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ESTIMATING THE GUMBEL SCALE PARAMETER FOR LOCAL
ALIGNMENT OF RANDOM SEQUENCES BY IMPORTANCE

SAMPLING WITH STOPPING TIMES

BY YONIL PARK, SERGEY SHEETLIN AND JOHN L. SPOUGE

National Library of Medicine

The gapped local alignment score of two random sequences follows
a Gumbel distribution. If computers could estimate the parameters of the
Gumbel distribution within one second, the use of arbitrary alignment scor-
ing schemes could increase the sensitivity of searching biological sequence
databases over the web. Accordingly, this article gives a novel equation for
the scale parameter of the relevant Gumbel distribution. We speculate that the
equation is exact, although present numerical evidence is limited. The equa-
tion involves ascending ladder variates in the global alignment of random se-
quences. In global alignment simulations, the ladder variates yield stopping
times specifying random sequence lengths. Because of the random lengths,
and because our trial distribution for importance sampling occurs on a dif-
ferent sample space from our target distribution, our study led to a mapping
theorem, which led naturally in turn to an efficient dynamic programming
algorithm for the importance sampling weights. Numerical studies using sev-
eral popular alignment scoring schemes then examined the efficiency and ac-
curacy of the resulting simulations.

1. Introduction. Sequence alignment is an indispensable tool in modern
molecular biology. As an example, BLAST [2, 3, 18] (the Basic Local Alignment
Search Tool, http://www.ncbi.nlm.nih.gov/BLAST/), a popular sequence align-
ment program, receives about 2.89 submissions per second over the Internet. Cur-
rently, BLAST users can choose among only 5 standard alignment scoring sys-
tems, because BLAST p-values must be pre-computed with simulations that take
about 2 days for the required p-value accuracies. Moreover, adjustments for un-
usual amino acid compositions are essential in protein database searches [33], and
in that application, computational speed demands that the corresponding p-values
be calculated with crude, relatively inaccurate approximations [3]. Accordingly,
for more than a decade, much research has been directed at estimating BLAST
p-values in real time (i.e., in less than 1 sec) [7, 24, 26, 29], so that BLAST might
use arbitrary alignment scoring systems.

Several studies have used importance sampling to estimate the BLAST p-value
[7, 9, 26]. To describe importance sampling briefly, let E denote the expectation for
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some “target distribution” P, let Q be any distribution, and consider the equation

EX :=
∫

X(ω)dP(ω) =
∫

X(ω)
dP(ω)

dQ(ω)
dQ(ω).(1.1)

A computer can draw samples ωi (i = 1, . . . , r) from the “trial distribution” Q

to estimate the expectation: EX ≈ r−1 ∑r
i=1 X(ωi)[dP(ωi)/dQ(ωi)]. The name

“importance sampling” derives from the fact that the subsets of the sample space
where X is large dominate contributions to EX. By focusing sampling on the
“important” subsets, judicious choice of the trial distribution Q can reduce the
effort required to estimate EX. In importance sampling, the likelihood ratio
dP(ω)/dQ(ω) is often called the “importance sampling weight” (or simply, the
“weight”) of the sample ω.

A Monte Carlo technique called “sequential importance sampling” can sub-
stantially increase the statistical efficiency of importance sampling by generating
samples from Q incrementally and exploiting the information gained during the
increments to guide further increments. Although sequences might seem an espe-
cially natural domain for sequential sampling, most simulation studies for BLAST
p-values have used sequences of fixed length. In contrast, our study involves se-
quences of random length.

Here, as in several other importance sampling studies [7, 9, 26, 34], hidden
Markov models generate a trial distribution Q of random alignments between two
sequences, where the sequences have a target distribution P. The other studies
gloss over the fact that their trial and target distributions occur on different sample
spaces, such as alignments and sequences. The other studies used sequences of
fixed lengths, however, where a relatively simple formula for the weight dP/dQ

pertains. For the sequences of random length in this paper, however, the stop-
ping rules for sequential sampling complicate formulas for dP/dQ. Accordingly,
the Appendix gives a general mapping theorem giving formulas for the weights
dP/dQ when each sample from P corresponds to many different samples from Q.
(In the present article, e.g., each pair of random sequences corresponds to many
possible random alignments.) In addition to the mapping theorem, we also de-
velop several other techniques specifically tailored to speeding the estimation of
the BLAST p-value.

The organization of this article follows. Section 2 on background and notation is
divided into 4 subsections containing: (1) a friendly introduction to sequence align-
ment and its notation; (2) a brief self-contained description of the algorithm for
calculating global alignment scores; (3) a technical summary of previous research
on estimating the BLAST p-value introducing our importance sampling methods;
and (4) a heuristic model for random sequence alignment using Markov additive
processes. Section 3 on Methods is also divided into 4 subsections containing:
(1) a novel formula for the relevant Gumbel scale parameter λ; (2) a Markov
chain model for simulating sequence alignments (borrowed directly from a pre-
vious study [34], but used here with a stopping time); (3) a dynamic programming
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algorithm for calculating the importance sampling weights in the presence of a
stopping time; and (4) formulas for the simulation errors. Section 4 then gives nu-
merical results for the estimation of λ under 5 popular alignment scoring schemes.
Finally, Section 5 is our Discussion.

