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ROUGH EVOLUTION EQUATIONS

BY MASSIMILIANO GUBINELLI AND SAMY TINDEL

Université de Paris-Dauphine and Université de Nancy

We generalize Lyons’ rough paths theory in order to give a pathwise
meaning to some nonlinear infinite-dimensional evolution equation associ-
ated to an analytic semigroup and driven by an irregular noise. As an il-
lustration, we discuss a class of linear and nonlinear 1d SPDEs driven by
a space–time Gaussian noise with singular space covariance and Brownian
time dependence.
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1. Introduction. This paper can be seen as part of an ongoing project whose
aim is to give a pathwise definition to stochastic PDEs. Indeed, the rough path
theory [5, 13, 16, 17] and its variants [4, 6] have now reached a certain level of
maturity, leading to a proper definition of differential equations driven by irregular
signals and in particular by a fractional Brownian motion [2]. Starting from this ob-
servation, we have tried in [12] to define and solve the following general problem:
let B be a separable Banach space, and A :D(A) → B the infinitesimal generator
of an analytical semigroup {St ; t ≥ 0} on B, inducing the family {Bα;α ∈ R} with
Bα = D((−A)α). Let also f be a function from B to L(B−α, B−α) for a given
α > 0 and x a noisy input, considered as a function from R+ to B−α . Then, for
T > 0, consider the equation

dyt = Ayt dt + f (yt ) dxt , t ∈ [0, T ],(1)

with an initial condition y0 ∈ B. The main example we have in mind is the case
of the 1-dimensional heat equation in [0,1], namely B = L2([0,1]), A = � with
Dirichlet boundary conditions, the usual Sobolev spaces Bα = Hα = W 2α,2, and
x a fractional Brownian motion with Hurst parameter H taking values in B−α .
Notice, in particular, that we wish to consider a noise x which is irregular in both
time and space. Then, in [12], we gave a local existence and uniqueness result for
equation (1), by considering it in its mild form

yt = Sty0 +
∫ t

0
Stsf (ys) dxs,(2)

where we let Sts = St−s and interpreting the integral in this mild formulation as
a Young integral. Once the equation is set under the form (2), the main problem
one is faced with is to quantify the regularization of the semigroup Sts on the
term f (ys) dxs , and then to elaborate the right fixed point argument in order to
solve the equation. The general results of [12] could be applied in the case of
the stochastic heat equation driven by a fractional Brownian motion with Hurst
parameter H > 1/2. They should be compared with the reference [18], where a
nonlinear fractional SPDE is solved thanks to some fractional calculus methods,
but where x is a smooth noise in space.

In the current article, we would like to go one step further with respect to [12],
and set the basis of a real rough path expansion in order to define and solve equa-
tion (2), which would allow to consider, in the case of the heat equation in [0,1],
a fractional Brownian motion with Hurst parameter H ≤ 1/2. This task is quite
long and involved, but let us summarize at this point some of the ideas we have
followed.

(1) We will recast equation (2) in a suitable way for expansions according to
the following simple observation: we have tried to solve our evolution equation
by means of its infinite-dimensional setting, since it allows to consider x and y

as functions of a unique parameter t ∈ [0, T ], which makes its rough path type
analysis easier (see [11] and [22] for a multiparametric setting). However, when
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we come to the applications to the heat equation, we will consider the evolution
equation in [0, T ] × [0,1] under the form

y(t, ξ) =
∫ 1

0
Gt(ξ, η)y0(η) dη +

∫ t

0

∫ 1

0
Gt−s(ξ, η)σ (ys(η))x(ds, dη),(3)

where G stands for the fundamental solution to the heat equation, σ : R → R is a
regular function, and x(ds, dη) is understood as the distributional derivative of a
real-valued continuous process on [0, T ] × [0,1]. This definition of our equation
is of course equivalent to (2) when f is considered as the pointwise nonlinear
operator [f (yt )](ξ) ≡ σ(yt (ξ)). Now, when written under its multiparametric form
(3), the equation is also equivalent to

y(t, ξ) =
∫ 1

0
Gt(ξ, η)y0(η) dη +

∫ t

0

∫ 1

0
Gt−s(ξ, η)x(ds, dη)σ (ys(η)),

and it happens that this simple reformulation is much more convenient for our
future expansions than the original one. When we go back to the original infinite-
dimensional setting, we can recast (2) into

yt = Sty0 +
∫ t

0
Sts dxsf (ys),(4)

where f is now a smooth function from B to B, and x will be understood as
a Hölder-continuous process taking values in a space of deregularizing operators
from B to a distributional space B−ζ for a certain ζ > 0. The product dxsf (ys) will
then be regularized again by the action of Sts , in a way which will be quantified
later on. Notice that the form (4) of our evolution equation is a little unusual in the
SPDE theory, but makes sense in our context.

(2) Instead of considering Riemann sums like in [12] or like in the original
Lyons’ theory [16], our analysis will be based on the theory of generalized dif-
ferentials, called k-increments, contained in [6]. Roughly speaking, this theory is
based on the fact that an elementary operator, called δ, can transform an integral∫ t
s dgu[hu − hs], seen as a function of the variables s and t , into a finite differ-

ence product (gt − gs)(ht − hs). Furthermore, under some additional regularity
properties on g and h, the operator δ can be inverted, and its inverse 	, called
sewing map (from [4]), will be the building stone of our extension of the notion
of integral. Notice that, whenever g and h are Hölder-continuous with Hölder ex-
ponent > 1/2, this extension coincides with the usual Young integral. When we
consider an integral of the form

∫ t
s dgu φ(gu) for a Hölder-continuous function g

with Hölder exponent in (1/3,1/2] admitting a Lévy area, our definition of inte-
gral also coincides with Lyons’ one, as shown in [6]. In fact, if the usual rough
path theory gives a richer point of view on the algebraic structure of the path x, it
is worth mentioning that our approach has at least two advantages:



4 M. GUBINELLI AND S. TINDEL

(1) Once our unusual setting is assimilated, it becomes quite easy to figure out how
a given expansion in terms of x can be leaded. And indeed, it will become clear
throughout the paper, that the k-increments theory provides a tool allowing
some natural computations for our generalized integrals.

(2) The only step where a discretization procedure is needed is the construction of
the 	 map alluded to above, and this avoids some of the cumbersome calcula-
tions which are one of the main ingredients of the rough path theory.

We hope that this paper will advocate for the use of the k-increments theory, which
obviously does not exclude the other approaches [4, 16].

(3) The fact that we are dealing with an evolution problem will force us to
change some of the algebraic structure we will rely on, especially if one wants to
take advantage of the regularizing effect of St . This will lead us to introduce an
operator ats = Sts − Id for t ≥ s, and a modified δ operator, called δ̂, defined by
δ̂ = δ − a. The whole increment theory will have to be built again based on this
modified operator, and we will see that it is really suitable for the evolution setting
induced by (4). In particular, we will be able to define analogs of the Lévy area
and of the higher-order iterated integrals, which are of course harder to express
than in the finite-dimensional case, but can be written, in the bilinear case [that is
σ(r) = r in (3)], as

X2
ts =

∫ t

s
Stu dxu

∫ u

s
Suv dxv Svs, X3

ts =
∫ t

s
Stu dxu X2

us, etc.(5)

Obviously, a convenient definition of iterated integrals is the key to reach the case
of a Hölder-continuous noise of order ≤ 1/2.

(4) The whole integration theory can be expressed in an abstract way, by just
supposing a certain set of assumptions on some incremental operators like X2 and
X3. However, we will try to check these assumptions in some interesting cases,
like the infinite-dimensional fractional Brownian motion for our Young type in-
tegration, or the infinite-dimensional Brownian motion for our step 3 expansion,
based on X2 and X3. Notice that the rough expansions for the fractional Brownian
motion should be investigated in details too, but one is faced with an additional
problem in this situation: on one hand, a Stratonovich type integration requires
a lot of regularity in space for the noise, due to the well-known presence of some
trace terms. On the other hand, the Skorokhod integral does not fulfill the algebraic
requirements we ask for our integral extension. A discussion of these problems and
some ideas to solve them will be included at the end of the paper, but for sake of
conciseness, we will postpone a complete development of this part to a subsequent
paper, and stick here to the Brownian case.

This paper is structured as follows. In Section 2, we recall the basic setup of [6]
which allows to embed the theory of rough paths in a theory of integration of
generalized differentials, called here k-increments. We wrote it with the aim of
having a self-contained and pedagogical introduction to the topic. However, we



ROUGH EVOLUTION EQUATIONS 5

give also a new and very elementary proof of the existence of the basic integration
map 	 of [6]. In Section 3, we introduce and study a modified coboundary induced
by the operator δ̂ on the complex of increments, using the additional data provided
by an analytic semigroup S, in such a way that the new complex can be shown
to act simply on convolution integrals of the form appearing in equation (4) and
on their iterated versions. This new complex maintain many of the properties of
the original complex (e.g., its cohomology is trivial) and it is shown that when
equipped with Hölder-like norms which measures “smallness” of the increments,
it admits a map, called 	̂ here, which is the main tool for building an integration (or
better, convolution) theory over those 1-increments which are good enough (again,
in a suitable sense, to be specified in due time). A key feature of this perturbed
complex is that, due to the convolution with the semigroup S, “space” and “time”
regularity of increments depends on each other: we can gain space regularity by
loosing some time regularity and vice-versa. This property will be essential for the
solution of the evolution problem by fixed-point arguments. In Section 4.2, we use
the theory outlined in Section 3.2 to define the convolution integral in the Young
sense and solve a class of nonlinear evolution problems, reobtaining some results
of the work [12]. Notice that we will also improve some of our previous results
contained in [12], in the sense that we will be able to construct global solutions to
our evolution equations in the Young context. In Section 5, we study the bilinear
evolution problem

yt = Sty0 +
∫ t

0
Sts dxs ys.(6)

We will also introduce a notion of rough-path suitable for noises driving evolu-
tion equations. By exploiting this pathwise technique, we are able to obtain au-
tomatically the flow semigroup of the equation and we will show how to express
this semigroup as a convergent series of iterated-integrals which are the lift of the
step-3 rough path used in the construction of the solution. In Section 6, we turn to a
nonlinear case of evolution system, namely the case of the quadratic type equation

yt = Sty0 +
∫ t

0
Sts dxsB(ys ⊗ ys),

where B stands for the pointwise multiplication of functions. This requires the
additional careful introduction of a collection of a priori increments indexed by
planar trees, and an associate notion of controlled path. Finally, all our results will
be applied in the concrete case of the stochastic heat equation on the circle, in a
setting recalled at Section 3.4. The case of a fractional Brownian case is handled
in the special situation of the Young theory, while we stick to the example of an
infinite-dimensional Brownian motion in the rougher situation. We build the rough
path associated to this latter noise and provide concrete conditions where the the-
ory outlined in the previous sections can be fruitfully applied. A systematic study
of the regularity properties of the incremental operators defined as X2 or X3 in (5)
will also be provided at Sections 6.5 and 6.6, thanks to some Feynman diagram
techniques.
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2. Algebraic integration in one dimension. The integration theory intro-
duced in [6] is based on an algebraic structure, which turns out to be useful for
computational purposes, but has also its own interest. Since this setting is quite
nonstandard, compared with the one developed in [16], and since we will elabo-
rate on it throughout the paper, we will recall briefly here its main features. We
also provide an elementary proof of the existence of the 	 map.

2.1. Increments. As mentioned in the Introduction, the extended integral we
deal with is based on the notion of increment, together with an elementary opera-
tor δ acting on them. However, this simple structure gives rise to a nice topological
structure that we will describe briefly here: first of all, for an arbitrary real num-
ber T > 0, a vector space V , and an integer k ≥ 1, we denote by Ck(V ) the set
of functions g : [0, T ]k → V such that gt1···tk = 0 whenever ti = ti+1 for some
i ≤ k − 1. Such a function will be called a (k − 1)-increment, and we will set
C∗(V ) = ⋃

k≥1 Ck(V ). The operator δ alluded to above can be seen as a cobound-
ary operator acting on k-increments, inducing a cochain complex (C∗, δ), and is
defined as follows on Ck(V ):

δ : Ck(V ) → Ck+1(V ), (δg)t1···tk+1 =
k+1∑
i=1

(−1)igt1···t̂i ···tk+1
,(7)

where t̂i means that this particular argument is omitted. Then a fundamental prop-
erty of δ, which is easily verified, is that δδ = 0, where δδ is considered as an
operator from Ck(V ) to Ck+2(V ). We will denote Z Ck(V ) = Ck(V ) ∩ Ker δ|Ck(V )

and B Ck(V ) := Ck(V ) ∩ Im δ|Ck−1(V ), respectively the spaces of k-cocycles and of
k-coboundaries, following standard conventions of homological algebra.

Some simple examples of actions of δ, which will be the ones we will really
use throughout the paper, are obtained by letting g ∈ C1 and h ∈ C2. Then, for any
t, u, s ∈ [0, T ], we have

(δg)ts = gt − gs and (δh)tus = hts − htu − hus.(8)

Furthermore, it is readily checked that the complex (C∗, δ) is acyclic, that is,
Z Ck+1(V ) = B Ck(V ) for any k ≥ 1, or otherwise stated, the sequence

0 → R → C1(V )
δ−→ C2(V )

δ−→ C3(V )
δ−→ C4(V ) → ·· ·(9)

is exact. In particular, the following basic property, which we label for further use,
holds true.

LEMMA 2.1. Let k ≥ 1 and h ∈ Z Ck+1(V ). Then there exists a (nonunique)
f ∈ Ck(V ) such that h = δf .

PROOF. This elementary proof is included in [6]; see also Proposition 3.1 be-
low. Let us just mention that ft1···tk = ht1···tk0 is a possible choice. �
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REMARK 2.2. Observe that Lemma 2.1 implies that all the elements h ∈
C2(V ), such that δh = 0, can be written as h = δf for some (nonunique) f ∈
C1(V ). Thus, we get a heuristic interpretation of δ|C2(V ): it measures how much a
given 1-increment is far from being an exact increment of a function (i.e., a finite
difference).

Notice that our future discussions will mainly rely on k-increments with k ≤ 2,
for which we will use some analytical assumptions. Namely, we measure the size
of these increments by Hölder norms defined in the following way: for f ∈ C2(V )

let

‖f ‖μ ≡ sup
s,t∈[0,T ]

|fts |
|t − s|μ and Cμ

2 (V ) = {f ∈ C2(V ); ‖f ‖μ < ∞}.

In the same way, for h ∈ C3(V ), set

‖h‖γ,ρ = sup
s,u,t∈[0,T ]

|htus |
|u − s|γ |t − u|ρ ,

(10)

‖h‖μ ≡ inf
{∑

i

‖hi‖ρi,μ−ρi
;h = ∑

i

hi,0 < ρi < μ

}
,

where the last infimum is taken over all sequences {hi ∈ C3(V )} such that h =∑
i hi and for all choices of the numbers ρi ∈ (0,μ). Then ‖ · ‖μ is easily seen to

be a norm on C3(V ), and we set

Cμ
3 (V ) := {h ∈ C3(V ); ‖h‖μ < ∞}.

Eventually, let C 1+
3 (V ) = ⋃

μ>1 Cμ
3 (V ), and remark that the same kind of norms

can be considered on the spaces Z C3(V ), leading to the definition of some spaces
Z Cμ

3 (V ) and Z C 1+
3 (V ).

With this notation in mind, the following proposition is a basic result which is
at the core of our approach to pathwise integration.

PROPOSITION 2.3 (The sewing map 	). There exists a unique linear map
	 : Z C 1+

3 (V ) → C 1+
2 (V ) (the sewing map) such that

δ	 = IdZ C3(V ).

Furthermore, for any μ > 1, this map is continuous from Z Cμ
3 (V ) to Cμ

2 (V ) and
we have

‖	h‖μ ≤ 1

2μ − 2
‖h‖μ, h ∈ Z C 1+

3 (V ).(11)

PROOF. For sake of completeness, we include a proof of this result here,
which is more elementary than the one provided in [6], and which will be gen-
eralized at Theorem 3.5. For the sake of notation, we will omit the dependence in
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V in our functional spaces, and write for instance C3 instead of C3(V ). Let then h

be an element of Z Cμ
3 ⊂ Z C 1+

3 for some μ > 1.
Step 1: Let us first prove the uniqueness of the 1-increment M ∈ Cμ

2 such that
δM = h. Indeed, let M,M̂ be two elements of Cμ

2 satisfying δM = δM̂ = h and
set Q = M − M̂ . Then δQ = 0 and Q ∈ Cμ

2 . Invoking Lemma 2.1, there exists an
element q ∈ C1 such that Q = δq , but since μ > 1, q is a function on [0, T ] with
zero derivative, that is a constant and then Q = 0.

Step 2: Let us construct now a process M ∈ Cμ
2 , with μ > 1, satisfying δM = h.

Since δh = 0, invoking again Lemma 2.1, we know that there exists a B ∈ C2 such
that δB = h. Pick s, t ∈ [0, T ], such that s < t in order to fix ideas, and for n ≥ 0,
consider the dyadic partition {rn

i ; i ≤ 2n} of the interval [s, t], where

rn
i = s + (t − s)i

2n
for i ≤ 2n.(12)

Then for n ≥ 0 set

Mn
ts = Bts −

2n−1∑
i=0

Brn
i+1,r

n
i
.(13)

Then it is readily checked that M0
ts = 0. Furthermore, we have

Mn+1
ts − Mn

ts =
2n−1∑
i=0

(B
rn+1
2i+2,r

n+1
2i

− B
rn+1
2i+1,r

n+1
2i

− B
rn+1
2i+2,r

n+1
2i+1

)

=
2n−1∑
i=0

(δB)
rn+1
2i+2,r

n+1
2i+1,r

n+1
2i

=
2n−1∑
i=0

h
rn+1
2i+2,r

n+1
2i+1,r

n+1
2i

,

and since h ∈ Cμ
3 with μ > 1, we obtain

|Mn
ts − Mn+1

ts | ≤ ‖h‖μ(t − s)μ

2n(μ−1)
,

which yields that Mts ≡ limn→∞ Mn
ts exists, and satisfies inequality (11).

Step 3: Let us consider now a general sequence {πn;n ≥ 1} of partitions
{rn

0 , rn
1 , . . . , rn

kn
, rn

kn+1} of [s, t], with s = rn
0 < rn

1 < · · · < rn
kn

< rn
kn+1 = t . We

assume that πn ⊂ πn+1, and limn→∞ kn = ∞. Set

M
πn
ts = Bts −

kn∑
l=0

Brn
l+1,r

n
l
.(14)

It is easily seen that there exists 1 ≤ l ≤ kn such that

|rn
l+1 − rn

l−1| ≤
2|t − s|

kn

.(15)
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Pick now such an index l, and let us transform πn into π̂ , where

π̂ = {rn
0 , rn

1 , . . . , rn
l−1, r

n
l+1, . . . , r

n
kn

, rn
kn+1}.

Then, as in the previous step,

Mπ̂
ts = M

πn
ts − (δB)rn

l+1,r
n
l ,rn

l−1
= M

πn
st − hrn

l+1,r
n
l ,rn

l−1
,

using the definition of the space Cμ
3 and the bound (15) we have

|Mπ̂
ts − M

πn
ts | ≤ 2μ‖h‖μ

(
t − s

kn

)μ

.

Repeating now this operation until we end up with the trivial partition π̂0 ≡ {s, t},
for which M

π̂0
st = 0, we obtain

|Mπn
ts | ≤ 2μ‖h‖μ|t − s|μ

kn∑
j=1

j−μ ≤ 2μ‖h‖μ|t − s|μ
∞∑

j=1

j−μ ≡ cμ,h|t − s|μ.

Hence, there exists a subsequence {πm;m ≥ 1} of {πn;n ≥ 1} such that M
πm
ts con-

verges to an element Mts , satisfying Mts ≤ cμ,h|t − s|μ. With the same consider-
ations as in [13], it can also be checked that the limit M does not depend on the
particular sequence of partitions we have chosen, and thus coincides with the one
constructed at Step 2.

Step 4: It remains to show that δM = h. Consider then 0 ≤ s < u < t ≤ T , and
two sequences of partitions πn

us and πn
tu of [s, u] and [u, t], respectively, whose

meshes tend to 0 as n → ∞. Set also πn
ts = πn

tu ∪ πn
us . From the previous step, one

can construct easily some subsequences πm
tu,π

m
us,π

m
ts , with πm

ts = πm
tu ∪ πm

us , such
that

lim
m→∞M

πm
tu

tu = Mtu, lim
m→∞M

πm
us

us = Mus, lim
m→∞M

πm
ts

ts = Mts.

Call now km
ts (resp. km

tu, k
m
us) the number of points of the partition πm

ts (resp.
πm

tu,π
m
us). Then a direct computation, using definition (14), shows that for any

0 ≤ i ≤ 2n we have

M
πm

ts
ts − M

πm
su

tu − M
πm

ut
us

= (δB)tus −
(km

ts+km
us+1∑

l=0

Brm
l+1r

m
l

−
km
tu∑

l=0

Brm
l+1r

m
l

−
km
tu+km

us+1∑
l=km

tu+1

Brm
l rm

l+1

)

= (δB)tus = htus.

Taking the limit m → ∞ in the latter relation, we get (δM)tus = htus , which ends
the proof. �

We can now give an algorithm for a canonical decomposition of the preimage of
the space Z C 1+

3 (V ), or in other words, of a function g ∈ C2(V ) whose increment
δg is smooth enough.
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COROLLARY 2.4. Take an element g ∈ C2(V ), such that δg ∈ Cμ
3 (V ) for

μ > 1. Then g can be decomposed in a unique way as

g = δf + 	δg,

where f ∈ C1(V ).

