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WEAK SOLUTIONS FOR FORWARD–BACKWARD
SDES—A MARTINGALE PROBLEM APPROACH

BY JIN MA,1 JIANFENG ZHANG2 AND ZIYU ZHENG3

University of Southern California and Barclays Capital

In this paper, we propose a new notion of Forward–Backward Martingale
Problem (FBMP), and study its relationship with the weak solution to the
forward–backward stochastic differential equations (FBSDEs). The FBMP
extends the idea of the well-known (forward) martingale problem of Stroock
and Varadhan, but it is structured specifically to fit the nature of an FBSDE.
We first prove a general sufficient condition for the existence of the solution
to the FBMP. In the Markovian case with uniformly continuous coefficients,
we show that the weak solution to the FBSDE (or equivalently, the solution to
the FBMP) does exist. Moreover, we prove that the uniqueness of the FBMP
(whence the uniqueness of the weak solution) is determined by the unique-
ness of the viscosity solution of the corresponding quasilinear PDE.

1. Introduction. The theory of backward stochastic differential equations
(BSDEs for short) has matured tremendously since the seminal work of Pardoux
and Peng [24]. The fundamental well-posedness of BSDEs with various conditions
on the coefficients as well as terminal conditions have been studied extensively,
which can be found in a large amount of literature. A commonly used list of refer-
ence include the books of El Karoui and Mazliak [9] and Ma and Yong [18] for the
basic theory of BSDEs, and the survey paper of El Karoui, Peng and Quenez [10]
for the applications of BSDEs to mathematical finance. It is worth noting that al-
most all the existing works on BSDEs or its extension Forward–Backward SDEs
(FBSDEs) are exclusively considered in the realm of “strong solutions,” and a
missing piece of puzzle in the theory of BSDEs seems to have been the notion
of “weak-solution.” Such a notion, although extremely conceivable and tempting
from both theoretical and practical point of views, has not been fully explored.

In a recent paper, Antonelli and Ma [1] introduced the notion of weak solu-
tion to a class of FBSDEs. In that paper, it was shown that some standard results
regarding the relations among weak solution, strong solution and different types
of uniqueness still hold. However, the results in that paper were a far cry from
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a systematic study for weak solutions. In particular, the authors were not able to
address the core issue regarding the uniqueness. Similar topics were studied later
by Buckdahn, Engelbert and Rascanu [4], with a more general definition and more
extended investigation. But the issue of uniqueness remains. Independent of our
work, recently Delarue and Guatteri [8] established the existence and uniqueness
of weak solutions for a class of Markovian FBSDEs by using elegantly the decou-
pling strategy in the Four Step Scheme (cf. [16]). However, they require the coef-
ficients to be Lipschitz continuous in the backward components, and thus roughly
speaking their FBSDE is weak only in the forward component. To our best knowl-
edge, so far there has not been any work trying to address the issue of uniqueness
in law for a true BSDE/FBSDE; and it is our hope that this paper could be the first
step in that direction.

Our first goal of this paper is to find an appropriate definition of a “backward”
version of the martingale problem associated to the weak solution. We shall fol-
low naturally the idea of the forward martingale problem initiated by Stroock and
Varadhan (cf., e.g., [26]), and recast the FBSDE in terms of some fundamental
martingales, which then leads to the notion of the Forward–Backward Martingale
Problem (FBMP). Such a notion extends the usual martingale problem and it is
equivalent to the weak solution defined in [1]. Our objective then is to prove the
existence and uniqueness of the solution to FBMP, whence those of weak solution.
Given the large amount of recent studies on the existence of (strong) solutions to
BSDEs/FBSDEs with less-regular coefficients, notably the works of [3, 6, 14] and
[15], to mention a few, we are particularly interested in finding a unified method
that works for high dimensional FBSDEs with nonsmooth coefficients for which
a strong solution is less likely to exist. We shall first prove a general sufficient
condition for the existence of solution to FBMP, using mainly some weak con-
vergence arguments under Meyer–Zheng topology. A key element in the sufficient
condition could essentially be understood as a certain type of tightness criterion
for processes with paths in an L2 space, which shall be further explored in our fu-
ture publications. We will then show that such sufficient condition can be verified
in a Markovian case assuming that all the coefficients are bounded and uniformly
continuous.

The last part of this paper deals with the main issue: the uniqueness of the so-
lution to the FBMP. We note that to date the main difficulties in the discussion
has always been the martingale integrand in the BSDE (the process Z), because
in general one does not have a workable canonical space for this process. In fact,
although in many cases the process Z is càdlàg or even continuous (see, e.g., [20]),
such path regularity is by no means clear a priori. However, it is noted that if all
the coefficients are Hölder continuous, one can show that the martingale integrand
can be treated as a function of the forward components of the solution, owing to
the idea of the Four Step Scheme of [16]. This fact, together with the procedure we
used to prove the existence, shows that at least one weak solution can be built us-
ing only the path spaces of the continuous components of the solution. This result
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becomes more significant when we establish the uniqueness, since it essentially
eliminated the subtlety caused by the canonical spaces. Our uniqueness proof is
originated from the idea of “method of optimal control” for solving an FBSDE
(see [17, 18]). Although it may not be intuitive due to the technicalities involved,
the basic idea is to investigate a variation of the notion of “nodal set” in [17], so
as to show that uniqueness of the viscosity solutions to the corresponding quasi-
linear PDE implies the uniqueness of the solution to the FBMP (whence the weak
solution). We should note that in this paper we are still not able to prove the unique-
ness in the most general sense, but we believe that our method has a potential to
be applied to more general FBSDEs, and the uniqueness should hold in a much
wider class of weak solutions. We hope to be able to address the issue in our future
publications.

The rest of the paper is organized as follows. In Section 2, we give the prelimi-
naries, recall the definition of weak solution and introduce the notion of an FBMP.
In Section 3, we prove the general sufficient condition for the existence of the solu-
tion to FBMP. In Section 4, we consider the Markovian case. Finally, in Section 5,
we prove the uniqueness of the solution to FBMP.

2. Preliminaries. In this section, we give the basic probabilistic set up, recall
the definition of weak solution of an FBSDE and introduce the notion of Forward–
Backward Martingale Problems (FBMPs).

For any Euclidean space R
k , regardless of its dimension, we denote its norm

by | · |. We denote C([0, T ];R
k) to be the space of all R

k-valued continuous
functions endowed with the sup-norm; and D([0, T ];R

k) to be the space of all
E-valued càdlàg functions endowed with the Skorohod topology (see, e.g., [11]).
When k = 1, we may omit R in the notation.

For a given finite time horizon [0, T ], we say that a quintuple (�,F ,P ,F,W)

is a standard set-up if (�,F ,P ) is a complete probability space; F
�= {Ft }t∈[0,T ]

is a filtration satisfying the usual hypotheses (see, e.g., [25]); and W is an {Ft }-
Brownian motion. In particular, if Ft = F W

t , the natural filtration generated by the
Brownian motion W , augmented by all the P -null sets of F and satisfying the
usual hypotheses, then we say that the standard set-up is Brownian.

A. WEAK SOLUTION OF FBSDES. Let us consider the following forward–
backward SDE:⎧⎪⎪⎨⎪⎪⎩

Xt = x +
∫ t

0
b(s, (X)s, Ys,Zs) ds +

∫ t

0
σ(s, (X)s, Ys,Zs) dWs,

Yt = g((X)T ) +
∫ T

t
h(s, (X)s, Ys,Zs) ds −

∫ T

t
Zs dWs.

(2.1)

Here, (Xt , Yt ,Zt ,Wt) ∈ R
n × R

m × R
m×d × R

d , and the functions b, h, σ and g

are functions with appropriate dimensions. We note, in particular, that the coeffi-
cient b is a progressively measurable function defined on [0, T ]×C([0, T ],R

n)×
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R
m × R

m×d with valued in R
n, and (X)t denotes the path of X up to time t .

More precisely, for each t ∈ [0, T ] and (y, z) ∈ R
m × R

m×d , the mapping x �→
b(t, (x)t , y, z) is measurable with respect to the σ -field Bt (C([0, T ];R

n)), where

Bt (C([0, T ];R
n))

�= σ {x(t ∧ ·) : x ∈ C([0, T ];R
n)} (cf., e.g., [13]). The coeffi-

cients σ , h and g should be understood in a similar way. It is known that (cf.,
e.g., [18]) an adapted (strong) solution to the FBSDE (2.1) is usually understood
as a triplet of processes (X,Y,Z) defined on any given Brownian set-up such that
(2.1) holds P -almost surely. The following definition of weak solution is proposed
in [1].

DEFINITION 2.1. A standard set-up (�,F ,P , {Ft},W) along with a triplet
of processes (X,Y,Z) defined on this set-up is called a weak solution of (2.1) if:

(i) the processes X,Y are continuous, and all processes X, Y , Z are
Ft -adapted;

(ii) denoting ft = f (t, (X)t , Yt ,Zt ) for f = b,σ,h, it holds that

P

{∫ T

0
(|bt | + |σt |2 + |ht | + |Zt |2) ds + |g((X)T )| < ∞

}
= 1.

(iii) (X,Y,Z) verifies (2.1) P -a.s.

We remark here that unlike a “strong solution,” a weak solution relaxed the most
fundamental requirement for a BSDE, that is, the set-up be Brownian. But instead,
it requires the flexibility of the set-up for each solution, similar to the forward SDE
case. We should point out that in [1] it is shown that the weak solution of FBSDE
(2.1) exists under very mild conditions, and that there does exist a weak solution
that is not “strong.”

REMARK 2.2. Although in the basic setting of FBSDE (2.1), the coefficients
are seemingly “deterministic,” it can be easily extended to the “random coeffi-
cients” case. For instance, if we add the canonical Brownian motion W into the
equation, and consider (W,X) as the forward component, then we can allow the
coefficients to have the form

f (t,ω, (X)t , YtZt )
�= f (t, (W)t , (X)t , Yt ,Zt ), f = b,σ,h,(2.2)

and the FBSDE (2.1) has nonanticipating random coefficients. In fact, our general
existence result Theorem 3.1 holds true for general FBSDEs with coefficients of
the form (2.2). However, at this stage, we feel that it is more convenient to consider
(2.1) in the given form so as to avoid further complication in the proof of the
uniqueness. We should note that even in the standard (forward) martingale problem
(cf. [26]), the component W is not involved directly. �
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B. FORWARD–BACKWARD MARTINGALE PROBLEM. Before we define the
martingale problem, let us give a detailed description of a “canonical set-up” on
which our discussion will be carried out. Define

�1 �= C([0, T ];R
n); �2 �= C([0, T ];R

m); �
�= �1 × �2,(2.3)

where �1 denotes the path space of the forward component X and �2 the path
space of the backward component Y of the FBSDE, respectively.

