.
This indicates that total-effect measure can give inconsistent associations even under
the same model. Third, in the structural part of the SEM, the coefficients are stronger
in the CR and CC case compared to the AC case. Fourth, between the CR and CC
cases, barring one, all the coefficients are very close and in the same direction. The one
exception being for the coefficient between Employee satisfaction and Years in VA —
which is insignificant for the CR data, while it is positive in the CC data.

Finally, we conducted a sensitivity analysis of the posterior estimates of model pa-
rameters on the choice of the hyperparameters (b0, b1, b2) under the best model M1.
Specifically, we considered b0 = b1 = b2 = 0.01 and b0 = b1 = b2 = 0.1. We
compared the resulting posterior estimates under these two choices to those under
b0 = b1 = b2 = 0.001 shown in Table 4. We found that the posterior estimates are
quite robust to these choices of (b0, b1, b2). For example, when b0 = b1 = b2 = 0.01,
the posterior means, the posterior standard deviations, and the 95% HPD intervals are
0.2547, 0.0031, and (0.2487, 0.2606) for βsb

24,1; 0.3878, 0.0030, and (0.3821, 0.3938) for

βsb
24,2; 0.4054, 0.0031, and (0.3994, 0.4117) for βsb

24,3; and 0.6112, 0.0030, and (0.6055,
0.6171) for σ2

24. When b0 = b1 = b2 = 0.1, the posterior means, the posterior standard
deviations, and the 95% HPD intervals are 0.2547, 0.0031, and (0.2488, 0.2608) for βsb

24,1;
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Variable Mean SD 95% HPD Variable Mean SD 95% HPD

Customer satisfaction
β22,1 -0.112 0.0069 (-0.125, -0.098) φ22,1 0.133 0.0070 ( 0.119, 0.147)
βT
22,1 0.128 0.0051 ( 0.118, 0.138) φ22,2 0.020 0.0066 ( 0.007, 0.032)

βsb
22,1 0.347 0.0035 ( 0.341, 0.354) φ22,3 0.035 0.0079 ( 0.019, 0.050)

β22,2 0.131 0.0058 ( 0.120, 0.142) φ23,1 0.193 0.0077 ( 0.178, 0.208)
βT
22,2 0.419 0.0034 ( 0.412, 0.425) φ23,2 -0.073 0.0072 (-0.087, -0.059)

βsb
22,2 0.419 0.0034 ( 0.412, 0.425) φ23,3 0.014 0.0087 (-0.003, 0.031)

β22,3 0.567 0.0064 ( 0.554, 0.579) φ24,1 0.101 0.0066 ( 0.088, 0.114)
βT
22,3 0.567 0.0064 ( 0.554, 0.579) φ24,2 -0.060 0.0062 (-0.072, 0.048)

βsb
22,3 0.577 0.0032 ( 0.570, 0.583) φ24,3 0.077 0.0073 ( 0.063, 0.091)

Employee satisfaction µ22 3.387 0.0141 ( 3.360, 3.415)
β23,1 0.183 0.0074 ( 0.169, 0.198) µ23 3.381 0.0142 ( 3.354, 3.409)
βT
23,1 0.360 0.0054 ( 0.350, 0.371) µ24 3.927 0.0130 ( 3.900, 3.952)

βsb
23,1 0.541 0.0037 ( 0.534, 0.548) σ2

22
0.565 0.0032 ( 0.559, 0.572)

β23,2 0.124 0.0061 ( 0.112, 0.136) σ2

23
0.680 0.0034 ( 0.674, 0.687)

βT
23,2 0.511 0.0037 ( 0.504, 0.518) σ2

24
0.602 0.0032 ( 0.595, 0.608)

βsb
23,2 0.511 0.0037 ( 0.504, 0.518) γ1 0.869 0.0079 ( 0.854, 0.885)

β23,3 0.419 0.0072 ( 0.405, 0.433) γ2 0.512 0.0116 ( 0.490, 0.535)
βT
23,3 0.419 0.0072 ( 0.405, 0.433) γ3 0.454 0.0096 ( 0.435, 0.473)