2. Background and notation.

2.1. Sequence alignment and its notation. Let A = A1A2 · · · and B = B1B2 · · ·
be two semi-infinite sequences drawn from a finite alphabet L, for example,
{A,C,D,E,F,G,H, I,K,L,M,N,P,Q,R,S,T,V,W,Y} (the amino acid alpha-
bet) or {A,C,G,T} (the nucleotide alphabet). Let s :L×L �→ R denote a “scoring
matrix.” In database applications, s(a, b) quantifies the similarity between a and b,
for example, the so-called “PAM” (point accepted mutation) and “BLOSUM”
(block sum) scoring matrices can quantify evolutionary similarity between two
amino acids [11, 16].

The alignment graph �A,B of the sequence-pair (A,B) is a directed, weighted
lattice graph in two dimensions, as follows. The vertices v of �A,B are nonnega-
tive integer points (i, j). (Below, “:=” denotes a definition, e.g., the natural num-
bers are N := {1,2,3, . . .}. Throughout the article, i, j, k,m,n and g are integers.)
Three sets of directed edges e come out of each vertex v = (i, j): northward,
northeastward and eastward (see Figure 1). One northeastward edge goes into
v = (i +1, j +1) with weight s[e] = s(Ai+1,Bj+1). For each g > 0, one eastward
edge goes into v = (i + g, j) and one northward edge goes into v = (i, j + g);
both are assigned the same weight s[e] = −wg < 0. The deterministic function
w : N �→ (0,∞] is called the “gap penalty.” (The value wg = ∞ is explicitly per-
mitted.) This article focuses on affine gap penalties wg = �0 +�1g (�0,�1 ≥ 0),
which are typical in BLAST sequence alignments. Together, the scoring matrix
s(a, b) and the gap penalty wg constitute the “alignment parameters.”

A (directed) path π = (v0, e1, v1, e2, . . . , ek, vk) in �A,B is a finite alternating
sequence of vertices and edges that starts and ends with a vertex. For each i =
1,2, . . . , k, the directed edge ei comes out of vertex vi−1 and goes into vertex vi .
We say that the path π starts at v0 and ends at vk .

Denote finite subsequences of the sequence A by A[i,m] = AiAi+1 · · ·Am.
Every gapped alignment of the subsequences A[i,m] and B[j, n] corresponds to
exactly one path that starts at v0 = (i − 1, j − 1) and ends at vk = (m,n) (see
Figure 1). The alignment’s score is the “path weight” Sπ := ∑k

i=1 s[ei].
Define the “global score” Si,j := maxπ Sπ , where the maximum is taken over

all paths π starting at v0 = (0,0) and ending at vk = (i, j). The paths π starting
at v0, ending at vk , and having weight Sπ = Si,j are “optimal global paths” and
correspond to “optimal global alignments” between A[1, i] and B[1, j ]. Define
the “edge maximum” Mn := max{max0≤i≤n Si,n,max0≤j≤n Sn,j }, and the “global
maximum” M := supn≥0 Mn. (The single subscript in Mn indicates that the variate
corresponds to a square [0, n] × [0, n], rather than a general rectangle [0,m] ×
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FIG. 1. Gapped global alignment scores and the corresponding directed paths for two subse-
quences A[1,10] = TACTAGCGCA and B[1,9] = ACGGTAGAT, drawn from the nucleotide alphabet
{A,C,G,T}. Figure 1 uses a nucleotide scoring matrix, where s(a, b) = 5 if a = b and −4 otherwise,
and the affine gap penalty wg = 3 + 2g. The vertex (i, j) is in the northeast corner of the cell (i, j),
with the origin (0,0) at the southwest corner of Figure 1. The cell (i, j) displays the global score Si,j ,
calculated from (2.2). The optimal global path ending at the point (10,8), for example, consists of
12 edges, in order: 1 east of length 1,2 northeast, 1 north of length 2,3 northeast, 1 east of length 3,
and 1 northeast. The optimal global score S10,8 = −5 + 5 + 5 − 7 + 5 + 5 + 5 − 9 + 5 = 9 is the sum
of the corresponding edges and represents the path of greatest weight starting at (0,0) and ending
at (10,8). The corresponding optimal global alignment of the subsequences A[1,10] and B[1,9] is

TAC– –TAGCGCA
−ACGGTAG– – –A.

The edge maxima are M1 = −4,M2 = 0,M3 = 5,M4 = 1,M5 = 3,M6 = 8,M7 = 13,M8 = 9,
M9 = 6. The shading and the double lines indicate squares where a vertex (sur-
rounded by double lines) generated an SALE β(k). The SALE scores are Mβ(1) =
M3 = 5,Mβ(2) = M6 = 8,Mβ(3) = M7 = 13; and the global maximum M for A and B is
no less than 13, the largest global score shown.

[0, n].) Define the “strict ascending ladder epochs” (SALEs) in the sequence (Mn):
let β(0) := 0 and β(k + 1) := min{n > β(k) :Mn > Mβ(k)}, where min∅ := ∞.
We call Mβ(k) the “kth SALE score.”

Define also the “local score” S̃i,j := maxπ Sπ , where the maximum is taken
over all paths π ending at vk = (i, j), regardless of their starting point. Define
the “local maximum” M̃m,n := max0≤i≤m,0≤j≤n S̃i,j . The paths π ending at vk =
(i, j) with local score Sπ = S̃i,j = M̃m,n are “optimal local paths” corresponding
to the “optimal local alignments” between subsequences of A[1,m] and B[1, n].