Next, we define the canonical filtration by Ft
�= F 1

t ⊗ F 2
t , 0 ≤ t ≤ T , where

F i
t

�= σ {ωi(r ∧ t) : r ≥ 0}, i = 1,2. We denote F
�= FT and F

�= {Ft }0≤t≤T .
In what follows, we denote the generic element of � by ω = (ω1,ω2), and

denote the canonical processes on (�,F ) by

xt (ω)
�= ω1(t) and yt (ω)

�= ω2(t), t ≥ 0.

Finally, let P (�) be all the probability measures defined on (�,F ), endowed with
the Prohorov metric.

To simplify presentation, we first assume that σ = σ(t, (x)t , y). Here, we abuse
the notation x by denoting elements of C([0, T ),R

n) instead of the canonical
process. [The case σ = σ(t, (x)t , y, z) is a little more complicated; we address
it in Remark 2.4 below.] Further, for f = b, h, we denote f̂ (t, (x)t , y, z) =
f (t, (x)t , y, zσ (t, (x)t , y)), and let a = σσT . We give the following definition for
a forward–backward martingale problem.

DEFINITION 2.3. Let b, σ , h and g be given. For any x ∈ R
n, a solu-

tion to the forward–backward martingale problem with coefficients (b, σ,h, g)

[FBMPx,T (b, σ,h, g) for short] is a pair (P, z), where P ∈ P (�), and z is a R
m×n-

valued predictable process defined on the filtered canonical space (�,F ,F), such
that following properties hold:

(i) the processes

Mx(t)
�= xt −

∫ t

0
b̂(r, (x)r ,yr , zr ) dr and

(2.4)

My(t)
�= yt +

∫ t

0
ĥ(r, (x)r ,yr , zr ) dr

are both (P,F)-martingales for t ∈ [0, T ];
(ii) [Mi

x,M
j
x ](t) = ∫ t

0 aij (r, (x)r ,yr ) dr , t ∈ [0, T ], i, j = 1, . . . , n;
(iii) My(t) = ∫ t

0 zr dMx(r), t ∈ [0, T ].
(iv) P{x0 = x} = 1 and P{yT = g((x)T )} = 1.

We note that by (iii) we imply that the quadratic variation of My is absolutely
continuous with respect to the quadratic variation of Mx, thus in the definition we
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require implicitly

P

{∫ T

0
|zt a(t, (x)t ,yt )zT

t |2
Rm×m dt < ∞

}
= 1.

REMARK 2.4. The case when σ = σ(t, (x)t , y, z) can be treated along
the lines of the “Four Step Scheme” (see, e.g., [16]). That is, one should
first find a function � : [0, T ] × C([0, T ],R

n) × R
m × R

m×n �→ R
m×d such

that �(t, (x)t , y, z) = zσ (t, (x)t , y,�(t, (x)t , y, z)), and consider σ(t, (x)t , y,

�(t, (x)t , y, z)). Then we define the forward–backward martingale problem the
same way as Definition 2.3 except that the functions b̂ and ĥ are replaced by
f̂ (t, (x)t , y, z) = f (t, (x)t , y,�(t, (x)t , y, z)), f = b, h. We leave the details to
the interested reader.

We note that the Definition 2.3 looks slightly different from that of the tradi-
tional martingale problem. But one can check that they are essentially the same,
modulo an application of Itô’s formula. In fact, if (P, z) is a solution to the
FBMPx,T (b, σ,h, g), then by Definition 2.3(i) and (iii), we have⎧⎨⎩

dxt = b̂(t, (x)t ,yt , zt ) dt + dMx(t),

dyt = −ĥ(t, (x)t ,yt , zt ) dt + dMy(t)

= −ĥ(t, (x)t ,yt , zt ) dt + zt dMx(t).

(2.5)

Applying Itô’s formula and using Definition 2.3(ii), for any ϕ ∈ C2(Rn × R
m) and

t ∈ [0, T ], one has

dϕ(xt ,yt ) = {〈∇xϕ(xt ,yt ), b̂(t, (x)t ,yt , zt )〉
− 〈∇yϕ((x)t ,yt ), ĥ(t, (x)t ,yt , zt )〉
+ 1

2 tr{D2
x,yϕ(xt ,yt )A(t, (x)t ,yt , zt )}}dt

+ 〈∇xϕ(xt ,yt ), dMx(t)〉 + 〈∇yϕ(xt ,yt ), dMy(t)〉,
where

A(t, (x)t , y, z)
�=

[
In

z

]
a(t, (x)t , y)[In, z

T ];
(2.6)

D2
x,yϕ =

[
∂2
xxϕ ∂2

xyϕ

∂2
xyϕ ∂2

yyϕ

]
.

Now, if we define a differential operator

Lt,x,y,z
�= 1

2 tr{A(t, (x)t , y, z)D2
x,y}

(2.7)
+ 〈b̂(t, (x)t , y, z),∇x〉 − 〈ĥ(t, (x)t , y, z),∇y〉,
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then the fact that the (P, z) is a solution to the FBMPx,T (b, σ,h, g) implies that

C[ϕ](t) �= ϕ(xt ,yt ) − ϕ(x,y0) −
∫ t

0
Ls,(x)s ,ys ,zs ϕ(xs,ys) ds(2.8)

is a P-martingale for all ϕ ∈ C2(Rn × R
m). Conversely, if (2.8) is a P-martingale

for all ϕ ∈ C2(Rn × R
m), then we can choose appropriate function ϕ so that Def-

inition 2.3 holds. In other words, Definition 2.3 actually reflects all the necessary
information for a “martingale problem.” But we prefer this particular form as it is
more symmetric and reflects the structure of our FBSDE more explicitly.

The following theorem exhibits the connection between the weak solution and
the solution to the forward–backward martingale problem.

THEOREM 2.5. Assume n = d . Assume also that σ = σ(t, (x)t , y) is nonde-
generate. Then FBSDE (2.1) has a weak solution if and only if FBMPx,T (b, σ,h, g)

has a solution.

PROOF. First assume FBSDE (2.1) has a weak solution (X,Y,Z) defined on
a standard set-up (�,F ,P , {Ft },W). Note that

[X,Y ]t =
∫ t

0
σ(s, (X)s, Ys)Z

T
s ds.

Thus, since σ−1 exists, we see that Z is adapted to F X,Y , the filtration generated
by (X,Y ). Using the forward equation in (2.1), we can further conclude that W

is also F X,Y -adapted. Therefore, without loss of generality, we may consider the
canonical space � defined by (2.3), and let P = P ◦ (X,Y )−1 be the distribution of

(X,Y ), so that (X,Y ) is the canonical processes. Define zt
�= Ztσ

−1(t, (x)t ,yt ).
One can check straightforwardly that (P, z) is a solution to FBMPx,T (b, σ,h, g).

We next assume FBMPx,T (b, σ,h, g) has a solution (P, z). Define

Wt
�=

∫ t

0
σ−1(s, (x)s,ys) dMx(s).(2.9)

Then W is a continuous local martingale and [W,W ]t = t by definition. Therefore,
it follows from the Lévy characterization theorem (cf., e.g., [13]) we know that W

is a Brownian motion. Now define Zt
�= zt σ (t, (x)t ,yt ). One can easily check that

(x,y, z,W), together with the canonical space, is a weak solution to FBSDE (2.1).
�

REMARK 2.6. (i) From the proof of Theorem 2.5 we see that the process z
in Definition 2.3 is different from the martingale integrand Z in FBSDE (2.1). In
fact, one has the relation: Zt = zt σ (t, (x)t ,yt ). Note that in the Markovian strong
solution case the process z is actually associated directly to the gradient of the
solutions to a quasilinear parabolic PDE (see, e.g., [18]).
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(ii) When σ is nondegenerate, there is an obvious one-to-one correspon-
dence between Z and z. Thus, we shall often refer to (P,Z) as a solution to
FBMPx,T (b, σ,h, g) as well, when the context is clear. This is particularly im-
portant in Section 5.

To conclude this section, let us give the following standing assumptions which
will be used in different combinations throughout the paper:

(H1) The coefficients (b, σ,h, g) are bounded, measurable functions, such that
the mappings (x, y, z) �→ f (t, (x)t , y, z), f = b, σ , h, g, and (x, y, z) ∈
C([0, T ];R

n) × R
m × R

m×n are uniformly continuous, uniformly in t ∈
[0, T ];

(H2) There exists a constant K > 0, such that 1
K

|λ|2 ≤ λT σσT (t, (x)t , y, z)λ ≤
K|λ|2, for all (t,x, y, z) ∈ [0, T ] × C([0, T ];R

n) × R
m × R

m×n and all λ ∈
R

n;
(H3) The mappings t �→ f (t, (x)t , y, z), f = b, σ , h, and t ∈ [0, T ] are uniformly

continuous, uniformly in (x, y, z) ∈ C([0, T ];R
n) × R

m × R
m×n.

3. Existence: a general result. In this section, we study FBSDE (2.1). We
note that in this section σ may depend on Z. To simplify presentation in what
follows, we shall assume that dim(X) = dim(Y ) = dim(W) = 1. But we note
that all processes here can be higher dimensional, and all the arguments can be
validated without substantial difficulties. Denoting ‖f ‖∞ = sup|f | to be the usual
sup-norm of a (generic) continuous function f , our main existence result is the
following.

THEOREM 3.1. Assume (H1), and assume that there exist a sequence of coef-
ficients (bn, σn,hn, gn), n = 1,2, . . . , such that:

(i) for f = b,σ,h, g, ‖fn − f ‖∞ ≤ 1
n

;
(ii) all (bn, σn,hn, gn)’s satisfy (H1), uniformly in n;

(iii) for all n, the FBSDE (2.1) with coefficients (bn, σn,hn, gn) have strong so-
lutions (Xn,Y n,Zn), defined on a common filtered probability space (�,F ,P ;F)

with a given F-Brownian motion W ;

(iv) denoting Z
n,δ
t

�= 1
δ

∫ t
(t−δ)+ Zn

s ds, it holds that

lim
δ→0

sup
n

E

{∫ T

0
|Zn

t − Z
n,δ
t |2 dt

}
= 0.(3.1)

Then (2.1) admits a weak solution in the sense of Definition 2.1.