βsb
23,3 0.619 0.0040 ( 0.611, 0.627) σ2

τ 0.008 0.0011 ( 0.006, 0.010)

Quality σ2

τ∗ 0.008 0.0892 ( 0.008, 0.008)
β24,1 -0.124 0.0068 (-0.138, -0.111) α11 0.408 0.0017 ( 0.405, 0.412)
βT
24,1 0.015 0.0051 ( 0.005, 0.025) α21 -0.878 0.0096 (-0.897, -0.860)

βsb
24,1 0.263 0.0034 ( 0.256, 0.269) α22 0.226 0.0147 ( 0.198, 0.255)

β24,2 0.259 0.0056 ( 0.248, 0.270) α31 0.956 0.0109 ( 0.935, 0.977)
βT
24,2 0.388 0.0032 ( 0.381, 0.394) α32 1.002 0.0199 ( 0.962, 1.040)

βsb
24,2 0.388 0.0032 ( 0.381, 0.394) α33 -0.198 0.0159 (-0.229, -0.166)

β24,3 0.329 0.0065 ( 0.317, 0.342)
βT
24,3 0.329 0.0065 ( 0.317, 0.342)

βsb
24,3 0.413 0.0034 ( 0.406, 0.419)

Table 5: Posterior Estimates for the AES 1997 Data for M1 - Complete Response (CR)

0.3878, 0.0030, and (0.3820, 0.3937) for βsb
24,2; 0.4054, 0.0031, and (0.3994, 0.4116) for

βsb
24,3; and 0.6112, 0.0030, and (0.6053, 0.6168) for σ2

24. Also, the posterior means, the
posterior standard deviations, and the 95% HPD intervals for σ2

τ∗ are 0.0081, 0.0898,
and (0.0077, 0.0086) when b0 = b1 = b2 = 0.01; and 0.0082, 0.0902, and (0.0077, 0.0087)
when b0 = b1 = b2 = 0.1. These values are similar to those given in Table 4. We note
that other priors for σ2

k, σ2
τ , and σ2

τ∗ like those discussed by Gelman (2006) can also be
considered. However, we do not expect that there are any substantial changes in the
posterior estimates due to large sample size.

7 Discussion

From the investigation of the 4 models we observe that including both facility level ran-
dom effect terms as well as individual covariates gives the best predictive performance
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Variable Mean SD 95% HPD Variable Mean SD 95% HPD

Customer satisfaction
β22,1 -0.112 0.0070 (-0.125, -0.097) φ22,1 0.127 0.0071 ( 0.113, 0.140)
βT
22,1 0.128 0.0053 ( 0.117, 0.138) φ22,2 0.017 0.0066 ( 0.004, 0.030)

βsb
22,1 0.347 0.0036 ( 0.340, 0.354) φ22,3 0.037 0.0077 ( 0.022, 0.052)

β22,2 0.131 0.0058 ( 0.120, 0.143) φ23,1 0.186 0.0078 ( 0.170, 0.201)
βT
22,2 0.418 0.0035 ( 0.411, 0.425) φ23,2 -0.076 0.0073 (-0.090, -0.062)

βsb
22,2 0.418 0.0035 ( 0.411, 0.425) φ23,3 0.018 0.0085 ( 0.001, 0.034)

β22,3 0.566 0.0064 ( 0.553, 0.578) φ24,1 0.097 0.0067 ( 0.084, 0.110)
βT
22,3 0.566 0.0064 ( 0.553, 0.578) φ24,2 -0.062 0.0062 (-0.074, -0.049)

βsb
22,3 0.577 0.0033 ( 0.570, 0.583) φ24,3 0.080 0.0074 ( 0.065, 0.094)

Employee satisfaction µ22 3.394 0.0121 ( 3.371, 3.418)
β23,1 0.189 0.0075 ( 0.175, 0.204) µ23 3.391 0.0125 ( 3.365, 3.415)
βT
23,1 0.365 0.0056 ( 0.354, 0.376) µ24 3.935 0.0118 ( 3.912, 3.958)