Now, the following “independent letters” model introduces randomness. Choose
each letter in the sequence A and B randomly and independently from the alpha-
bet L according to fixed probability distributions {pa :a ∈ L} and {p′

b :b ∈ L}.
(Although this article permits the distributions {pa} and {p′

b} to be different, in
applications they are usually the same.) Throughout the paper, the probability and
expectation for the independent letters model are denoted by P and E.
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Let � = �A,B denote the random alignment graph of the sequence-pair (A,B).
In the appropriate limit, if the alignment parameters are in the so-called “loga-
rithmic phase” [6, 12] (i.e., if the optimal global alignment score of long random
sequences has a negative score), the random local maximum M̃m,n follows an ap-
proximate Gumbel extreme value distribution with “scale parameter” λ and “pre-
factor” K [1, 14],

P(M̃m,n > y) ≈ 1 − exp[−Kmn exp(−λy)].(2.1)

2.2. The dynamic programming algorithm for global sequence alignment. For
affine gaps wg = �0 + �1g, the global score Si,j is calculated with the recursion

Si,j = max{Si−1,j−1, Ii−1,j−1,Di−1,j−1} + s(Ai,Bj ),(2.2)

where

Ii,j = max{Si,j−1 − �0 − �1, Ii,j−1 − �1,Di,j−1 − �0 − �1},
Di,j = max{Si−1,j − �0 − �1,Di−1,j − �1} and boundary conditions S0,0 =
0, I0,0 = D0,0 = −∞,Dg,0 = I0,g = −�0 − �1g,Sg,0 = S0,g = Ig,0 = D0,g =
−∞ for g > 0 [15]. The three array names, S, I , and D, are mnemonics for “sub-
stitution,” “insertion” and “deletion.” If “�” denotes a gap character, the corre-
sponding alignment letter-pairs (a, b), (�,b) and (a,�) correspond to the opera-
tions for editing sequence A into sequence B [30].

2.3. Previous methods for estimating the BLAST p-value. If wg ≡ ∞ identi-
cally, so northward and eastward (gap) edges are disallowed in an optimal align-
ment path, a rigorous proof of (2.1) yields analytic formulas for the Gumbel pa-
rameters λ and K [12]. For gapped local alignment, rigorous results are sparse,
although some approximate analytical studies are extant [21, 22, 27, 29]. The pre-
vailing approach therefore estimates λ and K from simulations [4, 31]. Because λ

is an exponential rate, it dominates K’s contribution to the BLAST p-value. Most
studies therefore (including the present one) have focused on λ. (Note, however,
some recent progress on the real-time estimation of K [26].) Typically, current
applications require a 1–4% relative error in λ; 10–20%, in K [4]. The character-
istics of the relevant sequence database determine the actual accuracies required,
however, making approximations with controlled error and of arbitrary accuracy
extremely desirable in practice.

Storey and Siegmund [29] approximate λ (with neither controlled errors nor
arbitrary accuracy) as

λ̃ ≈ λ∗ − 2(μ∗)−1�e−λ∗�0/(eλ∗�1 − 1),(2.3)

where
∑

(a,b) pap
′
b exp[λ∗s(a, b)] = 1 [so λ∗ is the so-called “ungapped lambda,”

for �(g) ≡ ∞] and μ∗ := ∑
(a,b) s(a, b)pap

′
b exp[λ∗s(a, b)]. In (2.3), � is an up-

per bound for an infinite sequence of constants defined in terms of gap lengths in
a random alignment.
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Many other studies have used local alignment simulations to estimate BLAST
p-values, for example, Chan [9] used importance sampling and a mixture distrib-
ution. Some rigorous results [28] are also extant for the so-called “island method”
[31, 32], which yields maximum likelihood estimates of λ and K from a Poisson
process associated with local alignments exceeding a threshold score [4, 23].

Large deviations arguments [6, 35] support the common belief that global align-
ment can estimate λ for local alignment through the equation λ =
− limy→∞ y−1 ln P{M ≥ y}. For a fixed error, global alignment typically requires
less computational effort than local alignment. For example, one early study [34]
used importance sampling based on trial distributions Q from a hidden Markov
model.

The study demonstrated that the global alignment equation E[exp(λSn,n)] = 1
estimated λ with only O(n−1) error [7]. (Recall that “E” denotes the expecta-
tion corresponding to the random letters model.) The equation E[exp(λMm)] =
E[exp(λMn)] (m �= n), suggested by heuristic modeling with Markov additive
processes (MAPs) [5, 10], improved the error substantially, to O(εn) [24].

The next subsection shows how the MAP heuristic can improve the efficiency of
importance sampling even further, with its renewal structure. The next subsection
gives the relevant parts of the MAP heuristic.

2.4. The Markov additive process heuristic. The rigorous theory of MAPs ap-
pears elsewhere [5, 10]. Because the MAP heuristics given below parallel a previ-
ous publication [24], we present only informal essentials.

Consider a finite Markov-chain state-space J, containing #J elements. Without
loss of generality, J = {1, . . . ,#J}. Until further notice, all vectors are row vectors
of dimension #J; all matrices, of dimension (#J) × (#J). A MAP can be defined
in terms of a time-homogenous Markov chain (MC) (Jn ∈ J :n = 0,1, . . .) and
a (#J) × (#J) matrix of real random variates ‖Zi,j‖. Let the MC have transition
matrix P = ‖pi,j‖, so pi,j = P(Jn = j |Jn−1 = i). Let the stationary distribution of
the MC be π , assumed strictly positive and satisfying both πP = π and π1t = 1,
where 1t denotes the (#J) × 1 column vector whose elements are all 1.

As usual, let Pγ and Eγ be the probability measure and expectation correspond-
ing to an initial state J0 with distribution γ ; Pi and Ei , to an initial state J0 = i;
and Pπ and Eπ , to an initial state in the equilibrium distribution π .