PROOF. We shall split the proof into several steps.



2100 J. MA, J. ZHANG AND Z. ZHENG

Step 1. Denote 
n
t

�= ((Xn)t , Y
n
t ,Zn

t ) and

Bn
t

�=
∫ t

0
bn(s,


n
s ) ds; Hn

t

�=
∫ t

0
hn(s,


n
s ) ds; An(t)

�=
∫ t

0
Zn

s ds;

Mn
t

�=
∫ t

0
σn(s,


n
s ) dWs; Nn

t

�=
∫ t

0
Zn

s dWs.

Consider the sequence of processes ξn = (W,Xn,Y n,Bn,Hn,An,Mn,Nn),

n = 1,2, . . . , and define the canonical space �̂
�= D([0, T ])8 with natural filtra-

tion F . Let P
n �= P [ξn]−1 ∈ P (�̂) be the induced probability. It is fairly easy to

show that all the components in the processes (W,Xn,Y n,Bn,Hn,An,Mn,Nn)

are quasimartingales with uniformly bounded conditional variation. For exam-
ple, let 0 = t0 < · · · < tm = T be an arbitrary partition of [0, T ]. Then denoting

Et
�= E{·|Ft }, t ≥ 0, one has

E

{
m−1∑
i=0

|Eti {Yn
ti+1

} − Yn
ti
| + |Yn

T |
}

≤ E

{
m−1∑
i=0

∫ ti+1

ti

|hn(t,

n
t )|dt + |gn(X

n
T )|

}
≤ C.

Here and in what follows, C > 0 will denote a generic constant depending only
on the coefficients (b, σ,h, g) and T , which is allowed to vary from line to line.
Thus, applying the Meyer–Zheng tightness criteria (Theorem 4 of [22]) we see that
possibly along a subsequence, P

n converges to P ∈ P (�̂) under the Meyer–Zheng
pseudo-path topology. Consequently, P

n converges to P weakly on D([0, T ])8, and
we denote the limit to be (W,X,Y,B,H,A,M,N).

Step 2. In the following steps, we shall identify the limit obtained in the previous
step. By a slight abuse of notation, in what follows let (W,X,Y,B,H,A,M,N)

denote the coordinate process of �̂. We first claim that P{(W,X,Y,B,H,A) ∈
C([0, T ])6} = 1. Indeed, since by assumption (ii), all the coefficients are uniformly
bounded, one can easily check that the sequence {(W,Xn,Bn,Hn,An,Mn)} is
tight in the space C[0, T ] under uniform topology. [For example, if we denote

wMn(δ)
�= sup|s−t |≤δ |Mn

s − Mn
t | to be the modulus of continuity of Mn, then it

is readily seen that E|wMn(δ)|2 ≤ Cδ, uniformly in n. Hence, by the standard
tightness criteria on the space P (C[0, T ]) (see, e.g., [2], Theorem 7.3), one can
easily conclude that {Mn} is tight. Other components can be argued similarly.]
Consequently, the sequence {Pn} restricted to the components (W,X,Y,B,H,A)

converges weakly to some P̃ ∈ P (C([0, T ])6). Since C is a subspace of D, the
uniqueness of the limit then leads to that P̃ = P|(W,X,Y,B,H,A), proving the claim.

Next, by using the definition of weak convergence, it is fairly easy to check that

Xt = X0 + Bt + Mt, Yt = Y0 − Ht + Nt ∀t ∈ [0, T ), P-a.s.(3.2)
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Clearly, under probability P, W is a Brownian motion. Since X,B,H,M are
all continuous, noting that supn E

∫ T
0 |Zn

t |2 dt < ∞, it follows from [22], The-
orem 11, that M , N are both martingales. Further, applying [22], Theorem 10,
we conclude that A is absolutely continuous, P-a.s.; and At = ∫ t

0 Zs ds with
EP

∫ T
0 |Zt |2 dt < ∞.

Step 3. We show that Bt = ∫ t
0 b(s,
s) ds and Ht = ∫ t

0 h(s,
s) ds, ∀t , P-a.s. To
this end, we note that the function b is uniformly continuous on z. Thus, for any
ε > 0, there exists ε0 > 0 so that |b(t, (x)t , y, z1) − b(t, (x)t , y, z2)| ≤ ε whenever
|z1 − z2| ≤ ε0. Furthermore, (3.1), we can choose δ0 > 0 such that for any δ ≤ δ0
it holds that

sup
n

E

{∫ T

0
|Zn

t − Z
n,δ
t |2 dt

}
≤ εε2

0.(3.3)

Now let us denote Zδ
t

�= 1
δ
[At − At−δ], where At

�= 0 for t < 0. Then by as-
sumption (i) and the definition of {Pn}, one verifies easily that

EP

{∣∣∣∣Bt −
∫ t

0
b(s,
s) ds

∣∣∣∣}
= lim

δ→0
EP

{∣∣∣∣Bt −
∫ t

0
b(s, (X)s, Ys,Z

δ
s ) ds

∣∣∣∣}
= lim

δ→0
lim

n→∞EPn
{∣∣∣∣Bt −

∫ t

0
b(s, (X)s, Ys,Z

δ
s ) ds

∣∣∣∣}(3.4)

= lim
δ→0

lim
n→∞E

{∣∣∣∣ ∫ t

0
bn(s,


n
s ) ds −

∫ t

0
b(s, (Xn)s, Y

n
s ,Zn,δ

s ) ds

∣∣∣∣}

≤ lim
δ→0

lim
n→∞E

{∫ T

0
|b(s, (Xn)s, Y

n
s ,Zn

s ) − b(s, (Xn)s, Y
n
s ,Zn,δ

s )|ds

}
.

Furthermore, denote 
bn,δ
s

�= b(s, (Xn)s, Y
n
s ,Zn

s ) − b(s, (Xn)s, Y
n
s ,Zn,δ

s ), for
s ∈ [0, T ], using (3.3) and the boundedness of b we deduce that

E

∫ T

0
|
bn,δ

s |ds

= E

∫ T

0

{|
bn,δ
s |[1{|Zn

s −Z
n,δ
s |≤ε0} + 1{|Zn

s −Z
n,δ
s |>ε0}

]
ds

}
≤ T ε + CE

{∫ T

0
1{|Zn

s −Z
n,δ
s |>ε0} ds

}
(3.5)

≤ T ε + C

ε2
0

E

{∫ T

0
|Zn

s − Zn,δ
s |2 ds

}
≤ (T + C)ε.
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Since ε is arbitrary, we get EP{|Bt − ∫ t
0 b(s,
s) ds|} = 0. An almost identical

proof also shows that EP{|Ht − ∫ t
0 h(s,
s) ds|} = 0. This completes the claim.

Step 4. We now show that Nt = ∫ t
0 Zs dWs , ∀t < T , P-a.s. To see this, first note

that N is càdlàg and
∫ t

0 Zs dWs is continuous, then it suffices to show that

I
�= EP

{∫ T

0

∣∣∣∣Nt −
∫ t

0
Zs dWs

∣∣∣∣2 dt

}
= 0.(3.6)

Again, we shall use the fact that P
n → P weakly. But in this case, we should

note that in (3.6) the stochastic integral is generally unbounded, therefore, an extra
truncation procedure is necessary. Indeed, applying the Monotone Convergence
Theorem, we see that to prove (3.6) it suffices to show that

IR
�= EP

{[∫ T

0

∣∣∣∣Nt −
∫ t

0
Zs dWs

∣∣∣∣2 dt

]
∧ R

}
= 0 ∀R > 0.(3.7)

We now fix R > 0, and notice the following simple fact:

(a + b) ∧ R ≤ a ∧ R + b ≤ a + b ∀a, b ≥ 0.

By definition of Zδ one checks that

lim
δ→0

EP

{∫ T

0
|Zt − Zδ

t |2 dt

}
= 0.(3.8)

But this implies that

IR ≤ lim
δ→0

EP

{[∫ T

0

∣∣∣∣Nt −
∫ t

0
Zδ

s dWs

∣∣∣∣2 dt

]
∧ R

} �= lim
δ→0

I δ.

Let π : 0 = t0 < · · · < tm = T be any partition of [0, T ]. Then

I δ ≤ CEP

{[
m−1∑
j=0

∫ tj+1

tj

∣∣∣∣∣Nt −
j−1∑
i=0

Zδ
ti
[Wti+1 − Wti ]

∣∣∣∣∣
2

dt

]
∧ R

}
(3.9)

+ C

δ2 EP{Iπ,δ},

where

Iπ,δ �=
m−1∑
j=0

∫ tj+1

tj

∣∣∣∣∣
j−1∑
i=0

∫ ti+1

ti

[(As − As−δ) − (Ati − Ati−δ)]dWs

+
∫ t

tj

[As − As−δ]dWs

∣∣∣∣∣
2

dt.
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A similar calculation shows further that (changing P to P
n when necessary),

EP

{[
m−1∑
j=0

∫ tj+1

tj

∣∣∣∣∣Nt −
j−1∑
i=0

Zδ
ti
[Wti+1 − Wti ]

∣∣∣∣∣
2

dt

]
∧ R

}

= lim
n→∞E

{[
m−1∑
j=0

∫ tj+1

tj

∣∣∣∣∣
∫ t

0
Zn

s dWs

−
j−1∑
i=0

Z
n,δ
ti

[Wti+1 − Wti ]
∣∣∣∣∣
2

dt

]
∧ R

}
(3.10)

≤ C lim
n→∞E

{∫ T

0

∣∣∣∣∫ t

0
Zn

s dWs −
∫ t

0
Zn,δ

s dWs

∣∣∣∣2 dt

}

+ C lim
n→∞

EP
n{Iπ,δ}
δ2 .

Now, let us denote 
As
t = At − As = ∫ t

s Zr dr , 0 ≤ s ≤ t ≤ T . We see that

EP{Iπ,δ} = EP

{
m−1∑
j=0

∫ tj+1

tj

[j−1∑
i=0

∫ ti+1

ti

|
Ati
s − 
A

ti−δ
s−δ |2 ds

+
∫ t

tj

|
As−δ
s |2 ds

]
dt

}

≤ CEP

{
m−1∑
j=0

∫ tj+1

tj

[j−1∑
i=0

∫ ti+1

ti

(s − ti)

∫ T

0
|Zr |2 dr ds(3.11)

+ δ

∫ t

tj

∫ s

s−δ
|Zr |2 dr ds

]
dt

}

≤ C|π |EP

{∫ T

0
|Zt |2 dt

}
≤ C|π |.