βsb
23,1 0.544 0.0038 ( 0.537, 0.552) σ2

22
0.561 0.0032 ( 0.555, 0.567)

β23,2 0.123 0.0063 ( 0.111, 0.135) σ2

23
0.676 0.0035 ( 0.669, 0.683)

βT
23,2 0.512 0.0038 ( 0.505, 0.520) σ2

24
0.597 0.0032 ( 0.591, 0.604)

βsb
23,2 0.512 0.0038 ( 0.505, 0.520) γ1 0.870 0.0082 ( 0.853, 0.885)

β23,3 0.417 0.0073 ( 0.403, 0.432) γ2 0.508 0.0118 ( 0.485, 0.531)
βT
23,3 0.417 0.0073 ( 0.403, 0.432) γ3 0.452 0.0099 ( 0.433, 0.472)

βsb
23,3 0.620 0.0041 ( 0.612, 0.628) σ2

τ 0.008 0.0011 ( 0.006, 0.010)

Quality σ2

τ∗ 0.008 0.0889 ( 0.007, 0.008)
β24,1 -0.121 0.0069 (-0.135, -0.108)
βT
24,1 0.016 0.0052 ( 0.007, 0.027)

βsb
24,1 0.262 0.0034 ( 0.256, 0.269)

β24,2 0.258 0.0057 ( 0.247, 0.269)
βT
24,2 0.386 0.0033 ( 0.379, 0.392)

βsb
24,2 0.386 0.0033 ( 0.379, 0.392)

β24,3 0.326 0.0066 ( 0.313, 0.339)
βT
24,3 0.326 0.0066 ( 0.313, 0.339)

βsb
24,3 0.410 0.0035 ( 0.404, 0.417)

Table 6: Posterior Estimates for the AES 1997 Data for M1 - Complete Case (CC)

in terms of the smallest DIC even though it has the largest penalty for dimensionality.
Also, including facility random effect terms is more important than including just co-
variate information, implying that variability within facilities is more pronounced than
variability in terms of demographic variables within individuals. This confirms, as is
well-known, that facility characteristics differ not only in size but also in the available
service resources, and response by individuals belonging to different facilities are bound
to reflect that. In fact, including facility random effects captures the natural hetero-
geneity because of the clustering of individuals into specific facilities. Excluding both
the effects gives the worst assessments in terms of DIC, even though it has the smallest
penalty for dimension. Also, subjecting the AC, CR and CC data sets to model M1

revealed that there is indeed no pattern in the missing scheme as posterior estimates
are all very close.

From the VHA point of view this may be an important administrative result as
this is a concept akin to the ‘plant effect’ in occupational epidemiology that ‘corrects
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for’ unmeasured aspects of an organization – its culture, its work organization, its
economic position, and the like – anything that might be the root cause of exposure
levels experienced on the shop floor. Researchers have noticed that, when one controls
for all reasonable covariates (age, gender, years in occupation, et cetera) at the individual
level, the exposure-outcome relationships can still be different in similar companies, and
this has often been conveniently grouped into a grab-bag variable called ‘plant effect’
(plant meaning a building or location in manufacturing, in our case the hospital/facility)
(Banker et al. (1993)). This motivates a further investigation into actually examining
the components of a ‘plant effect’ that varies by hospital.

The computational and inferential issues encountered in this paper lead us to delve
on some aspects of modeling and inference, and computation. On the inference front,
the model assessment criterion DIC used for Bayesian model assessment has many nu-
ances to it – especially for comparing performance of nested models with random effects
and latent variables. Because latent variables are unobserved and in fact, computation-
ally can be treated as parameters, it is imperative to take care of issues like whether
to construct DIC from the marginal distribution

∫
f(y|η, θ)dη or to compute it from

the conditional distribution f(y|η, θ). The latter consideration is similar to the one
proposed by Huang et al. (2005) in the setting of missing covariates data models. This
critical issue for the use of DIC for missing data models is also extensively discussed
in Celeux et al. (2006). The second issue is computation. The survey data we have
subjected to a Bayesian analysis has a very high dimension, both in terms of sample
size as well in terms of variables investigated, consisting of over a hundred thousand
individuals with 27 variables. While on the one hand it is a blessing to have such a
rich data set to work with, on the other hand implementing Bayesian methods is a
huge computational challenge. Thus, it is essential to have the support of very powerful
computing machines with very large capacity memory that can handle high dimensional
parameter space, especially since we also have latent variables to sample.