PROOF. Elementary; see [6]. �

At this point, the connection of the structure we introduced with the problem
of integration of irregular functions can be still quite obscure to the noninitiated
reader. However, something interesting is already going on and the previous corol-
lary has a very nice consequence which is the subject of the following property.

COROLLARY 2.5 (Integration of small increments). For any 1-increment g ∈
C2(V ), such that δg ∈ C 1+

3 , set δf = (Id − 	δ)g. Then

(δf )ts = lim|�ts |→0

n∑
i=0

gti+1ti ,

where the limit is over any partition �ts = {t0 = t, . . . , tn = s} of [t, s] whose mesh
tends to zero. The 1-increment δf is the indefinite integral of the 1-increment g.

PROOF. Just consider the equation g = δf + 	δg and write

S� =
n∑

i=0

gti+1ti =
n∑

i=0

(δf )ti+1ti +
n∑

i=0

(	δg)ti+1ti

= (δf )ts +
n∑

i=0

(	δg)ti+1ti .

Then observe that, due to the fact that 	δg ∈ C 1+
2 (V ), the last sum converges to

zero. �

2.2. Computations in C∗. For sake of simplicity, let us assume, until Section 3,
that V = R, and set Ck(R) = Ck . Then the complex (C∗, δ) is an (associative, non-
commutative) graded algebra once endowed with the following product: for g ∈ Cn

and h ∈ Cm let gh ∈ Cn+m−1 the element defined by

(gh)t1,...,tm+n−1 = gt1,...,tnhtn,...,tm+n−1, t1, . . . , tm+n+1 ∈ [0, T ].(16)

In this context, the coboundary δ act as a graded derivation with respect to the
algebra structure. In particular, we have the following useful properties.

PROPOSITION 2.6. The following differentiation rules hold true:
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(1) Let g,h be two elements of C1. Then

δ(gh) = δg h + g δh.(17)

(2) Let g ∈ C1 and h ∈ C2. Then

δ(gh) = δg h + g δh, δ(hg) = δhg − hδg.

PROOF. We will just prove (17), the other relations being equally trivial: if
g,h ∈ C1, then

[δ(gh)]ts = gtht − gshs = gt (ht − hs) + (gt − gs)hs = gt (δh)ts + (δg)tshs,

which proves our claim. �

The iterated integrals of smooth functions on [0, T ] are obviously particular
cases of elements of C which will be of interest for us, and let us recall some
basic rules for these objects: consider f,g ∈ C∞

1 , where C∞
1 is the set of smooth

functions from [0, T ] to R. Then the integral
∫

dg f , which will be denoted by
J (dg f ), can be considered as an element of C∞

2 . That is, for s, t ∈ [0, T ], we set

Jts(dg f ) =
(∫

dg f

)
ts

=
∫ t

s
dgu fu.

The multiple integrals can also be defined in the following way: given a smooth
element h ∈ C∞

2 and s, t ∈ [0, T ], we set

Jts(dg h) ≡
(∫

dg h

)
ts

=
∫ t

s
dgu hus.

In particular, the double integral Jts(df
3 df 2 f 1) is defined, for f 1, f 2, f 3 ∈ C∞

1 ,
as

Jts(df
3 df 2 f 1) =

(∫
df 3 df 2 f 1

)
ts

=
∫ t

s
df 3

u Jus(df
2 f 1)

and if f 1, . . . , f n+1 ∈ C∞
1 , we set

Jts(df
n+1 df n · · · df 2 f 1) =

∫ t

s
df n+1

u Jus(df
n · · · df 2 f 1),(18)

which defines the iterated integrals of smooth functions recursively.
The following relations between multiple integrals and the operator δ will also

be useful in the remainder of the paper.

PROPOSITION 2.7. Let f,g be two elements of C∞
1 . Then, recalling the con-

vention (16), it holds that

δf = J (df ), δ(J (dg f )) = 0,

δ(J (dg df )) = (δg)(δf ) = J (dg)J (df )
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and, in general,

δ
(

J (df n · · · df 1)
) =

n−1∑
i=1

J (df n · · · df i+1)J (df i · · · df 1).

PROOF. Here again, the proof is elementary, and we will just show the third
of these relations: we have, for s, t ∈ [0, T ],

Jts(dg df ) =
∫ t

s
dgu (fu − fs) =

∫ t

s
dgu fu − Kts,

with Kts = (gt − gs)fs . The first term of the right-hand side is easily seen to be in
Z C2. Thus,

δ(J (dg df ))tus = −(δK)tus = [gt − gu][fu − fs],
which gives the announced result. �

2.3. Dissection of an integral. The purpose of this section is not to provide an
account on all the computations contained in [6]. However, we will go into some
semi-heuristic considerations that, hopefully, will shed some light on the way we
will solve rough PDEs later on: with the notation of Section 2.2 in mind, we will
try to give, intuitively speaking, a meaning to the integral

∫
ϕ(x)dx = J (dx ϕ(x))

for a nonsmooth function x ∈ C1. Notice that, in the sequel, x should be considered
as a vector valued function, since the whole theory can be handled via the Doss–
Soussman methodology in the real case. However, we will present the main ideas
of the algorithm below as if x were real valued, the generalization from R to R

n

being just a matter of (cumbersome) notation.

2.3.1. The Young case. The first idea one can have in mind in order to define
J (dx ϕ(x)) is to perform an expansion around the increment dx: indeed, in the
smooth case, we have

J (dx ϕ(x)) = δx ϕ(x) + J (dx dϕ(x)).(19)

If we wish to extend the right-hand side of (19) to a nonsmooth case, we see that
the first term is harmless, since it is defined independently of the regularity of x,
by

[δx ϕ(x)]ts = [xt − xs]ϕ(xs) for s, t ∈ [0, T ].
The last term of (19) is more problematic and we proceed to its dissection by the
application of δ: invoking Proposition 2.7, we get, in the smooth case, that

δ(J (dx dϕ(x))) = δx δ(ϕ(x)), that is,
(20)

[δ(J (dx dϕ(x)))]tus = [δx]tu[δ(ϕ(x))]us.
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Now the r.h.s. of (20) is well defined independently of the regularity of x. Thus,
if δxδ(ϕ(x)) ∈ C 1+

3 , which happens when x ∈ Cα
1 with α > 1

2 and ϕ ∈ C1(R),
then Proposition 2.3 can be applied, and 	[δx δ(ϕ(x))] is defined unambiguously.
Hence, owing to (20), we set

J (dx dϕ(x)) = 	(δx δ(ϕ(x)))

and

J (dx ϕ(x)) = δx ϕ(x) + 	(δx δ(ϕ(x))) = (Id − 	δ)[δx ϕ(x)],(21)

where the last equality is due to Proposition 2.6 and to the fact that δδx = 0. No-
tice once again that this construction is valid whenever x ∈ Cα

1 with α > 1
2 and

ϕ ∈ C1(R), and it is easily shown, along the same lines as in the proof of Propo-
sition 2.3 that the integral J (dx ϕ(x)) defined by (21) corresponds to the usual
Young integral.

2.3.2. Case of a α-Hölder path with 1
3 < α < 1

2 . The construction (21) does

not work if x /∈ C 1/2+
1 . However, if x ∈ Cα

1 with α > 1
3 , we can proceed further in

the expansion of equation (19) by observing that, still in the smooth case, we have,
for s, t ∈ [0, T ],∫ t

s
[dϕ(x)]u =

∫ t

s
dxu ϕ′(xu) = [xt − xs]ϕ′(xs) +

∫ t

s
dxu

∫ u

s
dxv ϕ′′(xv),

or according to the notation of Section 2.2,

δϕ(x) = J (dϕ(x)) = J (dx ϕ′(x)) = δx ϕ′(x) + J (dx dϕ′(x)).(22)

Injecting this equality in equation (19), thanks to (18), we obtain

J (dx ϕ(x)) = δx ϕ(x) + J (dx dx)ϕ′(x) + J (dx dx dϕ′(x)).(23)

Let us assume now that we are given a process J (dx dx) ∈ C2, usually (and some-
what improperly) called the Lévy area of x, such that

δ(J (dx dx)) = δx δx and J (dx dx) ∈ C 2α
2 .(24)

This assumption is of course not automatically satisfied, but it can be checked for
instance in the Brownian and fractional Brownian cases. Then the right-hand side
of (23) is again well defined independently of the regularity of x, except for the
last term. However, recast equation (23) as

−J (dx dx dϕ′(x)) = −J (dx ϕ(x)) + δx ϕ(x) + J (dx dx)ϕ′(x),

and apply again δ to both sides of this last expression. Invoking Proposition 2.7
and recalling that δ(J (dx dx)) = δx δx, we obtain

−δJ (dx dx dϕ′(x)) = −δx δϕ(x) + δx δx ϕ′(x) − J (dx dx)δϕ′(x)
(25)

= −δx[δϕ(x) − δx ϕ′(x)] − J (dx dx)δϕ′(x).
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Everything in the r.h.s. of equation (25) is well defined at this stage, and if we
assume that all the terms belong to Cμ

3 with μ > 1 [which can be justified via Tay-
lor’s expansions whenever x ∈ Cα

1 with α > 1
3 and ϕ ∈ C2(R)], we can conclude

that

J (dx ϕ(x)) = δx ϕ(x) + J (dx dx)ϕ′(x)

+ 	
[

J (dx dx)δϕ′(x) + δx
(
δϕ(x) − δx ϕ′(x)

)]
,

or stated otherwise

J (dx ϕ(x)) = (Id − 	δ)[δx ϕ(x) + J (dx dx)ϕ′(x)],
where we used the fact that δJ (dx dx) = δx δx to put in evidence the fact that we
are actually integrating (in the sense of Corollary 2.5) the 1-increment δx ϕ(x) +
J (dx dx)ϕ′(x) which can be thought of as a corrected version of the more natural
integrand δx ϕ(x). It is worth noticing at that point that this integral has now to be
understood as an integral over the (step-2) rough path (x, J (dx dx)) introduced in
[6] and it coincides with the notion of integral over a rough path given by Lyons
in [17].

REMARK 2.8. This algorithm has an obvious extension to higher orders if
we assume that a reasonable definition of the iterated integrals J (dx dx · · · dx)

can be given. To proceed further, however, we need the notion of geometric rough
path (for more details on this notion see [17]) which must be exploited crucially
to show that some terms are small enough and belong to the domain of 	. For a
more general approach, which does not rely on geometric rough-path, see [10].

3. Algebraic integration associated to a semigroup. The aim of this section
is to set the basis for our future computations: after recalling some basic facts about
analytic semigroups, we will define a set of increments Ĉ∗ and a modified operator
δ̂ adapted to our evolution setting. Then we will give some basic calculus rules for
(Ĉ∗, δ̂) and eventually, we will fix the notation for the main application we have
chosen, that is the stochastic heat equation.

3.1. Analytical semigroups. As in [12], we will be able to develop our inte-
gration theory in the abstract setting of analytical semigroups on Banach spaces,
whose basic features can be summarized as follows: let (B, | · |) be a separable
Banach space, and (A,Dom(A)) be a nonbounded linear operator on B. We will
assume in the sequel that (see [20, Sections 2.5 and 2.6]) A is the generator of an
analytical semigroup {St ; t ≥ 0}, satisfying

|St | ≤ Me−λt for some constants M,λ > 0 and for all t ≥ 0,

where | · | also stands for the operator norm on B. Set now Ao = −A. This allows
us, in particular, to define the fractional powers (Aα

o ,Dom(Aα
o )) for any α ∈ R.
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For α ≥ 0, let Bα be the space Dom(Aα
o ) with the norm |x|Bα = |Aα

ox|. Since
A−α

o is continuous, it follows that the norm | · |Bα is equivalent to the graph norm
of Aα

o . If α = 0, then Bα = B and A0
o = Id. If α < 0, let Bα be the completion of B

with respect to |x|Bα = |Aα
ox|, which means in particular that Bα is a larger space

than B. We will also set B−∞ = ⋃
α∈R Bα .

Among the important facts about these spaces, note the following ones: For any
α ∈ R and any ρ ≥ 0,

A
−ρ
o maps Bα onto Bα+ρ for all α ∈ R, ρ ≥ 0,(26)

|x|Bα ≤ Cα,ρ |x|Bρ for all x ∈ Bα and all α ≤ ρ.(27)

Moreover, for all α,β ∈ R,

Aα
oAβ

o = Aα+β
o on Bγ(28)

with γ = max{α,β,α + β}. The semigroup (St )t≥0 also satisfies

St may be extended to Bα for all α < 0 and all t > 0,(29)

St maps Bα to Bρ for all α ∈ R, ρ ≥ 0, t > 0,(30)

for all t > 0, α ≥ 0 |Aα
oSt | ≤ Mαt−αe−λt ,(31)

for 0 < α ≤ 1, x ∈ Bα |Stx − x| ≤ Cαtα|Aα
ox|.(32)

We will denote with L(B, B′) the space of continuous linear operators from the
Banach space B to the Banach space B′. We let L(B) = L(B, B). In order to be
coherent with our previous notation, we also set St−s = Sts for a generic semigroup
S, and 0 ≤ s < t ≤ T .

3.2. Convolutional increments. Let us turn now to the main concern of this
section, that is the definition of a complex (Ĉ∗, δ̂) which behaves nicely for the
definition of our evolution problem.

Notice that, due to the fact that the operator St1t2 is well defined only for t1 > t2,
our integration domains will be of the form Sn, where Sn stands for the n-simplex

Sn = {(t1, . . . , tn) :T ≥ t1 ≥ t2 ≥ · · · ≥ tn ≥ 0}.
Let then V be a separable Banach space. The basic family of increments we will
work with is {Ĉn(V );n ≥ 0}, where Ĉn(V ) denotes the space of continuous func-
tions from Sn to V . Observe that an operator δ : Ĉn(V ) → Ĉn+1(V ) can be defined
just like in (7). In particular, if A ∈ Ĉ1(V ) and B ∈ Ĉ2(V ), the relation (8) is still
valid. However, let us see now why δ is not adapted to the resolution of equa-
tion (4).

What made δ an interesting operator in Section 2 was the simple fact that, if
F ∈ Ĉ∞

1 (R), then, for t, s ∈ [0, T ]2, we have

[δF ]ts =
∫ t

s
fu du with f = F ′.(33)
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However, if St is the semigroup defined at Section 3.1, and if we set

F̂t =
∫ t

0
Stufu du for t ≥ 0, f ∈ Ĉ∞

1 (B),

then the same kind of relation does not hold true for F̂ . Indeed, for s ≤ t , if we
define the operator ats : B → B as

ats = Sts − Id,(34)

where Id : B → B is the identity operator, then it is easily seen that

[δF̂ ]ts = F̂t − F̂s = atsF̂s +
∫ t

s
Stufu du,

and hence, in order to get a similar relation to (33) in this new context, one should
consider an operator δ̂ : Ĉn(B) → Ĉn+1(B), defined by

[δ̂A]t1···tn+1 = [δA]t1···tn+1 − at1t2At2···tn+1
(35)

for A ∈ Ĉn(B), (t1 · · · tn+1) ∈ Sn+1.

In the remainder of the paper, we will write δ̂A = δA − aA, where we made use
of the convention (16). As in Section 2.1, one can define, for n ≥ 1,

Z Ĉn(B) = Ĉn(B) ∩ ker(δ̂) and B Ĉn(B) = Ĉn(B) ∩ Im(δ̂).

Then the perturbed operator δ̂ preserves some important properties of the origi-
nal coboundary δ.

PROPOSITION 3.1. The couple (Ĉ∗, δ̂) is an acyclic cochain complex: Z Ĉn+1 =
B Ĉn for any n ≥ 0.

PROOF. Let us prove first that δ̂ is a coboundary, that is, δ̂δ̂ = 0. Indeed, if
F ∈ Ĉn according to the fact that δδ = 0 and thanks to the forthcoming Lemma 3.2,
we have

δ̂δ̂F = (δ − a)[(δ − a)F ] = δδF − δ(aF ) − aδF + aaF

= −δaF + aδF − aδF + aaF = aaF − δaF.

Furthermore, it is readily checked that

(δa)tus = atuaus, (t, u, s) ∈ S3,

which gives δ̂δ̂F = 0.
The fact that Im δ̂|Ĉn

= ker δ̂|Ĉn+1
can be proved along the same lines as for the

(C∗, δ) complex [6]: pick A ∈ Ĉn+1 such that δ̂A = 0, and set Bt1...tn = At1...tns ,
with s = 0. Then

[δ̂B]t1···tn+1 = [δA]t1···tn+1s + (−1)n+1At1···tn+1 − at1t2At2···tns

= [δ̂A]t1···tn+1s + (−1)n+1At1···tn+1 = (−1)n+1At1···tn+1 .
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Thus, setting C = (−1)n+1B , we get δ̂C = A. �

The cochain complex (Ĉ∗, δ̂) will be the structure at the base of all the con-
structions in this paper. Let us also mention at this point that, when the meaning
is obvious, we will transpose the notation of Section 2 to our infinite-dimensional
setting. Furthermore, whenever this does not lead to an ambiguous situation, we
will write Ĉn instead of Ĉn(B).

Let us give now a simple and useful extension of Proposition 2.6, which has
already been used in the last proposition.

LEMMA 3.2. Let L ∈ Ĉn−1(B) and M ∈ Ĉ2(L(B)). Then

δ(ML) = δML − MδL.

PROOF. Let Gt1···tn = Mt1t2Lt2···tn . Then

[δG]t1···tn+1 =
n+1∑
i=1

(−1)iGt1···t̂i ···tn+1

= −Mt2t3Lt3···tn+1 + Mt1t3Lt3···tn+1 +
n+1∑
i=3

(−1)iMt1t2Lt2···t̂i ···tn+1

= [δM]t1t2t3Lt3···tn+1 + Mt1t2

n+1∑
i=2

(−1)iLt2···t̂i ···tn+1
,

which yields our claim. �

3.3. Computations in Ĉ∗. Here again, like in Section 2, we will try to move
from a smooth setting to an irregular one. And we will start by giving the equiva-
lent, in our new setting, of Proposition 2.3, which will require first the introduction
of some analytical structures on the spaces Ĉn.

3.3.1. Hölder type spaces. First of all, we have to define some Hölder type
subspaces of Ĉk , k ≤ 3, related to the spaces Bα , α ∈ R: for μ ≥ 0 and g ∈ Ĉ2(Bα),
we set

‖g‖μ,α ≡ sup
t,s∈S2

|gts |Bα

|t − s|μ and Ĉμ,α
2 = {g ∈ Ĉ2(Bα); ‖g‖μ,α < ∞},(36)

and the definition above also induces some seminorms on C1: for γ > 0, α ∈ R, we
say that f ∈ Ĉγ,α

1 if

‖f ‖γ,α ≡ ‖δ̂f ‖γ,α < ∞.

Another useful subspace of Ĉ1 will be Ĉ 0,α
1 , the space of bounded paths in Bα with

the supremum norm ‖f ‖0,α = supt∈[0,T ] |ft |Bα .
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As far as Ĉ3 is concerned, Ĉμ,α
3 can be defined in the following way: set

‖h‖γ,ρ,α = sup
t,u,s∈S3

|htus |Bα

|t − u|γ |u − s|ρ ,

(37)

‖h‖μ,α ≡ inf
{∑

i

‖hi‖ρi,μ−ρi ,α;h = ∑
i

hi,0 < ρi < μ

}
,

where the last infimum is taken over all sequences {hi}i such that h = ∑
i hi and

for all choices of the numbers ρi ∈ (0,μ). Then ‖ · ‖μ,α is again easily seen to be
a norm, and we set

Ĉμ,α
3 = {h ∈ Ĉ3(Bα); ‖h‖μ,α < ∞}.

In order to avoid ambiguities, we shall also denote in the sequel by N [f ; Ĉκ
j ]

the κ-Hölder norm on the space Ĉj , for j = 1,2,3. For ζ ∈ Ĉ1(V ), we also set
N [ζ ; Ĉ 0

1(V )] = sups∈[0;T ] ‖ζs‖V .
Eventually, we will need to introduce a slight extension of the spaces we have

just defined above: for j = 1,2, let E μ,α
j be defined by

E μ,α
j = ⋂

ε≤μ∧1−
Ĉμ−ε,α+ε

j ,(38)

where ε ≤ μ ∧ 1− stands for the condition ε ∈ [0,μ] ∩ [0,1), and where the inter-
section is considered along any arbitrary family {0 ≤ ε1 < · · · < εn ≤ μ ∧ 1−} for
n ≥ 1. Obviously, some families of operators will play an important role in the se-
quel, and this will lead us to the following specific definitions for operator-valued
increments.

DEFINITION 3.3. For μ ≥ 0 and α,β ∈ R, we will call Ĉμ
2 Lβ,α the space

Ĉμ
2 (L(Bβ; Bα)), and will denote by E μ

2 Lβ,α the space

E μ
2 Lβ,α = ⋂

ε≤μ∧1−
Ĉμ−ε

2 Lβ,α+ε,

where the intersection is still considered along any arbitrary finite family {0 ≤ ε1 <

· · · < εn ≤ μ ∧ 1−} for n ≥ 1. The natural norm on Ĉμ
2 Lβ,α will be defined by

‖A‖μ,β,α = sup
t,s∈S2

‖Ats‖op

|t − s|μ ,(39)

and when we consider some Hilbert–Schmidt operators, the corresponding spaces
will be denoted by Ĉμ

2 Lβ,α
HS and E μ

2 Lβ,α
HS .
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3.3.2. The convolution sewing map and related properties. Here is a first
proposition showing how the analytical structures introduced above interact with
our previous algebraic notation.

PROPOSITION 3.4. If μ > 1, then for any α ∈ R, Z Ĉμ,α
2 = {0}.