Similarly, one shows that EP
n{Iπ,δ} ≤ C|π |. This, together with (3.10) and (3.11),

reduces (3.9) to the following:

I δ ≤ C lim
n

E

{∫ T

0

∣∣∣∣∫ t

0
Zn

s dWs −
∫ t

0
Zn,δ

s dWs

∣∣∣∣2 dt

}
+ C|π |

δ2 .

Since π is arbitrary, we have

I δ ≤ C lim
n

E

{∫ T

0

∣∣∣∣ ∫ t

0
Zn

s dWs −
∫ t

0
Zn,δ

s dWs

∣∣∣∣2 dt

}
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= C lim
n

E

{∫ T

0

∫ t

0
|Zn

s − Zn,δ
s |2 dt

}

≤ C lim
n

E

{∫ T

0
|Zn

t − Z
n,δ
t |2 dt

}
.

Now, applying (3.1) we prove (3.7).
Step 5. We next show that YT = g(XT ). We should note that in the last step

we actually proved that the process N , whence Y , is continuous on [0, T ). There-
fore, by defining NT = NT −, we can assume that Y is (left) continuous at T as
well. Thus, in what follows, we shall only check that YT − = limε↓0

1
ε

∫ T
T −ε Ys ds =

g(XT ), P-a.s. To this end, we note that for any ε > 0, one has

EP

{∣∣∣∣1

ε

∫ T

T −ε
Yt dt − g(XT )

∣∣∣∣2}

= lim
n→∞EP

n
{∣∣∣∣1

ε

∫ T

T −ε
Yt dt − g(XT )

∣∣∣∣2}

= lim
n→∞E

{∣∣∣∣1

ε

∫ T

T −ε
Y n

t dt − Yn
T

∣∣∣∣2}

= lim
n→∞E

{∣∣∣∣1

ε

∫ T

T −ε

[∫ T

t
hn(s,


n
s ) ds −

∫ T

t
Zn

s dWs

]
dt

∣∣∣∣2}

≤ lim
n→∞E

{∫ T

T −ε
|Zn

t |2 dt

}
+ Cε

≤ lim
n→∞ 2E

{∫ T

T −ε
[|Zn

t − Z
n,δ
t |2 + |Zn,δ

t |2]dt

}
+ Cε.

We should point out that unlike step 4, in the above we do not need to ap-
ply the truncation technique, thanks to the boundedness of both process Y and
function g. Furthermore, following the arguments of step 4, we fix δ > 0 and let
π :T − ε = t0 < · · · < tm = T be any partition of [T − ε, T ]. Again, we denote for
any process ξ , 
ξs

t = ξt − ξs , 0 ≤ s ≤ t ≤ T . Then by definition of Zn,δ, we have

E

{∫ T

T −ε
|Zn,δ

t |2 dt

}

= E

{∣∣∣∣ ∫ T

T −ε

1

δ
[An

t − An
t−δ]dWt

∣∣∣∣2}

= E

{∣∣∣∣∣
m−1∑
j=0

∫ tj+1

tj

[

[An]tj−δ

tj
+ 
[An]tjt − 
[An]tj−δ

t−δ

]
dWt

∣∣∣∣∣
2}

(3.12)
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≤ CE

{∣∣∣∣∣
m−1∑
j=0


[An]tj−δ
tj


W
tj
tj+1

∣∣∣∣∣
2

+
m−1∑
j=0

∫ tj+1

tj

[|
[An]tjt |2 + |
[An]tj−δ

t−δ |2]
dt

}

≤ CEP
n

{∣∣∣∣∣
m−1∑
j=0


A
tj−δ
tj


W
tj
tj+1

∣∣∣∣∣
2}

+ C|π |
δ2 ,

where the last inequality is due to a similar argument for (3.11). By the weak
convergence of P

n and by using the above arguments in a reverse order, we see
that there exists N such that, for any n > N ,

EP
n

{∣∣∣∣∣
m−1∑
j=0


A
tj−δ
tj


W
tj
tj+1

∣∣∣∣∣
2}

≤ EP

{∣∣∣∣∣
m−1∑
j=0


A
tj−δ
tj


W
tj
tj+1

∣∣∣∣∣
2}

+ ε

(3.13)

≤ EP

{∫ T

T −ε
|Zδ

t |2 dt

}
+ C|π |

δ2 + ε

≤ 2EP

{∫ T

T −ε
[|Zt |2 + |Zt − Zδ

t |2]dt

}
+ C|π |

δ2 + ε.

Combining (3.12) and (3.13), we obtain that

EP

{∣∣∣∣1

ε

∫ T

T −ε
Yt dt − g(XT )

∣∣∣∣2}

≤ C

[
lim
n

E

{∫ T

T −ε
|Zn

t − Z
n,δ
t |2 dt

}

+ EP

{∫ T

T −ε
[|Zt |2 + |Zt − Zδ

t |2]dt

}
+ |π |

δ2 + ε

]
.

First letting |π | → 0, then letting δ → 0, finally letting ε → 0, and applying Fa-
tou’s Lemma we derive EP{|YT − − g(XT )|2} = 0.

Step 6. Finally, we note that Xn, Yn’s all have better regularity than Zn’s. Fol-
lowing the same arguments in step 4, we can show that

Mt =
∫ t

0
σ(s,
s) dWs ∀t ∈ [0, T ], P-a.s.

The proof is now complete. �
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4. The Markovian case. In this section, we further explore our main exis-
tence result Theorem 3.1. It is clear that the key condition in that theorem is the
assumption (3.1) on the martingale integrands {Zn}, which in a sense represents
the “path regularity” of the sequence {Zn} or as a certain “tightness” criterion in
the space L2. Without digging deep on this issue, in this section, we shall inves-
tigate some special cases where condition (3.1) is satisfied. To begin with, let us
consider the following Markovian FBSDE:⎧⎪⎪⎨⎪⎪⎩

Xt = x +
∫ t

0
σ(s,Xs,Ys) dWs;

Yt = g(XT ) +
∫ T

t
h(s,Xs,Ys,Zs) ds −

∫ T

t
Zs dWs;

(4.1)

where all processes X, Y , Z and W are one-dimensional. We note that the assump-
tion that the drift of the forward equation b ≡ 0, is merely for simplicity. In fact,
the case when b �= 0 can be easily deduced to such a form via a standard Girsanov
transformation, especially in the case when σ is nondegenerate and h is allowed to
have linear growth in Z. The assumption that all processes (especially X) is one
dimensional is more technical, since we are going to apply a result by Nash [23] in
Lemma 4.2 below. We believe that these restrictions can all be removed with more
technicalities, and we shall leave them to our future publications, as these are not
the main points of this paper.

The Markovian nature of the FBSDE now enables us to apply the idea of the
Four Step Scheme initiated in [16]. To be more precise, we shall look for solutions
to (4.1) for which the relation Yt = u(t,Xt) holds, where u is a viscosity solution
to the PDE {

ut + 1
2σ 2(t, x, u)uxx + h(t, x, u,uxσ ) = 0;

u(T , x) = g(x).
(4.2)

In [21], we proved that if besides the standing assumptions (H1) and (H2), the
coefficients of (4.1) are uniformly Hölder continuous and the comparison theo-
rem for the viscosity solution to PDE (4.2) holds true, then the weak solution to
FBSDE (4.1) exists and is unique in law, and that Yt = u(t,Xt) where u is the
unique viscosity to PDE (4.2). The proof there relied heavily on some a priori gra-
dient estimates of the solution u of the PDE (4.2). However, these estimates are no
longer valid under merely the assumptions (H1) and (H2), we shall therefore turn
to Theorem 3.1.

We first recall a result which is standard in the literature (see, e.g., [7]).

LEMMA 4.1. Assume (H1) and (H2). There exist a viscosity solution u to
PDE (4.2) and constants C and α > 0 such that for any x, y ∈ R and any 0 ≤ s ≤
t < T ,

|u(s, x) − u(t, y)| ≤ C

(T − t)α/2 [|x − y|α + |t − s|α/2].(4.3)
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We next establish an a priori estimate for the following linear PDE:{
ut + 1

2σ 2(t, x)uxx = 0;
u(T , x) = g(x).

(4.4)

LEMMA 4.2. Assume that σ is smooth in x and (H2) holds, and that g ∈ C2

with ‖g‖∞ + ‖g′‖∞ + ‖g′′‖∞ ≤ K . Then there exist constants C and α > 0, de-
pending only on K and T , and are independent of the derivatives of σ , such that

‖ux‖∞ ≤ C; |ux(s, x) − ux(t, y)| ≤ C[|s − t |α/2 + |x − y|α].(4.5)

PROOF. Note that v
�= ux is the solution to the following PDE in divergence

form: {
vt + 1

2(σ 2vx)x = 0;
v(T , x) = g′(x).

The result follows from some well-known results of Nash [23]. �

Let us now consider the FBSDE corresponding to the simplified PDE (4.4):⎧⎪⎪⎨⎪⎪⎩
Xt = x +

∫ t

0
σ(s,Xs) dWs;

Yt = g(XT ) −
∫ T

t
Zs dWs;

t ∈ [0, T ].(4.6)

LEMMA 4.3. Assume that σ satisfies (H1) and (H2), and assume that there
exists a sequence of functions {σn(t, x)} such that:

(i) each σn is smooth in x and satisfy (H2), such that ‖σ ′
n‖∞ ≤ Cn, for all n;

(ii) σn → σ uniformly;
(iii) gn ∈ C2, with ‖gn‖∞ + ‖g′

n‖∞ + ‖g′′
n‖∞ ≤ C, for some generic constant

C > 0.