Appendix: Computational Development

In this appendix, we only discuss how to sample from the posterior distribution under
model M1 in (14), as the extension to the other models considered in Section 5 is
straightforward. To this end, we propose to use the Gibbs sampling algorithm, which
requires to sample from the following full conditional distributions in turn:

(i) [µ|β, φ, σ2, τ , τ ∗, η, Zmis, Dobs];

(ii) [σ2|µ, β, φ, τ , τ ∗, η, Zmis, Dobs];

(iii) [β|µ, φ, σ2, τ , τ ∗, η, Zmis, Dobs];

(iv) [φ|β, σ2, τ , τ ∗, η, Zmis, Dobs];

(v) [σ2
τ |τ , Dobs];

(vi) [σ2
τ∗ |τ ∗, Dobs];
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(vii) [η|µ, β, φ, γ, σ2, τ , τ ∗, Zmis, Dobs];

(viii) [τ |µ, β, φ, σ2, σ2
τ , τ ∗, η, Zmis, Dobs];

(ix) [τ ∗|µ, β, φ, σ2, σ2
τ∗ , τ , η, Zmis, Dobs];

(x) [γ|η, Dobs];

(xi) [α|Zmis, Dobs]; and

(xii) [Zmis|µ, β, φ, τ , τ ∗, η, α, Dobs].

We briefly discuss how we sample from each of the above posterior conditional dis-
tributions. For (i), given β, φ, σ2, τ , τ ∗, η, Zmis, Dobs, the µk are conditionally inde-
pendent and

µk|β, φ, σ2, τ , τ ∗, η, Zmis, Dobs

∼ N
(∑I

i=1

∑ni
j=1

δijk(yijk−τi−τik−β′

kωkηij−φ′

kZij)

σ2

k
+ µ0

σ2

0∑I
i=1

∑ni
j=1

δijk

σ2

k
+ 1

σ2

0

,
1

∑I
i=1

∑ni
j=1

δijk

σ2

k
+ 1

σ2

0

)
,

for k = 1, 2, . . . , K. For (ii), again the σ2
k are conditionally independent and distributed

as

σ2
k |µ, β, φ, τ , τ ∗, η, Zmis, Dobs ∼ IG

(∑I
i=1

∑ni

j=1 δijk

2
+ a0, bσ

)
,

where bσ = 1
2

{∑I
i=1

∑ni

j=1 δijk [yijk − (µk + τi + τik + β′
kωkηij + φ′

kZij)]
2
}

+ b0. For

(iii), we have
βk | µ, φ, σ2, τ , τ ∗, η, Zmis ∼ Npk

(B−1

β
k

Aβk
, B−1

β
k

)

for k = 1, 2, . . . , K, where Aβk
= 1

σ2

k

∑I
i=1

∑ni

j=1 ωkηijδijk(yijk−µk−τi−τik−φ′
kzij)+

Σ−1
0 β0 and Bβk

= 1
σ2

k
ωk

[∑I
i=1

∑ni

j=1 ηijη
′
ij

]
ω′

k + Σ−1
0 . For (iv),

φk | β, σ2, τ , τ ∗, η, Zmis, Dobs ∼ Nq(B
−1

φk

Aφ
k
, B−1

φk

),

where Aφk
= 1

σ2

k

∑I
i=1

∑ni

j=1(yijk − µk − τi − τik − β′
kωkηij)Zij + Σ−1

φ0
φ0 and Bφk

=

1
σ2

k

∑I
i=1

∑ni

j=1 zijz
′
ij + Σ−1

φ0
. For (v)

