
The Annals of Statistics
2009, Vol. 37, No. 6A, 3431–3467
DOI: 10.1214/08-AOS669
© Institute of Mathematical Statistics, 2009
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In Bayesian analysis of multi-way contingency tables, the selection of a
prior distribution for either the log-linear parameters or the cell probabilities
parameters is a major challenge. In this paper, we define a flexible family of
conjugate priors for the wide class of discrete hierarchical log-linear mod-
els, which includes the class of graphical models. These priors are defined
as the Diaconis–Ylvisaker conjugate priors on the log-linear parameters sub-
ject to “baseline constraints” under multinomial sampling. We also derive the
induced prior on the cell probabilities and show that the induced prior is a
generalization of the hyper Dirichlet prior. We show that this prior has sev-
eral desirable properties and illustrate its usefulness by identifying the most
probable decomposable, graphical and hierarchical log-linear models for a
six-way contingency table.

1. Introduction. We consider data given under the form of a contingency ta-
ble representing the classification of N individuals according to a finite set of cri-
teria. We assume that the cell counts in the contingency table follow a multinomial
distribution. We also assume that the cell probabilities are modeled according to
a hierarchical log-linear model. The class of discrete graphical models that are
Markov with respect to an arbitrary undirected graph G is an important subclass
of the class of hierarchical log-linear models, in part because graphical models can
be interpreted in terms of conditional independences that can easily be read off of
the graph, and in part because they allow for parsimony in the number of para-
meters in the analysis of complex high-dimensional data. We will therefore give
special attention to the class of graphical models throughout the paper.

In the Bayesian analysis of contingency tables, the selection of a prior distri-
bution for either the log-linear parameters or the cell probabilities parameter is a
major challenge (see Clyde and George [3]). For decomposable graphical mod-
els, Dawid and Lauritzen [8] have identified a standard conjugate prior which they
called the hyper Dirichlet. The hyper Dirichlet presents the mathematical conve-
nience of a conjugate prior; it has the flexibility given by a number of hyperpa-
rameters (as many as there are free cell probabilities in the model) and, addition-
ally, has the strong hyper Markov property. The latter is very desirable, since it
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allows for local updates within prime components, thus simplifying the compu-
tation of Bayes factors in a model selection process. For decomposable models,
with the hyper Dirichlet as a prior, Bayes factors can be computed explicitly. The
hyper Dirichlet has therefore been used in many studies (see, e.g., Madigan and
Raftery [21] or Madigan and York [23]). However, it has the disadvantage of being
defined only for the class of decomposable graphical models, which, as the number
of factors increases, becomes a smaller and smaller part of the class of graphical
models and, even more so, of hierarchical models.

Considerable efforts have been devoted to the study of alternative priors valid
for the larger class of hierarchical models. Knuiman and Speed [18], Dellaportas
and Forster [9] and King and Brooks [17] propose various versions of a multivari-
ate normal prior for the log-linear parameters.

In this paper, we propose a new prior for the class of hierarchical log-linear
models. This prior is the Diaconis–Ylvisaker conjugate prior for the log-linear
parameters subject to baseline constraints. We show that it is a generalization of
the hyper Dirichlet to nondecomposable graphical models and, even more gener-
ally, to hierarchical log-linear models. We also show that, like the hyper Dirichlet,
it has the advantage of being a conjugate prior while offering flexibility through
its hyperparameters. We illustrate its applicability for the well-known Czech Au-
toworkers example previously analyzed by Edwards and Havranek [14], Madigan
and Raftery [21] and Dellaportas and Forster [9]. We employed MC3 to explore
the space of decomposable, graphical and hierarchical log-linear models for this
six-dimensional binary table. Dobra and Massam [13] and Dobra et al. [11] demon-
strate that our conjugate priors scale to higher-dimensional examples arising from
social studies as well as gene expression and genomewide association studies.

A secondary aim of this paper is to contribute to a discussion on a question asked
by Gutiérrez-Pena and Smith [15], itself motivated by a characterization given, for
univariate natural exponential families (henceforth abbreviated NEF) by Consonni
and Veronese [5]. The latter proved that the prior induced onto the mean para-
meter of an NEF, from the Diaconis–Ylvisaker conjugate prior for the log-linear
parameters, is standard conjugate if and only if the variance function of the NEF
is quadratic in the mean. Leucari [20] showed that, in the case of a decomposable
graphical model, the induced prior on the mean parameter is standard conjugate
even though the variance function is not quadratic, thus providing a negative an-
swer to the question posed by Guitterez-Pena and Smith [15] as to whether the
characterization of Consonni and Veronese [5] could be extended to multivariate
NEF. Here, we show more precisely that the induced prior on the clique and sepa-
rator marginal probabilities, which we will denote pG, is standard conjugate (it is
the hyper Dirichlet as mentioned above) while the induced prior on the cell prob-
abilities parametrization, denoted pD , does not share the same property. This is
achieved through the derivation of the prior induced on the cell probabilities from
our prior on the log-linear parameters.
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The paper is organized as follows. In Section 2, we define the parameters we
chose to use in order to express the multinomial distribution. They are the clas-
sical log-linear parameters defined by the “baseline” or “corner” constraints, and
we show that this is the parametrization obtained if we make a change of vari-
able from the cell counts to the marginal cell counts. In Section 3, we derive the
Diaconis and Ylvisaker [10] (henceforth abbreviated DY) conjugate prior for this
parametrization for hierarchical log-linear models, and we study its properties.
We first characterize the set of hyperparameters for which our conjugate prior is
proper. We then use this characterization to construct a set of hyperparameters that
leads to a proper prior. We compute the moments of the prior cell probabilities that
can be used to guide our choice of hyperparameters. Finally, we show that, like
the hyper Dirichlet, our prior on the log-linear parameters has what we might call
the strong hyper Markov property extended to nondecomposable models, so that
inference in a Bayesian framework can be made prime component by prime com-
ponent. In Section 4, we derive the induced prior for the cell probabilities for the
decomposable graphical model, the nondecomposable graphical model and, more
generally, the general log-linear hierarchical model. As mentioned above, we dis-
cuss the conjecture of Gutiérrez-Pena and Smith [15]. In Section 5, we present a
comprehensive analysis of the Czech Autoworkers data that includes a sensitivity
study about the influence of the conjugate prior specification on the highest pos-
terior probability log-linear models. In Section 6 we briefly talk about additional
developments using our conjugate prior. Major proofs of some of our results herein
are given in the Appendix.

2. The log-linear model.

2.1. The parametrization. Let V be the set of criteria. Let X = (Xγ , |γ ∈ V )

such that Xγ takes its values (or levels) in the finite set Iγ of dimension |Iγ |. When
a fixed number of individuals are classified according to the |V | criteria, the data
is collected in a contingency table with cells indexed by combination of levels for
the |V | variables. We adopt the notation of Lauritzen [19] and denote a cell by

i = (iγ , γ ∈ V ) ∈ I = ×
γ∈V

Iγ .

The count in cell i is denoted n(i), and the probability of an individual falling
in cell i is denoted p(i). For E ⊂ V , cells in the E-marginal table are denoted
iE ∈ IE = ×γ∈E Iγ and the marginal counts are written

n(iE) = ∑
j∈IV \E

n(iE, jV \E).(2.1)

For N = ∑
i∈I n(i), (n) = (n(i), i ∈ I) follows a multinomial M(N,p(i), i ∈ I)

distribution with probability density function

P((n)) =
(

N

(n)

) ∏
i∈I

p(i)n(i).(2.2)
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Let i∗ be a fixed but arbitrary cell which, for convenience, we take to be the cell
indexed for each factor by the “lowest level” itself indexed, for convenience again,
by 0. Thus, i∗ is the cell

i∗ = (0,0, . . . ,0).

We now have to choose a parametrization for the log-linear model; that is, a
parametrization for logp(i). As shown in Darroch and Speed [7] (see also Lau-
ritzen [19], Appendix B.2), each possible metric in the space R

I of real-valued
functions defined on I corresponds to a different parametrization of the log-linear
model. Moreover, as illustrated in Wermuth and Cox [29], a given parametriza-
tion can be best suited to a given type of problem. There is, therefore, no “best”
parametrization in general.

In this paper, we choose to work with the parametrization given by “baseline”
or “corner” constraints; that is, the parametrization that follows if we choose the
“substitution weight” metric for the space R

I , as given in Section 3.1 of Darroch
and Speed [7]. This parametrization has the practical advantage of yielding the
marginal counts as the canonical statistic in the exponential family form of (2.2),
thus making the derivation of the general form of marginal and conditional dis-
tributions, as well as that of conjugate distributions, very easy to express. The
log-linear parameters are

θE(iE) = ∑
F⊆E

(−1)|E\F | logp(iF , i∗Fc),(2.3)

which, by Moebius inversion, is equivalent to

p(iE, i∗Ec) = exp
∑
F⊆E

θF (iF ).(2.4)

We note that θ∅(i∗) = logp(i∗), i ∈ I and we will therefore adopt the notation

θ∅(i∗) = θ∅, p(i∗) = p∅ = exp θ∅.(2.5)

The parametrization (2.3) was first used by Mantel [24]. It is used in most stan-
dard statistical software such as GLIM or R (see Agresti [1], page 150). It has
recently been used in Consonni and Leucari [4], in the case of binary data. It
seems, however, that it is less commonly used in the literature than the so-called u-
parametrization (see Bishop, Fienberg, and Holland [2]) though the “interaction”
terms θE(iE) in (2.3) are easy to interpret as ratios of log-odds ratios or as partial
cross-product ratios. Indeed, one can easily verify (see Lauritzen [19], page 37)
that for any α,β in E, with the notation E− = E \ {α,β}, θE(iE) can also be
written as the alternating sum of conditional log-odds ratios

θE(iE) = ∑
F⊆E−

(−1)|E\F | log
p(iα, iβ |iF , i∗

(E−\F)
)p(i∗α, i∗β |iF , i∗

(E−\F)
)

p(i∗α, iβ |iF , i∗
(E−\F)

)p(iα, i∗β |iF , i∗
(E−\F)

)
.
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Another pleasant feature of this parametrization is that, as we shall see more pre-
cisely at the beginning of the next subsection, the parameters given in (2.3) are ob-
tained as the canonical parameters of the multinomial distribution when we make
the change of variable from the cell counts to the marginal cell counts. In order to
identify which ones of the θE(iE) defined in (2.3) is a free parameter, we need the
following lemma.

LEMMA 2.1. If for γ ∈ E,E ⊆ V we have iγ = i∗γ = 0, then θE(iE) = 0.