For each n, let (Xn,Y n,Zn) be the strong solution to the FBSDE (4.6) with
coefficients σn and gn. Then denoting Zn

t = 0 for t < 0, it holds that

lim
δ→0

sup
n

E

{∫ T

0
|Zn

t − Zn
t−δ|2 dt

}
= 0.(4.7)

PROOF. First, by the Four Step Scheme we have Zn
t = un

xσn(t,X
n
t ), where un

is the classical solution to the following PDE:{
un

t + 1
2σ 2

n (t, x)un
xx = 0;

un(T , x) = gn(x).
(4.8)
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We shall assume from now on that ξt = 0, t < 0 for all processes ξ ∈ L2([0, T ] ×
�). Applying Lemma 4.2, we see that un’s satisfy (4.5) uniformly (in n). Thus,
denoting C > 0 to be all the generic constant, we have

E

{∫ T

0
|Zn

t − Zn
t−δ|2 dt

}
≤ CE

{∫ T

0
[|un

x(t,X
n
t ) − un

x(t − δ,Xn
t−δ)|2

+ |σn(t,X
n
t ) − σn(t − δ,Xn

t−δ)|2]dt

}

≤ CE

{∫ T

0
[δα + |Xn

t − Xn
t−δ|2α + |σn(t,X

n
t ) − σn(t − δ,Xn

t−δ)|2]dt

}

≤ Cδα + CE

{∫ T

0
|σn(t,X

n
t ) − σn(t − δ,Xn

t−δ)|2 dt

}
.

Therefore, it suffices to show that

lim
δ→0

sup
n

E

{∫ T

0
|σn(t,X

n
t ) − σn(t − δ,Xn

t−δ)|2 dt

}
= 0.(4.9)

We should note that if σn is uniformly continuous in t , then (4.9) is obviously true.
But under (H1), σ may not even be continuous (!). Therefore, we shall use (ii)
instead.

To this end, first note that by approximation using processes with continuous
paths if necessary, one can show that, for any process ξ ∈ L2([0, T ] × �),

lim
δ→0

E

{∫ T

0
|ξt − ξt−δ|2 dt

}
= 0.(4.10)

Next, by assumption (ii), we see that for any ε > 0, there exists N0 > 0, such
that

|σn(t, x) − σ(t, x)| < ε ∀(t, x) ∈ [0, T ] × R
d,

whenever n > N0. Thus, for n > N0, we have

E

{∫ T

0
|σn(t,X

n
t ) − σn(t − δ,Xn

t−δ)|2 dt

}
(4.11)

≤ CE

{∫ T

0
|σ(t,Xn

t ) − σ(t − δ,Xn
t−δ)|2 dt

}
+ Cε2.

Furthermore, note that the distributions of the sequence {Xn} are obviously tight
(see the previous section), and it is readily seen that Xn must converge to X in
distribution, where X is the unique weak solution to the following SDE:

Xt = x +
∫ t

0
σ(s,Xs) dWs.
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By the Skorohod representation theorem, we can assume without loss of generality
that on a common probability space, still denote it by (�,F ,P ), Xn converges to
X almost surely. Now applying the Bounded Convergence Theorem, and changing
N0 if necessary, we can modify (4.11) to the following:

E

{∫ T

0
|σn(t,X

n
t ) − σn(t − δ,Xn

t−δ)|2 dt

}
(4.12)

≤ CE

{∫ T

0
|σ(t,Xt) − σ(t − δ,Xt−δ)|2 dt

}
+ Cε2 ∀n > N0.

Finally, denote⎧⎪⎪⎨⎪⎪⎩
In(δ)

�= E

{∫ T

0
|σn(t,X

n
t ) − σn(t − δ,Xn

t−δ)|dt

}
, n = 1,2, . . . ,

I (δ)
�= E

{∫ T

0
|σ(t,Xt) − σ(t − δ,Xt−δ)|dt

}
,

(4.12) then leads to

sup
n

In(δ) ≤ sup
n≤N0

In(δ) + sup
n>N0

In(δ) ≤
N0∑
n=1

In(δ) + CI (δ) + Cε2.

Consequently, we see that (4.9) follows by first letting δ → 0 and applying (4.10)
in the above, and then letting ε → 0. The proof is complete. �

We note that in Lemma 4.3 the assumptions on gn are rather strong. The follow-
ing lemma is a weaker alternative.

LEMMA 4.4. Assume (H1), (H2) as well as (i) and (ii) in Lemma 4.3. As-
sume further that ‖gn‖∞ ≤ K , and for each n, there exists constant Cn > 0 such
that ‖g′

n‖∞, ‖g′′
n‖∞ ≤ Cn. Again, denote (Xn,Y n,Zn) be the strong solutions to

FBSDE (4.6) with coefficients σn and gn. Then the following conclusions hold:

(i) If gn’s are uniformly continuous, uniformly on n, then (4.7) holds true.
(ii) In general, for any ε > 0,

lim
δ→0

sup
n

E

{∫ T −ε

0
|Zn

t − Zn
t−δ|2 dt

}
= 0.(4.13)

PROOF. (i) Since gn is uniformly continuous, for any ε > 0, we may find a
mollifier of gn, denoted by ḡn, such that ‖ḡn − gn‖∞ ≤ √

ε; and that

‖ḡn‖∞ ≤ K, ‖ḡ′
n‖∞ ≤ Cε, ‖ḡ′′

n‖∞ ≤ Cε.

We should note that since the uniform continuity of gn’s is assumed to be uniform
in n, it follows from the standard mollification procedure that the constant Cε
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can be chosen to be independent of n as well. In particular, we have ‖ḡn(X
n
T ) −

gn(X
n
T )‖2

L2(�)
≤ ε. Now, let (Ȳ n, Z̄n) be the solution to BSDE

Ȳ n
t = ḡn(X

n
T ) −

∫ T

t
Z̄n

s dWs.

Then by the standard estimates for BSDEs we see that E{∫ T
0 |Z̄n

t − Zn
t |2 dt} ≤ ε.

Applying Lemma 4.3, we have

lim
δ→0

sup
n

E

{∫ T

0
|Z̄n

t − Z̄n
t−δ|2 dt

}
= 0.

Thus,

lim
δ→0

sup
n

E

{∫ T

0
|Zn

t − Zn
t−δ|2 dt

}

≤ C lim
δ→0

sup
n

E

{∫ T

0
[|Zn

t − Z̄n
t |2 + |Z̄n

t − Z̄n
t−δ|2 + |Z̄n

t−δ − Zn
t−δ|2]dt

}
≤ Cε.

Since ε is arbitrary, the result follows.
(ii) In this case, we let un be the classical solution to the PDE (4.8). By

Lemma 4.1, we know that un(T − ε, ·) is uniformly Hölder-α continuous in x.
Note that the processes (Xn,Y n,Zn) also satisfy⎧⎪⎪⎨⎪⎪⎩

Xn
t = x +

∫ t

0
σn(s,X

n
s ) dWs;

Yn
t = un(T − ε,Xn

T −ε) −
∫ T −ε

t
Zn

s dWs.

Applying part (i) to the equation above, we obtain the result. �

We are now ready to prove the main result of this section.

THEOREM 4.5. Assume (H1) and (H2). Then FBSDE (4.1) admits a weak so-
lution (�,F ,P;F,W,X,Y,Z). Moreover, it holds that Yt = u(t,Xt), t ∈ [0, T ],
P-a.s., where u is a viscosity solution to PDE (4.2) satisfying (4.3).

PROOF. Let σn,hn, gn be the standard molifiers of σ,h, g, such that gn is
uniformly continuous and

‖σn‖∞ + ‖hn‖∞ + ‖gn‖∞ ≤ K; 1

K
≤ σn ≤ K.

Let (Xn,Y n,Zn) be the strong solution to the following FBSDE:⎧⎪⎪⎨⎪⎪⎩
Xn

t = x +
∫ t

0
σn(s,X

n
s , Y n

s ) dWs;

Yn
t = gn(X

n
T ) +

∫ T

t
hn(s,X

n
s , Y n

s ,Zn
s ) ds −

∫ T

t
Zn

s dWs,

(4.14)
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and un the classical solution to the following PDE:⎧⎨⎩un
t + 1

2σ 2
n (t, x, un(t, x))un

xx+hn(t, x, un(t, x), un
xσ (t, x, un(t, x))) = 0;

un(T , x) = gn(x).

(4.15)

Denote σ̃n(t, x)
�= σn(t, x, un(t, x)) and h̃n(t, x)

�= hn(t, x, un(t, x), un
xσ (t, x,

un(t, x))). Note that the solutions un’s are bounded and uniformly continuous in
(t, x) (actually uniformly Hölder continuous in (t, x) if gn’s are uniformly Hölder
continuous, cf. [7]). Thus, applying Arzelà–Ascoli theorem, it follows that un → u

uniformly on compact sets, where u is the unique viscosity solution to PDE (4.2)
and u is also uniformly continuous in (t, x). Therefore, we have

σ̃n(t, x) → σ̃ (t, x)
�= σ(t, x, u(t, x)),(4.16)

and the limit is uniform as well. Note that

Yn
t = un(t,X

n
t ), Zn

t = un
x(t,X

n
t )σn(t,X

n
t , un(t,X

n
t )).

We have ⎧⎪⎪⎨⎪⎪⎩
Xn

t = x +
∫ t

0
σ̃n(s,X

n
s ) dWs;

Yn
t = gn(X

n
T ) +

∫ T

t
h̃n(s,X

n
s ) ds −

∫ T

t
Zn

s dWs.

Let us decompose the FBSDE above into the following two BSDEs: for 0 ≤ t ≤
s ≤ T ,

Y
n,∞
t = gn(X

n
T ) −

∫ T

t
Zn,∞

r dWr;
(4.17)

Y
n,s
t = h̃n(s,X

n
s ) −

∫ s

t
Zn,s

r dWr.

We should point out here that the family of processes {Zn,s
r : 0 ≤ r ≤ s ≤ T } is

actually a random field defined on [0, T ]2, restricted to the triangular domain
0 ≤ r ≤ s ≤ T , such that for each s ∈ [0, T ] and r ∈ [0, s], Zn,s

r is Fr -measurable.
(In fact, Zn,s has the representation: Zn,s

r = E{h̃n(s,X
n
s )∇Xn

s |Fr}[∇Xn
r ]−1,

cf. [19].) Furthermore, a simple computation using Fubini’s theorem shows that

Yn
t = Y

n,∞
t +

∫ T

t
Y

n,s
t ds; Zn

t = Z
n,∞
t +

∫ T

t
Z

n,s
t ds, t ∈ [0, T ].