Run the MC (Jn), and take its succession of states as given. Consider the fol-
lowing sequence (Yn ∈ R :n = 0,1, . . .) of random variates. Define Y0 := 0. For
n = 1,2, . . . , let the (Yn) be conditionally independent, with distributions deter-
mined by the transition Jn−1 → Jn of the Markov chain as follows. If Jn−1 = i and
Jn = j , the value of Yn is chosen randomly from the distribution of Zi,j . (Thus,
if Jm−1 = Jn−1 = i and Jm = Jn = j,Ym and Yn share the distribution of Zi,j ,
although independence permits randomness to give them different values.)

The random variates of central interest are the sums Tn = ∑n
m=0 Ym (n =

0,1, . . .) and the maximum M := maxn≥0 Tn. To exclude trivial distributions for M
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(i.e., M = 0 a.s. and M = ∞ a.s.), make two assumptions: (1) EπY1 < 0; and
(2) there is some m and state i such that

Pi

{
min{Tk :k = 1, . . . ,m} > 0;Jm = i, Jj �= i for j = 1, . . . ,m − 1

}
> 0.(2.4)

Consider the sequence (Tn), its SALEs β(0) := 0 and β(k + 1) := min{n >

β(k) :Tn > Tβ(k)}, and its SALE scores Tβ(k). For brevity, let β := β(1). Note
that M = Tβ(k) for some k ∈ {0,1, . . .}. In a MAP, (Jβ(k), Tβ(k)) forms a defective
Markov renewal process.

Now, define the matrix Lθ := ‖Ei[exp(θTβ); Jβ = j,β < ∞]‖. The Perron–
Frobenius theorem [5], page 25, shows that Lθ has a strictly dominant eigenvalue
ρ(θ) > 0 [i.e., ρ(θ ) is the unique eigenvalue of greatest absolute value]. Moreover,
ρ(θ) is a convex function [19], and because L0 is substochastic, ρ(0) < 1. The two
assumptions above (2.4) ensure that M := maxn≥0 Tn has a nontrivial distribution
and that ρ(λ) = 1 for some unique λ > 0.

The notation intentionally suggests a heuristic analogy between MAPs and
global alignment. Identify the Markov chain states Jn in the MAP with the rec-
tangle [0, n] × [0, n] of �A,B, and identify the sum Tn in the MAP with the edge
maximum Mn in global alignment. In the following, therefore, the identification
leads to Mn replacing Tn in the MAP formulas. In particular, the MAP heuristic
identifies the Gumbel scale parameter in (2.1) with the root λ > 0 of the equation
ρ(λ) = 1. Although the heuristic analogy between MAPs and global alignment is
in no way precise or rigorous, it has produced useful results [24].

The details of why the MAP heuristic works so well are presently obscure,
although some additional motivation appears in an heuristic calculation related
to λ [8]. The calculation takes the limit of nested successively wider semi-infinite
strips, each strip having constant width and propagating itself northeastward in
the alignment graph �A,B. The successive northeast boundaries of the propagation
are states in an ergodic MC. MAPs therefore might rigorously justify the heuristic
calculation.

3. Methods.

3.1. A novel equation for λ. From the definition of Lθ in a MAP, if the Markov
chain {Jn} starts in a state J0 with distribution γ (with Mn replacing Tn in the MAP
formulas), matrix algebra applied to the concatenation of SALEs in a MAP yields

Eγ
[
exp

(
θMβ(k)

);β(k) < ∞] = γ (Lθ )
k1t .(3.1)

For a MAP, equation (3.1) is exact; but for global alignment, it has no literal mean-
ing. Equation (3.1) has some consequences for the limit k → ∞, and we speculate
that the consequences hold, even for global alignment. [Note: although the se-
quence (β(k)) is a.s. finite, the limits k → ∞ below involve no contradiction or
approximation, because they are not a.s. limits.]
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Define Kk(θ) := ln{Eγ [exp(θMβ(k));β(k) < ∞]}. In (3.1), a spectral (eigen-
value) decomposition of the matrix Lθ [25] shows that

Kk(θ) = k ln{ρ(θ)} + c0 + O(εk),(3.2)

where 0 ≤ ε < 1 is determined by the magnitude of the subdominant eigenvalue
of Lθ , and c0 is a constant independent of θ and k.

For k′ − k > 0 fixed, we can accelerate the convergence in (3.2) as k → ∞ by
differencing

Kk′(θ) − Kk(θ) = (k′ − k) ln{ρ(θ)} + O(εk).(3.3)

Let λk′,k denote the root of (3.3) after dropping the error term O(εk). Because
ρ(λ) = 1, Taylor approximation around λ yields ln{ρ(λk′,k)} ≈ ρ′(λ)(λk′,k − λ),
so (3.3) becomes

(k′ − k)ρ′(λ)(λk′,k − λ) = O(εk),(3.4)

that is, with k′ − k fixed, λk′,k converges geometrically to λ as the SALE index
k → ∞.

The initial state γ of global alignment has a deterministic distribution, namely
the origin (0,0). Equation (3.3) for θ = λ therefore becomes

E
[
exp

(
λMβ(k′)

);β(k′) < ∞] = E
[
exp

(
λMβ(k)

);β(k) < ∞]
(3.5)

after dropping the geometric error O(εk). Let λ̂k′,k be the root of (3.5).

3.2. The trial distribution for importance sampling. In (3.5), crude Monte
Carlo simulation generating random sequence-pairs with the identical letters
model P is inefficient for the following reason. When practical alignment scoring
systems are used, P{β(k) < ∞} < 1 for k ≥ 1. For, example, the BLAST defaults
(scoring matrix BLOSUM62, gap penalty wg = 11 + g, and Robinson–Robinson
letter frequencies), P{β(4) < ∞} ≈ 0.047, so only about 1 in 20 crude Monte
Carlo simulations generate a fourth ladder point. Empirically in our importance
sampling, however, Gumbel parameter estimation seemed most efficient when the
stopping time corresponded to β(4) (see below).