PROOF. By definition, and since (iF∪γ , i∗(F∪γ )c ) = (iF , i∗Fc) if iγ = i∗γ = 0, we
have

θE(iE) = ∑
F⊆E\γ

(−1)|E\F | logp(iF , i∗Fc)

− ∑
F⊆E\γ

(−1)|E\F | logp
(
iF∪γ , i∗(F∪γ )c

)

= ∑
F⊆E\γ

(−1)|E\F | logp(iF , i∗Fc)

− ∑
F⊆E\γ

(−1)|E\F | logp(iF , i∗Fc)

= 0. �

From this lemma, it follows immediately that our parametrization is indeed the
“baseline” or “corner” constraint parametrization that sets to 0 the values of the
E-interaction log-linear parameters when at least one index in E is at level 0 (see
Agresti [1], page 150). Therefore, for each E ⊆ V , there are only

∏
γ∈E(|Iγ | − 1)

parameters and for any E ⊆ V , we introduce the convenient notation

I ∗
E = {iE|iγ �= i∗γ ,∀γ ∈ E}.(2.6)

In words, I ∗
E is the set of marginal cells iE such that none of their components

is equal to 0. We set I ∗
V = I \{i∗}. For example, if E = {a, b, c}, a takes the values

{0,1,2,3}, b takes the values {0,1,2}, c takes the values {0,1}, then

I ∗
E = {(1,1,1), (2,1,1), (3,1,1), (1,2,1), (2,2,1), (3,2,1)}.

It will also be convenient to introduce the notation

E	 = {E ⊆ V,E �= ∅}(2.7)

for the power set of V deprived of the empty set and the notation E for the power
set of V .
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By (2.4) and (2.5), we have

p∅ = 1 − ∑
i∈I,i �=i∗

p(i)

= 1 − ∑
E∈E	

∑
iE∈I∗

E

p(iE, i∗Ec) = 1 − ∑
E∈E	

∑
iE∈I∗

E

exp
∑
F⊆E

θF (iF )

(2.8)

= 1 − ∑
E∈E	

∑
iE∈I∗

E

exp
(
θ∅ + ∑

F⊆E,F �=∅

θF (iF )

)

= 1 − p∅

∑
E∈E	

∑
iE∈I∗

E

exp
( ∑

F⊆E,F �=∅

θF (iF )

)
.

In order to simplify our notation, from now on, we will use

F ⊆	 E

to express that F is included in E but is not equal to the empty set and, for iE ∈ I ∗
E ,

E ∈ E , the notation

i(E) = (iE, i∗Ec),

which is not to be confused with iE , the E marginal cell. We will also write θ(iE)

for θE(iE). Then, (2.8) yields

p(i(E)) = exp
∑

F⊆	E θ(iF )

1 + ∑
E∈E	

∑
jE∈I∗

E
exp(

∑
F⊆	E θ(jF ))

, E ∈ E .(2.9)

We note, in particular, that

p∅ = 1

1 + ∑
E∈E	

∑
jE∈I∗

E
exp(

∑
F⊆	E θ(jF ))

.(2.10)

2.2. The multinomial distribution for discrete data. We now want to give the
probability density function of the multinomial distribution under the form of an
exponential family when the statistical model is a hierarchical log-linear model.
Let us first show that the parameters in (2.3) are the canonical parameters of the
multinomial distribution for the saturated model after we make the change of vari-
ables

(n) = (
n(i), i ∈ I ∗) 
→ Y = (

y(iE) = n(iE),E ∈ E	, iE ∈ I ∗
E

)
(2.11)

from joint cell counts to marginal cell counts as defined in (2.1).

LEMMA 2.2. The probability function of the multinomial distribution as given
in (2.2) can be represented as a natural exponential family, with canonical para-
meters θ(iE),E ∈ E	, iE ∈ I ∗

E as defined in (2.3) and with canonical statistics the
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marginal cell counts (n(iE),E ∈ E	, iE ∈ I ∗
E), as follows:

∏
i∈I

p(i)n(i) = exp
{ ∑

E∈E	

∑
iE∈I∗

E

n(iE)θ(iE)

(2.12)

− N log
(

1 + ∑
E∈E	

∑
iE∈I∗

E

exp
∑

F⊆	E

θ(iF )

)}
.

PROOF. We have∏
i∈I

p(i)n(i) = p
n(i∗)
∅

∏
E∈E	

∏
iE∈I∗

E

p(i(E))n(i(E))

= p
n(i∗)
∅

∏
E∈E	

∏
iE∈I∗

E

(
exp

∑
F⊆E

θ(iF )

)n(i(E))

= ∏
E∈E	

∏
iE∈I∗

E

exp
(
n(i(E))

∑
F⊆	E

θ(iF )

)
p

n(i∗)+∑
E∈E	

∑
iE∈I∗

E
n(i(E))

∅

= pN
∅

exp
∑

E∈E	

∑
iE∈I∗

E

(
n(i(E))

∑
F⊆	E

θ(iF )

)

= pN
∅

exp
∑

E∈E	

∑
iE∈I∗

E

n(iE)θ(iE)

= exp
{ ∑

E∈E	

∑
iE∈I∗

E

θ(iE)n(iE) + Nθ∅

}
,

where the second equality is due to (2.4), the third to (2.5), the fourth to the iden-
tification of the exponent of p∅ as the total count N , the fifth to (2.1) and the sixth
to (2.5) again. Finally, (2.12) follows from (2.10). �

From the change of variable (2.11) and Lemma 2.2, it follows immediately that
the family of distributions of Y is the natural exponential family

Fμ =
{
f (y; θ)μ(y) = exp{∑E∈E	

∑
iE∈I∗

E
θ(iE)y(iE)}

(1 + ∑
E∈E	,iE∈I∗

E
exp

∑
F⊆	E θ(iF ))N

μ(y),

(2.13)

θ ∈ R

∑
E∈E	

∏
γ∈E(|Iγ |−1)

}
,

where μ is a reference measure of no particular interest to us here. This gives us
the density for the saturated model.

Let us now consider the hierarchical log-linear model generated by the class
A = {A1, . . . ,Ak} of subsets of V , which, without loss of generality, we can as-
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sume to be maximal with respect to inclusion. We write

D = {E ⊆	 Ai for some i = 1, . . . , k}(2.14)

for the indexing set of all possible interactions in the model, including the main
effects. It follows from the theory of log-linear models (see also Darroch and
Speed [7]) and from Lemma 2.1 that the model for the cell counts p(i) is the
log-linear model with generating class A if and only if the following constraints
are satisfied

θ(iE) = 0, E /∈ D .(2.15)

Therefore, in this case, for iE ∈ I ∗
E , (2.4) becomes

log
p(i(E))

p∅

= ∑
F⊆E,F∈D

θ(iF ).(2.16)

Let us now consider an undirected graph G with vertex set V . Darroch, Lauritzen
and Speed [6] have shown that, for the subclass of graphical models Markov with
respect to G, the generating class is equal to the set of cliques of G, that is, the set
of maximal complete subsets of G. Therefore, for this subclass,

D = {D ⊆	 V |D complete}.(2.17)

In general, for the class of hierarchical models with generating class A, the
nonzero free log-linear parameters are

θD = {θ(iD),D ∈ D, iD ∈ I ∗
D}.(2.18)

Let us adopt the short notation

F ⊆D D

to indicate that F ⊆	 D and F ∈ D . Then, for the hierarchical log-linear model,
(2.9) and (2.10) become

p(i(E)) = exp
∑

D⊆DE θ(iD)

1 + ∑
D∈E	

∑
jD∈I∗

D
exp(

∑
F⊆DD θ(jF ))

, E ∈ E	,(2.19)

p∅ = 1

1 + ∑
D∈E	

∑
jD∈I∗

D
exp(

∑
F⊆DD θ(jF ))

.(2.20)

Through an argument parallel to that given in Lemma 2.2, it follows that, in
the case of a log-linear model with generating class A, the family Fμ in (2.13)
becomes

FμD = {fD(y; θD)μD(y), θD ∈ R
dD },(2.21)

where, as in the saturated case, the measure μD(y) is of no particular interest to us
here, θD = (θ(iD),D ∈ D, iD ∈ I ∗

D) is the canonical parameter, the dimension dD
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of the parameter space is equal to (see Darroch and Speed [7], Proposition 4.3)

dD = ∑
D∈D

∏
γ∈D

(|Iγ | − 1)

and

fD(y; θD) = exp
{ ∑

D∈D

∑
iD∈I∗

D

θ(iD)y(iD)

(2.22)

− N log
(

1 + ∑
E∈E	

∑
iE∈I∗

E

exp
∑

F⊆DE

θ(iF )

)}
.

It is important to note here that, correspondingly to (2.18), only cell probabili-
ties of the form p(i(D)),D ∈ D, iD ∈ I ∗

D, will be free probabilities, since, by
Lemma 2.1, all others can be expressed in terms of

pD = (
p(i(D)),D ∈ D, iD ∈ I ∗

D

)
,(2.23)

which will be the cell probability parameter of the multinomial distribution of the
hierarchical log-linear model.

When the data is binary, that is, when |Iγ | = 2, γ ∈ V , there is only one element
in I ∗

E for each E ∈ E	; therefore, since θ(iE) is zero if iE /∈ I ∗
E , we can use the

simplified notation θ(E), p(E) and y(E) = n(E), respectively, for the canonical
parameters θ(iE) in (2.3), the cell probabilities p(i(E)) in (2.9) and the marginal
counts in (2.11) in all the formulas above.

We note that (2.23) becomes pD = (p(D),D ∈ D).
Let us illustrate this notation with an example. Let G be the graph with ver-

tices a, b, c, d and edges (a, b), (b, c), (c, d) and (d, a). In this case, the graphical
model is actually the same as the hierarchical model with generating class equal to
the set of cliques A = {ab, bc, cd, da}, and we have

D = {a, b, c, d, ab, bc, cd, da},
E	 = {a, b, c, d, ab, bc, cd, da, ac, bd, abc, bcd, cda, dab, abcd}.

The linear constraints on θE,E /∈ D are

θ(ac) = θ(bd) = θ(abc) = θ(bcd) = θ(cda) = θ(dab) = θ(abcd) = 0

and the constraints on the cell probabilities are as follows:

p(ac) = p(a)p(c)

p∅

, p(bd) = p(b)p(d)

p∅

,

p(abc) = p(ab)p(bc)

p(b)
, p(bcd) = p(bc)p(cd)

p(c)
,

p(cda) = p(cd)p(da)

p(d)
, p(dab) = p(da)p(ab)

p(a)
,

p(abcd) = p(ab)p(bc)p(cd)p(da)p∅

p(a)p(b)p(c)p(d)
.
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According to (2.20), we have

p−1
∅

= 1 + eθ(a) + eθ(b) + eθ(c) + eθ(d) + eθ(a)+θ(b)+θ(ab)

+ eθ(b)+θ(c)+θ(bc) + eθ(c)+θ(d)+θ(cd) + eθ(d)+θ(a)+θ(da)

+ eθ(a)+θ(b)+θ(c)+θ(ab)+θ(bc) + eθ(b)+θ(c)+θ(d)+θ(bc)+θ(cd)

+ eθ(c)+θ(d)+θ(a)+θ(cd)+θ(da) + eθ(d)+θ(a)+θ(b)+θ(da)+θ(ab)

+ eθ(a)+θ(b)+θ(c)+θ(d)+θ(ab)+θ(bc)+θ(cd)+θ(da).

The other cell probabilities can be written in terms of θ according to (2.19).