Now, for any ε > 0 and s ∈ [0, T ], we apply Lemma 4.4(i) and (ii), respectively,
to get

lim
δ→0

sup
n

E

{∫ T

0
|Zn,∞

t − Z
n,∞
t−δ |2 dt

(4.18)

+
∫ s−ε

0
|Zn,s

t − Z
n,s
t−δ|2 dt

}
= 0.
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Moreover, denoting C > 0 to be a generic constant, depending only on the bounds
of the coefficients and T , and allowed to vary from line to line, we have

E

{∫ s

0
|Zn,s

t − Z
n,s
t−δ|2 dt

}
≤ CE

{∫ s

0
|Zn,s

t |2 dt

}
≤ C,

thanks to (H1). Hence, for any t ≥ 0, ε > 0, with t + ε ≤ T , one has

E

{∫ T

0
|Zn

t − Zn
t−δ|2 dt

}

≤ CE

{∫ T

0

[
|Zn,∞

t − Z
n,∞
t−δ | +

∫ T

t+ε
|Zn,s

t − Z
n,s
t−δ|ds

+
∫ t+ε

t
|Zn,s

t − Z
n,s
t−δ|ds +

∫ t

t−δ
|Zn,s

t−δ|ds

]2

dt

}

≤ CE

{∫ T

0

[
|Zn,∞

t − Z
n,∞
t−δ |2 +

∫ T

t+ε
|Zn,s

t − Z
n,s
t−δ|2 ds

+ ε

∫ t+ε

t
|Zn,s

t − Z
n,s
t−δ|2 ds

]
dt

}
+ δC

and consequently, applying Fubini’s theorem and Fatou’s lemma, and using (4.18),
we obtain that

lim
δ→0

sup
n

E

{∫ T

0
|Zn

t − Zn
t−δ|2 dt

}

≤ C lim
δ→0

sup
n

E

{∫ T

0
|Zn,∞

t − Z
n,∞
t−δ |2 dt

}

+ C

∫ T

ε
lim
δ→0

sup
n

E

{∫ s−ε

0
|Zn,s

t − Z
n,s
t−δ|2 dt

}
ds + Cε = Cε.

Since ε is arbitrary, we get

lim
δ→0

sup
n

E

{∫ T

0
|Zn

t − Zn
t−δ|2 dt

}
= 0.(4.19)

Now, note that

E

∫ T

0
|Zn

t − Z
n,δ
t |2 dt ≤ 1

δ
E

∫ T

0

∫ t

t−δ
|Zn

s − Zn
t |2 ds dt

= E

∫ 1

0

∫ T

0
|Zn

t−δr − Zn
t |2 dt dr,

we see that (4.19) implies (3.1), and the existence of the weak solution to (4.1)
follows from Theorem 3.1.

Finally, from the proof of Theorem 3.1, we see that (Xn,Y n) → (X,Y ) in
distribution. Thus, applying the Skorohod representation theorem again if neces-
sary, we can assume without loss of generality that the convergence is P-a.s. Note
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that Yn
t = un(t,Xn

t ) and un → u uniformly, it follows that Yt = u(t,Xt), for all
t ∈ [0, T ], P-a.s. �

Finally, we prove a regularity of the weak solution above, which will be useful
in the next section.

COROLLARY 4.6. Assume (H1), (H2) and T0 < T . Let (�,F ,P;F,W,X,

Y,Z) be the weak solution constructed in Theorem 4.5. Then for any t ≤ T0 and
any 0 < δ ≤ T −T0

2 , it holds that

EP
t

{
|Yt+δ − Yt |2 +

∫ t+δ

t
|Zs |2 ds

}
≤ C

(T − T0)α
δα, P-a.s.,(4.20)

where EP
t

�= EP{·|Ft } and α is the constant in Lemma 4.1.

PROOF. Again let us denote C > 0 to be a generic constant which is allowed
to vary from line to line. Applying Lemma 4.1 we have

|Yt+δ − Yt | = |u(t + δ,Xtδ ) − u(t,Xt)|
≤ C

(T − T0)α/2 [δα/2 + |Xt+δ − Xt |α].
Therefore, using the boundedness of σ , we deduce

EP
t {|Yt+δ − Yt |2}

≤ C

(T − T0)α

[
δα + EP

t

{∣∣∣∣ ∫ t+δ

t
σ (s,Xs,Ys) dWs

∣∣∣∣2α}]
(4.21)

≤ C

(T − T0)α

[
δα + EP

t

{∣∣∣∣ ∫ t+δ

t
|σ(s,Xs,Ys)|2 ds

∣∣∣∣α}]

≤ C

(T − T0)α
δα.

Moreover, note that

EP
t

{∫ t+δ

t
|Zs |2 ds

}
= EP

t

{∣∣∣∣ ∫ t+δ

t
Zs dWs

∣∣∣∣2}

= EP
t

{∣∣∣∣Yt+δ − Yt +
∫ t+δ

t
h(s,Xs,Ys,Zs) ds

∣∣∣∣2}
≤ 2EP

t {|Yt+δ − Yt |2} + Cδ2.

This, together with (4.21), proves the (4.20). �

Extension to the cases of “discrete functionals.” The result of Theorem 4.5
can be easily extended to FBSDEs whose coefficients are discrete functionals.
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For example, let π : 0 = t0 < t1 < · · · < tN = T be a given partition, and denote

(X)t
�= (Xt1∧t , . . . ,XtN∧t ) for t ∈ [0, T ]. Consider the following FBSDE:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Xt = x +
∫ t

0
σ(s, (X)s, Ys) dWs;

Yt = g((X)T ) +
∫ T

t
h(s, (X)s, Ys,Zs) ds,

−
∫ T

t
Zs dWs;

t ∈ [0, T ],(4.22)

where h ∈ C([0, T ] × R
N × R × R;R), g ∈ C(RN ;R), and both are uniformly

bounded.

THEOREM 4.7. Assume (H1) and (H2). Then (4.22) admits a weak solution.

PROOF. Let (σn,hn, gn) be smooth mollifiers of (σ,h, g). We define functions
un

k backwardly as follows. First, considering (x1, . . . , xN) as parameters, we define

un
N+1(x1, . . . , xN ;T ,x)

�= gn(x1, . . . , xN).

For k = N, . . . ,1, given (x1, . . . , xk−1) as parameters, let un
k(x1, . . . , xk−1; t, x) be

the classical solution to the following PDE over t ∈ [tk−1, tk]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu
n
k + 1

2σ 2
n (t, x1, . . . , xk−1, x, . . . , x︸ ︷︷ ︸

N−k

, un
k)∂xxu

n
k

+ hn(t, x1, . . . , xk−1, x, . . . , x︸ ︷︷ ︸
N−k

, un
k, σn∂xu

n
k) = 0;

un
k(x1, . . . , xk−1; tk, x) = un

k+1(x1, . . . , xk−1, x; tk, x).

Now, we construct the solutions (Xn,Y n,Zn) recursively as follows. Define

Xn
0

�= x. For k = 1, . . . ,N and t ∈ (tk−1, tk], we define

Xn
t = Xn

tk−1
+

∫ t

ti−1

σ(s, (Xn)tk−1,X
n
s , un((X

n)tk−1; s,Xn
s )) dWs.

For t ∈ [tk−1, tk), let

Yn
t

�= un
k((X

n)tk−1; t,Xn
t ); Zn

t

�= ∂xu
n
k((X

n)tk−1; t,Xn
t )σn(t, (X

n)t , Y
n
t ).

Then (Xn,Y n,Zn) is a strong solution to FBSDE (4.22) with coefficients
(σn,hn, gn).

For t ∈ [tN−1, tN ], note that (Xn,Y n,Zn) satisfies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Xn

t = Xn
tN−1

+
∫ t

tN−1

σn(s, (X
n)tN−1,X

n
s , Y n

s ) dWs;
Yn

t = un(X
n
tN−1

;T ,Xn
tN

)

+
∫ tN

t
hn(s, (X

n)tN−1,X
n
s , Y n

s ,Zn
s ) ds −

∫ tN

t
Zn

s dWs.
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Since un
N(x1, . . . , xN−1; tN , x) is uniformly continuous on x, following the same

arguments as in previous subsection, we get

lim
δ→0

sup
n

E

{∫ tN

tN−1

|Zn
t − Z

n,δ
t |2 dt

}
= 0.

Moreover, by stability of the PDEs, we know un
N1

(x1, . . . , xN−2; tN−1, x) is uni-
formly continuous on x, then we may prove

lim
δ→0

sup
n

E

{∫ tN−1

tN−2

|Zn
t − Z

n,δ
t |2 dt

}
= 0.

Repeat the arguments, we get

lim
δ→0

sup
n

E

{∫ tk

tk−1

|Zn
t − Z

n,δ
t |2 dt

}
= 0 ∀k.

Thus,

lim
δ→0

sup
n

E

{∫ T

0
|Zn

t − Z
n,δ
t |2 dt

}
= 0.

Now the result follows from Theorem 3.1 immediately. �

REMARK 4.8. We should point out that a decoupled version of (4.22) was
studied in Hu and Ma [12], in which the existence of strong solution was proved
under the assumption that σ is Lipschitz. However, it is by no means clear if the
method there can be extended to the current case.

5. Uniqueness. We now turn our attention to the key issue of the paper: the
uniqueness of the solution to FBMP. Again, we shall consider only the special
case (4.1) and assume all processes are one-dimensional. We shall assume through-
out this section that (H1) and (H2) hold.

Recall from Section 2 the canonical space �
�= C([0, T ];R) × C([0, T ];R).

Let F = {Ft }t≥0 denote the filtration generated by the canonical processes, which
we shall denote by (x,y). In light of Remark 2.6(ii), from now on we call (P,Z)

a solution to the FBMPx,T (0, σ,h, g). For simplicity, in what follows, we do not
distinguish the term “solution to the FBMP” from “weak solution,” and we often
simply write “FBMP (4.1)” instead of “FBMPx,T (0, σ,h, g)” when the context is
clear.

We first give the definition of the uniqueness for FBMP.

DEFINITION 5.1. We say that the forward–backward martingale problem
FBMP (4.1) has unique solution whenever (Pi ,Zi), i = 1,2, are two solutions
to the FBMP such that P

i (x0 = x) = 1, i = 1,2, then the processes (x,y,Z1) and
(x,y,Z2) have the same finite dimensional distributions, under P

1 and P
2, respec-

tively. In particular, this means that P
1 = P

2.
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By the proof of Theorem 2.5, it is obvious that the uniqueness of solu-
tion to FBMP (4.1) is equivalent to the uniqueness in law of weak solution to
FBSDE (4.1).