Importance sampling requires a trial distribution to determine λ̂k′,k from (3.5).
By editing one sequence into another, a Markov chain model borrowed directly
from a previous study [34] generates random sequence alignments, as follows.

Consider a Markov state space consisting of the set of alignment letter-pairs L̄2,
where L̄ := L ∪ {�}, “�” being a character representing gaps. The ordered pair
(�,�) has probability 0, so a succession of Markov states corresponds to a global
sequence alignment (see Figure 1), that is, to a path in the alignment graph �A,B.
Ordered pairs other than (�,�) fall into three sets, corresponding to edit oper-
ations following (2.2): S := L × L [substitution, a bioinformatics term implicitly
including identical letter-pairs (a, a)], I := {�}×L (insertion); and D := L×{�}
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(deletion). The sets S, I and D form “atoms” of the MC [13], page 203, as follows.
(By definition, each atom of a MC is a set of all states with identical outgoing tran-
sition probabilities.)

From the set S, the transition probability to (a, b) is tS,Sqa,b; to (�,b), tS,Ip
′
b;

and to (a,�), tS,Dpa . From the set I , the transition probability to (a, b) is tI,Sqa,b;
to (�,b), tI,I p

′
b; and to (a,�), tI,Dpa . From the set D, the transition probability

to (a, b) is tD,Sqa,b; to (�,b), tD,Ip
′
b; and to (a,�), tD,Dpa . Transition proba-

bilities sum to 1, so the following restrictions apply:
∑

a,b∈L qa,b = 1,
∑

b∈L p′
b =

1,
∑

a∈L pa = 1, tS,S + tS,I + tS,D = 1 (transit from the substitution atom), tD,D +
tD,S + tD,I = 1 (transit from the deletion atom) and tI,I + tI,S + tI,D = 1 (transit
from the insertion atom). Usually in practice, the term tI,D = 0, to disallow inser-
tions following a deletion. Our formulas retain the term, to exploit the resulting
symmetry later.

In the terminology of hidden Markov models, S, I,D are hidden Markov states.
ti,j for i, j ∈ {S, I,D} are transition probabilities and qa,b,p

′
b,pa for a, b ∈ L are

emission probabilities from the state S, I,D, respectively.
As described elsewhere [34], numerical values for the Markov probabilities can

be determined from the scores s(a, b) and the gap penalty wg . Note that the val-
ues are selected for statistical efficiency, although many other values also yield
unbiased estimates for λ in the appropriate limit.

3.3. Importance sampling weights and stopping times. To establish notation,
and to make connections to the Appendix and its mapping theorem, note that the
MC above can be supported on a probability space (�,F,Q), where each ω =
(π,A,B) ∈ � is an ordered triple. Here, π is an infinite path starting at the origin
in the alignment graph �A,B;F is the set generated by cylinder sets in � (here,
cylinder sets essentially consist of some finite path and the corresponding pair of
subsequences); and Q is the MC probability distribution described above, started
at the atom S, with expectation operator EQ.

Let N be any stopping time for the sequence (Mn :n = 0,1, . . .) of edge maxima
for �A,B (i.e., the sequence {M0, . . . ,Mn} determines whether N ≤ n or not). Be-
cause Mn is determined by (A[1, n],B[1, n]),N is also a stopping time for the se-
quence {(A[1, n],B[1, n]) :n = 0,1, . . .}. The stopping time of main interest here
is N = β(k), the kth ladder index of (Mn), where k ≥ 1 is arbitrary. (As further
motivation for the mapping theorem in the Appendix, other stopping times of pos-
sible interest include, for example, N = n, a fixed epoch [7], and N = β(Ky),
where β(Ky) = inf{n :Mn ≥ y} is the index of first ladder-score outside the inter-
val (0, y).)

To use the mapping theorem, introduce the probability space (�′′,F′′,P),
where each ω′′ = (A,B) ∈ �′′ is an ordered pair. Here, A and B are sequences,
F′′ is the set generated by all cylinder sets in �′′ (i.e., sets corresponding to
pairs of finite subsequences) and P(A′′) = ∏i

k=1 pAk

∏j
k=1 p′

Bk
, if the cylin-

der set A′′ corresponds to the subsequence pair (A[1, i],B[1, j ]). Given N ,
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the theory of stopping times [5], page 414, can be used to construct a dis-
crete probability space (�′,F′,P), where each event ω′ ∈ �′ is a finite-sequence
pair ω′ = (A[1,N],B[1,N]),F′ is the set of all subsets of �′ and P(ω′) =∏N(ω′)

k=1 pAk

∏N(ω′)
k=1 p′

Bk
.

Let Im,n := {(i, j) : i = m,j ≥ n} and Dm,n := {(i, j) : i ≥ m,j = n}. De-
fine the function f :ω �→ ω′, where ω = (π,A,B) and ω′ = (ω′

A,ω′
B) :=

(A[1,N],B[1,N]). Then, ω ∈ f −1(ω′), if and only if the path π hits the set
IN,N ∪ DN,N at (i, j), so that A[1,N] = ω′

A and B[1,N] = ω′
B (see Figure 2).