3. The conjugate prior for the log-linear parameter θ . From (2.22), it is
clear that, for the three nested classes of models considered in this paper (graphical
with respect to G decomposable, graphical with respect to an arbitrary undirected
graph G and hierarchical) the conjugate prior for θD , as given by Diaconis and
Ylvisaker [10], is given immediately by its density with respect to the Lebesgue
measure

πD(θD |s, α) = ID(s, α)−1

× exp
{ ∑

D∈D

∑
iD∈I∗

D

θ(iD)s(iD)(3.1)

− α log
(

1 + ∑
E∈E	

∑
iE∈I∗

E

exp
∑

F⊆DE

θ(iF )

)}
,

where ID(s, α) is the corresponding normalising constant and

(s, α) = (
s(iD),D ∈ D, iD ∈ I ∗

D,α
)
, s ∈ R

dD , α ∈ R,(3.2)

are the hyperparameters.
In order to be able to use this prior in practice, we need to answer a number of

questions. The first basic question is to know for which values of the hyperpara-
meters (s, α) the distribution is proper; that is, when does ID(s, α) < +∞ hold.
Next, we can ask how to construct such hyperparameters. We address these two
questions first and then we will give an example showing how to choose (s, α) to
reflect prior knowledge.

LEMMA 3.1. The prior distribution (3.1) with hyperparameters (s, α), as de-
fined in (3.2), is proper if and only if s

α
belongs to the D-marginal cell probability

space of FμD ; that is, if and only if α > 0 and there exists an array of real numbers
ρ(j) > 0, j ∈ I such that

s(iD) = α
∑

jD=iD

ρ(j), D ∈ D, iD ∈ I ∗
D,(3.3)
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where, for E ∈ E ,

ρ(i(E)) = exp
∑

F⊆DE θ(iF )

1 + ∑
E∈E	

∑
jE∈I∗

E
exp(

∑
F⊆DE θ(jF ))

(3.4)

for some θD ∈ R
dD .

PROOF. Since the parameter space of (2.21) is �D = R
dD , by Theorem 1 of

Diaconis and Ylvisaker [10], a necessary and sufficient condition for ID(s, α) to
be finite is that α be a positive scalar and that N

α
s = N

α
(s(iD),D ∈ D, iD ∈ ID) be

in the interior of the convex hull of the support of μD . Since the Laplace transform

LμD (θD) =
(

1 + ∑
E∈E	

∑
jE∈I∗

E

exp
( ∑

F⊆DE

θ(jF )

))N

is defined on �D , which is open, the interior of the convex hull of the support
of μD is equal to the mean space MD of FμD . We therefore want to identify MD .
Let kμD (θD) = logLμD (θD). Since FμD is a natural exponential family with pa-
rameter θD ∈ �D , we have

MD =
{
m = (

m(iD),D ∈ D, iD ∈ I ∗
D

)∣∣∣
(3.5)

m(iD) = E(n(iD)) = N
dkμD (θD)

dθ(iD)
= N

∑
j∈I,jD=iD

p(j)

}
,

where p(j) are as in (2.19). Therefore, s(iD)
α

,D ∈ D, iD ∈ I ∗
D must have the same

properties as
∑

j∈I,jD=iD
p(j), and the lemma follows. �

From Lemma 3.1, we know that, for πD(θD |(s, α)) to be proper, we can choose
(s, α) so that s

α
= 1

α
(s(iD),D ∈ D, iD ∈ I ∗

D) as the D-marginal probabilities of
a fictive probability table with cell probabilities of the form (2.19) and (2.20) or
equivalently the cell probabilities of a hierarchical log-linear model with generat-
ing set D .

A first way to build the cell probabilities of such a fictive contingency table, that
is to obtain (s, α), is to follow the lemma above:

1. Choose an arbitrary θD = (θ(iD),D ∈ D, iD ∈ I ∗
D).

2. For each i = i(E),E ∈ E	, iE ∈ I ∗
E , define ρ(i)

α
to be equal to the right-hand

side of (2.19), and to the right-hand side of (2.20) for E = ∅. This defines ρ(i)
α

for all i ∈ I .
3. For D ∈ D, iD ∈ I ∗

D , let s(iD)
α

= ∑
j∈I,jD=iD

ρ(j)
α

.
4. Choose α > 0 arbitrarily and derive s = (s(iD),D ∈ D, iD ∈ I ∗

D) from step 3
above.
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We note here that these hyperparameters are consistent across models, in the sense
that the fictive marginal counts for different models can be obtained from a single
θ = (θ(iD),D ⊆	 V, i ∈ I). For each model, that is, each D , we then build the
cell probabilities of a fictive table of counts through steps 1–3 above and the cell
counts through step 4.

A second way to construct the cell probabilities of the fictive contingency table
is to start with an arbitrary given contingency table with all cell counts (ν) =
(ν(iD),D ⊆	 V, i ∈ I) positive, not necessarily integers. Let α denote the total
count in that table. The maximum likelihood estimate p̂D of pD of the fictive
table cell probabilities satisfying the constraints of the model and the likelihood
equations

ν(iD) = α
∑

j∈I,jD=iD

p̂(j), D ∈ D, iD ∈ I ∗
D,

exists; therefore, s = (ν(iD),D ∈ D, iD ∈ I ∗
D) and α satisfy the conditions of

Lemma 3.1. The hyperparameters obtained by this second method are also con-
sistent across models in the sense that they are obtained from one single arbitrary
given table of counts. As will be illustrated in the Spina Bifida example of Sec-
tion 3.1, the first method can be very convenient.

The choice of α > 0 in the methods given above is indeed arbitrary, but it is not
innocent in the sense that, given a model determined by D , the choice of α can
change the shape of the prior distribution πD(θD |(s, α)) and thus affect the poste-
rior density and further inference. The following example illustrates our point. We
will also see the impact of the choice of α in Section 5.

EXAMPLE 3.1. Let us consider the graph G which has the vertex set V =
{a, b, c} and two cliques {a, b} and {b, c}. Let us also assume, for simplicity, that
each variable Xa,Xb,Xc is binary. The cell probability parameter pD , as defined
in (2.23), is

pD = (p(a),p(b),p(c),p(ab),p(bc)).

We consider the graphical model Markov with respect to G. It is difficult to see
the impact of the choice of α on πD(θD |(s, α)), since we are not familiar with this
distribution, but things are clearer when we look at the induced density on pD . As
we shall see in Example 4.1, the density induced from πD(θD |(s, α)) on pD is
equal to

π
p
D(pD |(s, α)) =

(
ID(s, α)

(
1 − p(a)p(c)

p2
∅

))−1

× p(a)s(a)−s(ab)−1p(b)s(b)−s(ab)−s(bc)−1

× p(c)s(c)−s(bc)−1p(ab)s(ab)−1p(bc)s(bc)−1

× p
α−s(a)−s(b)−s(c)+s(ab)+s(bc)−1
∅ .
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In order to obtain the hyperparameters, following the second method given above,
we can take a fictive probability table with all entries equal. If we choose α = 1,
then (s(a), s(b), s(c), s(ab), s(bc)) = 1

8(4,4,4,2,2), while, if we choose α = 16,
(s(a), s(b), s(c), s(ab), s(bc)) = 2(4,4,4,2,2). The corresponding conjugate pri-
ors for pD are, respectively,

π
p
D

(
pD

∣∣∣((
1

2
,

1

2
,

1

2
,

1

4
,

1

4

)
,1

))

∝ p(a)−6/8p(b)−1p(c)−6/8p(ab)−7/8p(bc)−7/8
(

1 − p(a)p(c)

p2
∅

)−1

,

π
p
D(pD |((8,8,8,4,4),16))

∝ p(a)3p(b)−1p(c)3p(ab)p(bc)

(
1 − p(a)p(c)

p2
∅

)−1

.

The ratio of the two densities is
ID((2(4,4,4,2,2),16))

ID(1/4(2,2,2,1,1),1)
p(a)30/8p(c)30/8p(ab)15/8p(bc)15/8.

This ratio varies as pD varies, and the two densities clearly have very different
shapes and, therefore, give more prior weights to different pD .

Let us note here that for the example above, the underlying graph is de-
composable and, as we shall see further in Section 4.1, in that case, the prior
π

p
D(pD |(s, α)) coincides with the Hyper Dirichlet defined by Dawid and Lau-

ritzen [8]. Using the notation of Section 4.1 and Proposition 4.1 and calling C1
the clique {a, b}, C2 the clique {b, c} and S the separator {b}, the ratio above can
be written as the ratio of two hyper Dirichlet with hyperparameters equal to, for
α = 1,

αCl (D) = 1
4 , D ⊆ Cl, l = 1,2, αS(b) = αS(∅) = 1

2 ,

and, for α = 16, equal to

αCl (D) = 4, D ⊆ Cl, l = 1,2, αS(b) = αS(∅) = 8.

The ratio is therefore equal to


(16)
(8)2
(1/4)8


(1)
(1/2)2
(4)8

[
pC1(ab)pC1(a)pC1(b)pC1(∅)

pS(b)pS(∅)

]15/4

×
[
pC2(bc)pC2(b)pC2(c)pC2(∅)

pS(b)pS(∅)

]15/4

.

Though expressed here in the more familiar marginal clique and separator marginal
cell probabilities, this second expression of the ratio of prior densities may be more
difficult to apprehend than the first one in terms of cell probabilities.
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We note also that for the saturated model, the prior with α = 1 and all fictive
cell counts equal, is the prior advocated by Perks [25] (see also Dellaportas and
Forster [9]).

3.1. Moments of the cell probabilities. We now compute the moments of the
cell probabilities. As we show below through an example, these moments can, in
some instances, be used to guide our choice of hyperparameters when we have
prior information.

PROPOSITION 3.1. Consider the distribution πD(θD |(s, α)) as defined in
(3.1). Let r be a positive integer. Then, for D ∈ D, iD ∈ I ∗

D , the r th moment of
the generalized odds ratio is

EπD (θD |(s,α))

(( ∏
F⊆D

p(i(F ))(−1)|D\F |
)r)

= EπD (θD |(s,α))

(
erθ(iD))

(3.6)

= ID(s̃D,α)

ID(s, α)
,

where the components of s̃D are equal to those of s except for

s̃D(i(D)) = s(i(D)) + r.

Moreover, for all E ∈ E , the r th moment of the cell probabilities p(i(E)) is

EπD (θD |(s,α))(p(i(E))r) = ID(s̃E,r , α + r)

ID(s, α)
,(3.7)

where the components of s̃E,r are equal to those of s, except for

s̃E,r (i(F )) = s(i(F )) + r, if F ⊆D E.

The proof of this proposition is simple and is omitted. Equation (3.7) follows
from the fact that

p(i(E)) = e
θ(i∅)+∑

F⊆DE θ(iF ) = e
∑

F⊆DE θ(iF )−kμD (θD ) .(3.8)

As we shall see in Section 4, the normalising constant ID can be computed ex-
plicitly when the model is Markov with respect to a decomposable graph G. Oth-
erwise, the normalising constants have to be computed numerically by the usual
approximation methods.