By Theorem 4.5, we know that there exists at least one solution to the
FBMP (4.1). We denote this solution by (P0,Z0). We note that this special weak
solution has the following feature:

yt = u(t,xt ) ∀t ∈ [0, T ], P
0-a.s.(5.1)

where u is a viscosity solution to PDE (4.2) satisfying (4.3). Clearly, to prove the
uniqueness of solution to FBMP (4.1), it suffices to show that any solution to it
will be identical in law to (P0,Z0).

To begin with, we recall that for any given probability measure P ∈ P (�) and
any t < T , there exists a regular conditional probability distribution (r.c.p.d. for
short) of P given Ft , denoted by P

ω
t , ω ∈ �, in the sequel (see, e.g., [26]). Further-

more, we can choose a version of P
ω
t so that P

ω
t ∈ P (�) for all ω ∈ �. In what

follows, we will always take such a version without further specification.
We now introduce an auxiliary notion that will play an important role in our

discussion for uniqueness. Let k = k(t, δ, η) be a (deterministic) function defined
on [0, T ) × (0, T ) × (0,1) satisfying the following properties.⎧⎪⎪⎪⎨⎪⎪⎪⎩

k(t1, δ1, η) ≤ k(t2, δ2, η), ∀t1 ≤ t2, δ1 ≤ δ2;
lim
δ→0

k(t, δ, η) = 0, ∀(t, η);
k(t, δ, η) ≥ Cδα

(T − t − δ)αη2 , ∀t + δ < T,

(5.2)

where C,α > 0 are the constants same as those in Corollary 4.6.

DEFINITION 5.2. We say that a weak solution (P,Z) is a “k-weak solution”
at (t, x, y) if the following hold:

(i) Ws
�= ∫ s

t σ−1(r,xr ,yr ) dxr is a P-Brownian motion for s ≥ t ;
(ii) P{xt = x, yt = y} = 1;

(iii) ys = y − ∫ s
t h(r,xr ,yr ,Zr) dr + ∫ s

t Zr dWr , s ∈ [t, T ], P-a.s.;
(iv) P{yT = g(xT )} = 1;
(v) for any s ∈ [t, T ), and δ > 0, η > 0, P

ω
s {|ys − y(s+δ)∧T | ≥ η} ≤ k(s, δ, η),

P-a.s. ω ∈ �.

REMARK 5.3. (i) Note that in light of Corollary 4.6 one can easily show that

P
0,ω
t {|yt − yt+δ| ≥ η} ≤ Cδα

(T − t − δ)αη2 , P
0-a.s. ω ∈ �.(5.3)

Therefore, for a given function k satisfying (5.2), any weak solution con-
structed via solution to the PDE with initial time t will be a k-weak solution
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at (t,xt , u(t,xt )). In particular, the solution (P0,Z0) is a k-weak solution at
(0, x, u(0, x)).

(ii) Note that if there exists a function k̃ such that k̃(t1, δ1) ≤ k̃(t2, δ2) for t1 ≤ t2,
δ1 ≤ δ2 and limδ→0 k̃(s, δ) = 0 for t < T , and that for any s ∈ [t, T ), and δ > 0,

EP
ω
s

{∫ (s+δ)∧T

s
|Zr |2 dr

}
≤ k̃(s, δ), P-a.s. ω ∈ �,(5.4)

then it is easy to check, by the Burkholder–Davis–Gundy and Hölder inequalities
that condition (v) in Definition 5.2 holds for an appropriately chosen function k.

(iii) Since h and g are bounded, by conditions (iii) and (iv), one can easily
show that EP{∫ T

t |Zs |2 ds} < ∞. Z can be arbitrary over [0, t), as long as P and

zs
�= Zsσ

−1(s,xs,ys) satisfy the conditions in Definition 2.3.

We shall prove that any k-weak solution is identical to (P0,Z0), by showing
that a k-weak solution can exist only at (t, x, u(t, x)). To this end, let us denote

O
�= {(t, x, y) : there exists a k-weak solution at (t, x, y)},(5.5)

and let Ō denote the closure of O (we note that O is not necessarily Lebesgue
measurable!). Clearly, we have (t, x, u(t, x)) ∈ O for any (t, x) ∈ [0, T ] × R.

Now define two functions on (t, x) ∈ [0, T ] × R:

u(t, x)
�= inf{y : (t, x, y) ∈ Ō}; ū(t, x)

�= sup{y : (t, x, y) ∈ Ō}.(5.6)

We claim that for some constant C0,

−C0 ≤ u(t, x) ≤ u(t, x) ≤ ū(t, x) ≤ C0; u(T , x) = ū(T , x) = g(x).(5.7)

First, for any (t, x, y) ∈ O, let (P,Z) be a k-weak solution at (t, x, y). Then

y = g(xT ) −
∫ T

t
h(s,xs,ys,Zs) ds +

∫ T

t
Zs dWs, P-a.s.

Thus,

y = EPy = EP

{
g(xT ) −

∫ T

t
h(s,xs,ys,Zs) ds

}
.(5.8)

Since both g and h are bounded, there exists some C0 > 0 such that

|y|2 ≤ CEP

{
|g(xT )|2 +

∫ T

t
|h(s,xs,ys,Zs)|2 ds

}
≤ C2

0 .

Second, for any (T , x, y) ∈ Ō, assume (tn, xn, yn) ∈ O and (tn, xn, yn) →
(T , x, y). Let (Pn,Zn) be a k-weak solution at (tn, xn, yn) and Wn be the cor-
responding P

n-Brownian motion. Then⎧⎪⎪⎪⎨⎪⎪⎪⎩
xT = xn +

∫ T

tn

σ (s,xs,ys) dWn
s ;

yn = g(xT ) −
∫ T

tn

h(s,xs,ys,Zs) ds +
∫ T

tn

Zs dWn
s ;

P
n-a.s.
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Thus, applying the similar argument as (5.8) from the FBSDE above we have

|yn − g(xn)|2

≤ 2EP
n
{
|g(xT ) − g(xn)|2 +

∣∣∣∣ ∫ T

tn

h(s,xs,ys,Zs) ds

∣∣∣∣2}

≤ CEP
n
{∣∣∣∣g(

xn +
∫ T

tn

σ (s,xs,ys) dWn
s

)
− g(xn)

∣∣∣∣2}
+ C|T − tn|2.

Now note that by (H1) g is bounded and uniformly continuous, a standard argu-
ment using Chebyshev’s inequality and the boundedness of σ , one shows easily
that limn→∞ |yn − g(xn)| = 0. To wit, y = g(x).

Moreover, since Ō is a closed set, we have (t, x, u(t, x)) ∈ Ō and (t, x, ū(t, x)) ∈
Ō.

LEMMA 5.4. u is lower semi-continuous and ū is upper semi-continuous.

PROOF. We need only check for u. The argument for ū is symmetric. Assume
(tn, xn) → (t0, x0) and u(tn, xn) → y0. Since (tn, xn, u(tn, xn)) ∈ Ō for each n and
Ō is closed, we see that (t0, x0, y0) ∈ Ō, hence u(t0, x0) ≤ y0. �

Our main result of this section is the following theorem.

THEOREM 5.5. Assume (H1), (H2) and (H3). Then, u and ū are viscosity
supersolution and subsolution, respectively, of the quasilinear PDE{

ut + 1
2σ 2(t, x, u)uxx + h(t, x, u,uxσ ) = 0;

u(T , x) = g(x).
(5.9)

PROOF. Again, we check for u only. For any (t0, x0) ∈ [0, T ) × R, let ϕ ∈
C1,2([0, T ] × R) be such that y0

�= u(t0, x0) = ϕ(t0, x0) and u(t, x) ≥ ϕ(t, x), for
all (t, x) ∈ [0, T ] × R. We shall prove that

[Lϕ](t0, x0, ϕ(t0, x0)) ≤ 0,(5.10)

where

[Lϕ](t, x, y)
�= ϕt (t, x) + 1

2σ 2(t, x, y)ϕxx(t, x)

+ h(t, x, y,ϕx(t, x)σ (t, x, y)).

To do this, we first note that (t0, x0, y0) = (t0, x0, u(t0, x0)) ∈ Ō, so for each n

there exists a (tn, xn, yn) ∈ O such that

|tn − t0| + |xn − x0| + |yn − y0| ≤ 1

n
.(5.11)
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Now suppose that (Pn,Zn) is a k-weak solution at (tn, xn, yn) and let Wn de-
note the corresponding P

n-Brownian motion. For t ∈ (tn, T ), it is readily seen
that (P

n,ω
t ,Z) is a k-weak solution at (t,xt ,yt ), P

n-a.s. ω ∈ �. In other words,
we must have (t,xt ,yt ) ∈ O, P

n-a.s., and consequently yt ≥ u(t,xt ) ≥ ϕ(t,xt ),
P

n-a.s., ∀t ≥ tn.
Now let us denote


Yt
�= ϕ(t,xt ) − yt ; 
Zn

t

�= ϕxσ(t,xt ,yt ) − Zn
t .

Also, for any ε > 0, let hε be a mollifier of h such that ‖hε − h‖∞ ≤ ε and
‖∂zhε‖∞ ≤ Cε , and denote

α
n,ε
t

�= [h(t,xt ,yt ,Z
n
t ) − h(t,xt ,yt , ϕxσ (t,xt ,yt ))]

− [hε(t,xt ,yt ,Z
n
t ) − hε(t,xt ,yt , σ (t,xt ,yt )ϕx)];

β
n,ε
t

�=
∫ 1

0
∂zhε(t,xt ,yt ,Z

n
t + θ
Zn

t ) dθ.

Then it holds that

|αn,ε
t | ≤ 2ε, |βn,ε

t | ≤ Cε.(5.12)

Furthermore, applying Itô’s formula and using the definition of Lϕ, αn,ε and βn,ε

we have

d
Yt = [
ϕt + 1

2σ 2(t,xt ,yt )ϕxx + h(t,xt ,yt ,Z
n
t )

]
dt + 
Zn

t dWn
t

= {[Lϕ](t,xt ,yt ) + [h(t,xt ,yt ,Z
n
t ) − h(t,xt ,yt , ϕxσ (t,xt ,yt ))]}dt

+ 
Zn
t dWn

t

= [Lϕ](t,xt ,yt ) dt + α
n,ε
t dt − β

n,ε
t 
Zn

t dt + 
Zn
t dWn

t .