Empirically, our simulations satisfied Q{β(k) < ∞} = 1, and we speculate that
our application therefore satisfies the hypothesis QH = 1 of the Appendix. Ac-
cording to the Appendix, the reciprocal importance sampling weight 1/W(ω) =∑

ω0∈f −1{f (ω)} Q(ω0)/Pf (ω) depends on the sum over all possible Markov chain
realizations ω0 ∈ f −1(ω′). Dynamic programming computes the sum efficiently,
as follows.

FIG. 2. Two examples of alignment path π generated by a Markov chain. As in Figure 1, the
shading and the double lines indicate squares where a vertex (surrounded by double lines) generated
an SALE. The SALEs determine the stopping time N = β(3). In Figure 2, the first SALE is determined
by the score at the vertex (3,3); the second SALE, the vertex (7,6); the third SALE, the vertex (9,10).
Therefore, N = β(3) = 10. The vertical ray IN,N and the horizontal ray DN,N are indicated by
double circles. The lower path π (solid line) ends at (N + 2,N) with a final transition to S; the
upper path π (long-dashed line), at (N,N + 4) with a final transition to D. The closed vertices
indicate intersection with the square corresponding to ω′ = (ω′

A,ω′
B) = (A[1,N ],B[1,N ]).
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Let the “transition” T represent any element of {S, I,D} [substitution (ai, bj ),
insertion (�,bj ), or deletion (ai,�)]. Fix any particular pair (A,B) of infi-
nite sequences, which fixes N = β(k). To set up a recursion for dynamic pro-
gramming, consider the following set of events ET

i,j , defined for T ∈ {S, I,D}
and min{i, j} ≤ N , and illustrated in Figure 2. Let ET

i,j be the event consisting

of all ω yielding a path π whose final transition is T and which corresponds
to the subsequences: (1) A[1, i] and B[1, j ] for 0 ≤ i, j ≤ N ; (2) A[1, i] and
B[1,N] for 0 ≤ N = j ≤ i; and (3) A[1,N] and B[1, j ] for 0 ≤ N = i ≤ j .
Define QT

i,j := Q(ET
i,j ) and Qi,j := QS

i,j + QI
i,j + QD

i,j . (Note: in the following,
T ∈ {S, I,D} is always a superscript, never an exponent.)

For brevity, let q̃i,j = qAi,Bj
for 0 ≤ i, j ≤ N; q̃i,j = ∑

(a∈L) qa,Bj
for 0 ≤

j ≤ N < i; q̃i,j = ∑
(b∈L) qAi,b for 0 ≤ i ≤ N < j ; and q̃i,j = 1 otherwise. Let

p̃′
j = p′

Bj
for 0 ≤ j ≤ N ; and 1 otherwise. Finally, Let p̃i = pAi

for 0 ≤ i ≤ N ;
and 1 otherwise. Because every path into the vertex (i, j) comes from one of three
vertices, each corresponding to a different transition T ∈ {S, I,D},

QS
i,j = q̃i,j (tS,SQS

i−1,j−1 + tI,SQI
i−1,j−1 + tD,SQD

i−1,j−1),

QI
i,j = p̃′

j (tS,IQ
S
i,j−1 + tI,IQ

I
i,j−1 + tD,IQ

D
i,j−1),(3.6)

QD
i,j = p̃i(tS,DQS

i−1,j + tI,DQI
i−1,j + tD,DQD

i−1,j )

with boundary conditions QS
0,0 = 1,QI

0,0 = QD
0,0 = 0,QS

g,0 = QS
0,g = QI

g,0 =
QD

0,g = 0,QI
0,g = p′

B1
· · ·p′

Bg
tS,I (tI,I )

g−1 and QD
g,0 = pA1 · · ·pAg tS,D ×

(tD,D)g−1 (g > 0).
Recall that ω = (π,A,B) ∈ f −1(ω′), if and only if the path π hits the set IN,N ∪

DN,N at (i, j), so that A[1,N] = ω′
A and B[1,N] = ω′

B. Thus,

∑
ω∈f −1(ω′)

Q(ω) = −QS
N,N +

∞∑
j=N

(QS
N,j + QD

N,j ) +
∞∑

i=N

(QS
i,N + QI

i,N).(3.7)

To turn (3.6) into a recursion for importance sampling weights, define Pi :=
pA1 · · ·pAmin{i,N} = p̃1 · · · p̃i and P ′

j := p′
B1

· · ·p′
Bmin{j,N} = p̃′

1 · · · p̃′
j , and let

WT
i,j := QT

i,j /(PiP
′
j ) (T ∈ {S, I,D}). Let ri,j = q̃i,j /(p̃i p̃

′
j ). For future reference,

define r•,j := ri,j for 0 ≤ j ≤ N < i and ri,• := ri,j for 0 ≤ i ≤ N < j . Note that
r•,j is independent of i, and ri,• is independent of j . Equation (3.6) yields

WS
i,j = ri,j (tS,SWS

i−1,j−1 + tI,SWI
i−1,j−1 + tD,SWD

i−1,j−1),

WI
i,j = tS,IW

S
i,j−1 + tI,IW

I
i,j−1 + tD,IW

D
i,j−1,(3.8)

WD
i,j = tS,DWS

i−1,j + tI,DWI
i−1,j + tD,DWD

i−1,j
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with boundary conditions WS
0,0 = 1,WI

0,0 = WD
0,0 = 0,WS

g,0 = WS
0,g = WI

0,g =
WD

g,0 = 0,WI
0,g = tS,I (tI,I )

g−1 and WD
g,0 = tS,D(tD,D)g−1 (g > 0). Because of

(3.7), the importance sampling weight W := W(ω) satisfies

1

W
=

∑
ω0∈f −1{f (ω)} Q(ω0)

Pf (ω)
(3.9)

= −WS
N,N +

∞∑
j=N

(WS
N,j + WD

N,j ) +
∞∑

i=N

(WS
i,N + WI

i,N).