We now show through an example how the results in Proposition 3.1 above can
be used to guide our choice of (s, α) in the prior distribution. We consider the
data given by Hook, Albright and Cross [16] and used by King and Brooks [17]
to illustrate the fact, as we do it here, that with their prior they can translate prior
information into values for the hyperparameters. In this dataset, there are three
variables a, b and c each taking the values 1 or 0 representing the presence or
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absence of, respectively, birth certificates, death certificates and medical records
for each individual. The individuals under study are children with spina bifida.
The data consists of an incomplete contingency table for each one of six years.
From Hook, Albright and Cross [16], it can reasonably be assumed that the model
is the decomposable graphical model with cliques {a} and {b, c}. Consultation
with experts suggests that the interaction between factors b and c is negative and
the presence of this negative interaction is expected to create a relative decrease
in the (bc) cell probability by a proportion in the interval [0.1,0.9]. It was also
expected that the total number of babies born with spina bifida during the study
period would lie in the interval [9,56], and it was thought reasonable that a prior
mean number of babies should lie in the interval [29,35].

Let us now express this prior information in terms of restrictions on (s, α).
Since α can be thought of as the total count for a fictive prior contingency table,
the belief about the total count could be immediately translated as, say, α = 30,
which lies in the interval [29,35]. To reflect the negative interaction between fac-
tors b and c, we chose θbc negative, and to reflect the fact that the negative in-
teraction given by θbc would cause the ratio of the expected value of pbc under
D = {a, b, c} and the expected value of pbc under D = {a, b, c, bc} to be in the
interval [0.1,0.9], we want the values of θ(a), θ(b), θ(c), θ(bc) to satisfy

0.1 ≤ E0(p(bc))

Eint(p(bc))
≤ 0.9,(3.9)

where Eint(pE) denotes the expected value of pE under πa,b,c,bc and E0(pE) de-
notes the expected value of pE under πa,b,c. Equation (3.7) gives the two expected
values in (3.9) in terms of the normalising constant of (3.1). Since the chosen
model, with main effects and bc interaction, is a decomposable graphical model,
the normalising constant ID(s, α) can be obtained explicitly. Its formula is given
further in Proposition 4.1. Using this formula, for both the model with and without
the bc interaction, that is with D = {a, b, c, bc} or D = {a, b, c}, respectively, and
also using Proposition 3.1, straightforward calculations yield

Eint(p(bc)) =
(

1 − s(a)

α

)
s(bc)

α
,

(3.10)

E0(p(bc)) =
(

1 − s(a)

α

)
s(b)

α

s(c)

α
.

From Lemma 3.1 and from the first method given in Section 3.2, we know that
if we generate arbitrary values of θD = (θa, θb, θc, θbc) and compute the quantities

ρ(E)

α
= exp

∑
F⊆	E θ(F )

1 + ∑
E∈E	 exp(

∑
F⊆DE θ(F ))

(3.11)

for each E ∈ {a, b, c, ab, ac, bc, abc}, then the prior (3.1) with hyperparameter
(s, α) defined by

s(D)

α
= ∑

F⊇D

ρ(F ), D ∈ D = {a, b, c, bc}, α > 0,(3.12)
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is proper. We can generate the θD in any way. Here, we choose to generate θbc

from a normal with mean −1.12 and variance 4
9 and to generate θa, θb and θc from

independent normals with mean 0 and variance 1. We constrain those values to
satisfy (3.9) expressed in terms of θa, θb, θc, θbc using (3.10), (3.11) and (3.12). We
choose, arbitrarily, the following set of values satisfying the required constraints:

θ(a) = −0.1200, θ(b) = 1.1100,

θ(c) = −0.0100, θ(bc) = −1.8800.

This yields values of s as follows:

s(a) = 9.2324, s(b) = 16.4593, s(c) = 16.4476, s(bc) = 6.9874,

which, together with α = 30, defines a proper prior (3.1) reflecting our prior be-
liefs (3.9) and α ∈ [29,35].

Clearly, if the prior information suggests that the model is not decomposable,
the moments can no longer be obtained explicitly. For given values of (s, α),
ID(s, α) has to be computed numerically and the formulae in Proposition 3.1 could
only be used to verify that a particular choice of (s, α) is in accord with our prior
belief. However, a first choice of (s, α) could be made from an approximating
decomposable model.

3.2. The strong hyper Markov property for graphical models. Let us now as-
sume that the multinomial distribution of the contingency cell counts is Markov
with respect to an arbitrary undirected graph G. In this subsection, we will show
that the generalized hyper Dirichlet in (3.1) is strong hyper Markov in the follow-
ing sense. Let P1, . . . ,Pk a perfect sequence of the prime components of G, and let
S2, . . . , Sk be the corresponding separators. Though the prime components do not
have to be complete, the separators Sl = (

⋃l−1
j=1 Pj )∩Pl, l = 2, . . . , k are complete

by definition. We will use the notation

Rl = Pl

∖ (
l−1⋃
j=1

Pj

)
= Pl \ Sl, l = 2, . . . , k,

for the residuals, the notation

DPl , l = 1, . . . , k, DSl , DRl , l = 2, . . . , k,

for the collection of complete subsets of the induced graphs GPl
,GSl

,GRl
, respec-

tively, and the notation

θ(DPl ), l = 1, . . . , k,
(3.13)

θ(iSl
,DRl ), iSl

∈ ISl
, l = 2, . . . , k,
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for, respectively, the log-linear parameters of the Pl-marginal multinomial and of
the Rl-conditional multinomial given the value iSl

of the Sl-marginal cell. More
precisely, these parameters are

θ(DPl ) = (
θPl (iD),D ⊆DPl Pl, iD ∈ I ∗

D

)
,

θ(iSl
,DRl ) = (

θRl |iSl (iD),D ⊆DRl Rl, iD ∈ I ∗
D

)
,

where

θPl (iD) = log
∏

F⊆D

(pPl (iF , i∗Pl\F ))(−1)|D\F |
,

θRl |iSl (iD) = log
∏

F⊆D

(pRl |iSl (iF , i∗Rl\F ))(−1)|D\F |

and pPl denotes Pl-marginal probabilities and pRl |iSl denotes Rl-conditional prob-
abilities given the values iSl

of the Sl-marginal cell.
We will say that (3.1) is strong hyper Markov with respect to G if, under (3.1),

the variables

θ(DP1), θ(iSl
,DRl ), iSl

∈ ISl
, l = 2, . . . , k

are mutually independent. This is clearly a generalization of the strong hyper
Markov property as given by Dawid and Lauritzen [8]. We have the following
result.

THEOREM 3.1. If θD follows the generalized hyper Dirichlet as defined
in (3.1), then the joint distribution of the parameters in (3.13) has density∏k

l=2 IDSl (s
Sl , α)∏k

l=1 IDPl (s
Pl , α)

∏k
l=1 exp{〈θ(DPl ), s(DPl )〉 − αk(θ(DPl ))}∏k
l=2 exp{〈θ(DSl ), s(DSl )〉 − αk(θ(DSl ))}

= exp{〈θ(DP1), s(DP1)〉 − αk(θ(DP1))}
IDP1 (s

P1, α)

×
k∏

l=2

∏
iS∈ISl

1

IDRl (s
Rl , s(iSl

))
(3.14)

× exp{〈θ(iSl
,DRl ), s(iSl

,DRl )〉
− s(iSl

)k(θ(iSl
,DRl ))},

where sA = (s(iD),D ∈ DA, iD ∈ I ∗
D) for A = Pl,Rl or Sl , and

〈θ(DPl ), s(DPl )〉 = ∑
D⊆

DPl
Pl

∑
iD∈I∗

D

θPl (iD)s(iD),
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〈θ(iSl
,DRl ), s(iSl

,DRl )〉 = ∑
D⊆

DRl
P1

∑
iD∈I∗

D

θRl |iSl (iD)s(iSl
, iD),

k(θ(DPl )) = log
(

1 + ∑
D⊆	Pl

∑
iD∈I∗

D

exp
∑

F⊆
DPl

D

θ(iF )

)
,

k(θ(iSl
,DRl )) = log

(
1 + ∑

D⊆	Rl

∑
iD∈I∗

D

exp
∑

F⊆
DRl

D

θRl |iSl (iF )

)
.

The parameters in (3.13) are therefore independently distributed; that is, (3.1) is
strong hyper Markov.

The proof is long and tedious but without conceptual difficulties and is ommitted
here. It is important to note that s(iD),D ∈ D, iD ∈ I ∗

D is always the marginal
count in the fictive contingency table attached to the prior, whether it occurs in
the marginal distribution of Pl , the marginal distribution of Sl or the conditional
distribution of Rl given iSl

.

4. The induced prior on the cell probabilities. In this section, we give the
expression of the induced conjugate prior in terms of the cell probability parame-
ter, first for graphical models Markov with respect to a decomposable G showing
that we obtain the hyper Dirichlet, then for general hierarchical models, which
includes, in particular, models Markov with respect to an arbitrary graph G. The
proofs of all our results are given in the Appendix.

4.1. Decomposable graphical models. We first consider the case of the
multinomial Markov, with respect to the decomposable graph G with set of cliques
C = {Cl, l = 1, . . . , k} and set of minimal separators S = {Sl, l = 2, . . . , k}, so
that D is the set of all possible subsets of C. Since in this subsection we deal
with joint cell probabilities as well as Cl-marginal or Sl-marginal probabilities, in
the expression p(iD, i∗Dc),p

Cl (iD, i∗Dc),p
Sl (iD, i∗Dc), it will be understood that we

have D as a subset of, respectively, V,Cl and Sl , and Dc as the complement of D

in V,Cl and Sl . We also, temporarily, do not use the i(D) notation but rather the
more explicit, albeit more cumbersome, (iD, i∗Dc) for i(D).

Dawid and Lauritzen [8] defined the standard conjugate prior in terms of the
clique and separator cell probabilities

pCl (iD, i∗Dc), D ∈ DCl , l = 1, . . . , k,
(4.1)

pSl (iD, i∗Dc), D ∈ DSl , l = 2, . . . , k, iD ∈ I ∗
D,

and called it the hyper Dirichlet. Its density is equal to∏k
l=1 DirCl

(p
Cl
∅ ,pCl (iD, i∗Dc);αCl

∅ , αCl (iD, i∗Dc),D ∈ DCl , iD ∈ I ∗
D)∏k

l=2 DirSl
(p

Sl
∅ ,pSl (iD, i∗Dc);αSl (iD, i∗Dc),D ∈ DSl , iD ∈ I ∗

D)
(4.2)
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with

DirCl

(
p

Cl
∅ ,pCl (iD, i∗Dc);αCl (iD, i∗Dc),D ∈ DCl , iD ∈ I ∗

D

)

= 
(α
Cl
∅ + ∑

D∈DCl

∑
iD∈I∗

D
αCl (iD, i∗Dc))


(α
Cl
∅ )

∏
D∈DCl ,iD∈I∗

D

(αCl (iD, i∗Dc))

(p
Cl
∅ )α

Cl
∅

−1

× ∏
D∈DCl ,iD∈I∗

D

(pCl (iD, i∗Dc))
αCl (iD,i∗

Dc )−1

with a similar expression for DirSl
and where the hyper parameters(

α
Cl
∅ , αCl (iD, i∗Dc),D ∈ DCl , iD ∈ I ∗

D

)
and

(4.3) (
α

Sl
∅ , αSl (iD, i∗Dc),D ∈ DSl , iD ∈ I ∗

D

)
are hyperconsistent in the sense that, if Sl = Ci ∩ Cj , the marginal distributions
on Sl obtained from either of the clique marginal distributions on Ci or Cj are the
same.