σ2
τ | τ , Dobs ∼ IG

(
a1 +

I

2
,

1

2

I∑

i=1

τ2
i + b1

)
,

and for (vi)

σ2
τ∗|τ ∗, Dobs ∼ IG

(IK

2
+ a2,

∑
i

∑
k τ2

ik

2
+ b2

)
.
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For the latent variables in (vii),

ηij |µ, β, φ, γ, σ2, τ , τ ∗, Zmis, Dobs ∼ Nr(B
−1
ηij

Aη
ij

, B−1
ηij

),

where Aη
ij

=
∑K

k=1

[
1

σ2

k
ω′

kβkδijk(yijk −µk − τi − τik −φ′
kzij)

]
and Bη

ij
=
∑K

k=1

[
δijk

σ2

k

×ω′
kβkβ′

kωk

]
+ V −1

η . For (viii), the τi are conditionally independent and distributed
as

τi | µ, β, φ, σ2, σ2
τ , τ ∗, η, Zmis, Dobs

∼ N
(∑ni

j=1

∑K
k=1 δijk(yijk − µk − τik − β′

kωkηij − φ′
kzij)/σ2

k∑ni

j=1

∑K
k=1

δijk

σ2

k
+ 1

σ2
τ

, bτ

)
,

where bτ =
(∑ni

j=1

∑K
k=1

δijk

σ2

k
+ 1

σ2
τ

)−1

, and for (ix),

τik | µ, β, φ, σ2, σ2
τ∗ , τ , η, Zmis, Dobs

∼ N
(∑ni

j=1 δijk(yijk − µk − τi − β′
kωkηij − φ′

kzij)

σ2
k(
∑ni

j=1
δijk

σ2

k
+ 1

σ2
τ∗

)
,

1
∑ni

j=1
δijk

σ2

k
+ 1

σ2
τ∗

)
.

The conditional distributions for (i) to (ix) are either normal or inverse gamma distri-
butions and therefore, sampling from each of these distributions is straightforward.

For (x), we use the localized Metropolis algorithm (Chapter 2 of Chen et al. (2000))
to sample γ from [γ|η, Dobs]. Let

π∗(γ|η, Dobs) =
[ I∏

i=1

ni∏

j=1

|Vη |−1/2 exp
{
− 1

2
η′

ijV
−1
η ηij

}]
π(γ),

where π(γ) is the prior for γ. We compute

γ̂ = argmaxγ1,γ2,γ3
log π∗(γ|η, Dobs) and Σ̂ =

[
− ∂2 log π∗(γ|η, Dobs)

∂γi∂γj

∣∣∣
γ=γ̂

]−1

.

We use N(γ̂, c∗Σ̂) as the proposed density for the localized Metropolis algorithm, where
c∗ is a tuning parameter.

For (xi), π(α|Zmis, Dobs) ∝
[∏I

i=1

∏n−i
j=1 f(Zij,obs, Zij,mis|α)

]
π(α). For various

covariate distributions specified through a series of one dimensional conditional dis-
tributions, sampling α is straightforward. For example, in Section 6, the conditional
posterior distribution for α1 is a beta distribution, which is very easy to sample from;
while for α2 and α3, the conditional posterior distributions are log-concave, and hence
we can sample these αj ’s via the adaptive rejection algorithm of Gilks and Wild (1992).
For (xii), given µ, β, φ, σ2, τ , τ ∗, η, α, and Dobs, Zij,mis’s are independent across all i
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and j, and the conditional distribution for Z ij,mis is

π(Zij,mis|µ, β, φ, σ2, τ , τ ∗, η, α, Dobs)

∝
K∏

k=1

exp
{
− δijk

2σ2
k

[yijk − (µk + τi + τik + β′
kωkηij + φ′

kZij)]
2
}

×f(Zij,obs, Zij,mis|α),

where f(Zij,obs, Zij,mis|α) is given by (11). Thus, sampling Zmis depends on the form
of f(Zij,obs, Zij,mis|α). In Section 6, for the AES 1997 data, the conditional posterior
distribution of Zij,mis is simply a multinomial distribution, which is easy to sample
from.
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