PROOF. Take h ∈ Z Ĉμ,α
2 . Then, according to Proposition 3.1, there exists f ∈

Ĉ1 such that h = δ̂f . Consider the telescopic sum

hts = (δ̂f )ts =
n∑

i=0

Stti+1(δ̂f )ti+1ti ,

with respect to the partition �n
ts = {t0≤i≤n+1 : t0 = s, tn+1 = t} of the interval [s, t].

Since δ̂f ∈ Z Ĉμ,α
2 with μ > 1, we have

|(δ̂f )ts |Bα ≤
n∑

i=0

|(δ̂f )ti+1ti |Bα ≤ ‖δ̂f ‖μ,α

n∑
i=0

|ti+1 − ti |μ

which converges to zero as the size of the partition goes to zero. Since t, s are
arbitrary, we have δ̂f = h = 0 in Ĉμ,α

2 . �

We can now state and prove the equivalent of Proposition 2.3 in our evolution
setting, which is the main aim of this section.

THEOREM 3.5. Let μ > 1, α ∈ R. There exists a unique sewing map
	̂ : Z Ĉμ,α

3 → E μ,α
2 such that δ̂	̂ = IdZ Ĉ3

. Furthermore, for any 0 ≤ ε ≤ μ ∧ 1−,
there exists a strictly positive constant cμ,ε such that

‖	̂h‖μ−ε,α+ε ≤ cμ,ε‖h‖μ,α,(40)

for any h ∈ Z Ĉμ,α
3 .

PROOF. Like in the proof of Proposition 2.3, we will divide our computations
in two steps below.

Step 1: The uniqueness part of our theorem simply stems from the fact that if
we have δ̂a = h and δ̂a′ = h with a, a′ ∈ Ĉμ,α

2 , then b = a − a′ ∈ Z Ĉμ,α
2 and since

μ > 1, by Proposition 3.4, we must have b = 0.
Step 2: The existence part can be adapted from Proposition 2.3, and we will

construct a process M ∈ E μ,α
2 such that δ̂M = h starting from any B ∈ Ĉ2(Bα)

satisfying δ̂B = h (this increment B exists thanks to Lemma 3.1). Now, similar to
(13), we will set, for a given n ≥ 1, and (t, s) ∈ S2,

Mn
ts = Bts −

2n−1∑
i=0

Strn
i+1

Brn
i+1,r

n
i
,
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where s, t and rn
i have been defined at (12). Then M0

ts = 0 and

Mn+1
ts − Mn

ts

=
2n−1∑
i=0

(S
trn+1

2i+2
B

rn+1
2i+2,r

n+1
2i

− S
trn+1

2i+2
B

rn+1
2i+2,r

n+1
2i+1

− S
trn+1

2i+1
B

rn+1
2i+1,r

n+1
2i

)

=
2n−1∑
i=0

S
trn+1

2i+2
(B

rn+1
2i+2,r

n+1
2i

− B
rn+1
2i+2,r

n+1
2i+1

− B
rn+1
2i+1,r

n+1
2i

)

− S
trn+1

2i+2
[S

rn+1
2i+2r

n+1
2i+1

− Id]B
rn+1
2i+1,r

n+1
2i

.

Thus, according to the definition (35) of δ̂, we get

Mn+1
ts − Mn

ts =
2n−1∑
i=0

S
trn+1

2i+2
[(δB)

rn+1
2i+2,r

n+1
2i+1,r

n+1
2i

− a
rn+1
2i+2,r

n+1
2i+1

B
rn+1
2i+1,r

n+1
2i

]

=
2n−1∑
i=0

S
trn+1

2i+2
(δ̂B)

rn+1
2i+2,r

n+1
2i+1,r

n+1
2i

=
2n−1∑
i=0

S
trn+1

2i+2
h

rn+1
2i+2,r

n+1
2i+1,r

n+1
2i

.

Hence, for any ε < μ, we get, invoking (31),

|Aα+ε(Mn+1
ts − Mn

ts)| ≤ cε

2n−1∑
i=0

|t − rn
i+1|−ε|h|μ,α|t − s|μ

≤ cε|t − s|μ−ε|h|μ,α

2n(μ−1)

∫ 1

0
u−ε du,

which gives, like in Proposition 2.3, that Mts ≡ limn→∞ Mn
ts exists, and is an ele-

ment of E μ,α
2 . Now, the fact that δ̂M = h can be shown analogously to the case of

Proposition 2.3, and the proof of (40) is straightforward. �

A direct consequence of the existence of the 	̂-map is a result of convergence
of finite sums.

COROLLARY 3.6. Let g ∈ Ĉ2 such that δ̂g ∈ Ĉμ,α
3 for some μ > 1. Then the

1-increment δ̂f = (Id − 	̂δ̂)g ∈ Ĉα
2 satisfies

(δ̂f )ts = lim|�ts |→0

n∑
i=0

Stti+1gti+1ti ,

for all (t, s) ∈ S2.

PROOF. It follows the lines of the proof of Corollary 2.5. �
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We will now define an equivalent of the iterated integrals of Section 2.2 in our
convolution context: consider some smooth functions g ∈ Ĉ∞

1 (L(Bα)) and f ∈
Ĉ∞

1 (Bα), for some α ∈ R. Then J (dg f ) will be defined as an element of Ĉ∞
2 (Bα)

by Jts(dg f ) = ∫ t
s dgv fv , for (t, s) ∈ S2. We will also need some integrals of

processes weighted by the semigroup S, defined as follows, for 0 ≤ s < t ≤ T :

Jts(d̂g f ) =
∫ t

s
Stv dgv fv.

Once these elementary blocks have been defined, the iterated integrals

J (d∗nfn · · · d∗1f1) for fn, . . . , f2 ∈ Ĉ∞
1 (L(Bα)), f1 ∈ Ĉ∞

1 (Bα),(41)

where d∗j fj stands for any of the increments of the form dfj or d̂fj , can be de-
fined recursively along the same lines as in Section 2.2. In particular, the operator-
valued increment J (d̂g S) is defined by

Jts(d̂g S) =
∫ t

s
Stu dgu Sus.

The relations between δ̂ and these integrals, which will be useful for our purposes,
can be summarized in the following:

PROPOSITION 3.7. Let α ∈ R, and g ∈ Ĉ∞
1 (L(Bα)), f ∈ Ĉ∞

1 (Bα). Then

δ̂(J (d̂f )) = 0, δ̂(J (d̂g f )) = 0, δ̂(J (d̂g δ̂f )) = J (d̂g S)δ̂(f )

and

δ̂(J (d̂g d̂f )) = J (d̂g S)J (d̂f ), δ̂(J (d̂g df )) = J (d̂g)J (df ).

PROOF. The proof of these results is elementary. We will give some details
about the last relation for sake of completeness. For any (t, u, s) ∈ S3, invoking
the definition of δ̂, we have

[δ̂(J (d̂g df ))]tus = [δ(J (d̂g df ))]tus − atuJus(d̂g df )

=
∫ t

s
Stv dgv

∫ v

s
dfw −

∫ t

u
Stv dgv

∫ v

u
dfw

−
∫ u

s
Suv dgv

∫ v

s
dfw − [Stu − Id]

∫ u

s
Suv dgv

∫ v

s
dfw

= Jtu(d̂g)Jus(df ),

which proves the claim. �



22 M. GUBINELLI AND S. TINDEL

3.4. Fractional heat equation setting. In this section, we will give the general
setting under which we will try to define and solve the stochastic heat equation
driven by an infinite-dimensional fractional Brownian motion: as mentioned in the
Introduction, the main application we have in mind is the situation where A =
� − Id, and � is the Laplace operator on the circle S, assimilated to [0,1]. This
operator can be diagonalized in the trigonometric basis of L2([0,1];C), namely
{en;n ∈ Z}, where

en(x) = e2ıπnx, x ∈ [0,1].
Associated to these eigenfunctions are the eigenvalues λn = −1−(2πn)2. We have
chosen to deal with A = �− Id instead of � itself for computational convenience,
since this choice avoids the problem of a null eigenvalue for constant functions.
Notice that in this case, A is the generator of an analytical semigroup, and all the
constructions of Section 3.1 goes through. Then Bα can be identified with Hα , the
usual Sobolev space based on L2([0,1]), for the definition of which we refer to
Adams [1], and {St ; t ≥ 0} stands for the heat semigroup, which admits a kernel
Gt(ξ, η) for t > 0 and ξ, η ∈ [0,1]. In this context, set Gα

t (ξ, η) for the kernel
of the operator Aα

oSt , and Gβ(ξ, η) for the kernel of the operator A
−β
o . Then, for

α ∈ R and β > 0, Gα
t and Gβ admit the following spectral decomposition:

Gα
t (ξ, η) = ∑

n∈Z

λα
ne−tλnen(ξ)ēn(η) and

(42)
Gβ(ξ, η) = ∑

n∈Z

λ−β
n en(ξ)ēn(η).

Let us specify now the noise X we will consider: we will try to stick to the
existing literature on the topic, and choose a fractional Brownian noise in time,
defined on a certain complete probability space (�, F ,P ), which will be homoge-
neous in space, with a spatial covariance function Q. Namely, X will be a centered
Gaussian field indexed by functions on [0, T ] × [0,1], such that if φ and ψ are
smooth enough, then

E[X(φ)X(ψ)]
(43)

= cH

∫
[0,T ]2

(∫
[0,1]2

Q(ξ − η)φ(u, ξ)ψ(v, η) dξ dη

)
|u − v|2H−2 dudv,

with cH = H(2H −1), for H > 1
2 . Notice that, in order to simplify our statements,

we will generally assume that Q can be decomposed itself on the basis {en;n ∈ Z}
in the following way:

Q(ξ) = ∑
n∈Z

qnen(ξ) with qn = λ−ν
n , for ν ∈ [0,1),(44)

and notice that the case ν = 0 corresponds to the white noise in space, while the
case ν > 1/2 corresponds to a noise admitting a density in space. Some explicit
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construction of such kind of noise, as well as an account on the related stochastic
calculus, can be found in [24]. The methodology we will develop in the rough case
will also enable us to handle the Brownian motion case, which means a covariance
structure given by

E[X(φ)X(ψ)] =
∫
[0,T ]

(∫
[0,1]2

φ(u, ξ)Q(ξ − η)ψ(u,η) dξ dη

)
du.(45)

We give here a slight extension of a result result of [6], which will be used be-
low to prove existence of regular versions of some stochastic processes, following
the well-known approach of Garsia–Rodemich–Rumsey. The proof is conceptu-
ally similar to that appearing in [6] but there is a small technical difficulty due to
the fact that convolutional increments are one-sided and which forces us to follow
the scheme of the proof of the GRR inequality in Stroock’s book rather that which
can be found in [6].

In order to state this extension, we shall introduce for the first time a variant of
the operator δ̂, called δ̃, acting on operator-valued increments which turns out to
be useful in the sequel, and which is defined by

δ̃Q = δ̂Q − Qa = δQ − aQ − Qa, Q ∈ C∗(L(B)).(46)

With this additional notation in hand, our regularity lemma is the following below.

LEMMA 3.8. For any γ > 0, α,β ∈ R and p ≥ 1, there exists a constant C

such that for any R ∈ Ĉ2(Lβ,α), we have

‖R‖γ,β,α ≤ C
(
Uγ+2/p,p,β,α(R) + ‖δ̃R‖γ,β,α

)
,(47)

where

Uγ,p,β,α(R) =
[∫

S2

( |Rts |β,α

|t − s|γ
)p

dt ds

]1/p

.

PROOF. As in [6], this result is a direct consequence of a more general
Lemma 3.9 below by choosing �(x) = xp and p(t) = tγ+2/p . �

LEMMA 3.9. Let p and � be strictly increasing, continuous functions on R+
satisfying p(0) = �(0) = 0 and �(x) → ∞ as x → ∞. Then there exist a con-
stant K such that for any α,β ∈ R and any R ∈ Ĉ2(Lβ,α) for which

U =
∫∫

0<s<t<T
�

( |Rts |β,α

p(t − s)

)
dt ds < ∞

and

sup
s≤u≤t

|δ̃Rtus |β,α ≤ �−1
(

4C

(t − s)2

)
p(t − s), 0 ≤ s ≤ t ≤ T
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for some constant C < ∞, then

|Rts |β,α ≤ 8K

∫ t−s

0
�−1

(
4B

u2

)
p(du) + 9K

∫ t−s

0
�−1

(
4C

u2

)
p(du)

for all 0 ≤ s ≤ t ≤ T .

PROOF. The proof follows closely Stroock’s proof of the Garsia–Rodemich–
Rumsey inequality. First, show the estimate for T = t = 1 and s = 0. For a se-
quence of times tn,sn such that t > tk+1 > tk , s < sk+1 < sk and t0 = s0, we have

Rts = Rtt0St0s + Stt0Rt0s + δ̃Rtt0s,

Rtt0 = Rttn+1Stn+1t0 +
n∑

k=0

Sttk+1Rtk+1tkStkt0 +
n∑

k=0

δ̃Rttk+1tkStkt0

and

Rt0s = St0sn+1Rsn+1s +
n∑

k=0

St0skRsksk+1Ssk+1s +
n∑

k=0

St0sk δ̃Rsksk+1s .

Next, we choose these times as follows. Let I (v) = ∫ v
0 ψ(

|Rvu|β,α

p(v−u)
) du. For any

sn, define dn by the equation 2p(dn) = p(sn). Remark that since
∫ 1

0 I (t) dt = U

there exists t0 such that I (t0) ≤ U . We claim that there exists sn+1 ∈ (0, dn) such
that both inequalities

I (sn+1) ≤ 2U

dn

and �

( |Rsnsn+1 |β,α

p(sn − sn+1)

)
≤ 2I (sn)

dn

hold. This is always possible since, if we call An ⊂ (0, dn) (resp. Bn) the set of
sn+1 where the first (resp. the second) fail, we have

U ≥
∫
An

dsn+1 I (sn+1) >
2U

dn

|An| and

I (sn) ≥
∫
Bn

dsn+1 �

( |Rsnsn+1 |β,α

p(sn − sn+1)

)
>

2I (sn)

dn

|Bn|
so we must have |An| < dn/2 and |Bn| < dn/2 which means that (0, dn)\(An ∪Bn)

has positive measure. Then since

p(sn − sn+1) ≤ p(sn) = 2p(dn) = 4
(
p(dn) − p(dn)/2

) ≤ 4
(
p(dn) − p(dn+1)

)
,

we have

|Rsnsn+1 |β,α ≤ �−1
(

2I (sn)

dn

)
p(sn − sn+1)

≤ 4�−1
(

4U

dndn−1

)(
p(dn) − p(dn+1)

)

≤ 4
∫ dn

dn+1

�−1
(

4U

u2

)
p(du)
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and

|δ̃Rsnsn+1s |β,α ≤ �−1
(

4C

d2
n

)
p(sn) ≤ 4�−1

(
4C

d2
n

)(
p(dn) − p(dn+1)

)

≤ 4
∫ dn

dn+1

�−1
(

4C

u2

)
p(du)

then we have

|Rt0s |β,α ≤ M2
∞∑

n=0

|Rsksk+1 | + M

∞∑
n=0

|δ̂Rsksk+1s |

≤
∞∑

n=0

4M2
∫ dn

dn+1

�−1
(

4U

u2

)
p(du) +

∞∑
n=0

4M

∫ dn

dn+1

�−1
(

4C

u2

)
p(du)

≤ 4M2
∫ t−s

0
�−1

(
4U

u2

)
p(du) + 4M

∫ t−s

0
�−1

(
4C

u2

)
p(du),

where we used the fact that there exists M > 1 such that |Sτ |α,α ≤ M for any α

and any τ ≥ 0.
Similarly, we find

|Rtt0 |β,α ≤ 4M2
∫ t−s

0
�−1

(
4U

u2

)
p(du) + 4M

∫ t−s

0
�−1

(
4C

u2

)
p(du).

So using that

|δ̃Rtt0s |β,α ≤ �−1
(

4C

(t − s)2

)
p(t − s) ≤

∫ t−s

0
�−1

(
4C

u2

)
p(du),

we obtain

|Rts |β,α ≤ 8M2
∫ t−s

0
�−1

(
4U

u2

)
p(du) + 9M

∫ t−s

0
�−1

(
4C

u2

)
p(du).

Now it is not difficult to extend this to generic 0 < s < t < T . �

4. Young theory. We are now ready to analyze the Young integration in the
evolution setting along the same lines as in Section 2.3: we will first define the
integral J (d̂x z) for two Young paths x, z in an abstract setting. Then we will
solve Young SPDEs, and eventually, check our main assumptions in the fractional
heat equation setting of Section 3.4.

4.1. Young integration. The extension of the notion of integral weighted by
an analytical semigroup will be performed through the following algorithm, which
will be used in fact throughout the remainder of the paper:

(1) Assume first that x is a regular operator-valued increment, and z a regular
B-valued function and let Jts(d̂x z) ≡ ∫ t

s Stu dxu zu, for (t, s) ∈ S2, as an ele-
ment of Ĉ2.
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(2) Through the application of δ̂ and 	̂, try to get an expression for J (d̂x z) which
depends only on minimal regularity requirements for x and z.

(3) Extend the notion of integral using the previous step, and see that it induces
the convergence of some well-chosen Riemann sums.

Here is how this general strategy can be implemented here: suppose for the
moment that x is a smooth operator-valued function and z a smooth function. Then
it is easily checked that

J (d̂x z) = J (d̂x S)z + J (d̂x δ̂z).(48)

Note that in this last equality appears for the first time an incremental opera-
tor which will play a fundamental role in the sequel, namely the operator X1 ∈
Ĉ2(L(B)) defined by

X1
ts = Jts(d̂x S) =

∫ t

s
Stu dxu Sus.(49)

And here is an important point of our strategy: the noise x does not appear by
itself but always inside a convolution of the form (49), so its action is milded by
the regularizing properties of the semigroup.

Applying δ̂ to the last term of equation (48) and invoking Proposition 3.7, we
get

δ̂[J (d̂x δ̂z)] = J (d̂x S) δ̂z = X1 δ̂z.

If the 2-increment X1 δ̂z is small enough, namely if X1 δ̂z ∈ Ĉμ,θ
2 for some θ and

some μ > 1, then we can express J (d̂x z) as

J (d̂x z) = X1z + 	̂[X1 δ̂z] = (Id − 	̂δ̂)[X1z].(50)

The last equality is justified by noting that when x is a smooth incremental oper-
ator, we have δ̂X1 = X1a (i.e. δ̃X1 = 0), and thus by Lemma 3.2 one obtains that
δ̂(X1z) = −X1δ̂z.

Let us turn now to the second point of our general strategy, which consists in
inverting the process which leads to (50): indeed, if we can define properly the
right-hand side of (50), then we will be able to extend the notion of integral by a
procedure which is coherent with the basic properties required to any integral J .
Notice that this step only relies on the definition of an operator X1 associated to x,
satisfying δ̃X1 = 0, and such that X1 is regular enough. This will be formalized in
the following theorem (recall that the space B−∞ has been defined at Section 3.1).

THEOREM 4.1. Let then x be a path from [0, T ] to B−∞ such that the op-
erator X1 associated to x is well defined as an element of Ĉκ

2 Lβ,α , where β,κ

are positive constants, and α ∈ R. We also assume that X1 satisfies the algebraic
relation δ̂X1 = X1a. Let z ∈ Ĉη,β

1 , with κ + η > 1, and set

J (d̂x z) = X1z + 	̂[X1 δ̂z] = (Id − 	̂δ̂)[X1z].(51)

Then
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(1) J (d̂x z) is well defined as an element of E κ,α
2 .

(2) For a constant c > 0, we have

‖J (d̂x z)‖κ,α ≤ ‖X1‖κ,β,α(‖z‖0,β + cμ‖z‖η,β),

where the norm ‖ · ‖κ,β,α has been defined at relation (39).
(3) It holds that, for any 0 ≤ s < t ≤ T

Jts(d̂x z) = lim|�ts |→0

n∑
i=0

St−ti+1X
1
ti+1,ti

zti ,

where the limit is over all partitions �ts = {t0 = t, . . . , tn = s} of [s, t] as the
mesh of the partition goes to zero.

PROOF. Since X1z is a well defined element of Ĉκ,α
2 , in order to show that the

r.h.s. of equation (51) is well defined, it only remains to check that X1 δ̂z is in the
domain of 	̂. However, since we have assumed that X1 ∈ Ĉκ

2 Lβ,α and δ̂z ∈ Ĉη,β
2 ,

we obviously get that X1 δ̂z ∈ Ĉκ+η,α
3 . Thus, according to Theorem 3.5, X1 δ̂z ∈

Dom(	̂), yielding the first assertion of our theorem.
Moreover, thanks to the second part of Theorem 3.5, we have

‖	̂[X1 δ̂z]‖μ,α ≤ cμ‖X1‖κ,β,α‖z‖η,β,(52)

and it is also readily checked that

‖X1z‖κ,α ≤ ‖X1‖κ,β,α‖z‖0,β,(53)

which shows our second claim, by using equation (52) and equation (53) to esti-
mate the r.h.s. of (51). Eventually, the third part of the theorem is a direct conse-
quence of Corollary 3.6. �

REMARK 4.2. It is worth stressing at this point some elementary properties
enjoyed by the extension of the notion of integral given by Theorem 4.1:

• The third part of the theorem states that Jts(d̂x z) is associated to some natural
Riemann sums involving the processes x (through X1) and z.

• The arguments leading to relation (50) also show that, in case of some smooth
processes x and z, our integral Jts(d̂x z) coincides with the usual one.

These first properties seem to imply that our integral extension is a reasonable one.