In this subsection, we derive the prior induced from πD(θD |s, α) in (3.1) by the
change of variable from θD , as defined in (2.18), to pG, as defined below in (4.4).
We choose to work with pG which is the cell parametrization expressed in terms
of marginal clique probabilities rather than with pD as in (2.23) because we want
to compare the induced prior on pG with the hyper Dirichlet. The probabilities
in (4.1) are not all free variables. One way to choose the free marginal probabilities
is as follows:

pG =
(
pCl (iD, i∗Dc),D ∈ DCl

∖ k⋃
j=2

DSj , l = 1, . . . , k,

(4.4)

pSl (iD, i∗Dc),D ∈ DSl , l = 2, . . . , k, iD ∈ I ∗
D

)
.

The Jacobian of the change of variable θD 
→ pG is given in the following lemma.

LEMMA 4.1. The Jacobian of the change of variables from θD = (θ(iD),
D ∈ D , iD ∈ I ∗

D) as given in (2.3) to pG as given in (4.4) is

∣∣∣∣ dθ

dpG

∣∣∣∣−1

=
∏k

l=1 p
Cl
∅

∏
D∈DCl

∏
iD∈I∗

D
pCl (iD, i∗Dc)∏k

l=2 p
Sl
∅

∏
D∈DSl

∏
iD∈I∗

D
pSl (iD, i∗Dc)

.(4.5)

This lemma has already been stated in Leucari [20] in a slightly different form,
and we give it here without proof. The following proposition says that the induced
prior on pG is the hyper Dirichlet, which was also given by Leucari [20]. Here, we
additionally give the correspondence between (s, α) and (4.3).
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PROPOSITION 4.1. When the graph G is decomposable with set of cliques
(Ci, i = 1, . . . , k) and sets of minimal separators (Si, i = 2, . . . , k), the conjugate
prior induced from (3.1) is identical to the hyper Dirichlet (4.2) with hyper para-
meters (4.3), where

αCl (iD, i∗Dc) = ∑
Cl⊇F⊇D

∑
jF ∈I∗

F

(jF )D=iD

(−1)|F\D|s(jF ),

(4.6)
α

Cl
∅ = α + ∑

D⊆Cl

(−1)|D| ∑
i∈I∗

D

s(iD),

αSl (iD, i∗Dc) = ∑
Sl⊇F⊇D

∑
jF ∈I∗

F

(jF )D=iD

(−1)|F\D|s(jF ),

(4.7)
α

Sl
∅ = α + ∑

D⊆Sl

(−1)|D| ∑
i∈I∗

D

s(iD).

Moreover,

ID(s, α) =
∏k

l=1 
(α
Cl
∅ )

∏
D∈DCl

∏
iD∈I∗

D

(αCl (iD, i∗Dc))


(α)
∏k

l=2 
(α
Sl
∅ )

∏
D∈DSl

∏
iD∈I∗

D

(αSl (iD, i∗Dc))

.(4.8)

4.2. Connection with previous work. From Proposition 4.1 above, from the
form (4.2) of the hyper Dirichlet and the form of the multinomial Markov with
respect to G decomposable, we see that the prior induced on pG from the DY
conjugate prior (3.1) on θD has the same form as the likelihood function in terms
of pG. We say that this induced prior on pG is standard conjugate, following the
definition of Consonni and Veronese [5] who showed that, for the one-dimensional
NEFs, the prior induced from the DY conjugate prior on the canonical parame-
trization θ onto the mean parametrization μ is standard conjugate if and only if
the NEF has a quadratic variance function. Gutierrez-Pena and Smith [15] studied
the case of a multivariate NEF. They first defined two parametrizations φ and λ to
be conjugate if the standard conjugate family of priors on λ was identical to that
induced from the standard conjugate family on φ by the change of variable from
φ to λ. They denoted this property φ 
 λ. They then showed, in their Theorem 1,
that φ 
 λ if and only if the Jacobian |dφ

dλ
| is proportional to the likelihood for λ.

From Lemma 4.1 and their Theorem 1, we can then immediately obtain that the in-
duced prior on pG is the hyper Dirichlet [though we cannot obtain (4.6) and (4.7)].
Gutierrez-Pena and Smith [15] showed that the characterization of Consonni and
Veronese [5] could not be extended to multivariate NEF’s and conjectured that,
with an extended definition of conjugacy, quadratic variance functions could char-
acterize multivariate NEF with θ and μ conjugate.



A CONJUGATE PRIOR FOR DISCRETE MODELS 3451

The result in Proposition 4.1 provides a counterexample to this conjecture,
since it is easy to see that the variance function of the NEF Markov with respect
to G decomposable is not a quadratic function of μD . Leucari [20] had already
observed this and, also, that θD 
 μD . We have proved here, in addition, that
θD 
 μD 
 pG. The parametrization pG is of course different from pD as de-
fined in (2.23). This distinction is important, since pD is not a linear function
of μD , and, as we shall see in Example 4.1, the parametrizations θD is not conju-
gate to the parametrization pD , even in the case of a decomposable model.

4.3. Arbitrary graphical and hierarchical models. To obtain the conjugate
prior in terms of pD , we need to compute the Jacobian | dθD

dpD
|. Before doing so,

we need to define the following quantities. For C ∈ D,H ∈ E , iC ∈ I ∗
C, jH ∈ I ∗

H ,
let

F(iC, jH ) =
{

(−1)|C|−1, if (jH )C = iC ,
0, otherwise,

(4.9)

be the entries of a
∏

D∈D |I ∗
D| × ∏

H∈E |I ∗
H | matrix F , where the rows are in-

dexed by iC ∈ I ∗
C,C ∈ D and the columns by jH ∈ I ∗

H ,H ∈ E . We note that the
definition of F implies that∑

C∈D,iC∈I∗
D

F(iC, jH ) = ∑
C∈D,iC∈I∗

D

(jH )C=iC

F (iC, jH ) = ∑
C⊆DH

(−1)|C|−1.(4.10)

In the case of binary data for D and E as given in Section 2.4, the matrix F is

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 1 0 0 1
0 0 1 0 0 1 1 0 0
0 0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 1 1
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1

(4.11)
1 0 1 0 1 1 1
0 1 1 1 0 1 1
1 0 1 1 1 0 1
0 1 0 1 1 1 1
0 0 −1 0 0 −1 −1
0 0 −1 −1 0 0 −1
0 0 0 −1 −1 0 −1
0 0 0 0 −1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We also need the following two lemmas. Their proof is given in the Appendix.
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LEMMA 4.2. Let G be a nondecomposable prime graph, and let D be as
in (2.17). For the matrix F as described in (4.9), the sum of the entries in each
column jH , j ∈ I ∗

H ,H ∈ E	 is such that∑
iC∈I∗

C,C∈D

F(iC, jH ) = ∑
C⊆DH

(−1)|C|−1 = 1,(4.12)

if and only if the subgraph induced by H is decomposable and connected.

We are now in a position to give the expression of the Jacobian for general
graphical and hierarchical models. Let

U	 = {F ∈ E	|F is either nondecomposable or nonconnected}.
Let U = U	 ∪ {∅} and

a(H) =
( ∑

C⊆DH

(−1)|C|−1 − 1
)
, H ∈ E .(4.13)

LEMMA 4.3. The Jacobian J (pD) = |dpD
dθD

| of the transformation pD 
→ θD

is equal to

J (pD ) = ∏
D∈D
iD∈I∗

D

p(i(D))

(
1 − ∑

H∈E	
lH ∈I∗

H

p(l(H))
∑

F⊆DH

(−1)|F |−1
)

(4.14)

for general hierarchical models.
In the particular case of graphical models, (4.14) becomes

J (pD) = ∏
D∈D
iD∈I∗

D

p(i(D))

(
p∅ − ∑

H∈U	
iH ∈I∗

H

[p(i(H))a(H)]
)
.(4.15)

EXAMPLE 4.1. For the same model as in Example 3.1, the Jacobian (4.15) for
the graphical model Markov with respect to G and binary data, is

J = p(a)p(b)p(c)p(ab)p(bc)

(
p∅ − p(a)p(c)

p∅

)
.(4.16)

We note, in reference to our discussion in Section 4.2 that J does not have the
same form as the likelihood which is proportional to

p(a)xap(b)xbp(c)xcp(ab)xabp(bc)xbcp
x∅

∅ ,

where xa, xb, xc, xab, xbc and x∅ are appropriate integers. Therefore, θD and pD

are not conjugate parametrizations in the sense of Gutierez-Pena and Smith [15]
as defined in Section 4.2, even in the decomposable case.
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We can now give the main result of this section; that is, the conjugate prior for
pD induced from (3.1).

THEOREM 4.1. The conjugate prior distribution induced from (3.1) by the
change of variable θD 
→ pD is

π
p
D(pD |(s, α)) = K(pD)−1

IG(s,α)

∏
D∈D

∏
iD∈I∗

D

p(i(D))α(i(D))−1p
α∅−1
∅ ,(4.17)

where

α(i(D)) = ∑
F⊇D,F∈D

∑
jF ∈I∗

F

(jF )D=iD

(−1)F\Ds(iF ),(4.18)

α∅ = α − ∑
D∈D

∑
iD∈I∗

D

(−1)|D|s(iD)(4.19)

and where K(pD) = J (pD )∏
D∈D

∏
iD∈I∗

D
p(i(D))

and J (pD) is as in (4.14) for general

hierarchical models and (4.15) for graphical models.

This result follows immediately from the expression of the conjugate prior (3.1)
in terms of θD , (2.3) and Lemma 4.3.

EXAMPLE 4.2. When the graph is the four cycle with binary data as consid-
ered in Section 2.2, U = {ac, bd, abcd,∅}. From (4.11), (4.13) and the constraints
θ(E) = 0 for E /∈ D , it follows that a(ac) = a(bd) = 1, a(abcd) = −1. Moreover,

p(ac)

p∅

= p(a)p(c)

p2
∅

,
p(bd)

p∅

= p(b)p(d)

p2
∅

,

p(abcd)

p∅

= p(ab)p(bc)p(cd)p(da)

p(a)p(b)p(c)p(d)
.