Because ri,j = r•,j (0 ≤ j ≤ N < i) and ri,j = ri,• (0 ≤ i ≤ N < j), only a
finite number of recursions are needed to compute the infinite sums in (3.9), as
follows. For T ∈ {S, I,D}, define ŨT

i := UT
i,N , where UT

m,n := ∑∞
j=n WT

m,j . Like-

wise, define Ṽ T
j := V T

N,j , where V T
m,n := ∑∞

i=m WT
i,n. Equation (3.9) becomes

1

W
= −WS

N,N + ŨS
N + ŨD

N + Ṽ S
N + Ṽ I

N .(3.10)

Note that UT
i,j−1 − UT

i,j = WT
i,j−1. To determine ŨT

N , summation of (3.8) for
0 ≤ i ≤ N < j yields

US
i,j = ri,•(tS,SUS

i−1,j−1 + tI,SUI
i−1,j−1 + tD,SUD

i−1,j−1)

= US
i,j−1 − WS

i,j−1,
(3.11)

UI
i,j = tS,IU

S
i,j−1 + tI,IU

I
i,j−1 + tD,IU

D
i,j−1 = UI

i,j−1 − WI
i,j−1,

UD
i,j = tS,DUS

i−1,j + tI,DUI
i−1,j + tD,DUD

i−1,j .

Elimination of UT
i,j for j = N +1 and i = 1, . . . ,N in the first two equations yields

US
i,N = ri,•(tS,SUS

i−1,N + tI,SUI
i−1,N + tD,SUD

i−1,N ) + WS
i,N ,

UI
i,N = tS,IU

S
i,N + tI,IU

I
i,N + tD,IU

D
i,N + WI

i,N ,(3.12)

UD
i,N = tS,DUS

i−1,N + tI,DUI
i−1,N + tD,DUD

i−1,N ,

that is,

ŨS
i = ri,•(tS,SŨS

i−1 + tI,SŨ I
i−1 + tD,SŨD

i−1) + WS
i,N ,

Ũ I
i = (1 − tI,I )

−1(tS,I Ũ
S
i + tD,I Ũ

D
i + WI

i,N),(3.13)

ŨD
i = tS,DŨS

i−1 + tI,DŨ I
i−1 + tD,DŨD

i−1

with initial values ŨS
0 = ŨD

0 = 0 and Ũ I
0 = (1 − tI,I )

−1WI
0,N = (1 − tI,I )

−1 ×
tS,I (tI,I )

N−1. Compute (3.13) recursively for i = 1, . . . ,N .
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Similarly, reflect through i = j to derive

Ṽ S
j = r•,j (tS,SṼ S

j−1 + tD,SṼ D
j−1 + tI,SṼ I

j−1) + WS
N,j ,

Ṽ I
j = tS,I Ṽ

S
j−1 + tD,I Ṽ

D
j−1 + tI,I Ṽ

I
j−1,(3.14)

Ṽ D
j = (1 − tD,D)−1(tS,DṼ S

j + tI,DṼ I
j + WD

N,j )

with initial values Ṽ S
0 = Ṽ I

0 = 0 and Ṽ D
0 = (1 − tD,D)−1WD

N,0 = (1 − tD,D)−1 ×
tS,D(tD,D)N−1. Iterate (3.14) for j = 1, . . . ,N . Substitute the results for ŨS

N , ŨD
N ,

Ṽ S
N , and Ṽ I

N into (3.10) to compute W .

3.4. Error estimates for λ̂k′,k . Denote the indicator of an event A by IA, that
is, IA = 1 if A occurs and 0 otherwise. For a realization ω in the simulation, define

hk,k′(θ) := hk,k′(θ;ω)
(3.15)

:= exp
(
θMβ(k′)

)
I[β(k′) < ∞] − exp

(
θMβ(k)

)
I[β(k) < ∞]

and let h′
k,k′ be its derivative with respect to θ .

Given samples ωi (i = 1, . . . , r) from the trial distribution Q, let W = W(ωi)

denote the corresponding importance sampling weights. Because λ̂k′,k is the
M-estimator [17] of the root λk′,k of Ehk,k′(λk′,k) = 0, as r → ∞,

√
r(λ̂k′,k −

λk′,k) converges in distribution to the normal distribution with mean 0 and vari-
ance [17]

EQ[h(λk′,k)W ]2

{EQ[h′(λk′,k)W ]}2 ≈ r−1 ∑r
1[h(ωi; λ̂k′,k)W(ωi)]2

{r−1 ∑r
1[h′(ωi; λ̂k′,k)W(ωi)]}2

.(3.16)

4. Numerical study for Gumbel scale parameter. Table 1 gives our “best
estimate” λ̄ of the Gumbel scale parameter λ from (3.5) for each of the 5 op-
tions BLASTP gives users for the alignment scoring scheme. For every scheme,
estimates λ̂ derived from the first to fourth SALEs indicated that λ̂ generally is bi-
ased above the true value λ, but that λ̂ converged adequately by the fourth SALE.
The best estimate λ̄ (shown in Table 1) is the average of 200 independent esti-
mates λ̂, each computed within 1 sec from sequence-pairs simulated up to their
fourth SALE. For BLOSUM 62 and gap penalty wg = 11 +g, the average compu-
tation produced 1441 sequence-pairs up to their fourth SALE within 1 second. (For
results relevant to the other publicly available scoring schemes, see Table 1.) The
best estimates λ̄ derived from (3.5) were within the error of the BLASTP values
for λ.