4.2. Young SPDEs. Recall that we wish to solve an equation of the form

dyt = Ayt dt + dxt f (yt ), t ∈ [0, T ],(54)

with an initial condition y0 = ψ ∈ Bκ , where x is an operator-valued process which
represents our noise and f : B → B is a (possibly) nonlinear regular map. As men-
tioned in the Introduction, we will consider equation (54) in the mild sense, that is,
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we will say that y is a solution to (54) if, for a given κ > 0 (specified below) we
have y ∈ Cκ,κ

1 and if, for any t ∈ [0, T ], yt satisfies

yt = Stψ +
∫ t

0
Stu dxuf (yu) = Sty0 + Jt0(d̂x f (y)),(55)

where the integral Jt0(d̂x f (y)) is understood in the sense of Theorem 4.1. In
fact, we will focus here on a slight extension of the problem given by (55): we will
search for a (unique) process y ∈ Cκ,κ

1 satisfying, for any (t, s) ∈ S2,

yt = Stsys + Jts(d̂x f (y)), y0 = ψ,(56)

from which one recovers obviously (55) by taking s = 0. Now, (56) can be ex-
pressed in terms of convolution increments, since it is equivalent to the following
one:

[δ̂y]ts = Jts(d̂x f (y)) = [(Id − 	̂δ̂)[X1f (y)]]ts for (t, s) ∈ S2 and
(57)

y0 = ψ,

which sticks better to the algebraic formalism introduced in the previous sections.
Let us specify also some of the assumptions under which our computations will

be performed: first of all, the incremental operator X1 defined by (49) will be
assumed to be in the following class.

HYPOTHESIS 1. Assume that X1 ∈ Ĉ γ̃
2 L0,−κ ∩ Ĉκ0

2 Lκ,κ for some γ̃ > κ0 >

κ > 1/4 such that

γ̃ + κ > 1, γ̃ − κ ≥ κ0, κ < 1/2.

Notice that in the hypothesis above, the condition κ < 1/2 is somehow redun-
dant. Indeed, if γ̃ ≥ κ + κ0 ≥ 2κ , this forces the relation κ < 1/2.

As far as the function f is concerned, we will also assume that the following
holds true.

HYPOTHESIS 2. Let κ be the strictly positive constant defined at Hypothe-
sis 1. We assume that the function f : Bκ → Bκ is locally Lipschitz, and satisfies
|f (x)|Bκ ≤ cf (1 + |x|Bκ ). Furthermore, we suppose that f can also be seen as a
map from B to B, and when considered as such, it holds that f is globally Lip-
schitz.

With these assumptions and notation in mind, we are now able to solve our
evolution equation in the Young sense.
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THEOREM 4.3. Assume Hypotheses 1 and 2 hold true, and that ψ ∈ Bκ . Let
Ĉ∗,κ

1 be the subspace of Ĉ1 defined by the norm

‖z‖∗,κ = ‖z‖0,κ + ‖δ̂z‖κ,κ .(58)

Then there exists a unique global solution to (57) in Ĉ∗,κ
1 . Furthermore, this solu-

tion enjoys the following properties:

(a) For any t ∈ [0, T ], yt can be written as yt = Stψ + (δ̂y)t0.
(b) Let us call � the map (ψ,X1) �→ �(ψ,X1) = y, where y is the solution to

(57). Then � is Lipschitz continuous from Bκ0 × (Ĉ γ̃
2 L0,−κ ∩ Ĉκ0

2 Lκ,κ) to Ĉ∗,κ
1 .

PROOF. A classical fixed point argument will be sufficient to obtain the global
solution. Let us introduce the map � : Ĉ∗,κ

1 → Ĉ∗,κ
1 defined in the following way: if

y ∈ Ĉ∗,κ
1 , we set �(y) = z, where z satisfies

[δ̂z]ts = Jts(d̂x f (y))

= X1f (y) + [	̂[X1 δ̂f (y)]]ts for (t, s) ∈ S2 and(59)

z0 = ψ.

Let also B be the ball defined by

B = {y;y0 = ψ,‖y‖∗,κ ≤ 2(1 + |ψ |Bκ )}.(60)

Then the fixed point argument can be decomposed into two usual steps:

(1) Show that, on a small enough interval [0, T ], the ball B is left invariant by �.
(2) Prove that �, restricted to the ball B , is a contraction.

We will mainly focus, in this proof, on the first of these steps, since it contains
most of the technical difficulties associated to our method.

Take y ∈ B , and let us show that z = �(y) ∈ B whenever T is small enough
(recall that S2 depends on the parameter T ). To this purpose, we will first bound
the term 	̂[X1 δ̂f (y)] in (59). Recall that

[δ̂f (y)]ts = [δf (y)]ts − atsf (ys),(61)

and let us estimate the terms in the right-hand side of (61) separately: on one hand,
recalling the notation of Section 3.3.1, and thanks to the fact that f is Lipschitz on
B, we have

|[δf (y)]ts |B ≤ cf |[δy]ts |B ≤ cf (|[δ̂y]ts |B + |atsys |B)

≤ cf [‖y‖κ,0 + ‖y‖0,κ ]|t − s|κ(62)

≤ cf ‖y‖∗,κ |t − s|κ,
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where cf is a positive constant which may change from line to line, but which
depends only on f . On the other hand, according to Hypothesis 2, it is readily
checked that |f (ys)|Bκ ≤ cf (1 + ‖y‖0,κ ). Thus, invoking (32), we obtain that

|atsf (ys)|B ≤ cf (1 + ‖y‖∗,κ )|t − s|κ,(63)

and plugging (63) and (62) into (61), we get

|[δ̂f (y)]ts |B ≤ cf (1 + ‖y‖∗,κ )|t − s|κ .(64)

However, we know that X1 ∈ Ĉ γ̃
2 L0,−κ , and this fact, together with the last esti-

mate, yields

|[X1 δ̂f (y)]tus |B−κ ≤ cf ‖X1‖γ̃ ,0,−κ(1 + ‖y‖∗,κ )|t − u|γ̃ |u − s|κ .

Furthermore, by Hypothesis 1, we have γ̃ + κ > 1. This means that Theorem 3.5
can be applied here to obtain that 	̂(X1 δ̂f (y)) ∈ E γ̃+κ,−κ

2 . In particular, invoking

the definition (38) of the space E γ̃+κ,−κ
2 , and since 2κ < 1 and κ0 < γ̃ − κ , we get

	̂(X1 δ̂f ) ∈ Ĉ γ̃−κ,κ
2 ⊆ Ĉκ0,κ

2 . Moreover,

‖	̂(X1 δ̂f )‖κ0,κ ≤ cf,γ̃ ,κ‖X1‖γ̃ ,0,−κ(1 + ‖y‖∗,κ ).(65)

A bound similar to equation (65) can be found for the term X1f (y) appearing
in the definition of δ̂z in equation (59). Indeed, owing to the fact that X1 ∈ Ĉκ0

2 Lκ,κ

and that f has linear growth in Bκ , we get

|X1
tsf (ys)|Bκ ≤ cf ‖X1‖κ0,κ,κ (1 + |ys |Bκ )|t − s|κ0

(66)
≤ cf ‖X1‖κ0,κ,κ (1 + ‖y‖∗,κ )|t − s|κ0 .

Hence, plugging (66) and (65) into (59), one obtains that ‖δ̂z‖κ0,κ ≤ cf,X1,γ̃ ,κ (1 +
‖y‖∗,κ ). Note here a crucial point: starting from y ∈ Ĉκ,κ

1 , we have constructed
z ∈ Ĉκ0,κ

1 with ε = κ0 − κ > 0. This little regularity gain can be used in order to
write

‖δ̂z‖κ,κ ≤ cf,X1,γ̃ ,κ (1 + ‖y‖∗,κ )T ε.(67)

Now, the quantity T ε can be made arbitrarily small as T → 0. Moreover, recall that
we still need a bound on ‖z‖∗,κ defined by (58), and thus an estimate on ‖z‖0,κ is
needed at this point. However, it is easily checked that

|zt |Bκ ≤ |Stψ |Bκ + |(δ̂z)t0|Bκ ≤ |ψ |Bκ + T κ0‖δ̂z‖κ0,κ .(68)

Putting together (67) and (68), we finally get, on [0, T ], that

‖z‖∗,κ ≤ |ψ |Bκ + c(1 + ‖y‖∗,κ )T ε with c = cf,X1,γ̃ ,κ ,

which yields that, whenever cT ε ≤ 1/2, the ball B defined by (60) is left invariant
by the map �.

Now that the invariance of B has been shown, the contraction property for � in
a small interval [0, T ] is a matter of standard arguments, and is left to the reader
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for sake of conciseness. Let us just mention that f is only supposed to be locally
Lipschitz when considered as a function from Bκ to Bκ . However, we are able
to establish the contraction property here, due to the fact that we are confined to
the ball B . This gives the existence and uniqueness result for equation (57) in the
small interval [0, T ] whose size does not depend on the initial condition ψ . The
construction of a global unique solution from the solution in [0, T ] is also quite
standard, and its proof will be omitted here. �

4.3. Application: the fractional heat equation. Let us see now how the abstract
results of Section 4.2 can be applied in the case of the heat equation driven by a
fractional Brownian motion defined at Section 3.4. Recall that this means that we
wish to solve equation (55) in case A = � − Id, where � is the Laplace operator
on the circle, x is a fractional Brownian motion defined by the covariance function
(43), Bκ stands for the usual Sobolev space on [0,1], and f : Bκ → Bκ is defined
by [f (y)](ξ) = σ(y(ξ)) for ξ ∈ [0,1] and a smooth function σ : R → R. In other
words, we will try to solve the equation

y(t, ξ) =
∫ 1

0
Gt(ξ, η)ψ(η)dη +

∫ t

0

∫ 1

0
Gt−s(ξ, η)X(ds, dη)σ (ys(η)),(69)

where the last integral has to be understood in the sense of Theorem 4.1. Notice
that we have chosen here a multiparametric formulation for our equation, for com-
putational purposes. However, as mentioned in the Introduction, this setting can be
translated easily into the infinite-dimensional one. Now, the application of Theo-
rem 4.3 in this context amounts to define an incremental operator X1 related to our
problem, and then to show that Hypotheses 1 and 2 are fulfilled.

Let us give then a natural definition of the operator X1 associated to our equa-
tion: we will set, for ψ ∈ B and (t, s) ∈ S2,

[X1
tsψ](ξ) = [Jts(d̂XS)]ψ(ξ)

(70)

=
∫ t

s

∫ 1

0
Gt−u(ξ, η1)X(du, dη1)

(∫ 1

0
Gv−s(η1, η2)ψ(η2) dη2

)
,

which has to be understood now in the Wiener sense, as a centered Gaussian ran-
dom variable whose variance is given by (43). In this context, the regularity result
we obtain on X1 is the following.

PROPOSITION 4.4. Let X be an infinite-dimensional fractional Brownian
motion defined by the covariance function (43) for a given H > 1/2, with Q

given by (44) for ν ∈ [0,1). Suppose that H + ν̄/2 > 3/4, with the convention
ν̄ = ν ∧ (1/2). Let X1 be the incremental operator defined by (70). Then for any
γ̃ < H − 1/4 + ν̄/2, κ ∈ (1/4,1/2), κ0 = γ̃ − κ and γ < H we have

X1 ∈ Ĉ γ̃
2 L0,−κ

HS ∩ Ĉκ0
2 Lκ,κ

HS ∩ Ĉγ
2 Lκ,−κ

HS ,

almost surely.
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REMARK 4.5. The reader will probably notice that the assumption κ > 1/4
is not necessary in order to prove the proposition above. However, we include it
already at this stage, since this restriction is crucial for Proposition 4.10 to hold
true.

The proof of Proposition 4.4 relies on the following elementary lemmas, that
we label for further use.

LEMMA 4.6. For any α < β , such that α +β > 1/2, there exists a constant C

such that ∑
i,j :i+j=k

λ−α
i λ

−β
j ≤ Cλ

−α−β̄+1/2
k ,

where β̄ = min(β;1/2).

LEMMA 4.7. Let a and b be two positive constants, and H > 1/2. Then the
integral ∫ 1

0

∫ 1

0
|u − v|2H−2|2 − u − v|−a|u + v|−b dudv

is finite whenever 2H − a > 0 and 2H − b > 0.

We leave the easy proof of these results to the reader.

PROOF OF PROPOSITION 4.4. We need to prove that the r.v. X1 has a ver-
sion with the claimed regularity. For random operators, up to our knowledge, no
standard method is available to prove regularity properties. So we have chosen the
following simple (though arguably nonoptimal) strategy in order to obtain a regu-
lar version: first, we determine the kernel associated to the operator X1, then using
the kernel we estimate its Hilbert–Schmidt norm in some L2 space. This will be
enough to apply the modified Garsia–Rodemich–Rumsey Lemma 3.8 and con-
clude the proof. We will develop now this strategy into several steps, discussing
in detail the proof of X1 ∈ Ĉ γ̃

2 L0,−κ
HS . The other pathwise statements can be proven

similarly.
Step 1: Definition of a random kernel. For (t, s) ∈ S2, X1

ts is considered as an op-
erator from B = L2([0,1]) to B−κ , and thus ‖X1

ts‖HS,B→B−κ = ‖A−κ
o X1

ts‖HS,B→B ,
which is the expression we are going to evaluate. Pick ψ ∈ B smooth enough. Ap-
plying Fubini’s theorem for the fractional Brownian motion, we get

[A−κ
o X1

tsψ](ξ) = A−κ
o

∫ t

s

∫ 1

0
Gt−u(ξ, η1)X(du, dη1)

×
(∫ 1

0
Gu−s(η1, η2)ψ(η2) dη2

)
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=
∫ t

s

∫ 1

0
G−κ

t−u(ξ, η1)X(du, dη1)

(∫ 1

0
Gu−s(η1, η2)ψ(η2) dη2

)

=
∫ 1

0
Kts(ξ, η2)ψ(η2) dη2,

where the kernel G−κ
t−u has been defined at Section 3.4, and where Kts(ξ, η) is the

random kernel on [0,1]2 defined by the Wiener integral

Kts(ξ, η) =
∫ t

s

∫ 1

0
G−κ

t−u(ξ, η1)Gu−s(η1, η)X(du, dη1).

Hence, the Hilbert–Schmidt norm of X1
ts , seen as an operator from B to B−κ , will

be given by

‖X1
ts‖2

HS =
∫ 1

0

∫ 1

0
[Kts(ξ, η)]2 dξ dη.(71)

Our next aim will then be to evaluate this last quantity.
Step 2: L2 computations. A direct application of (43) gives

E[K2
ts(ξ, η)]
= cH

∫ t

s

∫ t

s

(∫
[0,1]2

G−κ
t−u(ξ, z)Gu−s(η, z)Q(z − ẑ)

× G−κ
t−v(ξ, ẑ)Gv−s(η, ẑ) dz dẑ

)
|u − v|2H−2 dudv.

Furthermore, for z, ẑ ∈ [0,1], it holds that∫ 1

0
G−κ

t−u(ξ, z)G−κ
t−v(ξ, ẑ) dξ = G−2κ

2t−u−v(z, ẑ),∫ 1

0
Gu−s(η, z)Gv−s(η, ẑ) dη = Gu+v−2s(z, ẑ).

Thus, going back to relation (71), we obtain

Ats ≡ E[‖X1
ts‖2

HS]
= cH

∫ t

s

∫ t

s

(∫
[0,1]2

Q(z − ẑ)Gu+v−2s(z, ẑ)G
−2κ
2t−u−v(z, ẑ) dz dẑ

)
(72)

× |u − v|2H−2 dudv

= cH

∫ ε

0

∫ ε

0
F(u, v)|u − v|2H−2 dudv,

where we have set ε = t − s, and with F : [0, ε]2 → R+ defined by

F(u, v) =
∫
[0,1]2

Q(z − ẑ)Gu+v(z, ẑ)G
−2κ
2ε−u−v(z, ẑ) dz dẑ.(73)
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Furthermore, plugging the definitions (42) and (44) into (73), and invoking the fact
that {en;n ∈ Z} is an orthonormal basis of L2([0,1]), we get

F(u, v) = ∑
m,n,l∈D

λ−ν
n λ−2κ

l e−λm(u+v)e−λl(2ε−u−v),

where D = {m,n, l ∈ Z
3 :m + n + l = 0}. Then

Ats = cH

∑
m,n,l∈D

λ−ν
n λ−2κ

l

∫ ε

0

∫ ε

0

e−λm(u+v)e−λl(2ε−u−v)

|u − v|2−2H
dudv.

Owing now to the fact that x �→ xae−x is a bounded function on R+ for any a > 0,
we obtain, for a constant c which may change from line to line,

Ats ≤ c
∑

m,n,l∈D

λ−ν
n λ−2κ

l λ−a
m

∫ ε

0

∫ ε

0

dudv

|u − v|2−2H (u + v)a

(74)
≤ cε2H−a

∑
m+n+l=0

λ−ν
n λ−2κ

l λ−a
m ,

where we have used Lemma 4.7 under the condition a < 2H . Let us now analyze
the sum. Of course, we can write∑

m+n+l=0

λ−ν
n λ−2κ

l λ−a
m ≤ ∑

l,k:l+k=0

λ−2κ
l

∑
m,n:m+n=k

λ−a
m λ−ν̄

n .

Moreover, taking a = 1/2 − ν̄ + η for some small η > 0 and using Lemma 4.6, we
have ∑

m+n+l=0

λ−ν
n λ−2κ

l λ−a
m ≤ c

∑
l,k:l+k=0

λ−2κ
l λ

−a−ν̄+1/2
k = c

∑
l,k:l+k=0

λ−2κ
l λ

−η
k ,

and this sum is always finite under the condition κ > 1/4. Then, going back to
(74), we have found that Ats ≤ cε2γ̃ ′

, for any γ̃ ′ = H − a/2 < H − 1/4 + ν̄/2,
where we recall that ν̄ = inf(ν;1/2).

Step 3: Lp estimates. We will prove now that, for any p ≥ 1, we have

E[‖X1
ts‖2p

HS] ≤ cp(t − s)2γ̃ ′p for 0 ≤ s < t ≤ T .(75)

Indeed, a simple application of Hölder’s inequality yields

E[‖X1
ts‖2p

HS] =
∫
[0,1]2p

E

[ p∏
i=1

K2
ts(ξi, ηi)

]
dξ1 dη1 · · · dξp dηp

≤
∫
[0,1]2p

p∏
i=1

E1/p[K2p
ts (ξi, ηi)]dξ1 dη1 · · · dξp dηp,
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and since Kts(ηi, ηi) is a Gaussian variable, we get

E[‖X1
ts‖2p

HS] ≤ cp

∫
[0,1]2p

p∏
i=1

E[K2
ts(ξi, ηi)]dξ1 dη1 · · · dξp dηp

= cp

(∫
[0,1]

E[K2
ts(ξ, η)]dξ dη

)p

= cpEp[‖X1
ts‖2

HS],
which easily yields (75).

Step 4: Conclusion. Recall that X1 is considered as an element of Ĉ2(L0,−κ
HS ).

We can use now inequality (47), which can be read here as

‖X1‖γ̃ ,0,−κ ≤ C[Uγ̃+2/p,p,0,−κ(X1) + ‖δ̃X1‖γ̃ ,0,−κ ],(76)

in order to bound ‖X1‖γ̃ ,0,−κ for any γ̃ < γ̃ ′ < H − 1/4 + ν̄/2. Indeed, if p is
large enough, we have that γ̃ +2/p < γ̃ ′, and the term Uγ̃+2/p,p,0,−κ(X1) is easily
handled thanks to (75). This yields

E[Uγ̃ ′,p,0,−κ(X1)] < ∞.(77)

We are now left with the estimation of ‖δ̃X1‖γ̃ . However, remember that δ̃X1 = 0
in case of a regular signal x, and it is readily checked that this relation is still valid
in the current fractional Brownian setting, so this term is identically zero. Thus,
we have obtained that

E[‖X1‖γ̃ ,0,−κ ] ≤ cE[Uγ̃ ′,p,0,−κ(X1)] < ∞,

which implies that ‖X1‖γ̃ ,0,−κ < ∞ almost surely, concluding the proof.
Along the same lines as in the preceding steps, some L2 bounds state that

E
[‖X1

ts‖2
HS,L(Bκ ,Bκ )

] ≤ c(t − s)2κ ′
0 for 0 ≤ s < t ≤ T(78)

and

E
[‖X1

ts‖2
HS,L(B−κ ,Bκ )

] ≤ c(t − s)2γ ′
for 0 ≤ s < t ≤ T ,(79)

for any κ ′
0 < H − 1/4 − κ + ν̄/2 and γ ′ < H , respectively. Following the same

strategy as before, these bounds are enough to prove the remaining assertions of
the proposition. �

Let us see now how this results can be related to our Hypothesis 1. Recall that
the restriction κ > 1/4 is dictated by the fact that we need to work in a space Bκ

embedded in the space C([0,1]) of continuous functions on [0,1] in order to prove
Proposition 4.10 below.
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COROLLARY 4.8. Suppose X is an infinite-dimensional fractional Brownian
motion defined by the covariance function (43) for a given H > 1/2, with Q given
by (44) for ν ≥ 0. Assume moreover that H > 7/8 − ν̄/2. Then the incremental
operator X1 satisfies Hypothesis 1 for some

κ ∈ (1/4,1/2), κ0 < H − 1/4 − κ + ν̄/2, γ̃ = κ0 + κ.

PROOF. By the previous result, we have that X1 has the required regularity for
any 1/4 < κ < 1/2, κ0 < H − 1/4 − κ + ν̄/2 and γ̃ = κ0 + κ < H − 1/4 + ν̄/2.
In order to check Hypothesis 1, we now need to require that γ̃ + κ > 1. In fact,
there exists 1/4 < κ < κ0 satisfying this inequality if and only if γ̃ + κ0 > 1, that
is, 2H − 1/2 − κ + ν̄ > 1. This is equivalent to assume

H > 3/4 + κ/2 − ν̄/2 > 7/8 − ν̄/2.