For

α∅ = α − s(a) − s(b) − s(c) − s(d) + s(ab) + s(bc) + s(cd) + s(da),

we have

π(pD |(s, α)) = IG(s,α)−1p(a)s(a)−s(da)−s(ab)−1p(b)s(b)−s(ab)−s(bc)−1

× p(c)s(c)−s(bc)−s(cd)−1p(d)s(d)−s(cd)−s(da)−1p(ab)s(ab)−1

× p(bc)s(bc)−1p(cd)s(cd)−1p(da)s(da)−1

× p
α∅−1
∅

(
1 − papc

p2
∅

− pbpd

p2
∅

+ p(ab)p(bc)p(cd)p(da)

p(a)p(b)p(c)p(d)

)−1

.
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5. Example. Czech Autoworkers data. We illustrate the use of our new pri-
ors in model selection for a classical data set previously analyzed many times in the
literature. We first describe our model selection procedure, and then we describe
the data and the results of our model search. The C++ code for the implementation
of our methods can be obtained upon request from the authors.

5.1. Bayesian model selection. The Bayesian paradigm to model determina-
tion involves choosing models with high posterior probability selected from a
set M of competing models. We associate with each candidate model m ∈ M a
neighborhood nbd(m) ⊂ M. Any two models in m,m′ ∈ M are connected through
a path m = m1,m2, . . . ,mk = m′ such that mj ∈ nbd(mj−1) for j = 2, . . . , k. The
MC3 algorithm proposed by Madigan and York [23] constructs an irreducible
Markov chain mt , t = 1,2, . . . with state space M and equilibrium distribution
{p(m|(n)) :m ∈ M}, where (n) is the data in the form of a multi-way contingency
table, and p(m|(n)) is the posterior probability of m. We assume that all the mod-
els are a priori equally likely; hence, p(m|(n)) is proportional with the marginal
likelihood p((n)|m).

If the chain is in state mt at time t , we draw a candidate model m′ from a
uniform distribution on nbd(mt ). The chain moves in state m′ at time t + 1; that
is, mt+1 = m′ with probability

min
{

1,
p((n)|mt+1)/# nbd(mt+1)

p((n)|mt)/# nbd(mt )

}
,(5.1)

where # nbd(m) denotes the number of neighbors of m. Otherwise, the chain does
not move; that is, we set mt+1 = mt .

The marginal likelihood of a model m is given by the ratio of normalizing con-
stants

p((n)|m) = IDm(y + s,N + α)/IDm(s,α),(5.2)

where Dm are the possible interactions in m as in (2.14).
The evaluation of the marginal likelihoods and the specification of model neigh-

borhoods is done with respect to the particular properties of the set of candidate
models considered:

1. Hierarchical log-linear models. We calculate the marginal likelihood in (5.2)
through the Laplace approximation (see, e.g., Tierney and Kadane [28]) to the nor-
malizing constants for the prior and posterior distribution of log-linear model pa-
rameters. The neighborhood of a hierarchical model m consists of the hierarchical
models obtained from m by adding one of its dual generators (i.e., minimal terms
not present in the model) or deleting one of its generators (i.e., maximal terms
present in the model). For details, see Edwards and Havranek [14] and Dellaportas
and Forster [9].

2. Graphical log-linear models. We evaluate the marginal likelihood in two dif-
ferent ways: (i) we use the Laplace approximation to the normalizing constants
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IDm(y + s,N + α) and IDm(s,α) as we did in the hierarchical case; (ii) we de-
compose the independence graph Gm of m in its sequence of prime components
and separators and compute IDm as in (3.14). Dobra and Fienberg [12] describe ef-
ficient algorithms for generating such a decomposition. The normalizing constants
for the complete prime components and the separators (which are required to be
complete) can be obtained explicitly (see Proposition 4.1). The normalizing con-
stants for the incomplete prime components are estimated with the Laplace approx-
imation. The neighborhood of a graphical model is defined by the graphs obtained
by adding or removing one edge from Gm. Since each graph has the same number
of neighbors, the acceptance probability (5.1) reduces to min{1,

p((n)|mt+1)
p((n)|mt)

}.
3. Decomposable log-linear models. In this case, the marginal likelihood can be

explicitly calculated as in Proposition 4.1. The neighborhood of a decomposable
model m is given by those models whose independence graphs are decomposable
and are obtained by adding or deleting one edge from Gm. Tarantola [27] provides
algorithms for determining which edges can be changed in a given decomposable
graph such that the resulting graph is still decomposable. The size of the neighbor-
hoods of two decomposable graphs that differ by one edge is not necessarily the
same; thus, the acceptance probability (5.1) does not simplify as it did for graphical
log-linear models.

5.2. Results. We study the 26 Czech Autoworkers table from Edwards and
Havranek [14]. This cross-classfication of 1841 men gives six potential risk factors
for coronary trombosis: (a) smoking, (b) strenuous mental work, (c) strenuous
physical work, (d) systolic blood pressure, (e) ratio of beta and alpha lipoproteins
and (f ) family anamnesis of coronary heart disease.

In the absence of any prior information, we specify a proper conjugate prior
for log-linear parameters through a fictive 26 table with all entries equal to α/64
for some α > 0. All of the log-linear models are therefore constrained to have the
same effective sample size 1841+α. We remark that this approach to constructing
a conjugate prior is equivalent to eliciting hyper-Dirichlet priors (see Madigan and
York [22]). While the hyper-Dirichlet priors are restricted to decomposable log-
linear models, the properties of our conjugate priors extend naturally to graphical
and hierarchical log-linear models.

For each α ∈ {0.01,0.1,1,2,3,32,64,128} we perform separate searches as
follows: (i) a search over decomposable graphical models, (ii) a search over graph-
ical models with marginal likelihoods estimated through decomposing the inde-
pendence graph in its prime subgraphs, (iii) a search over graphical models with
marginal likelihoods estimated through a single Laplace approximation and (iv) a
search over hierarchical log-linear models. The results are shown in Tables 1,
2, 3 and 4. The four searches are labeled, respectively, “Dec.,” “Graph./PM,”
“Graph./Lapl” and “Hierar.” For each search type and each value of α, we run
four separate Markov chains from a random starting model for 25,000 iterations
with a burn-in of 5000 iterations. We give the models whose normalized posterior
probabilities are greater than 0.05 as well as the median log-linear models that are
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TABLE 1
The most probable log-linear models for α ∈ {0.01,0.1}

Search α = 0.01 α = 0.1

Dec. ac|bc|d|be|f 0.278 ac|bc|d|be|f 0.172
ac|bc|d|e|f 0.236 ac|bc|be|de|f 0.156

ac|bc|d|ae|f 0.212 ac|bc|d|ae|f 0.131
ac|bc|d|ce|f 0.147 ac|bc|ae|de|f 0.119
ac|bc|d|e|f med ac|bc|d|e|f med

Graph./PM ac|bc|d|ae|be|f 0.856 ac|bc|d|ae|be|f 0.380
ac|bc|ae|be|de|f 0.078 ac|bc|ae|be|de|f 0.344

ac|bc|ad|ae|be|f 0.140
ac|bc|d|ae|be|f med ac|bc|d|ae|be|f med

Graph./Lapl ac|bc|ae|be|de|f 0.393 ac|bc|ae|be|de|f 0.450
ac|bc|d|ae|be|f 0.336 ac|bc|ad|ae|be|f 0.184

ac|bc|ad|ae|be|f 0.160 ac|bc|d|ae|be|f 0.122
ac|bc|be|ade|f 0.067

ac|bc|d|ae|be|f med ac|bc|ae|be|de|f med

Hierar. ac|bc|ad|ae|ce|de|f 0.251 ac|bc|ad|ae|ce|de|f 0.362
ac|bc|ad|ae|be|de|f 0.157 ac|bc|ad|ae|be|de|f 0.227

ac|bc|ae|ce|de|f 0.136 ac|bc|ae|ce|de|f 0.062
ac|bc|d|ae|ce|f 0.116

ac|bc|ae|be|de|f 0.085
ac|bc|d|ae|be|f 0.0725

ac|bc|ad|ae|ce|f 0.055
ac|bc|ad|ae|ce|de|f med ac|bc|ad|ae|ce|de|f med

labeled with “med.” A median model contains those interaction terms having a
posterior inclusion probability greater than 0.5.

We compare our highest posterior probability models with the log-linear models
identified by Dellaportas and Forster [9], who proposed a reversible jump Markov
chain Monte Carlo with normal priors for log-linear parameters, and with the de-
composable models selected by Madigan and Raftery [21], who employed a hyper-
Dirichlet prior for cell probabilities. Our most probable decomposable model
bc|ace|ade|f for α = 1,2 or 3 is the same decomposable model as the one identi-
fied by both Dellaportas and Forster [9] and Madigan and Raftery [21]. Our most
probable graphical model ac|bc|be|ade|f for α = 1,2 or 3 in the “Graph./Lapl”
search is precisely the most probable model of Dellaportas and Forster [9] and
is the second best model selected by Edwards and Havranek [14]. Similarly, our
most probable hierarchical model ac|bc|ad|ae|ce|de|f for α = 1,2 or 3 coincides
with the model with the largest posterior probability identified by [9]. The same
consistency of the results obtained holds for most of the highest probable models
selected by us and by Dellaportas and Forster [9].
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TABLE 2
The most probable log-linear models for α ∈ {1,2}

Search α = 1 α = 2

Dec. bc|ace|ade|f 0.250 bc|ace|ade|f 0.261
bc|ace|de|f 0.104 bc|ace|de|f 0.177
bc|ad|ace|f 0.102 bc|ace|de|bf 0.096

ac|bc|be|de|f 0.060 bc|ad|ace|f 0.072
bc|ace|de|bf 0.051 bc|ace|de|bf 0.065
bc|ace|de|f med bc|ad|ace|de|f med

Graph./PM ac|bc|ae|be|de|f 0.446 ac|bc|ae|be|de|f 0.371
ac|bc|ad|ae|be|f 0.182 ac|bc|ad|ae|be|f 0.151
ac|bc|ae|be|de|bf 0.092 ac|bc|ae|be|de|bf 0.136

ac|bc|d|ae|be|f 0.054 ac|bc|ae|be|de|ef 0.057
ac|bc|ad|ae|be|bf 0.055

ac|bc|ae|be|de|f med ac|bc|ae|be|de|f med

Graph./Lapl ac|bc|be|ade|f 0.301 ac|bc|be|ade|f 0.341
ac|bc|ae|be|de|f 0.203 ac|bc|be|ade|bf 0.141
ac|bc|be|ade|bf 0.087 ac|bc|ae|be|de|f 0.116

ac|bc|ad|ae|be|f 0.083 ac|bc|be|ade|ef 0.059
ac|bc|ae|be|de|bf 0.059

ac|bc|ad|ae|be|de|f med ac|bc|be|ade|f med

Hierar. ac|bc|ad|ae|ce|de|f 0.241 ac|bc|ad|ae|ce|de|f 0.175
ac|bc|ad|ae|be|de|f 0.151 ac|bc|ad|ae|be|de|f 0.110

ac|bc|ad|ae|be|ce|de|f 0.076 ac|bc|ad|ae|be|ce|de|f 0.078
ac|bc|ad|ae|ce|de|bf 0.070 ac|bc|ad|ae|ce|de|bf 0.072
ac|bc|ad|ae|ce|de|f med ac|bc|ad|ae|be|ce|de|f med