Despite having the variance formula in (3.16) in hand, we elected to estimate
the standard error ŝλ directly from the 200 independent estimates λ̂. Figure 3 plots
the relative error ŝλ/λ̄ in each individual λ̂ against the computation time, where ŝλ
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TABLE 1
Best estimates λ̄ for the 5 BLASTP alignment scoring schemes. For each scheme, we generated 200
estimates λ̂, each within a one-second computation time. The third column gives present estimates
of λ used on the BLAST web page (Stephen Altschul: personal communication). The BLAST values
are accurate to approximately ±1%. The fourth column gives the mean λ̄ of our 200 estimates λ̂;
the fifth, the standard error of λ̄, which can be multiplied by

√
200 ≈ 14 to give the standard error

in each λ̂. The sixth column gives the average number of sequence-pairs used to estimate each λ̂.
The total number of sequence-pairs used for λ̄ is 200 times average number of sequence-pairs. The
last column gives the average sequence length required for the fourth SALE used to estimate each λ̂

Gap BLAST Best Standard Average
Scoring penalty value estimate error of Average number of sequence
matrix wg λ̄ λ̄ sequence-pairs length

BLOSUM80 10 + g 0.299 0.2998 0.0001 2865 15.85
BLOSUM62 11 + g 0.267 0.2679 0.0002 1441 27.78
BLOSUM45 14 + 2g 0.195 0.1962 0.0003 789 39.23
PAM30 9 + g 0.294 0.2956 0.0001 3593 9.20
PAM70 10 + g 0.291 0.2922 0.0001 3397 11.49

is the standard error of λ̂. It shows that for all 5 BLASTP online options, (3.5)
easily computed λ̂ to 1–4% accuracy within about 0.5 seconds.

FIG. 3. Plot of relative errors against computation time (sec). Both axes are in logarithmic scale.
Computation time was measured on a 2.99 GHz Pentium® D CPU. Relative errors for BLOSUM45
with �(g) = 14 + 2g are shown by �; BLOSUM62 with �(g) = 11 + g, by �; BLOSUM80 with
�(g) = 10 + g, by Q; PAM70 with �(g) = 10 + g, by "; PAM30 with �(g) = 9 + g, by !.



GUMBEL SCALE PARAMETER ESTIMATION FOR LOCAL ALIGNMENT 3711

5. Discussion. This article indicates that the scale parameter λ of the Gumbel
distribution for local alignment of random sequences satisfies (3.5), an equation
involving the strict ascending ladder-points (SALEs) from global alignment, at
least approximately. For standard protein scoring systems, in fact, simulation er-
ror could account for most (if not all) of the observed differences between values
of λ calculated from (3.5) and values calculated from extensive crude Monte Carlo
simulations. (The values of λ from crude simulation have a standard error of about
±1%.) In SALE simulations, (3.5) estimated λ to 1–4% accuracy within 0.5 sec-
ond, as required by BLAST database searches over the Web. The present study did
not tune simulations much; it relied instead on methods specific to sequence align-
ment to improve estimation. Many general strategies for sequential importance
sampling therefore remain available to speed simulation. Preliminary investiga-
tions estimating the other Gumbel parameter (the pre-factor K) with SALEs are
encouraging, so online estimation of the entire Gumbel distribution for arbitrary
scoring schemes appears imminent, and preliminary computer code is already in
place.

APPENDIX: A GENERAL MAPPING THEOREM FOR
IMPORTANCE SAMPLING

The following theorem describes an unusual type of Rao-Blackwellization [20].
Consider two probability spaces (�,F,Q) and (�′,F′,P), and a F/F′-measurable
function f :� �→ �′ (i.e., f −1F ′ ∈ F for every F ′ ∈ F′). Note: f is explicitly per-
mitted to be many-to-one. Let P << Qf −1 on some set H ′ (i.e., Qf −1G′ = 0 ⇒
PG′ = 0 for any set G′ ⊆ H ′), so the Radon–Nikodym derivative in the second
line of (A.1) below exists. Let H := f −1H ′, so for every random variate X′ on
(�′,F′),

E[X′;H ′] :=
∫
ω′∈H ′

X′(ω′) dP(ω′)

=
∫
ω′∈H ′

X′(ω′) dP(ω′)
∫
ω∈f −1(ω′)

dQ(ω)∫
ω0∈f −1(ω′) dQ(ω0)

(A.1)

=
∫
ω′∈H ′

∫
ω∈f −1(ω′)

X′f (ω)
dPf (ω)∫

ω0∈f −1{f (ω)} dQ(ω0)
dQ(ω)

=
∫
ω∈H

X′f (ω)
dPf (ω)∫

ω0∈f −1{f (ω)} dQ(ω0)
dQ(ω).

Consider the application of (A.1) to importance sampling with target distribution P

and trial distribution Q. Assume QH = 1, so H supports Q. In our application
to global alignment, H = [β(k) < ∞] ⊂ � (“⊂” being strict inclusion), but we
speculate QH = 1.
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In Monte Carlo applications, a discrete sample space H is usually available.
Accordingly, the following theorem replaces the integrals in (A.1) by sums.

The mapping theorem for importance sampling. Let

1

W(ω)
:=

∑
ω0∈f −1{f (ω)} Q(ω0)

Pf (ω)
.(A.2)

Under the above conditions, r−1 ∑r
i=1[X′f (ωi)W(ωi)] → E[X′;H ′] with proba-

bility 1 and in mean (with respect to Q), as the number of realizations r → ∞.
The mapping theorem is an easy application of the law of large numbers

to (A.1).
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