In this latter case, it is easily seen that there exist γ̃ , κ, κ0 satisfying our require-
ments. �

REMARK 4.9. If we are only interested in obtaining a local solution for our
Young PDE, then the estimate (64) can be replaced by a bound in Bκ , which will
be quadratic in y. Hence, using the fact that

X1 ∈ Ĉγ
2 Lκ,−κ ∩ Ĉκ0

2 Lκ,κ

for any γ < H and 1/4 < κ < κ0 < H − 1/4 − κ + ν̄/2, the condition for the con-
struction of the (local) fix-point map � becomes γ + κ > 1. To fulfill this require-
ment with our fractional Brownian noise, we only have to impose H > 3/4 − ν̄/4.
This condition is comparable (but a bit worse) with the results of [12], where the
Hilbert spaces W 2κ,2 were considered, and where we found H > 3/4 − ν̄/2. One
of the drawback of the approach presented in this paper is that the esimation of
the random operators like X1 in Banach spaces W 2α,p for p > 2 seems very dif-
ficult. Moreover, it seems that the estimation in the Hilbert–Schmidt norm causes
another small loss of regularity, which means that even in the case of a “regular”
noise ν = 1/2, our bound on H is H > 5/8 and not H > 1/2 as should be natural
to expect and found in [12]. On the other hand, as we will see later, the opera-
tor approach seems better suited than the approach of [12] for a true rough-path
expansion of SPDEs.

Now that we have checked the assumptions on X1, let us turn to the hypothesis
on the nonlinear coefficient σ in equation (69). In order to deal with the Sobolev
norms, it is worth mentioning that, instead of working with the spaces Bκ = Hκ we
have used so far, characterized by their Fourier decomposition, we will consider
the Sobolev spaces W 2κ,2, induced by the norms

[Wκ(ψ)]2 ≡ ‖ψ‖2
L2([0,1]) +

∫
[0,1]2

|ψ(ξ) − ψ(η)|2
|ξ − η|1+4κ

dξ dη.(80)
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These spaces are obviously more convenient than the spaces Bκ for the computa-
tions on f , and they are closely related to these latter spaces, since the following
classical relation holds true (see [1]):

Bκ+ε ⊂ W 2κ,2 ⊂ Bκ−ε for any ε > 0.

Using these embeddings, we can consider the operator X1
ts going from a space

W 2κ,2 to a space Bκ by just loosing a little regularity in t, s. Then we can verify
that f satisfy a slight modification of Hypothesis 2.

PROPOSITION 4.10. Let σ ∈ C2
b(R) be a real-valued function. Then, for any

κ > 1/4, the function f :W 2κ,2 → W 2κ,2 defined by [f (y)](ξ) = σ(y(ξ)) is lo-
cally Lipschitz, satisfies |f (x)|W 2κ,2 ≤ cf (1 + |x|W 2κ,2) and is globally Lipschitz
as a map f : B → B.

PROOF. Recall that, for our particular situation, B = L2([0,1]), and it is eas-
ily checked that, whenever σ ∈ C2

b(R), the function f : B → B is bounded and
globally Lipschitz.

With these considerations in mind, it is readily seen that f :W 2κ,2 → W 2κ,2

has linear growth. In order to check that f is also locally Lipschitz, note that its
gradient can be computed as follows for y,h ∈ W 2κ,2:

∇f (y) :W 2κ,2 → W 2κ,2, [∇f (y) · h](ξ) = σ ′(y(ξ))h(ξ).

Let us estimate now the norm (80) of ∇f (y) · h: first, if σ ′ is a bounded function,
then

‖∇f (y) · h‖L2([0,1]) ≤ ‖σ ′‖∞‖h‖L2([0,1]) ≤ ‖σ ′‖∞‖h‖W 2κ,2 .(81)

As far as the variational term of (80) is concerned, notice that we have assumed
κ > 1/4, which means that W 2κ,2 ⊂ C([0,1]), and for any h ∈ W 2κ,2, ‖h‖∞ ≤
c‖h‖W 2κ,2 . Thus,∫

[0,1]2

|[∇f (y) · h](ξ) − [∇f (y) · h](η)|2
|ξ − η|1+4κ

dξ dη

≤ ‖σ ′‖2∞
∫
[0,1]2

|h(ξ) − h(η)|2
|ξ − η|1+4κ

dξ dη

(82)

+ ‖h‖2
W 2κ,2

∫
[0,1]2

|σ ′(y(ξ)) − σ ′(y(η))|2
|ξ − η|1+4κ

dξ dη

≤ cσ‖h‖2
W 2κ,2[1 + ‖σ ′′‖2∞‖y‖2

W 2κ,2].
Putting together (81) and (82), we have thus shown that

‖∇f (y)‖L(W 2κ,2) ≤ cσ (1 + ‖y‖W 2κ,2),

which easily yields that f :W 2κ,2 → W 2κ,2 is locally Lipschitz. �
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REMARK 4.11. Notice that, in spite of the fact that σ is assumed to be a nicely
behaved coefficient, its interpretation as an application from W 2κ,2 to W 2κ,2 does
not enjoy the usual assumptions of boundedness made on coefficients in rough
path theory (see, e.g., [13, 16, 17]). This is one of the major sources of problems in
our computations, and in general in the extension of rough path theory to SPDEs.

Let us now summarize the considerations of the current section into the follow-
ing theorem.

THEOREM 4.12. Let X be an infinite-dimensional fractional Brownian mo-
tion on [0, T ] × [0,1], defined by the covariance function (43) and (44), with
H > 1/2 and ν ∈ [0,1) such that H > 7/8 − ν̄/2 and let σ ∈ C2

b(R). Then, there
exists κ ∈ (1/4,2H − 3/2 + ν̄) such that for any initial condition ψ ∈ Bκ , the
equation

Y(0, ξ) = ψ(ξ), ∂tY (t, ξ) = �Y(t, ξ) dt + σ(Y (t, ξ))X(dt, dξ),
(83)

t ∈ [0, T ], ξ ∈ [0,1],
with periodic boundary conditions, understood in the mild sense given by (57), has
a unique global solution in Ĉκ,κ

1 .

PROOF. By Proposition 4.10, the map f is Lipschitz and with linear growth
from Bκ to Bκ−ε for arbitrarily small ε. As already noted this little mismatch of
regularity can be compensated by the time-regularity of X1. Then by a small mod-
ification of the arguments of Theorem 4.3 and by Proposition 4.4, we can directly
solve the equation

∂tY (t, ξ) = (� − Id)Y (t, ξ) dt + σ(Y (t, ξ))X(dt, dξ), t ∈ [0, T ], ξ ∈ [0,1],
as a rough evolution equation in Ĉκ,κ

1 . Now, if one wants to solve (83), it is suffi-
cient to get an existence and uniqueness result for the equation

∂tY (t, ξ) = (� − Id)Y (t, ξ) dt + Y(t, ξ) dt + σ(Y (t, ξ))X(dt, dξ),

t ∈ [0, T ], ξ ∈ [0,1],
which can be done along the same lines as for Theorem 4.3, by taking care of the
additional drift term Ydt . This step is left to the reader. �

5. Rough evolution equations: the linear case. We pass now to the develop-
ment of an expansion which allows to consider equation (54) in a case which goes
beyond the Young theory, in terms of the Hölder regularity of the driving noise x.
We start with a simple linear case, that is, f ≡ Id, which will hopefully lead to a
better understanding of our method.
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5.1. Strategy. Recall that we wish to get some existence and uniqueness re-
sults for the equation

δ̂yts =
∫ t

s
Stu dxu yu = Jts(d̂x y) and y0 = ψ.(84)

Just like in the case of the Young integral, sketched at the beginning of Section 4.1,
we will proceed as follows:

(1) Expand (84) as if x were a regular process, until we get some terms which can
be analyzed through the application of the operators δ̂ and 	̂.

(2) Define a natural extension of the notion of integral thanks to the first step, and
show that this allows to integrate a reasonably wide class of functions.

(3) Solve the equation in the sense given by this notion of integral.

In the current section, we will mostly address the first of these three steps.
If x is a regular process, equation (84) can be solved by means of the classical

evolution theory. Furthermore, if y designates the unique solution to (84), then
according to our expansion strategy, y also satisfies, for t, s ∈ S2,

δ̂yts =
∫ t

s
Stu dxu yu =

∫ t

s
Stu dxu Susys +

∫ t

s
Stu dxu δ̂yus.

However, the last term of this equation cannot be defined by applying the map 	̂

when x has low time regularity. In order to cope with this difficulty, let us expand
again δ̂y by plugging relation (84) into the previous equation. Doing this twice, we
get

δ̂yts =
∫ t

s
Stu dxu Susys +

∫ t

s
Stu dxu

∫ u

s
Suv dxv yv

=
∫ t

s
Stu dxu Susys +

∫ t

s
Stu dxu

∫ u

s
Suv dxv Svsys

+
∫ t

s
Stu dxu

∫ u

s
Suv dxv

∫ v

s
Svw dxwSwsys

+
∫ t

s
Stu dxu

∫ u

s
Suv dxv

∫ v

s
Svw dxw δ̂yws.

Thus, going back to our notation on iterated integrals (41), we can recast (84) into

δ̂y = X1y + X2y + X3y + J (d̂x d̂x d̂x d̂x y),(85)

where, for t, s ∈ S2 and φ ∈ B, the operators (Xi)i=1,2,3 are defined by

Xi
tsφ := Jts(d̂x Xi−1)φ =

∫ t

s
Stu dxu Xi−1

us φ(86)

with X0
ts = Sts . These operators are the new building block we will need in order

to solve equation (84), and they play the role of the iterated integrals of rough path
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theory in our bilinear evolution context. Notice that the last term in equation (85)
is considered as a remainder: suitable assumptions should be made to ensure that it
will be small enough. Notice also that we stopped our expansion at the third order.
We will see that this is the minimum order which allows to handle the Brownian
case.

Let us say a few words now about the algebraic properties of the operators Xi :
when x is a smooth process, we have, for example,

δ̂X2
tus =

∫ t

u
Stv dxv

∫ v

s
Svw dxw Sws −

∫ t

u
Stv dxv

∫ v

u
Svw dxw Swu,

and using some elementary algebra, we end up with

δ̂X2
tus =

∫ t

u
Stv dxv Svu

∫ u

s
Suw dxw Sws +

∫ t

u
Stv dxv

∫ v

u
Svw dxw Swu[Sus − Id]

= X1
tuX

1
us + X2

tuaus.

Thus, taking into account our algebraic convention (16) and the definition of δ̃

given at (46), we have obtaind the relation δ̃X2 = X1X1. In a more general way, it
is not difficult to show by induction that

δ̃Xn =
n−1∑
i=1

XiXn−i ,

which are exactly the Chen relations in this setting.
We can now specialize our previous program into the following:

2a. Assume that the operator-valued 1-increments X1,X2,X3 are defined by
some kind of operation which preserves the usual algebraic relations between
integrals (e.g., use stochastic calculus with respect to an Hilbert space val-
ued fractional Brownian motion or some other limiting procedure on discrete
sums). They will be our (step-3) rough path.

2b. Using (X1,X2,X3) define an integration theory for a sufficiently large class
of functions Q so that it will be possible to give a meaning to integrals of
the form zt = ∫ t

0 Stu dxu yu for any y ∈ Q. We will call Q the space of paths
controlled by X.

3′. Study the map � : Q → Q defined by �(y)t = ∫ t
0 Stu dxu yu, and prove that

it has a fixed point y = �(y) which will be then a solution of the evolution
problem (84).

5.2. Integration of weakly controlled paths. We start by postulating some rea-
sonable properties for Xn.

HYPOTHESIS 3. We will assume that the process x allows to define some
operator-valued increments X1,X2,X3, representing morally (49) and (86), re-
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spectively. This amounts for us to suppose that the Xi’s satisfy the algebraic rela-
tions

δ̃X1 = 0, δ̃X2 = X1X1, δ̃X3 = X1X2 + X2X1,

and that the following Hölder-regularity properties holds true:

Xi ∈ Ĉγ+(i−1)κ0
2 Lη,−ρ ∩ Ĉiκ0

2 Lη,η, i = 1,2,3,

for some η,ρ ≥ 0 and γ, κ0 such that γ = κ0 + η + ρ and γ + 3κ0 > 1.

We will define now the class Q of processes we wish to be able to integrate
against x: in the current situation, it will include any process which can be decom-
posed into a part depending on X1,X2, plus a remainder term which is assumed to
be small enough. For the sake of a contraction argument needed below (compare
to the Young case), we fix a given time regularity κ such that 0 < κ < κ0.

DEFINITION 5.1 (Weakly controlled paths). Let ψ ∈ Bη be a given initial con-
dition. A path y ∈ Ĉκ,η

1 is said to be weakly controlled by X1,X2 if y0 = ψ and δ̂y

can be decomposed into

δ̂y = X1y1 + X2y2 + yr, δ̂y1 = X1y2 + y1,r(87)

with yi ∈ Ĉκ,η
1 i = 1,2, and a regular part yr ∈ Ĉγ+2κ,η

2 , y1,r ∈ Ĉγ+κ,η
2 with κ <

κ0 ∧ η. Furthermore, we asssume that the regularity of y1, y2 and yr, y1,r can be
related to those of X by the following relation: γ + 3κ > 1, a condition that can
be always fullfilled by a suitable choice of κ whenever γ + 3κ0 > 1. Denote this
space of controlled paths by Qκ,η,ψ , or when this does not lead to an ambiguous
situation, simply by Qκ,η or Q. Moreover, one can define a seminorm N on Qκ,η

in the following way:

N [y; Qκ ] = N [y; Ĉκ,η
1 ] + ∑

i=1,2

N [yi; Ĉ∞,η
1 ] + ∑

i=1,2

N [yi; Ĉκ,η
1 ]

+ N [yr; Ĉγ+2κ,η
2 ] + N [y1,r ; Ĉγ+κ,η

2 ],
where we recall that the notation N has been introduced at Section 3.3.

REMARK 5.2. Even if a weakly controlled path is, strictly speaking, given by
a tuple (y, y1, y2, yr , y1,r ) we will, with a slight abuse of notation, denote it with
its first component, that is, simply y.

REMARK 5.3. The notion of weakly controlled path appeared first in [6] in the
finite dimensional context as a way to linearize the space of rough paths around
the driving control. Even if this linearization does not preserve the whole structure
of the space of rough paths, it is enough to find solutions of rough differential
equations.
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With this notation at hand, we will try to implement now the strategy designed
at the beginning of Section 4.1 in order to integrate a weakly controlled process y:
let us first assume x is a smooth process, and y ∈ Q. Then J (d̂x y) is well defined,
and thanks to equations (48) and (87), we have

J (d̂x y) = J (d̂x S)y + J (d̂x δ̂y)

= J (d̂x S)y + J (d̂x X1y1) + J (d̂x X2y2) + J (d̂x yr).

Furthermore, for s < t , the term Jts(d̂x X1y1) above only involves y1
s , and hence

the increment Jts(d̂x X1y1) is equal to Jts(d̂x X1)y1
s , that is, X2

tsy
1
s . This yields

J (d̂x y) = X1y + X2y1 + X3y2 + J (d̂x yr).(88)

Note that, in this last expression, the terms X1y, X2y1 and X3y2 are well defined
under Hypothesis 3. In order to have a well-defined expression for J (d̂x y) in the
rough case, it remains to handle the term J (d̂x yr). Then let us write

J (d̂x yr) = J (d̂x y) − X1y − X2y1 − X3y2,

and let us analyze this relation by applying δ̂ to both sides. This gives

δ̂[J (d̂x yr)] = −δ̂[X1y] − δ̂[X2y1] − δ̂[X3y2],(89)

and notice that in the last expression, δ̂[J (d̂x yr)] �= 0, since yr belongs to Ĉ2

instead of Ĉ1. Moreover, a slight extension of Lemma 3.2 shows that, for M ∈
Ĉ2(L(V )) and L ∈ Ĉ1(V ), we have

δ̂(ML) = δ̂M L − M δL = δ̃M L − M δ̂L.

Applying this elementary relation to (89), we end up with

δ̂[J (d̂x yr)] = −δ̃X1 y + X1 δ̂y − δ̃X2 y1 + X2 δ̂y1 − δ̃X3 y2 + X3 δ̂y2

= X1(δ̂y − X1y1 − X2y2) + X2(δ̂y1 − X1y2) + X3 δ̂y2(90)

= X1yr + X2y1,r + X3 δ̂y2

under our hypothesis on y and X we have the following regularities:

X1yr ∈ Ĉγ+3κ,−ρ
3 , X2y1,r ∈ Ĉγ+κ0+2κ,−ρ

3 , X3δ̂y2 ∈ Ĉγ+2κ0+κ,−ρ
3 ,

so if γ + 3κ > 1 we can apply the operator 	̂ and express J (d̂x y) in terms of δ̂

and 	̂ only. Plugging (90) into (88), we get

J (d̂x y) = X1y + X2y1 + X3y2 + 	̂(X1yr + X2y1,r + X3 δ̂y2).(91)

Similar to what we did in the Young case, we are now able to invert the procedure
which lead to relation (91), by just invoking the assumptions made on Xi and y:
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THEOREM 5.4. Let x be a path such that Xi, i = 1,2,3, are well defined, and
such that Hypothesis 3 holds true. Let also y ∈ Qκ,η,ψ for 0 < κ < κ0 < γ − κ and
κ ≤ η. Define z ∈ Ĉ1(Bη) such that z0 = ψ and δ̂z satisfies

δ̂z ≡ J (d̂x y) = X1y + X2y1 + X3y2 + 	̂(X1yr + X2y1,r + X3 δ̂y2)

and let z1 = y, z2 = y1, z1,r = X2y2 + yr so that δ̂z1 = X1z2 + z1,r . Then:

(1) z is well defined as an element of Qκ,η, and coincides with the usual Riemann
convolution of y by x in case x and y are smooth processes.

(2) The seminorm of z in Qκ,η can be estimated as

N [z; Qκ,η] ≤ cXT κ0−κ(‖ψ‖Bκ + N [y; Qκ,η]),(92)

for a positive constant cX depending only on Xi , i = 1,2,3.
(3) It holds that, for any 0 ≤ s < t ≤ T

Jts(d̂x y) = lim|�ts |→0

n∑
i=0

Stti+1[X1
ti+1,ti

yti + X2
ti+1,ti

y1
ti

+ X3
ti+1,ti

y2
ti
],(93)

where the limit is over all partitions �ts = {t0 = t, . . . , tn = s} of [s, t] as the
mesh of the partition goes to zero.

PROOF. We will divide again this proof in several steps.
Step 1: Let us start by evaluating the regularity of the terms in the right-hand

side of (91), that is,

A = X1y, B = X2y1, C = X3y2,

D = 	̂(X1yr + X2y1,r + X3 δ̂y2),

under our standing assumptions.
In order to bound A, we will first estimate |ys |B itself for s ≤ T : if y ∈ Qη, we

have ys = Ssψ + δ̂ys0, and hence

‖y‖0,Bη ≤ |ψ |Bη + T κ N [y; Ĉκ,η
1 ].(94)

In particular, y is bounded in Bη on [0, T ]. Thus, if X1 ∈ Ĉγ
2 Lη,−ρ ∩ Ĉκ0

2 Lη,η, we
have X1y ∈ Ĉγ,−ρ

2 , and also X1y ∈ Ĉκ0,η
2 . Moreover,

|X1
tsys |Bη ≤ ‖X1‖κ0,η,η(t − s)κ0(|ψ |Bη + T κ N [y; Ĉκ,η

1 ]),
and thus

N [X1y; Ĉκ,η
2 ] ≤ ‖X1‖κ0,η,η(|ψ |Bη + T κ N [y; Ĉκ,η

1 ])T κ−κ0 .(95)

Let us estimate now the term B , that is N [X2y1; Ĉγ+κ,η
2 ]: since y1 ∈ Ĉ∞,η

1 and

X2 ∈ Ĉ 2κ0
2 Lη,η, we obtain again that X2y1 ∈ Ĉ 2κ0+κ,η

2 , and we have

N [X2y1; Ĉ 2κ,η
2 ] ≤ ‖X2‖2κ0,η,ηN [y1; Ĉ∞,η

1 ]T 2(κ0−κ).(96)
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The term C can now be bounded along the same lines as for A and B . More-
over, for the term D, as we already observed above, X1yr ∈ Ĉγ+3κ,−ρ

3 , X2y1,r ∈
Ĉγ+κ0+2κ,−ρ

3 and X3δ̂y2 ∈ Ĉγ+2κ0+κ,−ρ
3 , and observe that we have assumed that

γ + 3κ > 1. Thus, the operator 	̂ can be applied to X1yr + X2y1,r + X3δ̂y2, and
invoking inequality (40), we get that

‖	̂(X1yr + X2y1,r + X3 δ̂y2)‖γ+3κ,−ρ

≤ c‖X1yr + X2y1,r + X3 δ̂y2‖γ+3κ,−ρ

(97)
≤ c(‖X1‖γ,η,−ρ N [yr; Ĉ 3κ,η

2 ] + ‖X2‖γ+κ0,η,−ρ N [y1,r; Ĉ 2κ,η
2 ]

+ ‖X3‖γ+2κ0,η,−ρ N [y2; Ĉκ,η
2 ]).

Summarizing inequalities (94)–(97), we have obtained that z is a well-defined ele-
ment of Ĉκ,η

1 , and that it satisfies

‖δ̂z‖κ,η ≤ cXT κ0−κ(|ψ |Bη + N [y; Qκ,η]).
Step 2: Let us estimate now z as an element of Qκ,η. The natural decomposition

of δ̂z is obviously δ̂z = Xz1 + X2z2 + zr , with

z1 = y, z2 = y1 and zr = X3y2 + 	̂(X1yr + X2y1,r + X3 δ̂y2).