Tables 1, 2, 3 and 4 show the sensitivity of the highest posterior probability
models with respect to the choice of priors and to the class of log-linear mod-
els considered. For a fixed α, the highest probable models become sparser as we
sequentially relax the structural constraints from decomposable to graphical and
hierarhical. We remark that the most probable graphical (hierarchical) models can
be obtained from the most probable decomposable (graphical) models by drop-
ping some of the second-order interaction terms. Increasing α from 1 to 128 (i.e.,
increasing each fictive cell count from 1/64 to 2) leads to the inclusion of addi-
tional terms in the highest probable models. We also remark that the two estimation
methods for the marginal likelihoods of graphical models yield consistent results.
For α = 0.01 and α = 0.1, we note that our results, though not abherent, are not
as entirely consistent with the results obtained for α ∈ {1,2,3,64,128} as these
results are between themselves or with results obtained in previous studies. This
is not surprising, since for values of α very close to 0, we encounter two poten-
tial problems: first, the unknown behaviour of the Bayes factor as α tends to 0
and, second, the evaluation of the prior normalizing constant. The first problem is
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TABLE 3
The most probable log-linear models for α ∈ {3,32}

Search α = 3 α = 32

Dec. bc|ace|ade|f 0.312 bc|ace|ade|bf 0.136
bc|ace|ade|bf 0.155 ace|bce|ade|bf 0.098

bc|ace|de|f 0.107 bc|ace|ade|f 0.062
bc|ace|ade|ef 0.065 abc|ace|ade|bf 0.060
bc|ace|de|bf 0.053 bc|ace|ade|ef 0.057
bc|ace|ade|f med bc|ace|ade|f med

Graph./PM ac|bc|ae|be|de|f 0.316 bc|ace|ade|bf 0.068
ac|bc|ae|be|de|bf 0.157 ac|bc|ade|bde|bf 0.050
ac|bc|ad|ae|be|f 0.128
ac|bc|ae|be|de|ef 0.066
ac|bc|ad|ae|be|bf 0.064
ac|bc|ae|be|de|f med bc|be|ace|ade|f med

Graph./Lapl ac|bc|be|ade|f 0.339 ac|bc|be|ade|bf 0.188
ac|bc|be|ade|bf 0.172 ac|bc|be|ade|f 0.103

ac|bc|ae|be|de|f 0.077 ac|bc|be|ade|ef 0.079
ac|bc|be|ade|ef 0.072 ac|bc|be|ade|af |bf 0.057

ac|bc|be|ade|bf |df 0.052
ac|bc|be|ade|f med ac|bc|be|ade|bf med

Hierar. ac|bc|ad|ae|ce|de|f 0.137 ac|bc|ad|ae|be|ce|de|bf 0.020
ac|bc|ad|ae|be|de|f 0.086

ac|bc|ad|ae|be|ce|de|f 0.075
ac|bc|ad|ae|ce|de|bf 0.069

ac|bc|ad|ae|be|ce|de|f med ac|bc|ad|ae|be|ce|de|bf med

a very important general problem regarding the behaviour of Bayes factors when
the total “fictive cell counts” tends to 0 (see Steck and Jaakkola [26] for related
results on directed acyclic graphs). This problem needs careful study and will be
the subject of further work for our particular prior distributions. In this paper, we
confine ourselves to observing a difference in the behaviour of the model selection
results between the case α ∈ {0.01,0.1} and the results obtained for other larger
values of α. Regarding the second problem, we have observed numerically that,
for α close to 0, the prior distribution for each θD is very flat; hence, the Laplace
approximation is bound to yield poor results.

A very interesting question is whether there exists evidence of a link between f

and the other five risk factors. Whittaker [30], page 263, chooses the graphical
model abce|ade|bf that links f with b, strenuous mental work. The most probable
models identified by Edwards and Havranek [14], Madigan and Raftery [21] or
Dellaportas and Forster [9] indicate the independence of f from the other risk
factors. Their findings are consistent with the models we identify for smaller values
of α. However, as we increase the grand total α in the prior fictive table we use, a
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TABLE 4
The most probable log-linear models for α ∈ {64,128}

Search α = 64 α = 128

Dec. ace|bce|ade|bcf 0.134 ace|bce|ade|bcf 0.359
ace|bce|ade|bf 0.118 ace|ade|bcf |cef 0.133

ace|ade|bcf 0.081 abc|ace|ade|bcf 0.105
bc|ace|ade|bf 0.071 abc|abe|ade|bcf 0.104

abc|ace|ade|acf 0.062 ace|ade|acf 0.089
abc|ace|ade|bf 0.055 abce|ade|acf 0.060

abc|abe|ade|acf 0.052 ace|ade|bcef 0.051
ace|ade|abcf 0.050

bc|be|ace|ade|bf med be|ace|ade|bcf med

Graph./PM ace|bce|ade|bcf 0.091 ace|bce|ade|bcf 0.280
ace|bce|ade|bf 0.080 ace|bce|ade|bde|bcf 0.138

ace|ade|acf 0.055 ace|ade|bcf |cef 0.104
abc|ace|ade|bcf 0.082
abc|abe|ade|bcf 0.081

ace|ade|bcf 0.070
bc|be|ace|ade|bf med be|ace|ade|bcf med

Graph./Lapl ac|bc|be|ade|bf 0.162 ac|be|ade|bcf 0.161
ac|be|ade|bcf 0.128 ace|bce|ade|bcf 0.114

ac|bc|be|ade|af |bf 0.068 ac|be|ade|bcf |df 0.109
ac|bc|be|ade|bf |df 0.068 ace|bce|ade|bcf |df 0.077

ac|bc|be|ade|ef 0.068 ac|ade|bcf |bef 0.069
ac|bc|be|ade|f 0.057 ac|ade|bcf |bef |def 0.064

ac|be|ade|bcf |df 0.054
ac|bc|be|ade|bf med ac|be|ade|bcf med

Hierar. ac|bc|ad|ae|be|ce|de|bf 0.023 ac|ad|ae|be|ce|de|bcf |ef 0.012
ac|bc|ad|ae|be|ce|de|bf med ac|ad|ae|be|ce|de|bcf |df |ef med

direct link between b and f appears in our highest probable models. Table 5 shows
the posterior inclusion probability of the first-order interaction between b and f

TABLE 5
Posterior inclusion probabilities for edge bf

α

Search 0.01 0.1 1 2 3 32 64 128

Dec. 0.002 0.022 0.149 0.219 0.261 0.49 0.645 0.918
Graph./PM 0.002 0.033 0.152 0.222 0.263 0.476 0.608 0.898
Graph./Lapl 0.027 0.080 0.205 0.260 0.296 0.570 0.716 0.940
Hierar. 0.028 0.084 0.227 0.297 0.343 0.708 0.867 0.995
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for various choices of α and structural model constraints. Table 5 seems to confirm
Whittaker’s findings, because the posterior probability of the edge bf increases
from 0.002 to almost 1. This edge does not appear in sparser models corresponding
to smaller values of α, because there are stronger associations among a, b, c, d

and e than between f and another risk factor.

6. Further developments. The family of conjugate priors introduced in this
paper has a large area of applicability. Dobra and Massam [13] make use of these
priors to analyze eight and 16-dimensional contingency tables. Due to the inherent
sparsity of such datasets, penalizing for increased model complexity is key and can
be done naturally in the framework we have described. The same priors are used in
Dobra et al. [11] to develop variable selection approaches for regressions induced
by log-linear models. Their examples involve data from genomewide studies.

APPENDIX

A.1. Proof of Lemma 4.1. Let μD = {μ(iD) = E(y(iD)),D ∈ D, iD ∈ I ∗
D}

denote the mean parameter of (2.21). Leucari (2004) has proved that the Jacobian
| dθD
dμD

| can be expressed as the inverse of the right-hand side of (4.5) for the binary
case. The proof can immediately be extended to the discrete data case. To complete
the proof of Lemma 4.1, it remains to show that the Jacobian of μD 
→ pG is equal
to 1. This is immediate, since the parameters in (4.4) are such that

pCl (iD, i∗Dc) = ∑
F⊆Cl\D

∑
jF ∈I∗

F

(−1)|F |μ(iD, jF ),

pSl (iD, i∗Dc) = ∑
F⊆Sl\D

∑
jF ∈I∗

F

(−1)|F |μ(iD, jF ).

The Jacobian of μD 
→ pG is therefore, 1 and the lemma is proved.

A.2. Proof of Proposition 4.1. The distribution of Y in (2.21) is Markov with
respect to G; therefore,

p(i) =
∏k

l=1 pCl (iCl
)∏k

l=2 pSl (iSl
)
.(A.1)

Since we are dealing with joint as well as marginal probabilities, we revert to the
more precise notation (iF , i∗Fc) rather than i(F ). Then,

θ(iE) = ∑
F⊆E

(−1)|E\F | logp(iF , i∗Fc)

= ∑
F⊆E

(−1)|E\F |
(

k∑
l=1

logpCl (iF∩Cl
, i∗Fc∩Cl

) −
k∑

l=2

logpSl (iF∩Sl
, i∗Fc∩Sl

)

)
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=
k∑

l=1

( ∑
F⊆E

(−1)|E\F | logpCl (iF∩Cl
, i∗Fc∩Cl

)

)

−
k∑

l=2

( ∑
F⊆E

(−1)|E\F | logpSl (iF∩Sl
, i∗Fc∩Sl

)

)

=
k∑

l=1

θCl (iE∩Cl
) −

k∑
l=2

θSl (iE∩Sl
).

If E ⊆ Cl , E ∩ Cl = E and θCl (iE∩Cl
) = θCl (iE). If E �⊆ Cl , then, by Lemma 2.1,

θCl (iE∩Cl
) = 0 and, similarly, for θSl (iE∩Sl

). We therefore have

θ(iD) =
k∑

l=1

θCl (iD) −
k∑

l=2

θSl (iD), D ∈ D,(A.2)

where

θCi (iD) = ∑
F⊆D

(−1)|D\F | logpCi (iF , i∗Fc∩Ci
) for D ⊆ Ci,

θ
Ci
∅ = logp

Ci
∅ ,

θCi (iD) = 0 for D �⊆ Ci,

and similar expressions for θSi (iD) (see also Consonni and Leucari [4] for the
derivation of these formulas in the case of binary data). For the remainder of this
proof, it will be understood that, for E ⊆ Cl , we use the notation pCl (iE, i∗Ec) for
pCl (iE, i∗Ec∩Cl

). Now, from (A.1), we also have

logp∅ =
k∑

l=1

logp
Cl
∅ −

k∑
l=2

logp
Sl
∅ .