Now let us denote

�
n,ε
t

�= exp
{∫ t

tn

βn,ε
s dWn

s − 1
2

∫ t

tn

|βn,ε
s |2 ds

}
, t ∈ [tn, T ].

One easily checks that by denoting En �= EP
n
,

�
n,ε
tn = 1, �

n,ε
t > 0, En{�n,ε

t } = 1 and
(5.13)

En{|�n,ε
t |2} ≤ Cε ∀t ≥ tn.

Moreover, applying Itô’s formula again we have, for t ∈ [tn, T ],
d(�

n,ε
t 
Yt ) = �

n,ε
t [Lϕ]dt + �

n,ε
t α

n,ε
t dt

(5.14)
+ �

n,ε
t [
Zn

t − β
n,ε
t 
Yt ]dWn

t .
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Now, for any δ > 1
n

, choose t = t0 + δ > tn [see (5.11)], we deduce from (5.14)
that

0 ≥ En{�n,ε
t0+δ
Yt0+δ} = En

{

Ytn +

∫ t0+δ

tn

�
n,ε
t {[Lϕ](t,xt ,yt ) + α

n,ε
t }dt

}
.

Therefore, using (5.12) and (5.13), we get

En

{∫ t0+δ

tn

�
n,ε
t [Lϕ](t,xt ,yt ) dt

}

≤ −En

{

Ytn +

∫ t0+δ

tn

�
n,ε
t α

n,ε
t dt

}
(5.15)

≤ En

{
|yn − y0| + |ϕ(t0, x0) − ϕ(tn, xn)| +

∫ t0+δ

tn

�
n,ε
t |αn,ε

t |dt

}

≤ CEn

{
1

n
+ ε

∫ t0+δ

tn

�
n,ε
t dt

}
≤ C

[
ε + 1

nδ − 1

]
(t0 + δ − tn),

where C may depend on ϕ. Recall (5.7). To prove (5.10), without loss of general-
ity, we may assume that ϕ(t, x) = −C0 − 1 for x outside of a compact set. Then
ϕ,ϕt , ϕx and ϕxx are all uniformly continuous. By (H1) and (H3), Lϕ is uniformly
continuous in (t, x, y). Let wϕ denote the modulus of continuity of Lϕ, and write


n[Lϕ](t,xt ,yt ) = Lϕ(t,xt ,yt ) − Lϕ(tn, xn, yn).

We see that (5.15) yields

Lϕ(t0, x0, y0)

≤ Lϕ(tn, xn, yn) + wϕ

(
1

n

)

= En

{
1

t0 + δ − tn

∫ t0+δ

tn

�
n,ε
t Lϕ(tn, xn, yn) dt

}
+ wϕ

(
1

n

)

= En

{
1

t0 + δ − tn

∫ t0+δ

tn

�
n,ε
t {[Lϕ](t,xt ,yt ) − 
n[Lϕ](t,xt ,yt )}dt

}
(5.16)

+ wϕ

(
1

n

)
≤ Cε + C

nδ − 1
+ wϕ

(
1

n

)

+ 1

t0 + δ − tn
En

{∫ t0+δ

tn

|�n,ε
t 
n[Lϕ](t,xt ,yt )|dt

}
.
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To estimate the last term on the right-hand side above, we first apply the Cauchy–
Schwarz inequality and the estimate (5.13) to get

En
∫ t0+δ

tn

|�n,ε
t 
n[Lϕ]|dt

≤
{
En

∫ t0+δ

tn

|�n,ε
t |2 dt

}1/2{
En

∫ t0+δ

tn

|
n[Lϕ]|2 dt

}1/2

(5.17)

≤ Cε

{
sup

tn≤t≤t0+δ

En{|
n[Lϕ](t,xt ,yt )|2}
}1/2

(t0 + δ − tn).

Note that, for any η > 0 and t ∈ [tn, t0 + δ], we apply the Chebyshev inequality to
get

En{|
n[Lϕ](t,xt ,yt )|2}
≤ Cw2

ϕ(t0 + δ − tn) + Cw2
ϕ(η)

+ CP n(|xt − xn| ≥ η) + CP n(|yt − yn| ≥ η)

≤ C

[
w2

ϕ(t0 + δ − tn) + w2
ϕ(η)(5.18)

+ 1

η2 En

{∫ t

tn

|σ(s,xs,ys)|2 ds

}
+ P n(|yt − ytn | ≥ η)

]

≤ C

[
w2

ϕ(t0 + δ − tn) + w2
ϕ(η)

+ 1

η2 [t0 + δ − tn] + k(tn, t0 + δ − tn, η)

]
,

thanks to Definition 5.2(v) and (5.2). Combining (5.17) and (5.18), we see that
(5.16) now becomes

Lϕ(t0, x0, y0)

≤ Cε + C

nδ − 1
+ wϕ

(
1

n

)
(5.19)

+ Cε

[
wϕ(t0 + δ − tn) + wϕ(η)

+ 1

η
[t0 + δ − tn]1/2 + k1/2(tn, t0 + δ − tn, η)

]
.

Now fix ε and η, choose δ = 1√
n

, and let n → ∞. By (5.2), we get

Lϕ(t0, x0, y0) ≤ Cε + Cεwϕ(η).
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Finally, letting η → 0 and then ε → 0, we obtain (5.10). That is, u is a viscosity
supersolution, proving the theorem. �

A direct consequence of Theorem 5.5 is the following uniqueness result.

THEOREM 5.6. Assume (H1), (H2) and (H3), and that the comparison theo-
rem holds for bounded viscosity solutions to the PDE (4.2). Then FBSDE (4.1)
admits a unique weak solution (P,Z) satisfying P

ω
t {|yt − y(t+δ)∧T | ≥ η} ≤

k(t, δ, η),P-a.s. ω ∈ �, for any (t, δ, η).

PROOF. It suffices to show that (P,Z) is identical to the “canonical” weak
solution (P0,Z0) constructed in Section 4, in the sense of Definition 5.1. We shall
assume without loss of generality that P(y0 = y) = 1 for some y (otherwise, we

apply the usual arguments by considering the conditional probabilities P
y{·} �=

P{·|y0 = y}, for P-a.e. y ∈ R, and the result will be the same). Then (P0,Z0)

and (P,Z) are k-weak solutions at (0, x, u(0, x)) and (0, x, y), respectively. Since
by (5.7) and Theorem 5.5, we know that ū is a bounded subsolution and u is a
bounded supersolution to (4.2), by our assumptions we must have ū ≤ u, thanks
to the comparison theorem. Thus, we must have u = u = ū. On the other hand,
following the arguments in Theorem 5.5, one shows that (t,xt ,yt ) ∈ Ō, P-a.s., for
any t . Therefore, it holds that u(t,xt ) ≤ yt ≤ ū(t,xt ). Thus, yt = u(t,xt ), P-a.s.,
for all t ∈ [0, T ]. Finally, since x,y, u are continuous, we get yt = u(t,xt ), for all
t ∈ [0, T ], P-a.s.

Now define dW
�= σ−1(t,xt , u(t,xt )) dxt , we see that W is a P-Brownian mo-

tion, and (W,x) is a weak solution to a forward SDE. Since under our assumptions
the uniqueness in law holds for this forward SDE, noting the relation yt = u(t,xt )

it is easily seen that P ◦ (W,x,y)−1 = P
0 ◦ (W,x,y)−1. In particular, since (x,y)

is the canonical process, we have P = P
0. Consequently, the processes Z and Z0,

being the integrands of the quadratic variation processes [y,W ] under P and P
0,

respectively, must be identical in law as well. In other words, the weak solutions
(P,Z) and (P0,Z0) are identical by Definition 5.1, proving the theorem. �

REMARK 5.7. The assumption that the comparison theorem holds for the vis-
cosity solution to the PDE (4.2) actually imply that the coefficients σ , g and h must
satisfy certain conditions. We refer to the ubiquitous reference [5] for general the-
ory of viscosity solutions. We should note that in general the sufficient conditions
for comparison should be checked case by case, and we feel that it is more con-
venient to assume comparison theorem directly in Theorem 5.6. We shall present
some simple cases in the concluding discussion below to make our point clearer.

We shall conclude our discussion on uniqueness by presenting some sufficient
conditions under which the comparison theorem holds. We note that these cases
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are consequences of [5], Theorem 8.2, and the discussion in Section 5.D there,
adjusted to the current situations. In light of the PDE (4.2), let us denote

F(t, x, y,p,A)
�= 1

2σ 2(t, x, y)A + h(t, x, y,pσ(t, x, y)).

Suppose that:

(i) F is decreasing in y;
(ii) there exists a continuous function w : [0,∞] → [0,∞], such that w(0) = 0

and for all t , x1, x2, y, p, A, B , and 
x
�= x1 − x2; and all α > 0 satisfying

−3α

[
I 0
0 I

]
≤

[
A 0
0 −B

]
≤ 3α

[
I −I

−I I

]
,

it holds that

|F(t, x1, y,α
x,A) − F(t, x2, y,α
x,B)| ≤ w(α|
x|2 + |
x|).(5.20)

Then it is known (cf. [5]) that the comparison theorem holds for viscosity subso-
lutions and supersolutions to PDE (4.2) that are of at most linear growth.

Now we assume that (H1)–(H3) hold. Since σ is bounded, one sufficient condi-
tion for (ii) is σ = σ(t, y) and h is uniformly continuous in x and z. Furthermore,
in the following two examples, the condition (i) is satisfied as well, and conse-
quently the comparison theorem holds.

EXAMPLE 1. σ = σ(t) and h is decreasing in y.

EXAMPLE 2. σ = σ(t, y), σ,h are uniformly Hölder continuous in (x, y, z)

and g ∈ C
2 with bounded derivatives. Then (4.2) has a classical solution u ∈ C

1,2.
Assume |ux | ≤ C1, |uxx | ≤ C2 for some constants C1,C2. Assume further that, for
any t, x and y1 < y2,

inf|p|≤C1
[h(t, x, y1,pσ(t, y1)) − h(t, x, y2,pσ(t, y2))] ≥ C2|σ(t, y1) − σ(t, y2)|.

Then one can check that the comparison theorem holds for all viscosity subsolu-
tions and supersolutions that have bounded first and second derivatives in x.
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