It is now easily checked, along the same lines as for Step 1, that z satisfies relation
(92).

Step 3: In order to see how to get the convergence of the Riemann sums to
J (d̂x y) it is enough to remark that δ̂z can be written as δ̂z = (Id − 	̂δ̂)[X1y +
X2y1 + X3y2]. Applying Corollary 3.6, we now get relation (93). �

REMARK 5.5. The space of weakly controlled paths is a vector space with
respect to the action of R but not with respect to other interesting linear endomor-
phisms of B. The problem lies in the fact that for general linear L : B → B we
can have δ̂Ly �= L δ̂y since L does not necessarily commute with the semigroup
(which appears in the definition of δ̂ = δ − a).

5.3. Linear evolution problem. Let us turn now to the main aim of this section,
which is to get an existence and uniqueness result for equation (84).

THEOREM 5.6. Assume that Hypothesis 3 holds for the triple of incremental
operators X1,X2,X3 with γ, κ0, κ, η, ρ such that γ = κ0 + η + ρ, γ + 3κ0 > 1
and κ < κ0. Then:

(1) Equation (84) admits a unique solution y ∈ Qη.
(2) The map (ψ,X1,X2,X3) �→ y is continuous.
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(3) For (t, s) ∈ S2, the map �ts : Bη → Bη, such that �tsψ = yt when ys = ψ and
δ̂yts = Jts(d̂x y) is a bounded linear endomorphism of Bη, and it satisfies the
cocycle property �tu�us = �ts .

PROOF. Like in the Young case, the solution y will be identified as the fixed
point of the map � : Qκ,η → Qκ,η defined by z = �(y), with z0 = ψ and δ̂zts =
Jts(d̂x y). And here again, we will concentrate on the fact that, on a small interval
[0, T ], the ball

B = {y;y0 = ψ, N [y; Qκ,η] ≤ |ψ |Bη}
is left invariant by the map �.

Indeed, whenever y ∈ B , then Theorem 5.4 asserts that for z = �(y), the fol-
lowing estimate holds true:

N [z; Qκ,η] ≤ cXT κ0−κ(|ψ |Bη + N [y; Qκ,η]).
Hence, if one chooses a small enough T , so that cXT κ0−κ < 1/2, it is readily
checked that N [z; Qκ,η] ≤ |ψ |Bη , which proves that z ∈ B . The contraction prop-
erty is now a matter of standard arguments, and the remainder of the theorem
follows easily. �

5.4. Application: stochastic heat equation. In the sequel of the paper, for sake
of simplicity, the generic situation of a process X with γ -Hölder continuity in time
with γ ≤ 1/2 will be the case of an infinite-dimensional Brownian motion, given
by the covariance function (45). For this special process, we will try to construct
a pathwise solution to the linear stochastic heat equation on [0,1]. At the end of
the section, we will give some hints about the way the fractional Brownian case
should be treated.

5.4.1. The Brownian case. Like in the Young case, the key step in order to
apply Theorem 5.6 to the Brownian setting is to define (Xi)i=1,2,3 in a reasonable
way, and then to check Hypothesis 3. We have chosen here to deal with an Itô type
definition for Xn, and we get the following result:

PROPOSITION 5.7. Let X be an infinite-dimensional Brownian motion defined
by the covariance structure (45), with Q given by (44) for ν ∈ [0,1]. For n =
1,2,3, let Xn be the incremental operators given by (70) and (86), respectively,
where the stochastic integral has to be understood in the Itô sense (see, e.g., [3,
25] for a complete definition). Then, almost surely,

Xn ∈ Ĉγ+(n−1)κ0
2 Lη,−ρ

HS ∩ Ĉnκ0
2 Lη,η

HS

for any η > 1/4, γ > κ0 > κ satisfying

κ0 < 1/4 − η + ν̄/2 and γ < 1/2,

with ν̄ = inf(ν;1/2).
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PROOF. We have already proved the regularity of X1 in the fractional Brown-
ian case. The proof in the current case would be similar, and we omit it. It will be
enough to take η = 1/4 + ε, κ0 = ν̄/2 − 2ε and γ = κ0 + ρ + ε, ρ = 1/4 − ν̄/2
for a given small ε > 0.

Let us concentrate then on the regularity properties of X2: we will prove in fact
first that X2 ∈ Ĉγ+κ0

2 Lη,−ρ
HS , and for this, we will proceed along the same lines as

for the proof of Proposition 4.4. Let us sketch the main steps which have to be
followed.

Step 1: First of all, we have to estimate ‖A−ρ
o X2

tsA
−η‖HS;B→B , and it is readily

checked that A
−ρ
o X2

tsA
−η is represented by the kernel

K̃ts(ξ, η) =
∫ t

s

∫ 1

0
G

−ρ
t−u(ξ, η1)X(du, dη1)

×
∫ u

s

∫ 1

0
Gu−v(η1, η2)X(dv, dη2)G

−η
v−s(η2, η).

Thus, when considered as an operator from Bη to B−ρ , we obtain that

E[‖X2
ts‖2

HS] =
∫
[0,1]2

E[(K̃ts(ξ, η))2]dξ dη.(98)

Moreover, some standard considerations about iterated integrals for Brownian
noises (see, e.g., [3, 25]) yield

E[(K̃ts(ξ, η))2] =
∫ t

s
du

∫
[0,1]2

G
−ρ
t−u(ξ, η1)G

−ρ
t−u(ξ, η̂1)

× Q(η1 − η̂1)Hus(η, η1, η̂1) dη1 dη̂1,

with

Hus(η, η1, η̂1)

=
∫ u

s
dv

∫
[0,1]2

Gu−v(η1, η2)G
−η
v−s(η2, η)Q(η2 − η̂2)

× Gu−v(η̂1, η̂2)G
−η
v−s(η̂2, η) dη2 dη̂2.

Plugging this equality into (98), we end up with

E[‖X2
ts‖2

HS] =
∫ ε

0
du

∫
[0,1]2

G
−2ρ
2(ε−u)(η1, η̂1)�u(η1, η̂1)

(99)
× Q(η1 − η̂1) dη1 dη̂1,

where we have set ε = t − s and

�u(η1, η̂1) =
∫ u

0
dv

∫
[0,1]2

Gu−v(η1, η2)Gu−v(η̂1, η̂2)

× G
−2η
2v (η2, η̂2)Q(η2 − η̂2) dη2 dη̂2.
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Furthermore, using the spectral decomposition of Gt and Q, introduced respec-
tively, by (42) and (44), we obtain∫

[0,1]2
Gu−v(η1, η2)Gu−v(η̂1, η̂2)G

−2η
2v (η2, η̂2)Q(η2 − η̂2) dη2 dη̂2

= ∑
i,j,k,l∈Z

ei(η1)ej (η̂1)
e−(λi+λj )[u−v]e−2λkv

λν
l λ

2η
k

1{i−k−l=0}1{j+k+l=0}.

Injecting again this value into (99) and using the fact that λ−i = λi , we have that

E[‖X2
ts‖2

HS] = ∑
i,j,k,l,m,n∈E

1

λν
l λ

2ρ
m λν

nλ
ν
l λ

2η
k

×
∫ ε

0
due−2λm(ε−u)

∫ u

0
dv e−2λj [u−v]e−2λkv,

with

E = {j, k, l,m,n ∈ Z;m + n = j, k + l = −j}.(100)

Thus, we get

E[‖X2
ts‖2

HS] = ∑
j,k,l,m,n∈E

1

λ
2ρ
m λν

nλ
ν
l λ

2η
k

∫ ε

0
du

∫ u

0
dv e−2λm(ε−u)−2λj [u−v]−2λkv

≤ c
∑

j,k,l,m,n∈E

1

λb
jλ

2ρ+a
m λν

nλ
2η
k λν

l

∫ ε

0
du

∫ u

0
dv du

dv

(ε − u)a(u − v)b

≤ cε2−a−b
∑

j,k,l,m,n∈E

1

λb
jλ

2ρ+a
m λν

nλ
2η
k λν

l

∫ 1

0
du

∫ u

0
dv du

dv

(u − v)b
.

The double integral above is finite whenever a, b ∈ (0,1), while the sum can be
handled along the following lines: first, rewrite

S = ∑
m,n,j :m+n−j=0

1

λb
jλ

2ρ+a
m λν

n

∑
k,l:k+l=−j

1

λ
2η
k λν

l

,

and observe that, thanks to Lemma 4.6 and according to our hypothesis η > 1/4,
we have ∑

k,l:k+l=−j

1

λ
2η
k λν

l

≤ ∑
k,l:k+l=−j

1

λ
2η
k λν̄

l

≤ Cλ−ν̄
j ,

where C stands again for a positive constant which can change from line to line.
Then

S ≤ C
∑

m,n,j :m+n−j=0

1

λb+ν̄
j λ

2ρ+a
m λν

n

≤ C
∑
m

1

λ
2ρ+a
m

∑
n,j :n−j=−m

1

λb+ν̄
j λν̄

n
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and choose b > 1/2 − 2ν̄, so that another application of Lemma 4.6 gives

S ≤ C
∑
m

1/λ2ρ+a+b+2ν̄−1/2
m .

This latter sum is finite when a + b > 1 − 2ρ − 2ν̄. Then for any θ < θ∗ such that
2θ∗ < 1 + 2ρ + 2ν̄, we have found that E[‖X2

ts‖2
HS] ≤ cε2−a−b ≤ cε2θ .

Step 2: One can go from L2 to Lp estimates for m just like in Proposition 4.4
Step 4: indeed, we have

E[‖X2
ts‖2p

HS] ≤ cp

∫
[0,1]2p

p∏
i=1

E1/p[K̃2p
ts (ξi, ηi)]dξ1 dη1 · · · dξp dηp.

Moreover, K̃ts(ξi, ηi) is a variable of the second chaos H2 with respect to the
Gaussian field X, and invoking [19, Relation (1.61)], the L2 and L2p norms on H2
are equivalent. Thus, for any integer p ≥ 1, there exists a constant cp such that

E[‖X2
ts‖2p

HS] ≤ cp(t − s)2pθ .

Step 3: We will conclude now thanks to Lemma 3.8, which reads here as:

‖X2‖γ2,η,−ρ ≤ c[Uγ2+2/p,p,η,−ρ(X2) + ‖δ̃X2‖γ2,η,−ρ]
= c[Uγ2+2/p,p,η,−ρ(X2) + ‖X1X1‖γ2,η,−ρ],

for any integer p ≥ 1. According to the previous step, it is then easily checked that,
for any γ2 < θ∗ = 1/2 + ν̄ + ρ, and p large enough, the term Uγ2+2/p,p,η,−ρ(X2)

can be bounded almost surely by a finite constant. Recall now that we have chosen
γ = κ0 + ρ + η, κ0 = ν̄/2 − 2ε and η = 1/4 + ε. Thus,

γ + κ0 = 2κ0 + ρ + η = ν̄ − η + 1/4 + ρ < θ∗,

and hence Uγ3+2/p,p,η,−ρ(X2) < ∞ for any γ3 ≤ γ + κ0.
Let us treat now the term X1X1. Along the same lines as in Proposition 4.4,

it can be shown that X1 ∈ Ĉγ
2 Lη,−ρ and X1 ∈ Ĉκ0

2 Lη,η. Hence, by composition of
operators, we get X1X1 ∈ Ĉγ+κ0

3 Lη,−ρ , which means that ‖X1X1‖γ2,η,−ρ is finite
for any γ3 ≤ γ + κ0. Summing up this short discussion, we have obtained that

‖X2‖γ2,η,−ρ finite a.s. for any γ3 ≤ γ + κ0.

One can proceed then to prove that X2 ∈ Ĉ 2κ0
2 Lη,η by a slight elaboration of the

computations above. This easy exercise is left to the reader.
The proof for the operator X3 follows the same lines and will not be reported.

Indeed, we prefer to concentrate on the regularity properties of higher order oper-
ators in the more complex situation of Section 6.4. �

We are now able to apply our abstract results to the stochastic heat equation.
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THEOREM 5.8. Let X be an infinite-dimensional Brownian motion on
[0, T ] × [0,1], defined by the covariance function given by (45) and (44) with
ν > 1/3. Then there exists η > 1/4, 0 < κ < γ < 1/2 such that κ < κ0 and
γ + 3κ > 1 such that, for any ψ ∈ Bη the equation

Y(0, ξ) = ψ(ξ), ∂tY (t, ξ) = �Y(t, ξ) dt + Y(t, ξ)X(dt, dξ),

t ∈ [0, T ], ξ ∈ [0,1],
with periodic boundary conditions, understood as equation (84), has a unique so-
lution in Qκ,η,ψ .

PROOF. Like in the proof of Theorem 4.12, the claim is readily checked once
we have shown that Xn, n = 1,2,3 satisfy Hypothesis 3. This amount to check
that there exist κ0 > κ and γ < 1/2 such that

κ0 < 1/4 − η + ν̄/2, γ + 3κ > 1.

However, thanks to Proposition 5.7, it is enough to take η = 1/4+ε, κ0 = ν̄/2−2ε,
κ = κ0 −ε, ρ = 1/4− ν̄/2 and γ = κ0 +ρ +η for some small ε > 0. The condition
γ + 3κ0 > 1 can then be read γ + 3κ0 = 1/2 + 3ν̄/2 − 4ε > 1, which is possible
whenever ν > 1/3. �

5.4.2. The fractional Brownian case. In order to define an integration theory
for the fractional Brownian motion beyond the Young case one has to start, like
in the Brownian case, by defining the operators X1 and X2 in a natural way. We
have already seen that X1 could be understood by means of Wiener integrals, and
for X2, two reasonable choices for the definition of (86) seem to be the use of
either Skorokhod or Stratonovich integrals with respect to the fractional Brownian
motion X. However, it turns out that these two solutions are equally unsatisfactory,
for two different reasons that we proceed to detail now:

(1) When one computes moments of random variables of the second chaos defined
by Stratonovich integrals, some trace terms appear, a classical phenomenon
which is explained for instance in [19] in the general case, in [23] for the
stochastic heat equation, or in [21] for the fBm. In the current situation, if we
want these trace terms to be convergent for a fractional Brownian motion X

defined by (43) and (44), one has to choose ν > 1/2, which means in particular
that Q is a bounded function of ξ ∈ [0,1]. In other words, we are not allowed,
even if H > 1/2, to consider a distribution-valued noise in space, which was
one of our main aim.

(2) The Skorokhod integral works better as far as convergences and regularity es-
timates are concerned. But one of the basic ingredients of our algebraic manip-
ulations on integrals is the fact that one can write, under suitable hypothesis:∫ t

s
Stu dxu bs =

[∫ t

s
Stu dxu

]
bs,
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an equality which is known to fail in the Skorokhod case (see [19] again for
further explanations). For instance, the relation δ̃X2 = X1X1, which is useful
in our analysis, does not hold true when δ̂X2 is understood as a Skorokhod
integral.

In order to cope with these problems, one can adopt the following strategy: com-
pute the correction term P , understood as a 2-increment operator-valued process,
which allows to write

δ̃X2 = X1X1 + P,(101)

when X2 is defined via Skorokhod integration. Notice that, since X2 is an element
of H2, the process P is deterministic.

Recall now that the operator δ̃ has been defined as follows: for a suitable Banach
space V and M ∈ Ĉ∞

k (V ), set

δ̃M = δ̂M − Ma = δM − aM − Ma.(102)

Then the operator δ̃ enjoys the same kind of properties as δ̂, and in particular, δ̃δ̃ =
0 and ker δ̃|Ĉ3

= Im δ̃|Ĉ2
. Moreover, relation (101) can be read as δ̃P = 0. Thus,

there exists another process T ∈ Ĉ2L such that δ̃T = P . Consider then an explicit
version of T and set X̃2 = X2 − T . Then X̃2 is still a Lévy area type process, such
that δ̃X̃2 = X1X1, which means that hopefully, X̃2 will enjoy both algebraic and
analytic properties allowing a nice extension of the notion of convolution integral.
However, an open problem is to understand in which sense the integrals defined
using this corrected Lévy area X̃2 are useful and/or natural. We plan to report on
this possibility in a further paper.

5.5. The algebra of a rough path. Bilinear stochastic equations, in finite or
infinite dimensions, are often handled by means of chaos decomposition (see, e.g.,
[14, 15]). In this section, we will try to stress some relationships between our
pathwise approach and this latter method.

Our basic Hypothesis 3 states that

δ̃Xn =
n−1∑
k=1

XkXn−k(103)

for n = 1,2,3, and moreover that

Xn ∈ Ĉγ+(n−1)κ0
2 Lη,−ρ and Xn ∈ Ĉnκ0

2 Lη,η,(104)

with γ + 3κ0 > 1, η > 1/4 and ρ = 1/4 − ν̄/2. Furthermore, it can be shown,
along the same lines as for Theorem 3.5, that there exists an inverse 	̃ to δ̃ on
Ĉμ

3 L0,−ρ ∩ ker(δ̃) for a certain μ > 1.
Let us see now how to construct an operator X4 satisfying the operator Chen

relation (103): by composition of operators, and invoking Hypothesis (104), it is
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easily checked that X1X3 +X3X1 +X2X2 ∈ Ĉγ+3κ0
3 Lη,−ρ . Furthermore, we have

assumed that γ + 3κ0 > 1, and thus, by analogy with Theorem 5.4, we will set
now X4 := 	̃[X1X3 + X2X2 + X3X1], which is well defined as an element of
E γ+3κ0

2 Lη,−ρ and thus that belongs to Ĉ 4κ0
2 Lη,η (since γ = κ0 +η+ρ). It turns out

that this procedure can be iterated, and we obtain the following proposition.

PROPOSITION 5.9. Let X satisfying Hypothesis 3. Then one can construct a
sequence {Xn;n ≥ 4} out of X1,X2,X3, such that, for any κ < κ0 = γn − ρ, we
have Xn ∈ E γ+(n−1)κ0

2 Lη,−ρ ,

‖Xn‖Ĉnκ0
2 Lη,−ρ ≤ C(n!)−κ0

and such that the operator Chen relations (103) are satisfied.

PROOF. The Xn are constructed by an induction on n. Then it is clear that
Xn ∈ E γ+(n−1)κ0

2 Lη,−ρ . Moreover, for n ≥ 4 we have nκ0 > 1, so that Xn =
	̃(

∑n−1
k=1 Xn−kXk) can be defined directly as an element of Lη,η. Then the same

kind of arguments as in the finite dimensional case [10] prove that we have the
inductive bound

‖Xn‖Ĉnκ0
2 Lη,η ≤ CX(n!)−κ0 .(105) �

In such a setting, the lifted rough path allows to express the Itô map which sends
initial conditions to solution of the linear equation (84) by a convergent series of
operators.

COROLLARY 5.10. Under the conditions of Proposition 5.9, there exists an
operator T , defined as an element of E γ+(n−1)κ0

2 Lη,−ρ , given by the strongly con-
vergent series T := ∑∞

k=1 Xk , and such that the solution of the linear problem (84)
satisfy the equation δ̂y = Ty, or written in another way

yt = Stsys + Ttsys, (t, s) ∈ S 2.

In particular, if we define X0
ts = Sts and set T̂ = X0 + T we have that T̂ is a

cocycle of operators:

T̂ts = T̂tuT̂us, (t, u, s) ∈ S 3.

PROOF. The convergence of the series for T in the operator norm follows from
the bound (105) on ‖Xn‖. The cocycle property is proven as in finite dimension.
The uniqueness of the solution to the linear problem allows to identify the operator
T as the Itô map for the rough evolution equation. �
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6. Polynomial nonlinearities. Going back to the general setting explained at
Sections 3.2 and 3.4, we will consider now an equation of the form

yt = Stψ +
∫ t

0
Stu dxu Mn(y

⊗n
u ),(106)

where y lives in the Hilbert space B, where Mn : Bn → B is some unbounded mul-
tilinear operator from the Hilbert tensor Bn = B⊗n to B, and where we understand
ϕ⊗n = ϕ ⊗ · · · ⊗ ϕ ∈ Bn as the tensor monomial generated by ϕ ∈ B. In fact, for
sake of simplicity we assume that Mn is symmetric and we restrict our discussion
to the case n = 2, letting M2 = B , the general situation posing no more conceptual
difficulties. Then our general strategy, like in the linear case, will be first to expand
equation (106) for a smooth driving process x in order to guess the appropriate
rough-path underlying this equation. It will be seen that those expansions involve
some increments indexed by trees. Studying the algebraic and analytic properties
of these increments, we shall obtain a reasonable notion of solution to our quadratic
equation.

6.1. Formal expansions and trees. Let us first simplify a little our setting. Re-
call that we wish to solve an equation of the form

yt = Stψ +
∫ t

0
Stu dxu B(y⊗2

u ),(107)

where we specialize our situation in the following way: assume first that B =
L2([0,1]), which means that we are back again to the heat equation setting of
Section 3.4. Then B : B⊗2 → B is defined by [B(φ ⊗ ψ)](ξ) = φ(ξ)ψ(ξ) for
ξ ∈ [0,1], whenever this expression makes sense in B. Assume for the moment
that x ∈ Ĉ 1

1 Lκ,κ for κ large enough. We can expand equation (107) as

yt = Stsys +
∫ t

s
Stu dxuB((Susys)

⊗2)

+ 2
∫ t

s
Stu dxu B

(
Susys ⊗

∫ u

s
Suv dxv B((Svsys)

⊗2)

)

+
∫ t

s
Stu dxu B

(∫ u

s
Suv dxv B((Svsys)

⊗2)

⊗
∫ u

s
Suv dxv B((Svsys)

⊗2)

)
(108)

+ 4
∫ t

s
Stu dxu

× B

(
Susys ⊗

∫ u

s
Suv dxv

× B

(
(Svsys) ⊗

∫ v

s
Svw dxw B((Swsys)

⊗2)

))

+ h.o. iterated integrals.
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As we see, iterated integrals appear here in combinations which are not as easy to
handle as in the bilinear case of Section 5.3. A natural way to code this kind of
expansion is to use planar trees, as explained below.