Therefore, (3.1) can be written as

πG(θD(pG)|s, α)

∝
( k∏

l=1

exp
{ ∑

D∈DCl

∑
iD∈I∗

D

( ∑
E⊆D

(−1)|D\E| logpCl (iE, i∗Ec)

)
s(iD)

+ α logp
Cl
∅

})

×
( k∏

l=2

exp
{ ∑

D∈DSl

∑
iD∈I∗

D

( ∑
E⊆D

(−1)|D\E| logpSl (iE, i∗Ec)

)
s(iD)

+ α logp
Sl
∅

})−1

(A.3)
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=
∏k

l=1 exp{∑E∈DCl

∑
iE∈I∗

E
αCl (iE, i∗Ec) logpCl (iE, i∗Ec) + α

Cl
∅ logp

Cl
∅ }∏k

l=2 exp{∑E∈DSl

∑
iE∈I∗

E
αSl (iE, i∗Ec) logpSl (iE, i∗Ec) + α

Sl
∅ logp

Sl
∅ }

=
∏k

l=1(p
Cl
∅ )α

Cl
∅

∏
E∈DCl

∏
iE∈I∗

E
(pCl (iE, i∗Ec))

αCl (iE,i∗
Ec )

∏k
l=2(p

Sl
∅ )α

Sl
∅

∏
E∈DSl

∏
iE∈I∗

E
(pSl (iE, i∗Ec))

αSl (iE,i∗
Ec )

,

where αCl (iE, i∗Ec), α
Sl (iE, i∗Ec), α

Cl
∅ and α

Sl
∅ are as defined in (4.6) and (4.7).

The induced prior on pG is obtained by multiplying (A.3) by the Jacobian (4.5)
and it follows immediately that it is the hyper Dirichlet with hyper parameters as
given in (4.6) and (4.7).

The expression of (4.8) is obtained by noticing that, for any Cl ,

α
Cl
∅ + ∑

E∈DCl

∑
iE∈I∗

E

αCl (iE, i∗Ec) = α = α
Sl
∅ + ∑

E∈DSl

∑
iE∈I∗

E

αSl (iE, i∗Ec).

This completes the proof.

A.3. Proof of Lemma 4.2. For ease of notation, we will give the proof of the
lemma in the case of binary data. Given definition (4.9), the proof for binary and
discrete data are exact parallel of each other. Since, for binary data, for each C ∈ D
and H ∈ E	 there is only one cell in I ∗

C and I ∗
H , respectively, we will adopt the

notation

FC,H = F(iC, jH ), C ∈ D, H ∈ E .

Let us first prove that, if H is decomposable, (4.12) is true. We proceed by induc-
tion on the number k of cliques of H . Let C = {C1, . . . ,Ck} be a perfect ordering
of the cliques of H .

If H is complete, that is, k = 1, we consider two cases, the case where |H | is
even and the case where it is odd. For |H | = 2p,p ∈ N, there are ne = ∑p

k=1

(|H |
2k

)
nonempty subsets of H of even cardinality and no = ∑p−1

k=0

( |H |
2k+1

)
subsets of odd

cardinality. Therefore,

∑
C⊆DH

(−1)|C|−1 =
2p∑
k=1

(
2p

k

)
(−1)k+1 = (1 − 1)2p −

(
2p

0

)
(−1)1 = 1

and (4.12) is verified. We omit the proof for the case |H | = 2p − 1, which is
parallel to that of the previous case. Therefore, (4.12) is verified for k = 1.

Let us now assume that H is decomposable but not complete, that is, k > 1, and
let us assume that (4.12) is true for any decomposable subset with k − 1 cliques.
It is well known from the theory of decomposable graphs that, if we write Hk−1 =
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⋃k−1
j=1 Cj , then H = Hk−1 ∪ (Ck \ Sk), where Sk = Hk−1 ∩ Ck is the kth minimal

separator in H . Therefore, we have

∑
C⊆DH

FC,H = ∑
C⊆DHk−1

FC,H +
( ∑

C⊆DCk

FC,H − ∑
C⊆DSk

FC,H

)
.(A.4)

The first term on the right-hand side of (A.4) is equal to 1 by our induction as-
sumption, while each one of the two other terms is also equal to 1, because both
Ck and Sk are complete; therefore, (4.12) is also verified for decomposable H .

Let us now prove that if H is not decomposable and connected,
∑

C⊆DH FC,H

cannot be equal to 1. If H is not connected and its connected components
H(1), . . . ,H (l), for some l ≥ 2, are all decomposable, we clearly have

∑
C⊆DH

FC,H =
l∑

j=1

( ∑
C⊆DH(j)

FC,H(j)

)
�= 1.

If H is not connected and its components are not all decomposable, this implies
that there is a nondecomposable subset F1 of G, which can be separated from
another subset F2 of G, but this contradicts our assumption that G is a prime
component of G. So, this case does not occur.

If H is not decomposable and connected, consider its set of cliques {C1, . . . ,

Ck}. Since H is not decomposable, there is no perfect ordering of the cliques;
therefore, for any given ordering, there exists a nonempty subset Q ⊆ {3, . . . , k}
such that, for j ∈ Q, there is no i < j in the given ordering of the cliques of H

with Sj = Cj ∩ (
⋃j−1

l=1 Cl) ⊆ Ci . Therefore,

Sj = Cj ∩
(j−1⋃

l=1

Cl

)
=

sj⊕
l=1

Sjl
, 2 ≤ sj ≤ j − 1,

where the Sjl
can be chosen to be disjoints, with Sjl

⊆ Cj ∩ Cm for some m ∈
{1, . . . , j − 1}.

For j ∈ Q = {2, . . . , k}\Q, there exists i < j in the given ordering of the cliques
of H such that Sj ⊆ Ci . Therefore,

∑
C⊆DH

FC,H = ∑
C⊆DC1

FC,H + ∑
j∈Q

( ∑
C⊆DCj

FC,H − ∑
C⊆DSj

FC,H

)
(A.5)

+ ∑
j∈Q

( ∑
C⊆DCj

FC,H −
sj∑

l=1

∑
C⊆DSjl

FC,H

)
.(A.6)

The sums
∑

C⊆DU FC,H ,U = C1,Cj , Sj , j ∈ Q are all equal to 1, since each
of C1,Cj , Sj , j ∈ Q are complete and connected; therefore, the right-hand side of
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(A.5) is equal to 1. For the same reason, on line (A.6), for U = Cj ,Sjl
, j ∈ Q, l =

1, . . . , sj ,
∑

C⊆DU FC,H = 1. Since sj ≥ 2,

∑
C⊆DCj

FC,H −
sj∑

l=1

∑
C⊆DSjl

FC,H ≤ −1, j ∈ Q.

Therefore, the sum on line (A.6) is less than or equal to −|Q|. It follows that∑
C⊆DH

FC,H ≤ 0

and in particular it cannot be equal to 1. The lemma is now proved.

A.4. Proof of Lemma 4.3. The rows and columns of the Jacobian of the
change of variables pD 
→ θD is a dD × dD determinant with rows and columns
indexed by T ∗

D = {iD,D ∈ D, iD ∈ I ∗
D} ordered in an arbitrary manner. For

iD ∈ T ∗
D , the iD-column is the vector of derivatives of p(i(D)), with respect to

θ(jC), jC ∈ T ∗
D . From (2.19), straightforward differentiation shows that

dp(i(D))

dθ(jC)
= p(i(D))

[
δ(iD)C (jC) − ∑

(lH )C=jC

H∈E	,lH ∈I∗
E

p(l(H))

]
,(A.7)

where

δ(iD)C (jC) =
{

1, if (iD)C = jC ,
0, otherwise.

We note that the factor p(i(D)) is common to all components of the iD column
and therefore the Jacobian is equal to

J = detA
∏

iD∈T ∗
D

p(i(D)),

where A is the dD × dD matrix with entries

δ(iD)C (jC) − ∑
(lH )C=jC

H∈E	,lH ∈I∗
E

p(l(H)), iD ∈ T ∗
D , jC ∈ T ∗

D .

We also note that if C is maximal, with respect to inclusion, for the row r(jC) of A

corresponding to jC ∈ T ∗
D , the only entry for which δ(iD)C (jC) �= 0 is the diagonal

entry; therefore, for C maximal, we can write

r(jC) = e(jC) −
( ∑

(lH )C=jC

H∈E	,lH ∈I∗
E

p(l(H))

)
1t ,(A.8)

where e(jC) is the dD -dimensional vector with components all equal to 0 except
for the jC component, which is equal to 1, and 1 is the vector dD -dimensional vec-
tor with all its components equal to 1. If C is not maximal, the entries correspond-
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ing to the columns i(D) with (iD)C = jC (which implies that C ⊆ D) also have
δ(iD)C (jC) = 1. In order to eliminate, in the row r(jC) of A, the δ(iD)C (jC) = 1
for C strictly included in D, we replace r(jC) by

r̃(jC) = r(jC) + ∑
(lF )C=jC

F⊃C

(−1)|F\C|r(lF ),

which yields, for any jC ∈ T ∗
D ,

r̃(jC) = e(jC) −
( ∑

F⊇C,F∈D

(−1)|F\C| ∑
(lH )C=jC

H∈E	,lH ∈I∗
E

p(l(H))

)
1t .(A.9)

Clearly, for C maximal, r̃(jC) = r(jC). Moreover, the matrix Ã obtained by re-
placing r̃(jC) by r(jC) has the same determinant, as A and is equal to

Ã = IdD − U1t ,

where U is the column vector

U =
( ∑

F⊇C,F∈D

(−1)|F\C| ∑
(lH )C=jC

H∈E	,lH ∈I∗
H

p(l(H)), jC ∈ T ∗
D

)
.

It is well known that, for Ã of that form, det Ã = 1 − 1tU ; that is,

det Ã = 1 − ∑
jC∈T ∗

D

( ∑
F⊇C,F∈D

(−1)|F\C| ∑
(lH )C=jC

H∈E	,lH ∈I∗
H

p(l(H))

)

= 1 − ∑
H∈E	,lH ∈I∗

H

p(l(H))

( ∑
F⊆DH

∑
C⊆	F

(−1)|F\C|
)

= 1 − ∑
H∈E	,lH ∈I∗

H

p(l(H))

[ ∑
F⊆DH

(−1)|F |−1
]
,

where the last equality follows from the general fact that
∑

C⊆	F (−1)|F\C| =
(−1)|F |−1. Therefore, (4.14) for the general hierarchical model is now proved.

From (4.9) and Lemma 4.2, we see that in the particular case of graphical mod-
els, we have

det Ã = p∅ + ∑
H∈U	
iH ∈I∗

H

p(i(H)) + ∑
H /∈U	
iH ∈I∗

H

p(i(H))

− ∑
H∈E	
lH ∈I∗

H

p(l(H))

( ∑
F⊆DH

(−1)|F |−1
)
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= p∅ + ∑
H∈U	
iH ∈I∗

H

[
p(i(H))

(
1 − ∑

F⊆DH

(−1)|F |−1
)]

+ ∑
H /∈U	
iH ∈I∗

H

[
p(i(H))

(
1 − ∑

F⊆DH

(−1)|F |−1
)]

= p∅ + ∑
H∈U	
iH ∈I∗

H

[
p(i(H))

(
1 − ∑

F⊆DH

(−1)|F |−1
)]

= p∅ − ∑
H∈U	
iH ∈I∗

H

[p(i(H))a(H)],

which proves (4.15).
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