Without entering too much into formal definitions involving trees, let us mention
that we shall consider planar binary rooted trees T of the form

, , , , , , , , etc . . .

which allow to give a compact expression of the iterated integrals appearing in
the expansion (108). Observe that each tree can be constructed from the trivial tree
τ0 = • by using the binary operation V : T × T → T consisting in gluing two trees
at a newly created root, so for example

= V (V (τ0, τ0),V (τ0, τ0)).

For any tree τ ∈ T , we associate the function d(τ) that counts the number of leaves
on the trees, so that d(τ0) = 1 and d(V (τ1, τ2)) = d(τ1) + d(τ2).

Let us see now how to represent expansion (108) thanks to planar trees. Define
recursively an operator-valued increment Xτ ∈ Ĉ2L(Bd(τ)

η ; B) for τ ∈ T as

X
τ0
ts = Sts and X

V (τ1,τ2)
ts =

∫ t

s
Stu dxu B(Xτ1

us ⊗ Xτ2
us).(109)

Notice that Xτ has always to be considered as an operator acting on Bd(τ)
η . For

instance, we understand that, if τ = V (τ1, τ2), we have

X
V (τ1,τ2)
ts

(
ϕ1 ⊗ · · · ⊗ ϕd(τ)

)
=

∫ t

s
Stu dxu B

(
Xτ1

us

(
ϕ1 ⊗ · · · ⊗ ϕd(τ1)

)
⊗ Xτ2

us

(
ϕd(τ1)+1 ⊗ · · · ⊗ ϕd(τ)

))
.

This latter formula justifies also in a sense the use of planar trees, since in general
XV (τ1,τ2) �= XV (τ2,τ1). In order to illustrate this fact, consider the simple example
where τ1 = τ0 and τ2 = V (τ0, τ0). Then d(V (τ1, τ2)) = 3 and

X
V (τ1,τ2)
ts (ϕ1 ⊗ ϕ2 ⊗ ϕ3) =

∫ t

s
Stu dxu B

(
Xτ0

us(ϕ1) ⊗ XV (τ0,τ0)
us (ϕ2 ⊗ ϕ3)

)
,

while

X
V (τ2,τ1)
ts (ϕ1 ⊗ ϕ2 ⊗ ϕ3) =

∫ t

s
Stu dxu B

(
XV (τ0,τ0)

us (ϕ1 ⊗ ϕ2) ⊗ Xτ0
us(ϕ3)

)
,

which are a priori clearly different objects.
With this notation in hand, it is now checked that our previous expansion (108)

can be written in a simpler way as

(δ̂y)ts = Xts(y
⊗2
s ) + 2Xts (y

⊗3
s ) + Xts (y⊗4

s ) + 4Xts (y⊗4
s ) + r,(110)
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where r ∈ Ĉ2(B) is some remainder term, and where we took care to distinguish the
various operators obtained by permuting the factors in the B-tensors. Of course, we
could have expanded the solution further, and some operators associated to larger
trees would have appeared. However, in a smooth enough situation, the strategy in
order to solve (107) is now clear: we can use the map 	̂ to eliminate the remainder
from the equation:

δ̂y = (1 − 	̂δ̂)[X (y⊗2) + 2X (y⊗3) + X (y⊗4) + 4X (y⊗4)](111)

and try to solve this by fixed-point method. The only condition we need to check
is that

δ̂[X (y⊗2) + 2X (y⊗3) + X (y⊗4) + 4X (y⊗4)](112)

should be in the domain of 	̂, which means that its time-regularity should be
greater than 1. The computation of expressions like (112) requires a little algebraic
preparation.

6.2. Algebraic computations. To ease some computations, we introduce an
“improper” increment Ets = Id (improper because it does not vanish as t = s),
where the Id has to be understood, according to the context, as the identity operator
on the vector space under consideration. For example, we can write δ̂h = δh−(S−
E)h. Moreover, we also introduce ets = 1 taking values in R, so that for example,
if z ∈ Ĉ2(B), then (ze)tus = ztueus = ztu.

It will also be useful to extend the action of δ̂ to the tensors Bn by letting δ̂z =
δz − (S − E)z, where S : Bn → Bn is defined as S = S ⊗ · · · ⊗ S for any n ≥ 1.
If the reader is unconfortable with giving the same name at different operators,
he can think that S is defined on the direct sum

⊕
n≥1 Bn; furthermore, we will

write explicitly Sn when the context is insufficient to determine the actual space
on which S is defined. Analogously to the case of δ̂, the operator δ̃ defined by (102)
can be allowed to act on Ĉ1L(Bn, B) as δ̃H = δH − (S − E)H − H(S − E).

We wish first to understand how the operators δ̂ and δ̃ act on tensor products.
More specifically, we shall need three relations which are summarized in the fol-
lowing lemmas.

LEMMA 6.1. The following relations hold true:

(1) Let z,w ∈ C1(B). Then

δ̂(z ⊗ w) = Sz ⊗ δ̂w + δ̂z ⊗ Sw + δ̂z ⊗ δ̂w.(113)

(2) Let z,w ∈ C2(B). Then

δ̂(z ⊗ w) = ze ⊗ δ̂w + ze ⊗ Sw + δ̂z ⊗ we + Sz ⊗ we
(114)

+ Sz ⊗ δ̂w + δ̂z ⊗ Sw + δ̂z ⊗ δ̂w.
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(3) Let Z ∈ Ĉ2L(Ba, Bb) and W ∈ Ĉ2L(Bc, Bd). Then

δ̃(Z ⊗ W) = ZSa ⊗ δ̃W + ZSa ⊗ SdW + δ̃Z ⊗ W Sc

(115)
+ SbZ ⊗ W Sc + SbZ ⊗ δ̃W + δ̃Z ⊗ SdW + δ̃Z ⊗ δ̃W,

where an example of notational convention is given by

(ZSa ⊗ SdW)tus = (ZtuS
⊗a
us ) ⊗ (S⊗d

tu Wus) ∈ L(Ba+c, Bc+d).

PROOF. These relations are easily checked by elementary computations. We
include the proof of the third one for sake of completeness: notice that

δ̃Z = Z� − ZE − EZ − (Sb − E)Z − Z(Sa − E) = Z� − ZSa − SbZ,

where Z�
tus = Zts , and thus

δ̃(Z ⊗ W) = Z� ⊗ W� − SbZ ⊗ SdW − ZSa ⊗ W Sc

= (SbZ + ZSa + δ̃Z) ⊗ (SdW + W Sc + δ̃W)

− SbZ ⊗ SdW − ZSa ⊗ W Sc,

which yields relation (115) by a straightforward expansion. �

We also want to understand how δ̂, δ̃ act on the operators Xτ . A first relation in
this direction is to note that, according to Lemma 3.2, if Xτ ∈ Ĉ2L(B⊗n; B) and
h ∈ Ĉ1(B⊗n),

δ̂[Xτh] = (δ̂Xτ )h − Xτδh, that is, δ̂[Xτh] = (δ̃Xτ )h − Xτ δ̂h.(116)

It is thus useful to compute quantities of the form δ̃Xτ . To this purpose, consider
n ≥ 1 and define I : Ĉ2L(Bn, B2) → Ĉ2L(Bn, B) by

I (H)ts =
∫ t

s
Stu dxu BHus.(117)

This kind of expression can be related to our tree-indexed increments by noticing,
for instance, that

X = I (S2), X = I (X ⊗ S1), X = I (S1 ⊗ X ),

and generally speaking, (109) can be read as

XV (τ1,τ2) = I (Xτ1 ⊗ Xτ2), XV (τ0,τ ) = I (S ⊗ Xτ) and
(118)

XV (τ,τ0) = I (Xτ ⊗ S).

Hence, we shall compute differentials of terms of the form I (H).
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LEMMA 6.2. Let H ∈ Ĉ 1
2 L(Bn, B2). The following formulae hold true for the

derivative of I (H):

(δ̃I (H))tus = Itu(S2)Hus + Itu(δ̃(H))

and

(δ̂I (H))tus = Itu(S2)Hus + Itu(δ̂(H)).

Furthermore, if we assume that δ̃H can be decomposed as (δ̃H)tus =∑
j≤M H

(1,j)
tu H

(2,j)
us , for a given M ≥ 1, H(1,j) ∈ Ĉ 1

2 L(B2, B2), and H(2,j) ∈
Ĉ 1

2 L(Bn, B2), then we obtain

δ̃I (H) = I (S2)H + ∑
j≤M

I
(
H(1,j))H(2,j).

PROOF. We have

[δ̃I (H)]tus = Its(H) − Itu(H)Sus − StuIus(H)

=
∫ t

s
Stw dxw BHws −

∫ t

u
Stw dxw BHwuSus

− Stu

∫ u

s
Suw dxw BHws

=
∫ t

u
Stw dxw BHws −

∫ t

u
Stw dxw BHwuSus

=
∫ t

u
Stw dxw B(SwuHus)

+
∫ t

u
Stw dxw [BHws − B(SwuHus) − BHwuSus]

= Itu(S2)Hus + Itu(δ̃(H)),

which proves our first assertion. The second one is now trivially deduced. �

With these preliminaries in hand, we can now compute the action of δ̃ on the
tree-indexed increments we have met so far, in the following way.

LEMMA 6.3. Let x be a smooth L(B)-valued path. Then we have

δ̃X = 0,

δ̃X = I (S2)(X ⊗ S) = X (X ⊗ S),

δ̃X = X (X ⊗ X ) + X (X ⊗ S) + X (S ⊗ X )
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and

δ̃X = X (X ⊗ S) + X (X ⊗ S2),

δ̃X = X (X ⊗ S) + X (S2 ⊗ X ),

δ̃X = X (S ⊗ X ) + X (X ⊗ S2),

δ̃X = X (S ⊗ X ) + X (S2 ⊗ X ).

PROOF. All these relations are obtained by elementary computations, and we
shall only sketch the proof for some of them: first of all, invoking Lemma 6.2, we
get:

δ̃X = δ̃I (S2) = I (S2)S2 − I (S2)S2 = 0,

where we used the fact that δ̃S = −S S . As far as X is concerned, we have

δ̃X = δ̃I (X ⊗ S) = I (S2)(X ⊗ S),

since δ̃(X ⊗ S) = 0 by a direct computation using formula (115). Similarly, it
holds that

δ̃X = δ̃I (X ⊗ X )

= I (S2)(X ⊗ X ) + I (S ⊗ X )(X ⊗ S) + I (X ⊗ S)(S ⊗ X ),

owing to the fact that

δ̃(X ⊗ X ) = SX ⊗ X S + X S ⊗ SX .

Now, invoking (118), we have I (S ⊗ X )(X ⊗ S) = X and I (X ⊗ S) = X ,
which yields

δ̃X = X (X ⊗ X ) + X (X ⊗ S) + X (S ⊗ X ),

as claimed in our lemma. �

It is important to note now that all the previous computations have been per-
formed for a smooth path x. However, we shall ask our driving process x to satisfy
the following assumption:

HYPOTHESIS 4. We assume that the path x allows to define some incre-
ments Xτ for any τ ∈ T such that d(τ) ≤ 4. We also suppose that those incre-
ments satisfy the relations of Lemma 6.3, and that the following Hölder regu-
larities hold true: setting |τ | = d(τ) − 1, we have Xτ ∈ Ĉ|τ |κ0 L(Bd(τ)

η , Bη) and

Xτ ∈ Ĉγ+(|τ |−1)κ0 L(Bd(τ)
η , B−ρ), with γ + nκ0 > 1 and γ = κ0 + η + ρ, for a

given η > 1/4.
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REMARK 6.4. Here again, it is important to work in spaces of the form Bη

with η > 1/4. Indeed, these spaces are algebras, which ensures at least that, when-
ever φ,ψ ∈ Bη, then B(φ,ψ) ∈ B.

REMARK 6.5. The peculiar relation between the various parameters involved
in Hypothesis 4 has been suggested by the example which we treat later on and it is
due to the mixing between space and time regularity due to the analytic semigroup.
As operators the Xτ ’s can map to more regular spaces (with respect to the scale
associated the generator A) at the price of loosing some time regularity. This is a
phenomenon which is not peculiar of infinite-dimensional rough paths associated
to random processes but it is found also in the rough-path approach to deterministic
PDEs like the Korteweg–de-Vries equation or the Navier–Stokes equation [7–9].

6.3. A space of integrable paths. The general discussion of the bilinear equa-
tion requires a deep understanding of the algebra of X. It is not the aim of this
paper to enter into these kind of considerations, and we prefer here to concentrate
on a particular case where κ is sufficiently large to stop the expansions at some
low (but nontrivial) order. So here we assume that γ + 3κ > 1.

In order to solve the fixed-point problem associated to (107), we introduce a
new space of weakly controlled paths, denoted by QX,κ , which enjoys some nice
stability properties under the map � :y �→ z = Sψ + I (y ⊗ y).

DEFINITION 6.6. Let ψ ∈ Bη an initial condition, and x a driving noise satis-
fying Hypothesis 4, with γ + 3κ > 1. We say that a path y ∈ Ĉ∗,κ

1 (Bη) belongs to
QX,κ if y0 = ψ , and δ̂y can be decomposed into

δ̂y = X y + X y + X y + y�,(119)

where y , y and y can be written as:

y = w ⊗ w, y = w ⊗ w, y = w ⊗ w ,

and the following regularities hold true:

y ∈ Ĉ∗,κ
1 (Bη), w, y ∈ Ĉ∗,κ1

1 (Bη), w ∈ Ĉ∗,κ2
1 (B2

η), y� ∈ Ĉ 3κ2
2 (Bη),

where κ > κ1 > κ2, κ − κ1 = κ1 − κ2 ≡ μ and γ + 3κ2 > 1. On QX,κ , we define
the seminorm

N [y; QX,κ ] = N [y; Ĉκ
1 (Bη)] + N [w; Ĉκ1

1 (Bη)]
+ N [w ; Ĉκ2

1 (B2
η)] + N [y�; Ĉ 3κ2

2 (Bη)].

Note that the constant path yt = Stψ is a controlled path whenever ψ ∈ Bκ , and
in this case w,w ,y� are all identically zero. Furthermore, the space Q satisfies
the following useful stability property.
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THEOREM 6.7. Assume that x satisfies Hypothesis 4, where we recall that
γ + 3κ > 1 and κ0 > κ . For y ∈ Qκ,X , define z ≡ �(y) ∈ Qκ,X by z0 = ψ and a
decomposition of the form

δ̂z = X z + X z + X z + z�,

with z = wz ⊗ wz, z = wz ⊗ wz, z = wz ⊗ wz ,

where wz = y, wz = y , and z� ∈ Ĉ 3κ0
2 (B) is a remainder which can be written as

z� = X (y ⊗ y ) + X (y ⊗ y) + X (y ⊗ y)

+ X (y ⊗ y ) + X (y ⊗ y ) − 	(J ),

where J is defined by relation (121). Then:

(1) � : Qκ,X → Qκ0,X is well defined.
(2) δ̂z coincides with I (y ⊗ y) in the smooth case.
(3) The following estimate holds true: for all 0 < S < T we have:

N [z; QX,κ0([0, S])]
(120)

≤ CX

(
1 + |ψ |η + |w0|η + |w0 |η + SμN [y; QX,κ([0, S])])4

,

for a positive constant CX which only depends on the rough path X.

PROOF. Start from two smooth paths x and y. If we apply the I map defined
at (117), we obtain, just as in the Young case (48),

δ̂z = I (y ⊗ y) = I
(
δ̂(y ⊗ y) + S2(y ⊗ y)

) = I (S2)(y ⊗ y) + I
(
δ̂(y ⊗ y)

)
= I (S2)(y ⊗ y) + I (Sy ⊗ δ̂y) + I (δ̂y ⊗ Sy) + I (δ̂y ⊗ δ̂y),

where we have used Lemma 6.1. Expanding δ̂y in this equation and invoking rela-
tion (118), we thus obtain

δ̂z = X (y ⊗ y) + X (y ⊗ y) + X (y ⊗ y ) + X (y ⊗ y )

+ X (y ⊗ y) + X (y ⊗ y) + X (y ⊗ y ) + X (y ⊗ y ) + z�,

where z� has to be understood again as a remainder. Now, by our standard, argu-
ment we shall define z� in the nonsmooth case by z� = −	̂(J ), where J is given
by

J = δ̂[X (y ⊗ y) + X (y ⊗ y) + X (y ⊗ y ) + X (y ⊗ y )
(121)

+ X (y ⊗ y) + X (y ⊗ y) + X (y ⊗ y ) + X (y ⊗ y )].
In order for this equation to be well defined, we still need to check that J belongs

to Ĉγ+3κ
3 (B−ρ), which is in the domain of 	̂ since γ +3κ > 1. Let us then compute
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J : owing to (116), we have

δ̂[X (y ⊗ y)] = [δ̃X ](y ⊗ y) − X [δ̂(y ⊗ y)]
= −X (Sy ⊗ δ̂y) − X (δ̂y ⊗ Sy) − X (δ̂y ⊗ δ̂y),

thanks to relation (113) and Lemma 6.3. The other terms can be computed along
the same lines, and here is a sample of what is obtained:

δ̂[X (y ⊗ y)] = X (X y ⊗ Sy) − X (δ̂y ⊗ Sy)

− X (Sy ⊗ δ̂y) − X (δ̂y ⊗ δ̂y),

δ̂[X (y ⊗ y)] = X (X y ⊗ Sy) + X (X ⊗ S2)(y ⊗ y)

− X δ̂(y ⊗ y)

and

δ̂[X (y ⊗ y )] = X (X y ⊗ X y ) + X (X y ⊗ S2y )

+ X (S2y ⊗ X y ) − X (S2y ⊗ δ̂y )

− X (δ̂y ⊗ S2y ) − X (δ̂y ⊗ δ̂y ).

Now, by gathering all the terms we have obtained, we obtain that J = ∑4
k=1 Jk ,

with

J1 = X [Sy ⊗ (−δ̂y + X y + X y + X y )

+ (−δ̂y + X y + X y + X y ) ⊗ Sy

− δ̂y ⊗ δ̂y + (X ⊗ X )(y ⊗ y )],
J2 = X [−Sy ⊗ δ̂y − δ̂y ⊗ Sy + (S2 ⊗ X )(y ⊗ y ) − δ̂y ⊗ δ̂y

+ (X ⊗ S2)(y ⊗ y) + (S ⊗ X ⊗ S)(y ⊗ y)]
and

J3 = X [−Sy ⊗ δ̂y − δ̂y ⊗ Sy + (X ⊗ S2)(y ⊗ y ) − δ̂y ⊗ δ̂y

+ (S2 ⊗ X )(y ⊗ y ) + (S ⊗ X ⊗ S)(y ⊗ y )],
J4 = −X δ̂(y ⊗ y ) − X δ̂(y ⊗ y) − X δ̂(y ⊗ y)

− X δ̂(y ⊗ y ) − X δ̂(y ⊗ y ).

Furthermore, notice that, using equation (119) for the increments of y, the quantity
J1 can be simplified into

J1 = X [−Sy ⊗ y� − y� ⊗ Sy − δ̂y ⊗ δ̂y + (X ⊗ X )(y ⊗ y )].
We are now left with the cumbersome task which consists in analyzing the regu-

larity of all the terms we have produced so far. We shall just focus on one particular
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example, namely X (δ̂y ⊗ Sy), leaving the other ones to the patient reader. In-
voking again Lemma 6.1, we have

X (δ̂y ⊗ Sy) = X (δ̂w ⊗ δ̂w ⊗ Sy) + X (Sw ⊗ δ̂w ⊗ Sy)

+ X (δ̂w ⊗ Sw ⊗ Sy).

Among the three terms in the right hand side of this relation, we shall analyze the
first one, the other ones being similar: recall that X ∈ Cγ+2κ0

2 L(B3
η, B−ρ), δ̂w ∈

Cκ
2 (Bη) and Sy ∈ C 0

2(Bη). Thus X (δ̂w ⊗ δ̂w ⊗ Sy) ∈ Cγ+2κ0+κ
3 (B−ρ), which is

enough regularity to apply the 	-map. The other terms in the decomposition of J

can be treated similarly, which ends the proof of our first assertion.
Our second claim being immediate from the construction of our integral, let us

say a few words about the last one. Here again, many terms have to be estimated,
and we shall focus on a representative example, namely the term wz = y = w ⊗
w. In fact, the quantity N [w ⊗ w; Ĉκ2

1 (B2
η)] has to be estimated, and recall that,

according to Lemma 6.1, the following relation holds true:

δ̂(w ⊗ w) = Sw ⊗ δ̂w + δ̂w ⊗ Sw + δ̂w ⊗ δ̂w.

Thus, since w ∈ Ĉκ1
1 (Bη) and St is a bounded operator on Bη for any positive S,

we obtain

N [w ⊗ w; Ĉκ2
1 ([0, S]; B2

η)] ≤ c
(
1 + |w0|η + SμN [w; Ĉκ1

1 ([0, S]; B2
η)]

)2

≤ c
(
1 + |w0|η + SμN [y; QX,κ([0, S])])2

,

where we used also the decomposition wt = St0w0 + δ̂wt0 to bound wt in terms
of w0 and δ̂w:

|wt |η ≤ |w0|η + Sκ
1 N [w; Ĉκ1

1 ([0, S]; B2
η)].

The other terms defining δ̂z can be treated along the same lines, which proves
relation (120). �

We can turn now to the main goal of this section, which is to get an existence
and uniqueness result for equation (107).

THEOREM 6.8. Assume that x allows to define some incremental operators
Xτ for any τ ∈ T such that d(τ) ≤ 4, and that these increments satisfy Hypoth-
esis 4, for γ, κ0, κ, η such that κ < κ0 < γ , γ + 3κ > 1 and η > 1/4. Then there
exists a strictly positive T0 = T0(X

τ ;d(τ) ≤ 4) such that equation (107) admits a
unique solution y ∈ Qκ,X([0, T0]).

PROOF. The proof of this result is very similar to those of Theorems 4.3 and
5.6, and we shall omit the details here. Just notice that inequality (120) allows to
construct an invariant ball for the map � in Qκ,X([0, T0]), whenever T0 is small
enough. The contraction argument can then be written in a standard way. �
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6.4. The Brownian case. In this section, we investigate the behavior of the
operators Xτ defined above, when x = X is an infinite-dimensional Brownian mo-
tion, defined at Section 3.4. Our aim is of course to show that, under certain con-
ditions, X satisfies Hypothesis 4. To this purpose, for the remainder of the section,
we will mainly consider some applications on the space Bη for η = 1/4 + ε and a
small ε > 0. Let us also introduce an additional notation: for the remainder of the
article, we will write A � B for two real quantities A and B when A ≤ cB for a
universal constant c.

PROPOSITION 6.9. Let X be an infinite-dimensional Brownian motion de-
fined by the covariance structure (45), with Q given by (44) for ν ∈ (1/3,1/2].
Recall also that, for a planar binary tree, we have set |τ | = d(τ) − 1. Let Xτ be
the incremental operator given by (109) where the stochastic integrals have to be
understood in the Itô sense. Then, almost surely, Xτ ∈ Ĉκ0|τ |

2 LHS(Bd(τ)
η ; Bη) for

τ = , , , , , , , and for any κ0 satisfying 0 < κ0 < 1/4 − η + ν̄/2.
Moreover, Xτ ∈ Ĉγ+κ0(|τ |−1)−1/4

2 LHS(Bd(τ)
η ; B−ρ) for γ = κ0 + η +ρ < 1/2. The-

orem 6.8 can then be applied in this situation.

PROOF. In all the cases, the line of the proof is the same. We obtain an L2

estimate on the Hilbert–Schmidt norm of Xτ , which by Gaussian tools can be
boosted to an Lp bound for any p. Applying Lemma 3.8, the result is then easily
deduced.

Admitting for the moment the results of Lemma 6.11 below, let us give some
details about our method. Since our incremental processes always belong to a finite
chaos of the infinite-dimensional Brownian motion X, it is easily deduced from
Lemma 6.11 that

E
[‖Xτ

ts‖p

HS,L(Bd(τ)
η ;Bη)

]
� (t − s)p|τ |(κ0+ε+(1−1/|τ |)/2) � (t − s)p|τ |(κ0+ε)

for any 0 < κ0 < 1/4 − η + ν̄/2 < η/2. Moreover, it also holds that:

‖δ̃Xτ
tus‖ ≤ ∑

τ 1,τ 2

‖Xτ 1

tu‖‖Xτ 2

us‖ � (t − u)|τ 1|κ0(u − s)|τ 2|κ0 � (t − s)|τ |κ0,

where τ 1, τ 2 denote the trees appearing in the expansion for δ̃Xτ
tus given at

Lemma 6.3, for which we have always |τ 1|, |τ 2| ≥ 1 and |τ 1| + |τ 2| = |τ | + 1.
So it is clear that using the extended G–R–R Lemma 3.8, we obtain

‖Xτ
tus‖ � (t − s)|τ |κ0,

for any τ such that d(τ) ≤ 4. Finally, observe that the conditions γ < 1/2, κ0 =
ν̄/2 − ε and 3κ0 = γ > 1 force us to choose ν > 1/3. �

An easy consequence of the last estimations is an existence result for a Brown-
ian SPDE in the rough-path sense:
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THEOREM 6.10. Let X be an infinite-dimensional Brownian motion on
[0, T ] × [0,1], defined by the covariance function given by (45) and (44) with
ν > 1/3. Then there exists η > 1/4, 0 < κ < γ < 1/2 satisfying κ < κ0 and
γ + 3κ > 1 such that, for any ψ ∈ Bη the equation

Y(0, ξ) = ψ(ξ), ∂tY (t, ξ) = �Y(t, ξ) dt + Y(t, ξ)2X(dt, dξ),

t ∈ [0, T ], ξ ∈ [0,1],
with periodic boundary conditions, understood as equation (84), has a unique lo-
cal solution in Qκ,η,ψ up to a time T∗ which depends on the initial condition and
on the operators Xτ , |τ | ≤ 3.

PROOF. Like in the proof of Theorem 5.8, the proof amounts to check the
validity of Hypothesis 4 in the light of Proposition 6.9. �

The rest of the paper is dedicated to the L2 estimations for the operators Xτ . In
fact, we will obtain a slightly stronger result than the one we claimed at Proposi-
tion 6.9.

LEMMA 6.11. For the trees considered at Proposition 6.9, we have the fol-
lowing L2 bounds:

E
[‖Xτ

ts‖2
HS,L(Bd(τ)

η ;Bη)

]
� (t − s)|τ |�−1/2,(122)

where � = 1 − 2η + ν − ε for some arbitrary small ε > 0.

PROOF. It is conceptually easy to generalize the arguments of Proposition 5.7
to reduce the problem to an estimation of a mixed sum (over eigenvalues of Ao)
and integral over time variables (after contraction of the stochastic integrals). This
long and tedious task is left to the reader. We prefer to give a diagrammatical
algorithm which allows to go from the kernel on L2 (associated to each operator)
to a simple sum estimation. This will be detailed in the next two subsections. �

REMARK 6.12. We can interpret this result by the following heuristic con-
siderations. The situation more similar to the finite dimensional theory is when
η is slightly larger than 1/4 and ν slightly larger than 1/2. In this case, � is
arbitrarily near to 1 which would give the classical scaling of Brownian incre-
ments if we could ignore the factor −1/2 apperaring at the exponent in the r.h.s.
of equation (122). This further loss of regularity is due to the need of estimating
the Hilbert–Shmidt norm. We conjecture that some technique which would allow
to estimate directly the operator norms of the increments would give a better time
regularity which would improve the overall theory. Apart from this technical diffi-
culty there is an intrinsic departure from the Brownian regularity due to a loss in
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space regularity which must be compensated via a transfer from time to space reg-
ularity (allowed by the convolutions). This loss in space regularity has two sources:
one is the nonlinear operation which start to be badly behaved when η is smaller
than 1/4, the other is the presence of the noise which degrades the spatial regularity
of the result when ν is smaller than 1/2. Both contributions are clearly accounted
in the formula for the effective time regularity �.

REMARK 6.13. As we noted also elsewhere in the context of rough-paths
associated to deterministic PDEs [7–9], in the infinite-dimensional setting objects
like the semigroup S (and in general the unbounded linear operators appearing
in the equations) must be considered at the same level of the driving stochastic
processes in the sense that the ensemble of these objects form a rough-path. In
this perspective, the fact that the rough path Xτ which we construct depends both
on the Gaussian noise and on the specific convolution semigroup S should not
be considered more unusual that the fact that in the finite-dimensional theory the
higher order iterated integrals depends on the vector of all irregular components
driving the equation.

6.5. Diagrammatica. We will first show, at a heuristic level and on a simple
example, how to pass from an incremental operator to a graph for the computation
of Hilbert–Schmidt norms.

(1) Case of the operator X . Consider first the operator X : B2
η → Bη. Recall-

ing the notation of Section 3.4, an orthonormal basis for Bη is given by {ẽj ; j ≥ 1},
where ẽj = λ

−η
j ej . Furthermore, the particular form (44) we have assumed on the

covariance function Q implies that x can be decomposed as

xu = ∑
p∈Z

λ−ν/2
p epβp

u , u ≥ 0,

where {βp;p ∈ Z} is a sequence of independent Brownian motions. Hence, setting
〈·, ·〉 for the inner product in L2(S), the matrix elements of X are given by

[Xts]i,jk = 〈ei,Xts(ẽj ⊗ ẽk)〉 =
〈
ei;

∫ t

s
Stu dxu(Sus ẽj )(Sus ẽk)

〉

=
∫ t

s
〈Stuei;dxu(Sus ẽj )(Sus ẽk)〉

= ∑
p∈Z

λ
−η
j λ

−η
k λ−ν/2

p

∫ t

s
dβp

u 〈Stuei, ep(Susej )(Susek)〉

= ∑
p;i=p+j+k

λ
−η
j λ

−η
k λ−ν/2

p

∫ t

s
e−λi(t−u)−λj (u−s)−λk(u−s) dβp

u .
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Thus, the Hilbert–Schmidt norm of Xts in L(B2; Bη) can be written as

‖Xts‖2
HS,L(B2

η;Bη)
= ∑

i,j,k∈Z

λ
2η
i |[Xts]i,jk|2.

From this simple computation, the following rules appear:

• Some multiple sums (involving terms of the form λα
i ) with constraints on the

indices appear, due to the fact that {ei; i ∈ Z} is the trigonometric basis of L2(S).
• Some contractions in the sums take place, because of the Brownian stochastic

integrals.

With the above considerations in mind, we can associate to Xts the following
graphical representation:

Xts =
∫ t

s
dβp

u

where the solid lines represent factors of S. This is a bookkeeping device for the
relation between the various indices and time parameters. The computation of
E[‖Xts‖2

HS,L(B2
η;Bη)

] corresponds to putting side by side two specular copies of

this graph and connecting the corresponding top and bottom lines (to compute the
HS norm), while contracting in all the allowed ways the dashed lines (to compute
the contractions of the stochastic integrals). Doing so, we obtain the graph

E‖Xts‖2
HS,L(B2

η;Bη)
=

∫ t

s
du

where we use the following convention: solid lines correspond to factors of S, time
parameters are attached to vertices, crossed solid lines correspond to factors of
A2ηS (coming form contraction of output lines), crossed double lines correspond
to factors of A−2ηS (coming form contraction of input lines), dashed lines are
associated to factors of Q (coming from the Itô contraction of the noise). We fix
an orientation for each edge of the graph and associate an index to each oriented
edge. To each vertex corresponds a constraint that the sum of indexes of incoming
edges minus indexes of outgoing edges should be zero. According to these rules,



66 M. GUBINELLI AND S. TINDEL

the formula of the mean squared norm is then

E
[‖Xts‖2

HS,L(B2
η;Bη)

]

=
∫ t

s
du

∑
i+j+k+l=0

λ
2η
i λ−ν

j λ
−2η
k λ

−2η
l e−2λi(t−u)−2λk(u−s)−2λl(u−s),

and the reader can check that this is indeed the expression for the mean value of
the HS norm of Xts .

Consider now the expression

A = ∑
i+j+k+l=0

λ
2η
i λ−ν

j λ
−2η
k λ

−2η
l e−2λi(t−u)−2λk(u−s)−2λl(u−s).

We trivially have

A ≤ ∑
i+j+k+l=0

λ
2η
i λ−ν

j λ
−2η
k λ

−2η
l e−2λi(t−u).

Furthermore, setting q = k + l, applying Lemma 4.6, and recalling that we have
chosen η > 1/4, we can bound A as

A �
∑

i+j+q=0

λ
2η
i λ−ν

j λ−2η
q e−2λi(t−u),

where we used the relation
∑

k+l=q λ
−2η
k λ

−2η
l � λ

−2η
q . Moreover, assuming that

ν ≤ 2η we can use again Lemma 4.6 to get

A �
∑
i

λ
2η−ν
i e−2λi(t−u) � (t − u)−a

∑
i

λ
2η−ν−a
i ,

and choosing a = 1/2 + 2η − ν + ε so that the sum is convergent, we obtain
� (t − u)�−3/2, with � = 1 − 2η + ν − ε. So we proved the graphical equation

� (t − u)�−3/2(123)

and hence, if we suppose that � − 3/2 > −1, that is, � > 1/2, we have obtained
that

E
[‖Xts‖2

HS,L(B2
η;Bη)

]
�

∫ t

s
du (t − u)�−3/2 � (t − s)�−1/2,

which is the desired bound for Lemma 6.11. Let us say a few words about the
condition � > 1/2: if η = 1/4 + ε̂, then one has � = 1/2 + ν − ε + ε̂. This means
that the condition � > 1/2 can be met as soon as ν > 0, which simply rules out
the possibility of considering a space–time white noise at this stage.
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(2) Case of the operator X . With the same kind of considerations as for X ,
it can be shown that the the matrix elements of the operator X are given by

[Xts ]i,jkl = ∑
p+j+n=i

∑
q+k+l=n

λ
−2η
j λ

−2η
k λ

−2η
l λ−ν/2

p λ−ν/2
q

×
∫ t

s
e−λi(t−u) dβp

u e−λj (u−s)

×
∫ u

s
e−λn(u−v) dβq

v e−λk(v−s)e−λl(v−s).

Thus, its Hilbert–Schmidt norm in L(B3
η; Bη) can be written as

‖Xts‖2
HS,L(B3

η;Bη)
= ∑

i,j,k,l

λ
2η
i |[Xts ]i,jkl|2,

and the following graphical representation can be associated to this last expression:

Xts =
∫ t

s
dβp

u

∫ u

s
dβq

v

Thus, for the Hilbert–Schmidt norm of Xts , we obtain the graph

E
[‖Xts‖2

HS,L(B3
η;Bη)

] =
∫ t

s
du

∫ u

s
dv

and the corresponding formula

E
[‖Xts‖2

HS,L(B3
η;Bη)

]

=
∫ t

s
du

∫ u

s
dv

∑
i+j+k+l=0

λ
2η
i λ−ν

j λ
−2η
k

× ∑
n+m+o=l

λ−ν
m λ−2η

n λ−2η
o e−2λi(t−u)−2λl(u−v)−2λn(v−s)−2λo(v−s)−2λk(u−s).

The strategy to control this expression is now straightforward: bounding the
exponential and performing the time integrations gives, for two positive constants
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a, b such that a + b < 2,

E
[‖Xts‖2

HS,L(B3
η;Bη)

]
� (t − s)2−(a+b)

∑
i+j+k+l=0

λ
2η−a
i λ−ν

j λ
−2η
k λ−b

l

∑
n+m+o=l

λ−ν
m λ−2η

n λ−2η
o .

Using the fact that 2η > 1/2, we can reduce this to the bound

E
[‖Xts‖2

HS,L(B3
η;Bη)

]
� (t − s)2−(a+b)

∑
i+j+l+k=0

λ
2η−a
i λ−ν

j λ
−2η
k λ−b

l

∑
n+m=l

λ−ν
m λ−2η

n .

Assuming moreover that ν ≤ 2η, we get

E
[‖Xts‖2

HS,L(B3
η;Bη)

]
� (t − s)2−(a+b)

∑
i+j+l+k=0

λ
2η−a
i λ−ν

j λ
−2η
k λ−ν−b

l .

At this point, choose b = 2η − ν so that ν + b = 2η and

E
[‖Xts‖2

HS,L(B3
η;Bη)

]
� (t − s)2−(a+b)

∑
i+k+l=0

λ
2η−a
i λ

2η
l λ

−2η
k .

Hence, this sum is finite if we choose a = 1/2 + 2η − ν + ε, and we get

E
[‖Xts‖2

HS,L(B3
η;Bη)

]
� (t − s)2�−1/2.

Before proceeding to the estimation of the other more complex operators, let
us make a useful observation. Consider the following subgraph on the left of the
previous graph:

∫ u

s
dv

After reduction of the crossed double lines (carrying the factors due to A−η) by
an iterated application of Lemma 4.6, we obtain the following expression which
corresponds to a bound for this graph:

�
∫ u

s
dv λ−ν

i e−2λi(u−v) �
∫ u

s

dv

(u − v)b
λ−ν−b

i ,
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so that choosing b = 2η − ν, we get an estimate of the form � (v − s)�λ
−2η
i .

Summarizing these considerations, we have obtained the graphical equation

∫ u

s
dv � (u − s)�(124)

which we will use multiple times below.

6.6. More complex graphs. The tools we have introduced so far will allow us
to treat the two remaining cases we are left with, namely X and X .

(1) Case of the operator X . By using the same kind of arguments as in the
previous subsection, we obtain a representation of the form

Xts =
∫ t

s
dβp

u

∫ u

s
dβq

v

∫ v

s
dβr

w

Thus, for the computation of E[‖Xts ‖2
HS,L(B4

η;Bη)
], we obtain the graph

E‖Xts ‖2
HS,L(B3

η;Bη)

=
∫ t

s
du

∫ u

s
dv

∫ u

s
dw

Now, invoking repeatedly relation (124), we can iteratively reduce the above graph
to obtain a bound for E[‖Xts ‖2

HS,L(B4
η;Bη)

] of the form

�
∫ t

s
du(u − s)2�

�
∫ t

s
du (t − u)�−3/2(u − s)2� � (t − s)3�−1/2,
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which is again what is needed for our Lemma 6.11.

(2) Case of the operator X . Using the same conventions as before, the oper-

ator X can be represented as:

Xts =
∫ t

s
dβp

u

∫ u

s
dβq

v

∫ u

s
dβr

w

Now our current situation is slightly different from the previous ones, since in the

triple Brownian integral above, the last two are not iterated. This means that we

have to handle some sums of the form E[(∑α YαZα)2] for some centered Gaussian

random variables (Yα,Zα)α forming a Gaussian vector. The standard way to com-

pute such sums is to write

E

[(∑
α

YαZα

)2]
= ∑

α,β

E[YαZαYβZβ]

= ∑
α,β

E[YαZα]E[YβZβ] + E[YαYβ]E[ZαZβ]

+ E[YαZβ]E[YβZα].

By extrapolating this elementary consideration to our situation, this implies that,

in the computation of E‖Xts ‖2
HS,L(B4

η;Bη)
, three different kind of contractions are

involved. Hence, we also obtain three different graphs:

E‖Xts ‖2
HS,L(B3

η;Bη)

=
∫ t

s
du

∫ u

s
dv

∫ u

s
dw(125)
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+
∫ t

s
du

∫ u

s
dv

∫ u

s
dw

+
∫ t

s
du

∫ u

s
dv

∫ u

s
dw

Observe that the first of those graphs already appeared in the study of X . We
will then focus on the two other ones.

The analysis of the second graph above can be started by reducing again the
crossed double lines, which gives a new graph of the form

∫ t

s
du

∫ u

s
dv

∫ u

s
dw(126)

However, at this point, we cannot proceed as in the previous cases, with a sequence
of reduction of subgraphs, in order to prove the convergence. Indeed, in the current
situation, some irreducible triangular structures like the following appear, at the top
and bottom of the graph (126):

∫ u

s
dw(127)
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where the dotted lines stand for the remaining part of the graph, and where we put
explicit indexes on outgoing lines and on the edges of the subgraph. Note that by
the rules we have imposed on the graph, the constraint i + j + k = 0 (we consider
the dotted lines directed inwards) holds true. The contribution of the triangular
structure is thus given by

δi+j+k=0

∫ u

s
dw

∑
q

λ−ν
q+ke

−λq(u−w)−λq−i (u−w),

and we can bound this last expression by

� δi+j+k=0

∫ u

s

dw

(u − w)b

∑
q

λ−ν
q+kλ

−b/2
q λ

−b/2
q−i ,

for some b ∈ (0,1). The latter sum is finite when ν + b > 1/2, which means that,
by choosing b = 1/2 − ν + ε, the triangular structure yields a bound of order

� δi+j+k=0(u − s)1−b.

Summarizing the previous discussion, it is now easily seen that the structure (127)
behaves like a simple vertex, up to an appropriate factor of (u − s):

∫ u

s
dw � (u − s)�

Using this fact, we can reduce our graph (126) to the following simpler structure:

�
∫ t

s
du(u − s)2� � (t − s)3�−1/2,

where the last bound has been obtained similarly to (123).
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Finally, let us associate a bound to the third graph in (125). First, notice that this
third graph can be reduced to

∫ t

s
du

∫ u

s
dv

∫ u

s
dw(128)

Furthermore, this graph contains the irreducible subgraph

∫ u

s
dv

∫ u

s
dw

which corresponds to the expression

D ≡
∫ u

s
dv

∫ u

s
dw

× ∑
j+k=i

∑
q,l

exp{−λj (u − v) − λk(u − w)

− λj−l+q(u − v) − λk−q+l(u − w)

− λj−l(w + v − 2s) − λk−q(w + v − 2s)}
/(λν

l λ
ν
qλ

2η
j−lλ

2η
k−q).

Introducing an additional parameter b and bounding the exponential terms as usual
gives

D �
∫ u

s

dv

(u − v)b

∫ u

s

dw

(u − w)b

∑
j+k=i

∑
q,l

1

λb
jλ

b
kλ

ν
l λ

ν
qλ

2η
j−lλ

2η
k−q

.
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Now, using Lemma 4.6, we can bound the sums over q and l in order to obtain

D �
∫ u

s

dv

(u − v)b

∫ u

s

dw

(u − w)b

∑
j+k=i

1

λb+ν
j λb+ν

k

.

Thus, choosing b = 2η − ν, we end up with

D � (u − s)2�λ
−2η
i ,

which means that we have obtained the graphical inequality

∫ u

s
dv

∫ u

s
dw � (u − s)2�

Plugging this representation in the complete graph (128), we obtain

�
∫ t

s
du(u − s)2� � (t − s)3�−1/2.

Going back to Lemma 6.11, we should still treat the case of Xτ for τ = , , .
But these estimates are now mere variations of the previous ones, and are left to
the reader for sake of conciseness.
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